1
|
Foglia SD, Adams FC, Ramdeo KR, Drapeau CC, Turco CV, Tarnopolsky M, Ma J, Nelson AJ. Investigating the effects of dopamine on short- and long-latency afferent inhibition. J Physiol 2024; 602:2253-2264. [PMID: 38638084 DOI: 10.1113/jp286126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
Short- and long-latency afferent inhibition (SAI and LAI respectively) are phenomenon whereby the motor evoked potential induced by transcranial magnetic stimulation (TMS) is inhibited by a sensory afferent volley consequent to nerve stimulation. It remains unclear whether dopamine participates in the genesis or modulation of SAI and LAI. The present study aimed to determine if SAI and LAI are modulated by levodopa (l-DOPA). In this placebo-controlled, double-anonymized study Apo-Levocarb (100 mg l-DOPA in combination with 25 mg carbidopa) and a placebo were administered to 32 adult males (mean age 24 ± 3 years) in two separate sessions. SAI and LAI were evoked by stimulating the median nerve and delivering single-pulse TMS over the motor hotspot corresponding to the first dorsal interosseous muscle of the right hand. SAI and LAI were quantified before and 1 h following ingestion of drug or placebo corresponding to the peak plasma concentration of Apo-Levocarb. The results indicate that Apo-Levocarb increases SAI and does not significantly alter LAI. These findings support literature demonstrating increased SAI following exogenous dopamine administration in neurodegenerative disorders. KEY POINTS: Short- and long-latency afferent inhibition (SAI and LAI respectively) are measures of corticospinal excitability evoked using transcranial magnetic stimulation. SAI and LAI are reduced in conditions such as Parkinson's disease which suggests dopamine may be involved in the mechanism of afferent inhibition. 125 mg of Apo-Levocarb (100 mg dopamine) increases SAI but not LAI. This study increases our understanding of the pharmacological mechanism of SAI and LAI.
Collapse
Affiliation(s)
- Stevie D Foglia
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Faith C Adams
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Karishma R Ramdeo
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Chloe C Drapeau
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Claudia V Turco
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mark Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Jinhui Ma
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Aimee J Nelson
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Gungor Aydin A, Adiguzel E. The mesocortical dopaminergic system cannot explain hyperactivity in an animal model of attention deficit hyperactivity disorder (ADHD)- Spontaneously hypertensive rats (SHR). Lab Anim Res 2023; 39:20. [PMID: 37710339 PMCID: PMC10500870 DOI: 10.1186/s42826-023-00172-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) is one of the most prevalent neuropsychiatric disorders with morphological brain abnormalities. There is a growing body of evidence that abnormalities in the dopaminergic system may account for ADHD pathogenesis. However, it is not clear whether the dopaminergic system is hyper or hypoactive. To determine whether the DA neurons and/or axons deficiency might be the cause of the postulated dopaminergic hypofunction in spontaneously hypertensive rats (SHR, animal model of ADHD), this study examined the dopaminergic neurons and fibers in the brain tissues of SHRs and Wistar Kyoto rats (WKY, control animals). Here, we performed immunohistochemical tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH) staining on brain sections collected on juveniles from SHR and WKY. Moreover, behavioral testing to examine the hyperactivity in the open field area was also elucidated. RESULTS The mesocortical dopaminergic system appears to be normal in juvenile SHR, as suggested by (i) no alteration in the area density of TH-immunoreactive (TH-ir) dopaminergic neurons in the ventral tegmental area (VTA), (ii) no alterations in the volume density of TH-ir fibers in layer I of the prelimbic (PrL) subregion of medial PFC (mPFC), (iii) no alteration in the percentage of TH-ir dopaminergic fibers in layer I of the PrL subregion of mPFC as revealed by TH and/or DBH immunoreactivity. Furthermore, the SHR showed increased locomotor activity than WKY in the open field test. CONCLUSIONS The demonstration of no alteration in mesocortical dopaminergic neurons and fiber in SHR raises some concern about the position of SHR as an animal model of the inattentive subtype of ADHD. However, these results strengthen this strain as an animal model of hyperactive/impulsive subtype ADHD for future studies that may elucidate the underlying mechanism mediating hyperactivity and test various treatment strategies.
Collapse
Affiliation(s)
- Aysegul Gungor Aydin
- Department of Psychology, Rutgers University-New Brunswick, Piscataway, NJ, 08854, USA.
| | - Esat Adiguzel
- Department of Anatomy, Faculty of Medicine, Pamukkale University, 20070, Denizli, Turkey
- Department of Neuroscience, Institute of Health Sciences, Pamukkale University, 20070, Denizli, Turkey
| |
Collapse
|
3
|
Di Domenico D, Mapelli L. Dopaminergic Modulation of Prefrontal Cortex Inhibition. Biomedicines 2023; 11:biomedicines11051276. [PMID: 37238947 DOI: 10.3390/biomedicines11051276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
The prefrontal cortex is the highest stage of integration in the mammalian brain. Its functions vary greatly, from working memory to decision-making, and are primarily related to higher cognitive functions. This explains the considerable effort devoted to investigating this area, revealing the complex molecular, cellular, and network organization, and the essential role of various regulatory controls. In particular, the dopaminergic modulation and the impact of local interneurons activity are critical for prefrontal cortex functioning, controlling the excitatory/inhibitory balance and the overall network processing. Though often studied separately, the dopaminergic and GABAergic systems are deeply intertwined in influencing prefrontal network processing. This mini review will focus on the dopaminergic modulation of GABAergic inhibition, which plays a significant role in shaping prefrontal cortex activity.
Collapse
Affiliation(s)
- Danila Di Domenico
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
4
|
Yang S, Tseng KY. Maturation of Corticolimbic Functional Connectivity During Sensitive Periods of Brain Development. Curr Top Behav Neurosci 2022; 53:37-53. [PMID: 34386969 DOI: 10.1007/7854_2021_239] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The maturation of key corticolimbic structures and the prefrontal cortex during sensitive periods of brain development from early life through adolescence is crucial for the acquisition of a variety of cognitive and affective processes associated with adult behavior. In this chapter, we first review how key cellular and circuit level changes during adolescence dictate the development of the prefrontal cortex and its capacity to integrate contextual and emotional information from the ventral hippocampus and the amygdala. We further discuss how afferent transmission from ventral hippocampal and amygdala inputs displays unique age-dependent trajectories that directly impact prefrontal functional maturation through adolescence. We conclude by proposing that time-sensitive strengthening of specific corticolimbic synapses is a critical contributing factor for the protracted maturation of cognitive and emotional regulation by the prefrontal cortex.
Collapse
Affiliation(s)
- Shaolin Yang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kuei Y Tseng
- Department of Anatomy and Cell Biology, University of Illinois at Chicago - College of Medicine, Chicago, IL, USA.
| |
Collapse
|
5
|
Castro-Zavala A, Martín-Sánchez A, Valverde O. Sex differences in the vulnerability to cocaine's addictive effects after early-life stress in mice. Eur Neuropsychopharmacol 2020; 32:12-24. [PMID: 31918976 DOI: 10.1016/j.euroneuro.2019.12.112] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/13/2019] [Accepted: 12/13/2019] [Indexed: 01/28/2023]
Abstract
Even though men are more likely to use drugs, women tend to progress faster from drug use to drug abuse, especially in the case of psychostimulants such as cocaine. Preclinical studies evaluating the differences in cocaine self-administration (SA) between sexes are contradictory. While some have shown no between-sex differences, others have reported female rodents to acquire higher percentages of cocaine SA criteria. Furthermore, early-life adversity is a risk factor for substance-use disorder and clinical evidence showed that women who have experienced childhood adversity are more likely to use drugs in comparison with males. However, the molecular differences between sexes as a consequence of early-life adversity or cocaine consumption have scarcely been explored. The aim of our study was to evaluate the differences in the expression of the GluA1, GluA2 subunits of AMPA receptors, pCREB and CREB in male and female mice exposed to maternal separation with early weaning (MSEW). Moreover, we evaluated the effects of cocaine SA in both sexes during adulthood, and the possible changes in GluA1, GluA2, pCREB and CREB expressions. Our results showed a higher acquisition percentage in females and an MSEW-induced increase in cocaine-seeking solely in males. Additionally, we observed sex differences in GluA1, GluA2, CREB and pCREB levels in the NAc and the VTA. The present results displayed changes in molecules that play a crucial role in the regulation of the rewarding effects of cocaine, helping to elucidate the mechanisms involved in the progression from cocaine use to cocaine abuse in both females and males.
Collapse
Affiliation(s)
- Adriana Castro-Zavala
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Ana Martín-Sánchez
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88, Barcelona 08003, Spain; Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88, Barcelona 08003, Spain; Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
6
|
Delgado H, Agrati D, Machado L, Reyes L, Savio E, Engler H, Ferreira A. Cocaine treatment before pregnancy differentially affects the anxiety and brain glucose metabolism of lactating rats if performed during adulthood or adolescence. Behav Brain Res 2019; 372:112070. [PMID: 31276701 DOI: 10.1016/j.bbr.2019.112070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
Abstract
Cocaine exposure disrupts the maternal behavior of lactating rats, yet it is less known whether it alters the affective changes that accompany motherhood. As the long-term action of cocaine on anxiety varies according to the developmental stage of the individuals, this study aimed to compare the effect of a chronic treatment with cocaine to adult and adolescent non-pregnant females on their anxiety-like behavior and basal brain metabolic activity during lactation. Thus, adult and adolescent virgin rats were exposed to cocaine (0.0 or 15.0 mg/kg ip) during 10 days and were mated four days later. Anxiety behavior was evaluated on postpartum days 3-4 in the elevated plus maze test, and the basal brain glucose metabolism was determined on postpartum days 7-9 by means of [18F] fluorodeoxyglucose positron emission tomography. Cocaine treatment during adulthood increased the anxiety-like behavior of lactating females whereas its administration during adolescence decreased it. Also, the basal glucose metabolism of the medial prefrontal cortex differed between lactating females treated with cocaine during adulthood and adolescence. These differential effects of cocaine, according to the age at which the drug was administered, support the idea that the adolescent and adult brains have a distinct susceptibility to this drug, which leads to divergent long-term changes in the neural circuits that regulate anxiety during lactation.
Collapse
Affiliation(s)
- Hernán Delgado
- Department of Physiology and Nutrition, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Basic Research Center in Psychology, Facultad de Psicología, Universidad de la República, Montevideo, Uruguay.
| | - Daniella Agrati
- Department of Physiology and Nutrition, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Luna Machado
- Department of Physiology and Nutrition, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Laura Reyes
- Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Eduardo Savio
- Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Henry Engler
- Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Annabel Ferreira
- Department of Physiology and Nutrition, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
7
|
Effects of local activation and blockade of dopamine D4 receptors in the spiking activity of the reticular thalamic nucleus in normal and in ipsilateral dopamine-depleted rats. Brain Res 2019; 1712:34-46. [DOI: 10.1016/j.brainres.2019.01.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/08/2019] [Accepted: 01/30/2019] [Indexed: 01/01/2023]
|
8
|
Opiate-associated contextual memory formation and retrieval are differentially modulated by dopamine D1 and D2 signaling in hippocampal-prefrontal connectivity. Neuropsychopharmacology 2019; 44:334-343. [PMID: 29728647 PMCID: PMC6300561 DOI: 10.1038/s41386-018-0068-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/01/2018] [Accepted: 04/04/2018] [Indexed: 01/26/2023]
Abstract
Contextual memory driven by abused drugs such as opiates has a central role in maintenance and relapse of drug-taking behaviors. Although dopamine (DA) signaling favors memory storage and retrieval via regulation of hippocampal-prefrontal connectivity, its role in modulating opiate-associated contextual memory is largely unknown. Here, we report roles of DA signaling within the hippocampal-prefrontal circuit for opiate-related memories. Combining-conditioned place preference (CPP) with molecular analyses, we investigated the DA D1 receptor (D1R) and extracellular signal-regulated kinase (ERK)-cAMP-response element binding protein (CREB) signaling, as well as DA D2 receptor (D2R) and protein kinase B (PKB or Akt)/glycogen synthase kinase 3 (GSK3) signaling in the ventral hippocampus (vHip) and medial prefrontal cortex (mPFC) during the formation of opiate-related associative memories. Morphine-CPP acquisition increased the activity of the D1R-ERK-CREB pathway in both the vHip and mPFC. Morphine-CPP reinstatement was associated with the D2R-mediated hyperactive GSK3 via Akt inhibition in the vHip and PFC. Furthermore, integrated D1R-ERK-CREB and D2R-Akt-GSK3 pathways in the vHip-mPFC circuit are required for the acquisition and retrieval of the morphine contextual memory, respectively. Moreover, blockage of D1R or D2R signaling could alleviate normal Hip-dependent spatial memory. These results suggest that D1R and D2R signaling are differentially involved in the acquisition and retrieval of morphine contextual memory, and DA signaling in the vHip-mPFC connection contributes to morphine-associated and normal memory, largely depending on opiate exposure states.
Collapse
|
9
|
Steketee JD, Liu K. Effects of repeated cocaine administration on dopamine D1 receptor modulation of mesocorticolimbic GABA and glutamate transmission. Brain Res 2018; 1698:106-113. [PMID: 30075100 DOI: 10.1016/j.brainres.2018.07.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/27/2018] [Accepted: 07/30/2018] [Indexed: 11/30/2022]
Abstract
Repeated cocaine exposure alters medial prefrontal cortex (mPFC) function to allow for enhanced excitatory transmission to the nucleus accumbens and ventral tegmental area (VTA). Previous studies have demonstrated changes in receptor function in the mPFC in animals repeatedly exposed to cocaine that produced increased excitatory output. The present report tested the hypothesis that daily injections of cocaine would enhance D1 receptor responsiveness by infusing the D1 receptor agonist SKF 38393 into the mPFC and monitoring glutamate and/or GABA release in the mPFC, nucleus accumbens and VTA of saline- and cocaine-pretreated animals using in vivo microdialysis. The data demonstrated that intra-mPFC SKF 38393 reduced GABA and glutamate levels in the mPFC in control animals. Intra-mPFC SKF 38393 had no effect on glutamate levels in animals 1 day after daily cocaine treatments, increased mPFC glutamate at 7 days of withdrawal and reverted to decreasing glutamate at 30 days of withdrawal. SKF 38393 induced reduction in mPFC GABA is lost at 7 and 30 days of withdrawal. Intra-mPFC SKF 38393 did not alter glutamate levels in the nucleus accumbens or VTA of control animals. Infusion of SKF 38393 into the mPFC of animals previously exposed to cocaine increased and reduced glutamate release in the nucleus accumbens after 7 and 30 days of withdrawal, respectively and increased glutamate levels in the VTA 7 and 30 days after daily cocaine injections. The data suggest that repeated cocaine exposure alters D1 receptor function in the mPFC that could contribute to enhanced behavioral responses that occur following repeated cocaine.
Collapse
Affiliation(s)
- Jeffery D Steketee
- Department Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| | - Kun Liu
- Department Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| |
Collapse
|
10
|
Berta B, Péczely L, Kertes E, Petykó Z, Ollmann T, László K, Kállai V, Kovács A, Zagorácz O, Gálosi R, Karádi Z, Lénárd L. Iontophoretic microlesions with kainate or 6-hydroxidopamine in ventromedial prefrontal cortex result in deficit in conditioned taste avoidance to palatable tastants. Brain Res Bull 2018; 143:106-115. [PMID: 30347263 DOI: 10.1016/j.brainresbull.2018.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/12/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023]
Abstract
Effects of kainate or 6-hydroxidopamine (6-OHDA) lesions in the ventromedial prefrontal cortex (vmPFC) on taste-related learning and memory processes were examined. Neurotoxins were applied by iontophoretic method to minimize the extent of lesion and the side effects. Acquisition and retention of conditioned taste avoidance (CTA) was tested to different taste stimuli (0.05 M NaCl, 0.01 M saccharin, 0.01 M citrate and 0.00025 M quinine). In the first experiment, palatability index of taste solutions with these concentrations has been determined as strongly palatable (NaCl, saccharin), weakly palatable (citrate) and weakly unpalatable (quinine) taste stimuli. In two other experiments vmPFC lesions were performed before CTA (acquisition) or after CTA (retrieval). Our results showed that both kainate and 6-OHDA microlesions of vmPFC resulted in deficit of CTA acquisition (to NaCl, saccharin and citrate) and retrieval (to NaCl and saccharin). Deficits were specific to palatable tastants, particularly those that are strongly palatable, and did not occur for unpalatable stimulus. The present data provide evidence for the important role of vmPFC neurons and catecholaminergic innervation of the vmPFC in taste related learning and memory processes.
Collapse
Affiliation(s)
- Beáta Berta
- Institute of Physiology, Medical School, Pécs University, Pécs Hungary; Neuroscience Center, Pécs University, Pécs, Hungary
| | - László Péczely
- Institute of Physiology, Medical School, Pécs University, Pécs Hungary; Neuroscience Center, Pécs University, Pécs, Hungary
| | - Erika Kertes
- Institute of Physiology, Medical School, Pécs University, Pécs Hungary; Neuroscience Center, Pécs University, Pécs, Hungary
| | - Zoltán Petykó
- Institute of Physiology, Medical School, Pécs University, Pécs Hungary; Neuroscience Center, Pécs University, Pécs, Hungary; Molecular Neuroendocrinology Research Group, Szentágothai Research Center, Pécs University, Pécs, Hungary
| | - Tamás Ollmann
- Institute of Physiology, Medical School, Pécs University, Pécs Hungary; Neuroscience Center, Pécs University, Pécs, Hungary
| | - Kristóf László
- Institute of Physiology, Medical School, Pécs University, Pécs Hungary; Neuroscience Center, Pécs University, Pécs, Hungary
| | - Veronika Kállai
- Institute of Physiology, Medical School, Pécs University, Pécs Hungary; Neuroscience Center, Pécs University, Pécs, Hungary
| | - Anita Kovács
- Institute of Physiology, Medical School, Pécs University, Pécs Hungary; Neuroscience Center, Pécs University, Pécs, Hungary
| | - Olga Zagorácz
- Institute of Physiology, Medical School, Pécs University, Pécs Hungary; Neuroscience Center, Pécs University, Pécs, Hungary
| | - Rita Gálosi
- Institute of Physiology, Medical School, Pécs University, Pécs Hungary; Neuroscience Center, Pécs University, Pécs, Hungary
| | - Zoltán Karádi
- Institute of Physiology, Medical School, Pécs University, Pécs Hungary; Neuroscience Center, Pécs University, Pécs, Hungary; Molecular Neuroendocrinology Research Group, Szentágothai Research Center, Pécs University, Pécs, Hungary
| | - László Lénárd
- Institute of Physiology, Medical School, Pécs University, Pécs Hungary; Neuroscience Center, Pécs University, Pécs, Hungary; Molecular Neuroendocrinology Research Group, Szentágothai Research Center, Pécs University, Pécs, Hungary.
| |
Collapse
|
11
|
Monoaminergic control of brain states and sensory processing: Existing knowledge and recent insights obtained with optogenetics. Prog Neurobiol 2016; 151:237-253. [PMID: 27634227 DOI: 10.1016/j.pneurobio.2016.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/18/2016] [Accepted: 09/10/2016] [Indexed: 01/18/2023]
Abstract
Monoamines are key neuromodulators involved in a variety of physiological and pathological brain functions. Classical studies using physiological and pharmacological tools have revealed several essential aspects of monoaminergic involvement in regulating the sleep-wake cycle and influencing sensory responses but many features have remained elusive due to technical limitations. The application of optogenetic tools led to the ability of monitoring and controlling neuronal populations with unprecedented temporal precision and neurochemical specificity. Here, we focus on recent advances in revealing the roles of some monoamines in brain state control and sensory information processing. We summarize the central position of monoamines in integrating sensory processing across sleep-wake states with an emphasis on research conducted using optogenetic techniques. Finally, we discuss the limitations and perspectives of new integrated experimental approaches in understanding the modulatory mechanisms of monoaminergic systems in the mammalian brain.
Collapse
|
12
|
Caballero A, Granberg R, Tseng KY. Mechanisms contributing to prefrontal cortex maturation during adolescence. Neurosci Biobehav Rev 2016; 70:4-12. [PMID: 27235076 DOI: 10.1016/j.neubiorev.2016.05.013] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 12/17/2022]
Abstract
Adolescence is defined as a transitional period between childhood and adulthood characterized by changes in social interaction and acquisition of mature cognitive abilities. These changes have been associated with the maturation of brain regions involved in the control of motivation, emotion, and cognition. Among these regions, the protracted development of the human prefrontal cortex during adolescence has been proposed to underlie the maturation of cognitive functions and the regulation of affective responses. Studies in animal models allow us to test the causal contribution of specific neural processes in the development of the prefrontal cortex and the acquisition of adult behavior. This review summarizes the cellular and synaptic mechanisms occurring in the rodent prefrontal cortex during adolescence as a model for understanding the changes underlying human prefrontal development.
Collapse
Affiliation(s)
- Adriana Caballero
- Department of Cellular & Molecular Pharmacology, The Chicago Medical School at Rosalind Franklin University of Medicine & Science, North Chicago, IL 60064, USA
| | - Rachel Granberg
- Department of Cellular & Molecular Pharmacology, The Chicago Medical School at Rosalind Franklin University of Medicine & Science, North Chicago, IL 60064, USA
| | - Kuei Y Tseng
- Department of Cellular & Molecular Pharmacology, The Chicago Medical School at Rosalind Franklin University of Medicine & Science, North Chicago, IL 60064, USA.
| |
Collapse
|
13
|
Brown RE, McKenna JT. Turning a Negative into a Positive: Ascending GABAergic Control of Cortical Activation and Arousal. Front Neurol 2015; 6:135. [PMID: 26124745 PMCID: PMC4463930 DOI: 10.3389/fneur.2015.00135] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/28/2015] [Indexed: 01/01/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain. Recent technological advances have illuminated the role of GABAergic neurons in control of cortical arousal and sleep. Sleep-promoting GABAergic neurons in the preoptic hypothalamus are well-known. Less well-appreciated are GABAergic projection neurons in the brainstem, midbrain, hypothalamus, and basal forebrain, which paradoxically promote arousal and fast electroencephalographic (EEG) rhythms. Thus, GABA is not purely a sleep-promoting neurotransmitter. GABAergic projection neurons in the brainstem nucleus incertus and ventral tegmental nucleus of Gudden promote theta (4-8 Hz) rhythms. Ventral tegmental area GABAergic neurons, neighboring midbrain dopamine neurons, project to the frontal cortex and nucleus accumbens. They discharge faster during cortical arousal and regulate reward. Thalamic reticular nucleus GABAergic neurons initiate sleep spindles in non-REM sleep. In addition, however, during wakefulness, they tonically regulate the activity of thalamocortical neurons. Other GABAergic inputs to the thalamus arising in the globus pallidus pars interna, substantia nigra pars reticulata, zona incerta, and basal forebrain regulate motor activity, arousal, attention, and sensory transmission. Several subpopulations of cortically projecting GABAergic neurons in the basal forebrain project to the thalamus and neocortex and preferentially promote cortical gamma-band (30-80 Hz) activity and wakefulness. Unlike sleep-active GABAergic neurons, these ascending GABAergic neurons are fast-firing neurons which disinhibit and synchronize the activity of their forebrain targets, promoting the fast EEG rhythms typical of conscious states. They are prominent targets of GABAergic hypnotic agents. Understanding the properties of ascending GABAergic neurons may lead to novel treatments for diseases involving disorders of cortical activation and wakefulness.
Collapse
Affiliation(s)
- Ritchie E Brown
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Harvard Medical School , Brockton, MA , USA
| | - James T McKenna
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Harvard Medical School , Brockton, MA , USA
| |
Collapse
|
14
|
Gálosi R, Hajnal A, Petykó Z, Hartmann G, Karádi Z, Lénárd L. The role of catecholamine innervation in the medial prefrontal cortex on the regulation of body weight and food intake. Behav Brain Res 2015; 286:318-27. [DOI: 10.1016/j.bbr.2015.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/03/2015] [Accepted: 03/06/2015] [Indexed: 11/24/2022]
|
15
|
Taylor SR, Badurek S, Dileone RJ, Nashmi R, Minichiello L, Picciotto MR. GABAergic and glutamatergic efferents of the mouse ventral tegmental area. J Comp Neurol 2015; 522:3308-34. [PMID: 24715505 DOI: 10.1002/cne.23603] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 12/11/2022]
Abstract
The role of dopaminergic (DA) projections from the ventral tegmental area (VTA) in appetitive and rewarding behavior has been widely studied, but the VTA also has documented DA-independent functions. Several drugs of abuse, act on VTA GABAergic neurons, and most studies have focused on local inhibitory connections. Relatively little is known about VTA GABA projection neurons and their connections to brain sites outside the VTA. This study employed viral-vector-mediated cell-type-specific anterograde tracing, classical retrograde tracing, and immunohistochemistry to characterize VTA GABA efferents throughout the brain. We found that VTA GABA neurons project widely to forebrain and brainstem targets, including the ventral pallidum, lateral and magnocellular preoptic nuclei, lateral hypothalamus, and lateral habenula. Minor projections also go to central amygdala, mediodorsal thalamus, dorsal raphe, and deep mesencephalic nuclei, and sparse projections go to prefrontal cortical regions and to nucleus accumbens shell and core. These projections differ from the major VTA DA target regions. Retrograde tracing studies confirmed results from the anterograde experiments and differences in projections from VTA subnuclei. Retrogradely labeled GABA neurons were not numerous, and most non-tyrosine hydroxylase/retrogradely labeled cells lacked GABAergic markers. Many non-TH/retrogradely labeled cells projecting to several areas expressed VGluT2. VTA GABA and glutamate neurons project throughout the brain, most prominently to regions with reciprocal connections to the VTA. These data indicate that VTA GABA and glutamate neurons may have more DA-independent functions than previously recognized.
Collapse
Affiliation(s)
- Seth R Taylor
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, 06519
| | | | | | | | | | | |
Collapse
|
16
|
Jiang L, O'Leary C, Kim HA, Parish CL, Massalas J, Waddington JL, Ehrlich ME, Schütz G, Gantois I, Lawrence AJ, Drago J. Motor and behavioral phenotype in conditional mutants with targeted ablation of cortical D1 dopamine receptor-expressing cells. Neurobiol Dis 2015; 76:137-158. [PMID: 25684539 DOI: 10.1016/j.nbd.2015.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 01/14/2015] [Accepted: 02/05/2015] [Indexed: 10/24/2022] Open
Abstract
D1-dopamine receptors (Drd1a) are highly expressed in the deep layers of the cerebral cortex and the striatum. A number of human diseases such as Huntington disease and schizophrenia are known to have cortical pathology involving dopamine receptor expressing neurons. To illuminate their functional role, we exploited a Cre/Lox molecular paradigm to generate Emx-1(tox) MUT mice, a transgenic line in which cortical Drd1a-expressing pyramidal neurons were selectively ablated. Emx-1(tox) MUT mice displayed prominent forelimb dystonia, hyperkinesia, ataxia on rotarod testing, heightened anxiety-like behavior, and age-dependent abnormalities in a test of social interaction. The latter occurred in the context of normal working memory on testing in the Y-maze and for novel object recognition. Some motor and behavioral abnormalities in Emx-1(tox) MUT mice overlapped with those in CamKIIα(tox) MUT transgenic mice, a line in which both striatal and cortical Drd1a-expressing cells were ablated. Although Emx-1(tox) MUT mice had normal striatal anatomy, both Emx-1(tox) MUT and CamKIIα(tox) MUT mice displayed selective neuronal loss in cortical layers V and VI. This study shows that loss of cortical Drd1a-expressing cells is sufficient to produce deficits in multiple motor and behavioral domains, independent of striatal mechanisms. Primary cortical changes in the D1 dopamine receptor compartment are therefore likely to model a number of core clinical features in disorders such as Huntington disease and schizophrenia.
Collapse
Affiliation(s)
- Luning Jiang
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia; St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Claire O'Leary
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia; Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Hyun Ah Kim
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Clare L Parish
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Jim Massalas
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - John L Waddington
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Michelle E Ehrlich
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA
| | - Günter Schütz
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Ilse Gantois
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - John Drago
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia; St Vincent's Hospital, Melbourne, Victoria, Australia.
| |
Collapse
|
17
|
Lew SE, Tseng KY. Dopamine modulation of GABAergic function enables network stability and input selectivity for sustaining working memory in a computational model of the prefrontal cortex. Neuropsychopharmacology 2014; 39:3067-76. [PMID: 24975022 PMCID: PMC4229578 DOI: 10.1038/npp.2014.160] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 06/03/2014] [Accepted: 06/26/2014] [Indexed: 11/09/2022]
Abstract
Dopamine modulation of GABAergic transmission in the prefrontal cortex (PFC) is thought to be critical for sustaining cognitive processes such as working memory and decision-making. Here, we developed a neurocomputational model of the PFC that includes physiological features of the facilitatory action of dopamine on fast-spiking interneurons to assess how a GABAergic dysregulation impacts on the prefrontal network stability and working memory. We found that a particular non-linear relationship between dopamine transmission and GABA function is required to enable input selectivity in the PFC for the formation and retention of working memory. Either degradation of the dopamine signal or the GABAergic function is sufficient to elicit hyperexcitability in pyramidal neurons and working memory impairments. The simulations also revealed an inverted U-shape relationship between working memory and dopamine, a function that is maintained even at high levels of GABA degradation. In fact, the working memory deficits resulting from reduced GABAergic transmission can be rescued by increasing dopamine tone and vice versa. We also examined the role of this dopamine-GABA interaction for the termination of working memory and found that the extent of GABAergic excitation needed to reset the PFC network begins to occur when the activity of fast-spiking interneurons surpasses 40 Hz. Together, these results indicate that the capability of the PFC to sustain working memory and network stability depends on a robust interplay of compensatory mechanisms between dopamine tone and the activity of local GABAergic interneurons.
Collapse
Affiliation(s)
- Sergio E Lew
- Instituto de Ingeniería Biomédica, Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Kuei Y Tseng
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
18
|
Huang Y, Mylius J, Scheich H, Brosch M. Tonic effects of the dopaminergic ventral midbrain on the auditory cortex of awake macaque monkeys. Brain Struct Funct 2014; 221:969-77. [PMID: 25433449 DOI: 10.1007/s00429-014-0950-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/22/2014] [Indexed: 01/15/2023]
Abstract
This study shows that ongoing electrical stimulation of the dopaminergic ventral midbrain can modify neuronal activity in the auditory cortex of awake primates for several seconds. This was reflected in a decrease of the spontaneous firing and in a bidirectional modification of the power of auditory evoked potentials. We consider that both effects are due to an increase in the dopamine tone in auditory cortex induced by the electrical stimulation. Thus, the dopaminergic ventral midbrain may contribute to the tonic activity in auditory cortex that has been proposed to be involved in associating events of auditory tasks (Brosch et al. Hear Res 271:66-73, 2011) and may modulate the signal-to-noise ratio of the responses to auditory stimuli.
Collapse
Affiliation(s)
- Ying Huang
- Special Laboratory Primate Neurobiology, Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118, Magdeburg, Germany.
| | - Judith Mylius
- Special Laboratory Primate Neurobiology, Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118, Magdeburg, Germany.
| | - Henning Scheich
- Emeritus Group Lifelong Learning, Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto-von-Guericke-University, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Michael Brosch
- Special Laboratory Primate Neurobiology, Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto-von-Guericke-University, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
19
|
Del Cid-Pellitero E, Garzón M. Hypocretin1/orexinA-immunoreactive axons form few synaptic contacts on rat ventral tegmental area neurons that project to the medial prefrontal cortex. BMC Neurosci 2014; 15:105. [PMID: 25194917 PMCID: PMC4167264 DOI: 10.1186/1471-2202-15-105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 08/28/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hypocretins/orexins (Hcrt/Ox) are hypothalamic neuropeptides involved in sleep-wakefulness regulation. Deficiency in Hcrt/Ox neurotransmission results in the sleep disorder narcolepsy, which is characterized by an inability to maintain wakefulness. The Hcrt/Ox neurons are maximally active during wakefulness and project widely to the ventral tegmental area (VTA). A dopamine-containing nucleus projecting extensively to the cerebral cortex, the VTA enhances wakefulness. In the present study, we used retrograde tracing from the medial prefrontal cortex (mPFC) to examine whether Hcrt1/OxA neurons target VTA neurons that could sustain behavioral wakefulness through their projections to mPFC. RESULTS The retrograde tracer Fluorogold (FG) was injected into mPFC and, after an optimal survival period, sections through the VTA were processed for dual immunolabeling of anti-FG and either anti-Hcrt1/OxA or anti-TH antisera. Most VTA neurons projecting to the mPFC were located in the parabrachial nucleus of the ipsilateral VTA and were non-dopaminergic. Only axonal profiles showed Hcrt1/OxA-immunoreactivity in VTA. Hcrt1/OxA reactivity was observed in axonal boutons and many unmyelinated axons. The Hcrt1/OxA immunoreactivity was found filling axons but it was also observed in parts of the cytoplasm and dense-core vesicles. Hcrt1/OxA-labeled boutons frequently apposed FG-immunolabeled dendrites. However, Hcrt1/OxA-labeled boutons rarely established synapses, which, when they were established, were mainly asymmetric (excitatory-type), with either FG-labeled or unlabeled dendrites. CONCLUSIONS Our results provide ultrastructural evidence that Hcrt1/OxA neurons may exert a direct synaptic influence on mesocortical neurons that would facilitate arousal and wakefulness. The paucity of synapses, however, suggest that the activity of VTA neurons with cortical projections might also be modulated by Hcrt1/OxA non-synaptic actions. In addition, Hcrt1/OxA could modulate the postsynaptic excitatory responses of VTA neurons with cortical projections to a co-released excitatory transmitter from Hcrt1/OxA axons. Our observation of Hcrt1/OxA targeting of mesocortical neurons supports Hcrt1/OxA wakefulness enhancement in the VTA and could help explain the characteristic hypersomnia present in narcoleptic patients.
Collapse
Affiliation(s)
| | - Miguel Garzón
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain.
| |
Collapse
|
20
|
Fast transmission from the dopaminergic ventral midbrain to the sensory cortex of awake primates. Brain Struct Funct 2014; 220:3273-94. [PMID: 25084746 DOI: 10.1007/s00429-014-0855-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 07/21/2014] [Indexed: 12/21/2022]
Abstract
Motivated by the increasing evidence that auditory cortex is under control of dopaminergic cell structures of the ventral midbrain, we studied how the ventral tegmental area and substantia nigra affect neuronal activity in auditory cortex. We electrically stimulated 567 deep brain sites in total within and in the vicinity of the two dopaminergic ventral midbrain structures and at the same time, recorded local field potentials and neuronal discharges in cortex. In experiments conducted on three awake macaque monkeys, we found that electrical stimulation of the dopaminergic ventral midbrain resulted in short-latency (~35 ms) phasic activations in all cortical layers of auditory cortex. We were also able to demonstrate similar activations in secondary somatosensory cortex and superior temporal polysensory cortex. The electrically evoked responses in these parts of sensory cortex were similar to those previously described for prefrontal cortex. Moreover, these phasic responses could be reversibly altered by the dopamine D1-receptor antagonist SCH23390 for several tens of minutes. Thus, we speculate that the dopaminergic ventral midbrain exerts a temporally precise, phasic influence on sensory cortex using fast-acting non-dopaminergic transmitters and that their effects are modulated by dopamine on a longer timescale. Our findings suggest that some of the information carried by the neuronal discharges in the dopaminergic ventral midbrain, such as the motivational value or the motivational salience, is transmitted to auditory cortex and other parts of sensory cortex. The mesocortical pathway may thus contribute to the representation of non-auditory events in the auditory cortex and to its associative functions.
Collapse
|
21
|
Clark KL, Noudoost B. The role of prefrontal catecholamines in attention and working memory. Front Neural Circuits 2014; 8:33. [PMID: 24782714 PMCID: PMC3986539 DOI: 10.3389/fncir.2014.00033] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/19/2014] [Indexed: 12/19/2022] Open
Abstract
While much progress has been made in identifying the brain regions and neurochemical systems involved in the cognitive processes disrupted in mental illnesses, to date, the level of detail at which neurobiologists can describe the chain of events giving rise to cognitive functions is very rudimentary. Much of the intense interest in understanding cognitive functions is motivated by the hope that it might be possible to understand these complex functions at the level of neurons and neural circuits. Here, we review the current state of the literature regarding how modulations in catecholamine levels within the prefrontal cortex (PFC) alter the neuronal and behavioral correlates of cognitive functions, particularly attention and working memory.
Collapse
Affiliation(s)
- Kelsey L Clark
- Department of Cell Biology and Neuroscience, Montana State University Bozeman, MT, USA
| | - Behrad Noudoost
- Department of Cell Biology and Neuroscience, Montana State University Bozeman, MT, USA
| |
Collapse
|
22
|
Wallace J, Jackson RK, Shotton TL, Munjal I, McQuade R, Gartside SE. Characterization of electrically evoked field potentials in the medial prefrontal cortex and orbitofrontal cortex of the rat: modulation by monoamines. Eur Neuropsychopharmacol 2014; 24:321-32. [PMID: 23932190 PMCID: PMC4623163 DOI: 10.1016/j.euroneuro.2013.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 05/31/2013] [Accepted: 07/05/2013] [Indexed: 10/26/2022]
Abstract
Medial prefrontal cortex (mPFC) and orbitofrontal cortex (OFC) play critical roles in cognition and behavioural control. Glutamatergic, GABAergic, and monoaminergic dysfunction in the prefrontal cortex has been hypothesised to underlie symptoms in neuropsychiatric disorders. Here we characterised electrically-evoked field potentials in the mPFC and OFC. Electrical stimulation evoked field potentials in layer V/VI of the mPFC and layer V of the OFC. The earliest component (approximately 2 ms latency) was insensitive to glutamate receptor blockade and was presumed to be presynaptic. Later components were blocked by 6,7-dinitroquinoxaline-2,3-dione (DNQX (20 µM)) and were assumed to reflect monosynaptic (latency 4-6 ms) and polysynaptic activity (latency 6-40 ms) mediated by glutamate via AMPA/kainate receptor. In the mPFC, but not the OFC, the monosynaptic component was also partly blocked by 2-amino-5-phosphonopentanoic acid (AP-5 (50-100µM)) indicating the involvement of NMDA receptors. Bicuculline (3-10 µM) enhanced the monosynaptic component suggesting electrically-evoked and/or glutamate induced GABA release inhibits the monosynaptic component via GABAA receptor activation. There were complex effects of bicuculline on polysynaptic components. In the mPFC both the mono- and polysynaptic components were attenuated by 5-HT (10-100 µM) and NA (30 and 60 µM) and the monosynaptic component was attenuated by DA (100 µM). In the OFC the mono- and polysynaptic components were also attenuated by 5-HT (100 µM), NA (10-100 µM) but DA (10-100 µM) had no effect. We propose that these pharmacologically characterised electrically-evoked field potentials in the mPFC and OFC are useful models for the study of prefrontal cortical physiology and pathophysiology.
Collapse
Affiliation(s)
- Joanne Wallace
- Institute of Neuroscience, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Rosanna K Jackson
- Institute of Neuroscience, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Tanya L Shotton
- Institute of Neuroscience, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Ishaana Munjal
- Institute of Neuroscience, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Richard McQuade
- Institute of Neuroscience, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Sarah E Gartside
- Institute of Neuroscience, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
23
|
Lactation reduces stress-caused dopaminergic activity and enhances GABAergic activity in the rat medial prefrontal cortex. J Mol Neurosci 2013; 52:515-24. [PMID: 24085524 DOI: 10.1007/s12031-013-0104-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/23/2013] [Indexed: 01/12/2023]
Abstract
We investigated the effect of restraint on the release of dopamine, GABA and glutamate in the medial prefrontal cortex (mPFC) of lactating compared with virgin Wistar female rats; besides the expression of D1, neuropeptide Y Y2, GABA receptors and corticotropin-releasing factor (CRF). Results from microdialysis experiments showed that basal dopamine and GABA, but not glutamate, concentrations were higher in lactating rats. In virgin animals, immobilization caused significant increase in dopamine, whereas GABA was unchanged and glutamate reduced. In lactating animals, restrain significantly decreased dopamine concentrations and, in contrast to virgin animals, GABA and glutamate concentrations increased. We found a higher expression of CRF, as well as the D1 and neuropeptide Y Y2 receptors in the left mPFC of virgin stressed rats; also, only stressed lactating animals showed a significant increase in immunopositive cells to GABA in the left cingulate cortex; meanwhile, a significant decrease was measured in virgin rats after stress in the left prelimbic region. The increased inhibition of the mPFC dopamine cells during stress and the down-regulated expression of the neuropeptide Y Y2 receptor may explain the lower CRF and hyporesponse to stress measured in lactating animals. Interestingly, participation of mPFC in stress regulation seems to be lateralized.
Collapse
|
24
|
Sogabe S, Yagasaki Y, Onozawa K, Kawakami Y. Mesocortical dopamine system modulates mechanical nociceptive responses recorded in the rat prefrontal cortex. BMC Neurosci 2013; 14:65. [PMID: 23815681 PMCID: PMC3710228 DOI: 10.1186/1471-2202-14-65] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 06/28/2013] [Indexed: 11/10/2022] Open
Abstract
Background Psychological conditions affect pain responses in the human anterior cingulate cortex (ACC) according to brain imaging analysis. The rodent prefrontal cortex (PFC) including cingulate areas is also related to the affective dimension of pain. We previously reported PFC nociceptive responses inhibited by inputs from the amygdala, such as with dopamine (DA) D2 receptor (D2R) blockers, to show decreased effect on amygdala projections. In this study, we examined whether direct projections from the ventral tegmental area (VTA) to the PFC affect nociceptive responses in the PFC. Results High frequency stimulation (HFS, 50 Hz, 30 s) delivered to the VTA produced long-lasting suppression (LLS) of nociceptive responses in the rat PFC including cingulate and prelimbic areas. Nociceptive responses evoked by mechanical pressure stimulation (2 s duration at 500 g constant force) applied to the tails of urethane-anesthetized rats were recorded using extracellular unit recording methods in the PFC. HFS delivered to the VTA, which has been reported to increase DA concentrations in the PFC, significantly suppressed nociceptive responses. The LLS of nociceptive responses persisted for about 30 minutes and recovered to the control level within 60 min after HFS. We also demonstrated local microinjection of a selective D2 agonist of DA receptors to induce LLS of mechanical nociceptive responses, while a D2 but not a D1 antagonist impaired the LLS evoked by HFS. In contrast, DA depletion by a 6-hydroxydopamine injection or a low concentration of DA induced by a κ-opiate receptor agonist injected into the VTA had minimal effect on nociceptive responses in the PFC. Conclusion HFS delivered to VTA inhibited nociceptive responses for a long period in PFC. DA D2R activation mediated by local D2 agonist injection also induced LLS of mechanical nociceptive responses. The mesocortical DA system may modify PFC nociceptive responses via D2 activity.
Collapse
Affiliation(s)
- Shoichi Sogabe
- Department of Physiology, School of Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | | | | | | |
Collapse
|
25
|
Gronier B, Waters S, Ponten H. The dopaminergic stabilizer pridopidine increases neuronal activity of pyramidal neurons in the prefrontal cortex. J Neural Transm (Vienna) 2013; 120:1281-94. [DOI: 10.1007/s00702-013-1002-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/17/2013] [Indexed: 12/29/2022]
|
26
|
Synaptic activity unmasks dopamine D2 receptor modulation of a specific class of layer V pyramidal neurons in prefrontal cortex. J Neurosci 2012; 32:4959-71. [PMID: 22492051 DOI: 10.1523/jneurosci.5835-11.2012] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dopamine D2 receptors (D2Rs) play a major role in the function of the prefrontal cortex (PFC), and may contribute to prefrontal dysfunction in conditions such as schizophrenia. Here we report that in mouse PFC, D2Rs are selectively expressed by a subtype of layer V pyramidal neurons that have thick apical tufts, prominent h-current, and subcortical projections. Within this subpopulation, the D2R agonist quinpirole elicits a novel afterdepolarization that generates voltage fluctuations and spiking for hundreds of milliseconds. Surprisingly, this afterdepolarization is masked in quiescent brain slices, but is readily unmasked by physiologic levels of synaptic input which activate NMDA receptors, possibly explaining why this phenomenon has not been reported previously. Notably, we could still elicit this afterdepolarization for some time after the cessation of synaptic stimulation. In addition to NMDA receptors, the quinpirole-induced afterdepolarization also depended on L-type Ca(2+) channels and was blocked by the selective L-type antagonist nimodipine. To confirm that D2Rs can elicit this afterdepolarization by enhancing Ca(2+) (and Ca(2+)-dependent) currents, we measured whole-cell Ca(2+) potentials that occur after blocking Na(+) and K(+) channels, and found quinpirole enhanced these potentials, while the selective D2R antagonist sulpiride had the opposite effect. Thus, D2Rs can elicit a Ca(2+)-channel-dependent afterdepolarization that powerfully modulates activity in specific prefrontal neurons. Through this mechanism, D2Rs might enhance outputs to subcortical structures, contribute to reward-related persistent firing, or increase the level of noise in prefrontal circuits.
Collapse
|
27
|
Devoto P, Flore G, Saba P, Cadeddu R, Gessa GL. Disulfiram stimulates dopamine release from noradrenergic terminals and potentiates cocaine-induced dopamine release in the prefrontal cortex. Psychopharmacology (Berl) 2012; 219:1153-64. [PMID: 21863234 DOI: 10.1007/s00213-011-2447-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 08/08/2011] [Indexed: 10/17/2022]
Abstract
RATIONALE Disulfiram efficacy in treatment of cocaine addiction is attributed to the inhibition of dopamine-β-hydroxylase and reduction in brain noradrenaline (NA)/dopamine (DA) ratio. OBJECTIVES Using microdialysis, we investigated if disulfiram causes DA release from noradrenergic terminals and modifies cocaine-induced DA release. RESULTS Disulfiram reduced extracellular NA in the medial prefrontal (mPF) cortex, occipital cortex, accumbens and caudate nuclei, while it markedly increased DA not only in mPF but also in the occipital cortex, despite its scanty dopaminergic afferences, and modestly increased DA in the accumbens and caudate nuclei, despite their dense dopaminergic innervation. Disulfiram-induced DA accumulation was reversed in both cortices by tetrodotoxin infusion and by systemic administration of the α(2)-adrenoceptor agonist clonidine, but was not modified by the α(2)-adrenoceptor antagonist RS 79948 or the D(2)-like agonist quinpirole. Disulfiram prevented cocaine-induced NA release in the mPF cortex and nucleus accumbens, potentiated cocaine-induced DA release in the mPF cortex but failed to modify cocaine effect in the nucleus accumbens. DA release induced by disulfiram-cocaine combination in the mPF cortex was prevented by clonidine but not by quinpirole. CONCLUSIONS We suggested that disulfiram, by removing NA-mediated inhibitory control on noradrenergic terminals, causes an unrestrained cocaine-induced DA release from those terminals in the mPF cortex. In the accumbens and caudate nuclei, "allogenic" DA concentration might be clouded by DA originated from dopaminergic terminals. The possible role of "allogenic" DA in disulfiram ability to prevent stress-induced reinstatement of cocaine seeking is discussed.
Collapse
Affiliation(s)
- Paola Devoto
- Department of Neuroscience, University of Cagliari, Monserrato, Italy.
| | | | | | | | | |
Collapse
|
28
|
Morales M, Pickel VM. Insights to drug addiction derived from ultrastructural views of the mesocorticolimbic system. Ann N Y Acad Sci 2011; 1248:71-88. [PMID: 22171551 DOI: 10.1111/j.1749-6632.2011.06299.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drugs of abuse increase the release of dopamine from mesocorticolimbic neurons in the ventral tegmental area. Thus, insights into the cytoarchitecture and the synaptic circuitry affecting the activity of dopaminergic neurons in this area are fundamental for understanding the commonalities produced by mechanistically distinct drugs of abuse. Electron microscopic immunolabeling has provided these insights and also shown the critical relationships between the dopaminergic axon terminals and their targeted neurons in the prefrontal cortex and in the both the dorsal and ventral striatum. These brain regions are among those where dopamine and associated neurotransmitters are most implicated in the transition from recreational to compulsive consumption of reinforcing drugs. Thus, the synaptic circuitry and drug-induced plasticity occurring in the ventral tegmental area and in dopamine-targeted regions are reviewed, as both are essential for understanding the long-lasting changes produced by addictive substances.
Collapse
Affiliation(s)
- Marisela Morales
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA.
| | | |
Collapse
|
29
|
The netrin receptor DCC is required in the pubertal organization of mesocortical dopamine circuitry. J Neurosci 2011; 31:8381-94. [PMID: 21653843 DOI: 10.1523/jneurosci.0606-11.2011] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Netrins are guidance cues involved in neural connectivity. We have shown that the netrin-1 receptor DCC (deleted in colorectal cancer) is involved in the functional organization of the mesocorticolimbic dopamine (DA) system. Adult mice with a heterozygous loss-of-function mutation in dcc exhibit changes in indexes of DA function, including DA-related behaviors. These phenotypes are only observed after puberty, a critical period in the maturation of the mesocortical DA projection. Here, we examined whether dcc heterozygous mice exhibit structural changes in medial prefrontal cortex (mPFC) DA synaptic connectivity, before and after puberty. Stereological counts of tyrosine-hydroxylase (TH)-positive varicosities were increased in the cingulate 1 and prelimbic regions of the pregenual mPFC. dcc heterozygous mice also exhibited alterations in the size, complexity, and dendritic spine density of mPFC layer V pyramidal neuron basilar dendritic arbors. Remarkably, these presynaptic and postsynaptic partner phenotypes were not observed in juvenile mice, suggesting that DCC selectively influences the extensive branching and synaptic differentiation that occurs in the maturing mPFC DA circuit at puberty. Immunolabeling experiments in wild-type mice demonstrated that DCC is segregated to TH-positive fibers innervating the nucleus accumbens, with only scarce DCC labeling in mPFC TH-positive fibers. Netrin had an inverted target expression pattern. Thus, DCC-mediated netrin-1 signaling may influence the formation/maintenance of mesocorticolimbic DA topography. In support of this, we report that dcc heterozygous mice exhibit a twofold increase in the density of mPFC DCC/TH-positive varicosities. Our results implicate DCC-mediated netrin-1 signaling in the establishment of mPFC DA circuitry during puberty.
Collapse
|
30
|
Tse MTL, Cantor A, Floresco SB. Repeated amphetamine exposure disrupts dopaminergic modulation of amygdala-prefrontal circuitry and cognitive/emotional functioning. J Neurosci 2011; 31:11282-94. [PMID: 21813688 PMCID: PMC6623364 DOI: 10.1523/jneurosci.1810-11.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/24/2011] [Accepted: 06/16/2011] [Indexed: 01/02/2023] Open
Abstract
Repeated exposure to psychostimulants such as amphetamine (AMPH) disrupts cognitive and behavioral processes mediated by the medial prefrontal cortical (mPFC) and basolateral amygdala (BLA). The present study investigated the effects of repeated AMPH exposure on the neuromodulatory actions of dopamine (DA) on BLA-mPFC circuitry and cognitive/emotional processing mediated by these circuits. Rats received five AMPH (2 mg/kg) or saline injections (controls) over 10 d, followed by 2-4 week drug washout. In vivo neurophysiological extracellular recordings in urethane-anesthetized rats were used to obtain data from mPFC neurons that were either inhibited or excited by BLA stimulation. In controls, acute AMPH attenuated BLA-evoked inhibitory or excitatory responses; these effects were mimicked by selective D(2) or D(1) agonists, respectively. However, in AMPH-treated rats, the ability of these dopaminergic manipulations to modulate BLA-driven decreases/increases in mPFC activity was abolished. Repeated AMPH also blunted the excitatory effects of ventral tegmental area stimulation on mPFC neural firing. Behavioral studies assessed the effect of repeated AMPH on decision making with conditioned punishment, a process mediated by BLA-mPFC circuitry and mesocortical DA. These treatments impaired the ability of rats to use conditioned aversive stimuli (footshock-associated cue) to guide the direction of instrumental responding. Collectively, these data suggest that repeated AMPH exposure can lead to persistent disruption of dopaminergic modulation of BLA-mPFC circuitry, which may underlie impairments in cognitive/emotional processing observed in stimulant abusers. Furthermore, they suggest that impairments in decision making guided by aversive stimuli observed in stimulant abusers may be the result of repeated drug exposure.
Collapse
Affiliation(s)
- Maric T. L. Tse
- Department of Psychology and Brain Research Center, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4
| | - Anna Cantor
- Department of Psychology and Brain Research Center, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4
| | - Stan B. Floresco
- Department of Psychology and Brain Research Center, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4
| |
Collapse
|
31
|
Hosp JA, Pekanovic A, Rioult-Pedotti MS, Luft AR. Dopaminergic projections from midbrain to primary motor cortex mediate motor skill learning. J Neurosci 2011; 31:2481-7. [PMID: 21325515 PMCID: PMC6623715 DOI: 10.1523/jneurosci.5411-10.2011] [Citation(s) in RCA: 267] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/30/2010] [Accepted: 12/22/2010] [Indexed: 11/21/2022] Open
Abstract
The primary motor cortex (M1) of the rat contains dopaminergic terminals. The origin of this dopaminergic projection and its functional role for movement are obscure. Other areas of cortex receive dopaminergic projections from the ventral tegmental area (VTA) of the midbrain, and these projections are involved in learning phenomena. We therefore hypothesized that M1 receives a dopaminergic projection from VTA and that this projection mediates the learning of a motor skill by inducing cellular plasticity events in M1. Retrograde tracing from M1 of Long-Evans rats in conjunction with tyrosine hydroxylase immunohistochemistry identified dopaminergic cell bodies in VTA. Electrical stimulation of VTA induced expression of the immediate-early gene c-fos in M1, which was blocked by intracortical injections of D(1) and D(2) antagonists. Destroying VTA dopaminergic neurons prevented the improvements in forelimb reaching seen in controls during daily training. Learning recovered on administration of levodopa into the M1 of VTA-lesioned animals. Lesioning VTA did not affect performance of an already learned skill, hence, left movement execution intact. These findings provide evidence that dopaminergic terminals in M1 originate in VTA, contribute to M1 plasticity, and are necessary for successful motor skill learning. Because VTA dopaminergic neurons are known to signal rewards, the VTA-to-M1 projection is a candidate for relaying reward information that could directly support the encoding of a motor skill within M1.
Collapse
Affiliation(s)
- Jonas A. Hosp
- Clinical Neurorehabilitation, Department of Neurology, University of Zurich, CH-8091 Zurich, Switzerland
- Rehabilitation Initiative and Technology Center Zurich, CH-8008 Zurich, Switzerland
| | - Ana Pekanovic
- Clinical Neurorehabilitation, Department of Neurology, University of Zurich, CH-8091 Zurich, Switzerland
- Rehabilitation Initiative and Technology Center Zurich, CH-8008 Zurich, Switzerland
| | - Mengia S. Rioult-Pedotti
- Clinical Neurorehabilitation, Department of Neurology, University of Zurich, CH-8091 Zurich, Switzerland
- Rehabilitation Initiative and Technology Center Zurich, CH-8008 Zurich, Switzerland
- Department of Neurosciences, Brown University, Providence, Rhode Island 02912, and
| | - Andreas R. Luft
- Clinical Neurorehabilitation, Department of Neurology, University of Zurich, CH-8091 Zurich, Switzerland
- Rehabilitation Initiative and Technology Center Zurich, CH-8008 Zurich, Switzerland
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21231
| |
Collapse
|
32
|
Glutamate receptor subtypes mediating synaptic activation of prefrontal cortex neurons: relevance for schizophrenia. J Neurosci 2011; 31:142-56. [PMID: 21209199 DOI: 10.1523/jneurosci.1970-10.2011] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schizophrenia may involve hypofunction of NMDA receptor (NMDAR)-mediated signaling, and alterations in parvalbumin-positive fast-spiking (FS) GABA neurons that may cause abnormal gamma oscillations. It was recently hypothesized that prefrontal cortex (PFC) FS neuron activity is highly dependent on NMDAR activation and that, consequently, FS neuron dysfunction in schizophrenia is secondary to NMDAR hypofunction. However, NMDARs are abundant in synapses onto PFC pyramidal neurons; thus, a key question is whether FS neuron or pyramidal cell activation is more dependent on NMDARs. We examined the AMPAR and NMDAR contribution to synaptic activation of FS neurons and pyramidal cells in the PFC of adult mice. In FS neurons, EPSCs had fast decay and weak NMDAR contribution, whereas in pyramidal cells, EPSCs were significantly prolonged by NMDAR-mediated currents. Moreover, the AMPAR/NMDAR EPSC ratio was higher in FS cells. NMDAR antagonists decreased EPSPs and EPSP-spike coupling more strongly in pyramidal cells than in FS neurons, showing that FS neuron activation is less NMDAR dependent than pyramidal cell excitation. The precise EPSP-spike coupling produced by fast-decaying EPSCs in FS cells may be important for network mechanisms of gamma oscillations based on feedback inhibition. To test this possibility, we used simulations in a computational network of reciprocally connected FS neurons and pyramidal cells and found that brief AMPAR-mediated FS neuron activation is crucial to synchronize, via feedback inhibition, pyramidal cells in the gamma frequency band. Our results raise interesting questions about the mechanisms that might link NMDAR hypofunction to alterations of FS neurons in schizophrenia.
Collapse
|
33
|
Gronier B. In vivo electrophysiological effects of methylphenidate in the prefrontal cortex: involvement of dopamine D1 and alpha 2 adrenergic receptors. Eur Neuropsychopharmacol 2011; 21:192-204. [PMID: 21146374 DOI: 10.1016/j.euroneuro.2010.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 10/28/2010] [Accepted: 11/07/2010] [Indexed: 12/17/2022]
Abstract
Attention deficit hyperactivity disorder (ADHD) is the most commonly diagnosed psychiatric disorder in children. Psychostimulants such as methylphenidate (MPH) are used as first line treatment. The prefrontal cortex (PFC) has a proven role in the expression of ADHD. Previous studies from our laboratory have demonstrated that MPH activates the firing activity of medial PFC neurones in anaesthetised rats. The aim of the present study was to determine the respective contribution and location of the different types of catecholamine receptors in mediating these excitatory effects and to compare these effects with those induced by other selective dopamine or noradrenaline uptake blockers. Single unit activity of presumed pyramidal PFC neurones was recorded in rats anaesthetised with urethane. The activation of firing elicited by an iv administration of MPH (1 or 3mg/kg) was partially reduced or prevented by the selective D1 receptor antagonist SCH 23390 administered systemically (0.5mg/kg, iv), or locally by passive diffusion through the recording electrode. On the other hand, administration of the alpha 2 receptor antagonist yohimbine (1mg/kg, iv) significantly potentiated the excitatory effect of MPH and activated PFC neurones previously treated with a low inactive dose of MPH (0.3mg/kg, iv). Local administration of MPH (1mM through the recording electrode) significantly increased the firing of PFC neurones in a D1 receptor-dependent manner. In addition, the response of PFC neurones to MPH, administered at a low dose (0.3mg/kg, iv), is greatly potentiated by dopamine (1mM), but not by noradrenaline (1mM), diffusing passively through the recording electrode, and this effect is reversed by D1 receptor blockade. Finally, the selective dopamine uptake inhibitor GBR 12909 (6 mg/kg, iv) and desipramine (6 mg/kg, iv) only activate a subset of PFC neurones. These results demonstrate the involvement of cortical dopamine D1 and noradrenergic alpha 2 receptors in the in vivo electrophysiological effects of MPH on PFC neurones.
Collapse
Affiliation(s)
- Benjamin Gronier
- Leicester School of Pharmacy, De Monfort University, The Gateway, Leicester, UK.
| |
Collapse
|
34
|
Moore AR, Zhou WL, Potapenko ES, Kim EJ, Antic SD. Brief dopaminergic stimulations produce transient physiological changes in prefrontal pyramidal neurons. Brain Res 2010; 1370:1-15. [PMID: 21059342 DOI: 10.1016/j.brainres.2010.10.111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/24/2010] [Accepted: 10/30/2010] [Indexed: 10/18/2022]
Abstract
In response to food reward and other pertinent events, midbrain dopaminergic neurons fire short bursts of action potentials causing a phasic release of dopamine in the prefrontal cortex (rapid and transient increases in cortical dopamine concentration). Here we apply short (2s) iontophoretic pulses of glutamate, GABA, dopamine and dopaminergic agonists locally, onto layer 5 pyramidal neurons in brain slices of the rat medial prefrontal cortex (PFC). Unlike glutamate and GABA, brief dopaminergic pulses had negligible effects on the resting membrane potential. However, dopamine altered action potential firing in an extremely rapid (<1s) and transient (<5 min) manner, as every neuron returned to baseline in less than 5-min post-application. The physiological responses to dopamine differed markedly among individual neurons. Pyramidal neurons with a preponderance of D1-like receptor signaling respond to dopamine with a severe depression in action potential firing rate, while pyramidal neurons dominated by the D2 signaling pathway respond to dopamine with an instantaneous increase in spike production. Increasing levels of dopamine concentrations around the cell body resulted in a dose dependent response, which resembles an "inverted U curve" (Vijayraghavan S, Wang M, Birnbaum SG, Williams GV, Arnsten AF (2007) Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci 10:376-384), but this effect can easily be caused by an iontophoresis current artifact. Our present data imply that one population of PFC pyramidal neurons receiving direct synaptic contacts from midbrain dopaminergic neurons would stall during the 0.5s of the phasic dopamine burst. The spillover dopamine, on the other hand, would act as a positive stimulator of cortical excitability (30% increase) to all D2-receptor carrying pyramidal cells, for the next 40s.
Collapse
Affiliation(s)
- Anna R Moore
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | | | | | |
Collapse
|
35
|
Gottesmann C. The development of the science of dreaming. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 92:1-29. [PMID: 20870060 DOI: 10.1016/s0074-7742(10)92001-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although the main peripheral features of dreaming were identified two millennia ago, the neurobiological study of the basic and higher integrated processes underlying rapid eye movement (REM) sleep only began about 70 years ago. Today, the combined contributions of the successive and complementary methods of electrophysiology, imaging, pharmacology, and neurochemistry have provided a good level of knowledge of the opposite but complementary activating and inhibitory processes which regulate waking mentation and which are disturbed during REM sleep, inducing a schizophrenic-like mental activity.
Collapse
Affiliation(s)
- Claude Gottesmann
- Départment de Biologie, Faculté des Sciences, Université de Nice-Sophia Antipolis, Nice, France
| |
Collapse
|
36
|
Hayashida Y, Rodríguez CV, Ogata G, Partida GJ, Oi H, Stradleigh TW, Lee SC, Colado AF, Ishida AT. Inhibition of adult rat retinal ganglion cells by D1-type dopamine receptor activation. J Neurosci 2009; 29:15001-16. [PMID: 19940196 PMCID: PMC3236800 DOI: 10.1523/jneurosci.3827-09.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 10/01/2009] [Accepted: 10/22/2009] [Indexed: 11/21/2022] Open
Abstract
The spike output of neural pathways can be regulated by modulating output neuron excitability and/or their synaptic inputs. Dopaminergic interneurons synapse onto cells that route signals to mammalian retinal ganglion cells, but it is unknown whether dopamine can activate receptors in these ganglion cells and, if it does, how this affects their excitability. Here, we show D(1a) receptor-like immunoreactivity in ganglion cells identified in adult rats by retrogradely transported dextran, and that dopamine, D(1)-type receptor agonists, and cAMP analogs inhibit spiking in ganglion cells dissociated from adult rats. These ligands curtailed repetitive spiking during constant current injections and reduced the number and rate of rise of spikes elicited by fluctuating current injections without significantly altering the timing of the remaining spikes. Consistent with mediation by D(1)-type receptors, SCH-23390 [R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine] reversed the effects of dopamine on spikes. Contrary to a recent report, spike inhibition by dopamine was not precluded by blocking I(h). Consistent with the reduced rate of spike rise, dopamine reduced voltage-gated Na(+) current (I(Na)) amplitude, and tetrodotoxin, at doses that reduced I(Na) as moderately as dopamine, also inhibited spiking. These results provide the first direct evidence that D(1)-type dopamine receptor activation can alter mammalian retinal ganglion cell excitability and demonstrate that dopamine can modulate spikes in these cells by a mechanism different from the presynaptic and postsynaptic means proposed by previous studies. To our knowledge, our results also provide the first evidence that dopamine receptor activation can reduce excitability without altering the temporal precision of spike firing.
Collapse
Affiliation(s)
- Yuki Hayashida
- Departments of Neurobiology, Physiology, and Behavior, and
| | | | - Genki Ogata
- Departments of Neurobiology, Physiology, and Behavior, and
| | | | - Hanako Oi
- Departments of Neurobiology, Physiology, and Behavior, and
| | | | - Sherwin C. Lee
- Departments of Neurobiology, Physiology, and Behavior, and
| | | | - Andrew T. Ishida
- Departments of Neurobiology, Physiology, and Behavior, and
- Ophthalmology and Vision Science, University of California, Davis, Davis, California 95616
| |
Collapse
|
37
|
Optical imaging of rat prefrontal neuronal activity evoked by stimulation of the ventral tegmental area. Neuroreport 2009; 20:875-80. [PMID: 19417692 DOI: 10.1097/wnr.0b013e32832c5e98] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Using a voltage-sensitive dye, the spatiotemporal dynamics of prefrontal neuronal activity evoked by electrical stimulation of the ventral tegmental area were visualized through optical imaging in anaesthetized rats. Even single-pulse stimulation of the ventral tegmental area elicited a widespread wave of depolarization followed by hyperpolarization in the dorsomedial shoulder region of the prefrontal cortex. We also examined the contribution of dopaminergic transmission to the optical signals by comparing normal and 6-hydroxydopamine-lesioned rats. The 6-hydroxydopamine lesions of ventral tegmental area resulted in a complete absence of depolarization in the prefrontal cortex, although hyperpolarization was preserved. These results indicate that dopaminergic neurons are needed to generate excitatory responses in the prefrontal cortex.
Collapse
|
38
|
Anterior cingulate neurons represent errors and preparatory attention within the same behavioral sequence. J Neurosci 2009; 29:6418-26. [PMID: 19458213 DOI: 10.1523/jneurosci.1142-09.2009] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The anterior cingulate cortex (ACC) has been implicated in both preparatory attention (i.e., selecting behaviorally relevant stimuli) and in detecting errors. We recorded from the rat ACC and medial prefrontal cortex (mPFC), which is functionally homologous to the primate dorsolateral PFC, during an attention task. The three-choice serial reaction time task requires a rat to orient toward and divide attention between three brief (300 ms duration) light stimuli presented in random order across nose poke holes in an operant chamber. In both the ACC and mPFC, we found that neural activity was related to the level of preparatory (precue) attention and subsequent correct or incorrect choice, in that the magnitude of the single units' response to the cue was lower on incorrect trials and was not different than baseline on unattended trials. This preparatory neural activity consisted of both excitatory and inhibitory phasic responses. The number of units responding to the cue was similarly graded, in that fewer units exhibited phasic responses to the cue on incorrect and unattended trials, compared with correct trials. Although preparatory activity was found in both the ACC and mPFC, activity after incorrect nose pokes, which may be related to error detection, were only observed in the ACC. Thus, during the same behavioral sequence, the ACC encodes both error-related events and preparatory attention, whereas the mPFC only participates in preparatory attention. The finding of substantial inhibitory activity during the preparatory period suggests a critical role for inhibition of pyramidal cells in PFC-mediated cognitive functions.
Collapse
|
39
|
In vivo effects of activation and blockade of 5-HT(2A/2C) receptors in the firing activity of pyramidal neurons of medial prefrontal cortex in a rodent model of Parkinson's disease. Exp Neurol 2009; 219:239-48. [PMID: 19500571 DOI: 10.1016/j.expneurol.2009.05.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 05/13/2009] [Accepted: 05/23/2009] [Indexed: 11/20/2022]
Abstract
In the present study, we examined changes in the firing rate and firing pattern of pyramidal neurons in medial prefrontal cortex (mPFC), and the effects of 5-HT(2A/2C) receptor agonist DOI and antagonist ritanserin on the neuronal firing in rats with 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta by using extracellular recording. The unilateral lesion of the nigrostriatal pathway significantly increased the mean firing rate of pyramidal neurons compared to sham-operated rats, and the firing pattern of these neurons also changed significantly towards a more bursty one. Systemic administration of DOI (20-320 microg/kg, i.v.) increased the mean firing rate of pyramidal neurons in sham-operated and the lesioned rats. The excitation was significant only at doses higher than 160 microg/kg and 320 microg/kg in sham-operated and the lesioned rats, respectively. In addition, the local application of DOI, 5 microg, in mPFC inhibited the firing rate of pyramidal neurons in sham-operated rats, while having no effect on firing rate in the lesioned rats. After treatment with GABAA receptor antagonist picrotoxinin, the local application of DOI, at the same dose, increased the mean firing rate of the neurons in sham-operated rats; however, DOI did not alter the firing activity of the neurons in the lesioned rats. These results indicate that the lesion of the nigrostriatal pathway leads to hyperactivity of pyramidal neurons in mPFC, and the decreased response of pyramidal neurons to DOI, suggesting dysfunction of 5-HT2A and 5-HT2C receptors on pyramidal neurons and GABAergic interneurons in the 6-OHDA-lesioned rats.
Collapse
|
40
|
Luft AR, Schwarz S. Dopaminergic signals in primary motor cortex. Int J Dev Neurosci 2009; 27:415-21. [PMID: 19446627 DOI: 10.1016/j.ijdevneu.2009.05.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 05/05/2009] [Accepted: 05/05/2009] [Indexed: 10/20/2022] Open
Abstract
Brainstem monoamine areas such as the ventral tegmental area (VTA) send dopaminergic projections to the cerebral cortex that are widely distributed across different cortical regions. Whereas the projection to prefrontal areas (PFC) has been studied in detail, little is known about dopaminergic projections to primary motor cortex (M1). These projections have been anatomically characterized in rat and primate M1. Primates have even denser dopaminergic projections to M1 than rats. The physiological role, the effects of dopaminergic input on the activity of M1 circuits, and the behavioral function of this projection are unknown. This review explores the existing anatomical, electrophysiological and behavioral evidence on dopaminergic projections to M1 and speculates about its functional role. The projection may explain basic features of motor learning and memory phenomena. It is of clinical interest because of its potential for augmenting motor recovery after a brain lesion as well as for understanding the symptomatology of patients with Parkinson's disease. Therefore, targeted investigations are necessary.
Collapse
Affiliation(s)
- Andreas R Luft
- Clinical Neurorehabilitation, Department of Neurology, University of Zurich, Switzerland.
| | | |
Collapse
|
41
|
Wang S, Zhang QJ, Liu J, Wu ZH, Ali U, Wang Y, Chen L, Gui ZH. The firing activity of pyramidal neurons in medial prefrontal cortex and their response to 5-hydroxytryptamine-1A receptor stimulation in a rat model of Parkinson's disease. Neuroscience 2009; 162:1091-100. [PMID: 19410634 DOI: 10.1016/j.neuroscience.2009.04.069] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 04/27/2009] [Accepted: 04/28/2009] [Indexed: 11/25/2022]
Abstract
The changes in the firing rate and firing pattern of pyramidal neurons in medial prefrontal cortex (mPFC) and the effects of selective 5-hydroxytryptamine-(1A) (5-HT(1A)) receptor agonist (R)-(+)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) and antagonist N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-2-pyridylcyclohexane carboxamide maleate salt (WAY-100635) on the firing activity of the neurons were studied in sham-lesioned rats and rats with 6-hydroxydopamine lesions of the substantia nigra pars compacta (SNc). The lesion of the SNc increased the firing rate of pyramidal neurons significantly compared to sham-lesioned rats, and the firing pattern of these neurons also changed significantly towards a more burst-firing. The systemic administration of 8-OH-DPAT at doses in the range of 0.5-128 microg/kg showed an excitatory-inhibitory effect on the firing rate of pyramidal neurons in mPFC of sham-lesioned rats. At lower doses, 0.5-32 microg/kg, it evoked excitation of the neurons, and at a high dose, i.e. 128 microg/kg, inhibited the activity of the neurons. In contrast to sham-lesioned rats, 8-OH-DPAT, at the same doses, showed no excitatory effect in the lesioned rats although the inhibitory phase of the effect of 8-OH-DPAT on the firing rate of pyramidal neurons in mPFC was still present. Furthermore, the local application of 8-OH-DPAT, 5 microg, in mPFC inhibited the firing rate of pyramidal neurons in sham-lesioned rats, while having no effect on firing rate in the lesioned rats. The excitatory or inhibitory effects of 8-OH-DPAT were reversed by WAY-100635, indicating that these effects are mediated by 5-HT(1A) receptor. Altogether, these results indicate that the lesion of the SNc leads to hyperactivity of pyramidal neurons in mPFC and the abnormality of response of these neurons to 5-HT(1A) receptor stimulation, suggesting that mPFC may be involved in the pathophysiology of the psychiatric disturbance of Parkinson's disease.
Collapse
Affiliation(s)
- S Wang
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Yan Ta Xi Lu 76, Xi'an 710061, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kaufling J, Veinante P, Pawlowski SA, Freund-Mercier MJ, Barrot M. Afferents to the GABAergic tail of the ventral tegmental area in the rat. J Comp Neurol 2009; 513:597-621. [PMID: 19235223 DOI: 10.1002/cne.21983] [Citation(s) in RCA: 253] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We previously showed that chronic psychostimulant exposure induces the transcription factor DeltaFosB in gamma-aminobutyric acid (GABA)ergic neurons of the caudal tier of the ventral tegmental area (VTA). This subregion was defined as the tail of the VTA (tVTA). In the present study, we showed that tVTA can also be visualized by analyzing FosB/DeltaFosB response following acute cocaine injection. This induction occurs in GABAergic neurons, as identified by glutamic acid decarboxylase (GAD) expression. To characterize tVTA further, we mapped its inputs by using the retrograde tracers Fluoro-Gold or cholera toxin B subunit. Retrogradely labeled neurons were observed in the medial prefrontal cortex, the lateral septum, the ventral pallidum, the bed nucleus of the stria terminalis, the substantia innominata, the medial and lateral preoptic areas, the lateral and dorsal hypothalamic areas, the lateral habenula, the intermediate layers of the superior colliculus, the dorsal raphe, the periaqueductal gray, and the mesencephalic and pontine reticular formation. Projections from the prefrontal cortex, the hypothalamus, and the lateral habenula to the tVTA were also shown by using the anterograde tracer biotinylated dextran amine (BDA). We showed that the central nucleus of the amygdala innervates the anterior extent of the VTA but not the tVTA. Moreover, the tVTA mainly receives non-aminergic inputs from the dorsal raphe and the locus coeruleus. Although the tVTA has a low density of dopaminergic neurons, its afferents are mostly similar to those targeting the rest of the VTA. This suggests that the tVTA can be considered as a VTA subregion despite its caudal location.
Collapse
Affiliation(s)
- Jennifer Kaufling
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and Université de Strasbourg, France
| | | | | | | | | |
Collapse
|
43
|
Hetzler BE, Ondracek JM, Becker EA. Baclofen does not counteract the acute effects of ethanol on flash-evoked potentials in Long-Evans rats. Int J Neurosci 2008; 118:1558-81. [PMID: 18853334 DOI: 10.1080/00207450802328201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This experiment examined the separate and combined effects of baclofen (5.0 mg/kg, i.p.), a GABA B receptor agonist, and ethanol (2.0 g/kg, i.p.) on flash-evoked potentials (FEPs) recorded from both the visual cortex and superior colliculus (SC) of chronically implanted male Long-Evans rats. In the visual cortex, ethanol significantly decreased the amplitude of positive component P87, but increased P37 and P47. Other component amplitudes were not significantly altered. In contrast, baclofen reduced the amplitude of negative component N31 to such an extent that it became positive. Although P47 was also reduced by baclofen, the amplitude of most other components was increased. Only P24 and P87 were unchanged by baclofen. The combination of baclofen and ethanol resulted in amplitudes very similar to ethanol alone for secondary components P47, N62, and P87, but very similar to baclofen alone for primary component N31 and late components N147 and P230. In the SC, component amplitudes were generally decreased by ethanol, baclofen, and the combination treatment. Latencies of most components in both structures were increased by the drug treatments. Each drug treatment produced significant hypothermia. Locomotor behavior was also altered. These results demonstrate: (1) pharmacological differences between the primary and late components versus the secondary components of the cortical FEP, (2) that baclofen does not counteract significant effects of ethanol on cortical or collicular component amplitudes, and (3) that baclofen enhances N147-P230 amplitude, suggesting reduced cortical arousal.
Collapse
Affiliation(s)
- Bruce E Hetzler
- Department of Psychology, Lawrence University, Appleton, Wisconsin 54912, USA.
| | | | | |
Collapse
|
44
|
Alvarez-Jaimes L, Polis I, Parsons LH. Attenuation of cue-induced heroin-seeking behavior by cannabinoid CB1 antagonist infusions into the nucleus accumbens core and prefrontal cortex, but not basolateral amygdala. Neuropsychopharmacology 2008; 33:2483-93. [PMID: 18059440 DOI: 10.1038/sj.npp.1301630] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As with other drugs of abuse, heroin use is characterized by a high incidence of relapse following detoxification that can be triggered by exposure to conditioned stimuli previously associated with drug availability. Recent findings suggest that cannabinoid CB(1) receptors modulate the motivational properties of heroin-conditioned stimuli that induce relapse behavior. However, the neural substrates through which CB(1) receptors modulate cue-induced heroin seeking have not been elucidated. In this study, we evaluated alterations in cue-induced reinstatement of heroin-seeking behavior produced by infusions of the CB(1) receptor antagonist SR 141716A (0, 0.3 and 3 microg per side) delivered into the prefrontal cortex (PFC), nucleus accumbens (NAC), and basolateral amygdala (BLA) of rats. Results show that following extinction of operant behavior the presentation of a discriminative stimulus conditioned to heroin availability reinstated nonreinforced lever pressing to levels comparable to preextinction levels. Intra-PFC SR 141716A dose-dependently reduced cue-induced reinstatement of heroin seeking, with a significant reduction following the 3 microg per side dose. In the NAC, both SR 141716A doses induced a significant reduction in cue-induced reinstatement, with the highest dose completely blocking the effect of the cue. In contrast, intra-BLA SR 141716A did not alter cue-induced reinstatement of responding while systemic administration of this antagonist (3 mg/kg, i.p.) significantly blocked cue-induced reinstatement in all three-placement groups (BLA, PFC, and NAC). These findings provide new insights into the neural mechanisms through which CB(1) receptors modulate the motivational properties of heroin-associated cues inducing relapse.
Collapse
Affiliation(s)
- Lily Alvarez-Jaimes
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
45
|
Prefrontal cortex-nucleus accumbens interaction: in vivo modulation by dopamine and glutamate in the prefrontal cortex. Pharmacol Biochem Behav 2008; 90:226-35. [PMID: 18508116 DOI: 10.1016/j.pbb.2008.04.011] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Revised: 04/09/2008] [Accepted: 04/14/2008] [Indexed: 11/24/2022]
Abstract
Previous experimental studies have shown that the prefrontal cortex (PFC) regulates the activity of the nucleus accumbens (NAc), and in particular the release of dopamine in this area of the brain. In the present report we review recent microinjections/microdialysis studies from our laboratory on the effects of stimulation/blockade of dopamine and glutamate receptors in the PFC that modulate dopamine, and also acetylcholine release in the NAc. Stimulation of prefrontal D2 dopamine receptors, but not group I mGlu glutamate receptors, reduces the release of dopamine and acetylcholine in the NAc and spontaneous motor activity. This inhibitory role of prefrontal D2 receptors is not changed by acute systemic injections of the NMDA antagonist phencyclidine. On the other hand, the blockade of NMDA receptors in the PFC increases the release of dopamine and acetylcholine in the NAc as well as motor activity which suggests that the hypofunction of prefrontal NMDA receptors is able to produce the neurochemical and behavioural changes associated with a dysfunction of the corticolimbic circuit. We suggest here that dopamine and glutamate receptors are, in part, segregated in specific cellular circuits in the PFC. Thus, the stimulation/blockade of these receptors would have a different net impact on PFC output projections to regulate dopamine and acetylcholine release in the NAc and in guided behaviour. Finally, it is speculated that environmental enrichment might produce plastic changes that modify the functional interaction between the PFC and the NAc in both physiological and pathological conditions.
Collapse
|
46
|
The selective 5-HT1A receptor antagonist WAY-100635 inhibits neuronal activity of the ventromedial prefrontal cortex in a rodent model of Parkinson's disease. Neurosci Bull 2008; 23:315-22. [PMID: 18064060 DOI: 10.1007/s12264-007-0047-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE The ventral part of the medial prefrontal cortex (mPFC) plays an important role in initiation and control of voluntary movement, mood and cognition. However, after the degeneration of the nigrostriatal pathway, the neuronal activity of the ventral mPFC and the role of serotonin(1A) (5-hydroxytryptamine, 5-HT(1A)) receptors in the firing of the neurons are still unknown. The present study is to investigate the change of neuronal activity in the ventral mPFC and the effect of systemic administration of the selective 5-HT(1A) receptor antagonist WAY-100635 on the activity of the neurons in normal and 6-hydroxydopamine (6-OHDA)-lesioned rats. METHODS Single unit responses were recorded extracellularly with glass microelectrodes from ventral mPFC neurons in normal rats and 6-OHDA unilaterally lesioned rats in vivo. RESULTS 6-OHDA lesion of the substantia nigra pars compacta (SNc) significantly increased the firing rate with no change in the firing pattern of neurons of the ventral mPFC in rats. Systemic administration of WAY-100635 (0.1 mg/kg, i.v.) did not change the mean firing rate and firing pattern of ventral mPFC neurons in normal rats. In contrast, WAY-100635 significantly decreased the mean firing rate of the neurons in rats with 6-OHDA lesion of the SNc. CONCLUSION These data suggest that the degeneration of the nigrostriatal pathway results in an increase of neuronal activity of ventral mPFC and dysfunction of 5-HT(1A) receptor.
Collapse
|
47
|
Tierney PL, Thierry AM, Glowinski J, Deniau JM, Gioanni Y. Dopamine modulates temporal dynamics of feedforward inhibition in rat prefrontal cortex in vivo. Cereb Cortex 2008; 18:2251-62. [PMID: 18222936 DOI: 10.1093/cercor/bhm252] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Midbrain dopamine (DA) neurons project to pyramidal cells and interneurons of the prefrontal cortex (PFC). At the microcircuit level, interneurons gate inputs to a network and regulate/pattern its outputs. Whereas several in vitro studies have examined the role of DA on PFC interneurons, few in vivo data are available. In this study, we show that DA influences the timing of interneuron firing. In particular, DA had a reductive influence on interneuron spontaneous firing, which in the context of the excitatory response of interneurons to hippocampal electrical stimulation, lead to a temporal focalization of the interneuron response. This suggests that the reductive influence of DA on interneuron excitability is responsible for filtering out weak excitatory inputs. The increase in the temporal precision of interneuron firing is a mechanism by which DA can modulate the temporal dynamics of feedforward inhibition in PFC circuits and can thereby influence cognitive information processing.
Collapse
Affiliation(s)
- P L Tierney
- Massachusetts Institute of Technology, McGovern Institute for Brain Research, Cambridge, MA 02139, USA.
| | | | | | | | | |
Collapse
|
48
|
Morshedi MM, Meredith GE. Differential laminar effects of amphetamine on prefrontal parvalbumin interneurons. Neuroscience 2007; 149:617-24. [PMID: 17931790 DOI: 10.1016/j.neuroscience.2007.07.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 07/01/2007] [Accepted: 07/19/2007] [Indexed: 11/18/2022]
Abstract
The increase in excitatory outflow from the medial prefrontal cortex is critical to the development of sensitization to amphetamine. There is evidence that psychostimulant-induced changes in dopamine-GABA interactions are key to understanding the behaviorally sensitized response. The objective of this study was to characterize the effects of different amphetamine paradigms on the Fos activation of GABAergic interneurons that contain parvalbumin in the medial prefrontal cortex. Although a sensitizing, repeated regimen of amphetamine induced Fos in all cortical layers, only layer V parvalbumin-immunolabeled cells were activated in the infralimbic and prelimbic cortices. Repeated amphetamine treatment was also associated with a loss of parvalbumin immunoreactivity in layer V, but only in the prelimbic cortex. An acute amphetamine injection to naive rats was associated with an increase in Fos, but in parvalbumin-positive neurons of the prelimbic cortex, where it was preferentially induced in layer III. These data indicate that distinct substrates mediate the response to repeated or acute amphetamine treatment. They also suggest that a sensitizing amphetamine regimen directs medial prefrontal cortex (mPFC) outflow, via changes in inhibitory neuron activation, toward subcortical centers important in reward.
Collapse
Affiliation(s)
- M M Morshedi
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| | | |
Collapse
|
49
|
Maddux JM, Kerfoot EC, Chatterjee S, Holland PC. Dissociation of attention in learning and action: effects of lesions of the amygdala central nucleus, medial prefrontal cortex, and posterior parietal cortex. Behav Neurosci 2007; 121:63-79. [PMID: 17324051 PMCID: PMC2853715 DOI: 10.1037/0735-7044.121.1.63] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many associative learning theories assert that the predictive accuracy of events affects the allocation of attention to them. More reliable predictors of future events are usually more likely to control action based on past learning, but less reliable predictors are often more likely to capture attention when new information is acquired. Previous studies showed that a circuit including the amygdala central nucleus (CEA) and the cholinergic substantia innominata/nucleus basalis magnocellularis (SI/nBM) is important for both sustained attention guiding action in a five-choice serial reaction time (5CSRT) task and for enhanced new learning about less predictive cues in a serial conditioning task. In this study, the authors found that lesions of the cholinergic afferents of the medial prefrontal cortex interfered with 5CSRT performance but not with surprise-induced enhancement of learning, whereas lesions of cholinergic afferents of posterior parietal cortex impaired the latter effects but did not affect 5CSRT performance. CEA lesions impaired performance in both tasks. These results are consistent with the view that CEA affects these distinct aspects of attention by influencing the activity of separate, specialized cortical regions via modulation of SI/nBM.
Collapse
Affiliation(s)
- Jean-Marie Maddux
- Department of Psychological and Brain Sciences, John Hopkins University, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
50
|
Hetzler BE, Ondracek JM. Baclofen alters flash-evoked potentials in Long–Evans rats. Pharmacol Biochem Behav 2007; 86:727-40. [PMID: 17407791 DOI: 10.1016/j.pbb.2007.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2006] [Revised: 02/23/2007] [Accepted: 02/27/2007] [Indexed: 11/17/2022]
Abstract
This experiment examined the effects of the GABA-B agonist baclofen on flash-evoked potentials (FEPs) recorded from both the visual cortex (VC) and superior colliculus (SC) of chronically implanted male Long-Evans rats. FEPs were recorded at 5, 25, 45, and 65 min following intraperitoneal injections of saline, and of 1.25, 2.5, 5.0, and 10.0 mg/kg baclofen on separate days. In the VC, the amplitude of components P(23), P(37), N(55), N(150), and P(242) increased, while the amplitude of components N(31) and P(48) decreased following baclofen administration. P(88) was unchanged. In the SC, components P(28), N(49), N(55), and N(59) were reduced in amplitude, while P(39) was unaffected by baclofen. These effects on amplitudes were dose- and time-dependent. Many peak latencies in the VC and SC were altered by baclofen, although there was no obvious pattern of change, with some decreasing, a few increasing, and others unchanged. Body temperature was recorded in a separate group of animals, with both the 5.0 and 10.0 mg/kg doses of baclofen producing significant hypothermia. The 10.0 mg/kg dose of baclofen resulted in a significant decrease in movement during the recording sessions, but not in subsequent open field observations. The results show the involvement of GABA-B receptors in the production/modulation of the various components of FEPs.
Collapse
Affiliation(s)
- Bruce E Hetzler
- Department of Psychology, Lawrence University, Appleton, WI 54912, USA.
| | | |
Collapse
|