1
|
Serotonin-2C receptor involved serotonin-induced Ca²⁺ mobilisations in neuronal progenitors and neurons in rat suprachiasmatic nucleus. Sci Rep 2014; 4:4106. [PMID: 24531181 PMCID: PMC3925950 DOI: 10.1038/srep04106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 01/30/2014] [Indexed: 02/03/2023] Open
Abstract
The hypothalamic suprachiasmatic nucleus (SCN), the central circadian pacemaker in mammals, undergoes serotonergic regulation, but the underlying mechanisms remain obscure. Here, we generated a subclone of an SCN progenitor cell line expressing Ca(2+) sensors (SCN2.2YC) and compared its 5-HT receptor signalling with that of rat SCN neurons in brain slices. SCN2.2YC cells expressed 5-HT1A/2A/2B/2C, but not 5A/7, while all six subtypes were expressed in SCN tissues. High K(+) or 5-HT increased cytosolic Ca(2+) in SCN2.2YC cells. The 5-HT responses were inhibited by ritanserin and SB-221284, but resistant to WAY-100635 and RS-127445, suggesting predominant involvement of 5-HT2C for Ca(2+) mobilisations. Consistently, Ca(2+) imaging and voltage-clamp electrophysiology using rat SCN slices demonstrated post-synaptic 5-HT2C expression. Because 5-HT2C expression was postnatally increased in the SCN and 5-HT-induced Ca(2+) mobilisations were amplified in differentiated SCN2.2YC cells and developed SCN neurons, we suggest that this signalling development occurs in accordance with central clock maturations.
Collapse
|
2
|
Saifetyarova JJ, Degtyareva EA, Sapronova AY, Ugrumov MV. Endocrine function of dopaminergic neurons in the neonatal rat brain. NEUROCHEM J+ 2011. [DOI: 10.1134/s1819712411030068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Mustafin AA, Nigmatullina RR, Mirolyubov LM. Functional activity of 5-HT4 receptors in children with congenital heart disease. Bull Exp Biol Med 2007; 142:717-9. [PMID: 17603679 DOI: 10.1007/s10517-006-0460-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The effect of 5-methoxytryptamine (5-HT(4) receptor agonist) on the inotropic function of atrial myocardium was studied in children aged 2 months to 17 years, operated on for congenital heart disease. Functional activity of 5-HT(4) receptors was 8.4 times higher in dysfunction of the atrial septum in comparison with other congenital heart diseases. The positive inotropic effects of 5-HT(4) receptor agonist can promote compensation of myocardial work in children with pathological circulation.
Collapse
|
4
|
Mirochnik V, Bosler O, Tillet Y, Calas A, Ugrumov M. Long‐lasting effects of serotonin deficiency on differentiating peptidergic neurons in the rat suprachiasmatic nucleus. Int J Dev Neurosci 2004; 23:85-91. [PMID: 15730890 DOI: 10.1016/j.ijdevneu.2004.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Revised: 07/27/2004] [Accepted: 07/30/2004] [Indexed: 11/27/2022] Open
Abstract
Serotonin (5-HT, 5-hydroxytryptamine) is known to be an inductor of the brain development [Whitaker-Azmitia, P.M., Druse, M., Walker, P., Lauder, J.M., 1996. Serotonin as a developmental signal. Behav. Brain Res. 73, 19-29; Ugrumov, M.V., 1997. Hypothalamic monoaminergic systems in ontogenesis: development and functional significance. Int. J. Dev. Biol. 41, 809-816]. This study was aimed to test whether it provides long-lasting effects on the differentiating vasoactive intestinal polypeptide (VIP) and vasopressin (VP) neurons of the suprachiasmatic nucleus (SCN) in rats. To this aim, 5-HT was depleted in fetal brain by daily injections of p-chlorophenylalanine (pCPA), an inhibitor of 5-HT synthesis, to pregnant rats from the 13th to the 21st day of gestation. Pregnant rats injected with saline served as controls. The offsprings (males) of pCPA-treated and control pregnant rats were maintained after birth for two months under normal laboratory conditions. Then, the SCN was processed for immunocytochemistry of VIP and VP and in situ hybridization of appropriate mRNAs. There were no differences in concentrations of VIP and VP mRNAs in the SCN in adult offsprings of the 5-HT-depleted pregnant rats compared to the controls. Moreover, 5-HT deficiency did not induce any change in size of VIP-immunoreactive (IR) and VP-IR neurons. Conversely, both the numbers of VIP- and VP-immunoreactive neurons and concentrations of the peptides in cell bodies increased significantly. It is concluded that 5-HT provides long-lasting effects on differentiating VIP and VP neurons in the SCN resulting in attenuated release rather than elevated synthesis of both peptides in adulthood.
Collapse
Affiliation(s)
- V Mirochnik
- Institute of Normal Physiology, Russian Academy of Medical Sciences, 8 Baltiiskaya str., Moscow 125315, Russia
| | | | | | | | | |
Collapse
|
5
|
Vacher CM, Calas A, Maltonti F, Hardin-Pouzet H. Postnatal regulation by monoamines of vasopressin expression in the neuroendocrine hypothalamus of MAO-A-deficient mice. Eur J Neurosci 2004; 19:1110-4. [PMID: 15009159 DOI: 10.1111/j.1460-9568.2004.03201.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We studied the influence of noradrenaline (NA) and serotonin (5-HT) on arginine-vasopressin (AVP) expression in the mouse neuroendocrine hypothalamus during the postnatal period. We used 11-day-old transgenic Tg8 mice knock-out for the monoamine oxidase A gene, which are characterized by increased amounts of NA (two-fold) and 5-HT (nine-fold) in the brain compared with wild-type littermates. AVP expression, determined by enzyme immunoassay and in situ hybridization, was increased in the suprachiasmatic nucleus (SCN), decreased in the supraoptic nucleus (SON), and unchanged in the paraventricular nucleus of Tg8 mice compared with wild-types. Inhibiting NA synthesis by injecting alpha-methylparatyrosine to Tg8 mice, AVP levels were decreased in the SCN but increased in the SON. Moreover, the administration of parachlorophenylalanine, a 5-HT synthesis inhibitor, was associated with increased AVP contents in the SCN only. Together, these data show a marked region-specific sensitivity of AVP expression to NA and 5-HT during the postnatal period in the mouse hypothalamus.
Collapse
Affiliation(s)
- Claire-Marie Vacher
- Laboratoire de Neurobiologie des Signaux Intercellulaires, UMR CNRS 7101, Université Pierre et Marie Curie, 75252 Paris cedex 05, France.
| | | | | | | |
Collapse
|
6
|
Mirochnik VV, Ugryumov MV, Bosler O, Calas A. The effects of serotonin on the differentiation of neurons producing vasoactive intestinal polypeptide in the suprachiasmatic nucleus of the rat. ACTA ACUST UNITED AC 2003; 33:729-33. [PMID: 14552543 DOI: 10.1023/a:1024477227552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The morphogenetic influences of serotonin on the differentiation of neurons synthesizing vasoactive intestinal polypeptide (VIP) in the suprachiasmatic nucleus were studied in rats. This was addressed by comparative morphofunctional analysis of VIP neurons in adult rats whose brains developed prenatally in conditions of normal and deficient serotonin metabolism. Serotonin deficiency was created in fetuses by treatment of their mothers with p-chlorophenylalanine (PCPA). Pregnant females in controls were treated with 0.9% NaCl. VIP neurons in experimental and control animals were found to show no differences in VIP mRNA concentrations and, probably, in the level of VIP synthesis. However, inhibition of serotonin synthesis led to an increase in the number of VIP-immunoreactive neurons and an increase in the VIP concentration within these cells. This was not associated with any change in neuron size, which was an indicator of the absence of functional hypertrophy accompanying activation of specific synthesis. Comparison of the data obtained here showed that during prenatal ontogenesis, serotonin has an imprinting influence on the differentiation of VIP neurons and is probably involved in the formation of the mechanism of VIP secretion.
Collapse
Affiliation(s)
- V V Mirochnik
- P. K. Anokhin Institute of Normal Physiology, Russian Academy of Medical Sciences, 8 Baltiiskaya Street, 125315 Moscow, Russia
| | | | | | | |
Collapse
|
7
|
Su JD, Liu SY. Direct projections from serotonergic neurons in the dorsal and median raphe nuclei of midbrain to the suprachiasmatic nucleus in Tupaia belangeri chinensis. Neuroreport 2001; 12:2341-5. [PMID: 11496107 DOI: 10.1097/00001756-200108080-00012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study investigated the direct serotonergic projections to the suprachiasmatic nucleus (SCN) from the dorsal and median raphe nuclei (DR/MR) of the midbrain in Tupaia belangeri chinensis (TBC) by combined application of retrograde horseradish peroxidase (HRP) tract tracing, immunohistochemistry, and electron microscope techniques. The results provide evidence for the direct projections to the SCN from serotonergic neurons distributed predominantly in the MR (mainly in its lateral portion) and to a lesser degree in the DR (in its ventrolateral portion) more caudally in the midbrain, and the existence of abundant symmetrical and asymmetrical synaptic connections between the serotonergic terminals and the postsynaptic elements in the SCN TBC. The results also revealed that almost all DR neurons projecting to the SCN contained serotonin, whereas about one-half of MR neurons projecting to the SCN were immunoreactive for serotonin.
Collapse
Affiliation(s)
- J D Su
- Shanghai Institute of Physiology, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | | |
Collapse
|
8
|
Flett J, Colwell CS. Serotonin modulation of calcium transients in cells in the suprachiasmatic nucleus. J Biol Rhythms 1999; 14:354-63. [PMID: 10511003 DOI: 10.1177/074873049901400502] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Information about environmental lighting conditions is conveyed to the suprachiasmatic nucleus (SCN), at least in part, via a glutamatergic fiber pathway originating in the retina, known as the retinohypothalamic tract (RHT). Previous work indicates that serotonin (5HT) can inhibit this pathway, although the underlying mechanisms are unknown. The authors became interested in the possibility that 5HT can inhibit the glutamatergic regulation of Ca2+ in SCN neurons and, by this mechanism, modulate light-induced phase shifts of the circadian system. To start to examine this hypothesis, optical techniques were used to measure Ca2+ levels in SCN cells in a brain slice preparation. First, it was found that 5HT produced a reversible and significant inhibition of Ca2+ transients evoked by synaptic stimulation. Next, it was found that 5HT did not alter the magnitude or duration of Ca2+ transients evoked by the bath application of glutamate or N-methyl-D-aspartate acid (NMDA) in the presence of tetrodotoxin (TTX). The authors feel that the simplest explanation for these results is that 5HT can act presynaptically at the RHT/SCN synaptic connection to inhibit the release of glutamate. The demonstration that 5HT can have a dramatic modulatory action on synaptic-evoked Ca2+ transients measured in SCN neurons adds support to the notion that the serotonergic innervation of the SCN may function to regulate environmental input to the circadian system. In addition, it was found that the administration of higher concentrations of 5HT can increase Ca2+ in at least a subpopulation of SCN neurons. This effect of 5HT was concentration dependent and blocked by a broad-spectrum 5HT antagonist (metergoline). In addition, both TTX and the gamma-amino-N-butyric acid (GABA) receptor blocker bicuculline inhibited the 5HT-induced Ca2+ transients. Therefore, the interpretation of this data is that 5HT can act within the SCN to alter GABAergic activity and, by this mechanism, cause changes in intracellular Ca2+. It is also suggested that this 5HT-induced Ca2+ increase might play a role in 5HT-induced phase shifts of the SCN circadian oscillator.
Collapse
Affiliation(s)
- J Flett
- Mental Retardation Research Center, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles 90024-1759, USA
| | | |
Collapse
|
9
|
Duffield GE, Mcnulty S, Ebling FJ. Anatomical and functional characterisation of a dopaminergic system in the suprachiasmatic nucleus of the neonatal siberian hamster. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990524)408:1<73::aid-cne6>3.0.co;2-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Hastings MH, Duffield GE, Smith EJ, Maywood ES, Ebling FJ. Entrainment of the circadian system of mammals by nonphotic cues. Chronobiol Int 1998; 15:425-45. [PMID: 9787934 DOI: 10.3109/07420529808998700] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although light is the principal zeitgeber to the mammalian circadian system, other cues can be shown to have a potent resetting effect on the clock of both adult and perinatal mammals. Nonphotic entrainment may have both biological and therapeutic significance. This review focuses on the effect of behavioral arousal as a nonphotic cue and the neurochemical circuitry that mediates arousal-induced entrainment in the adult rodent. In addition, it considers the role of nonphotic entrainment of the developing circadian system in perinatal life prior to the establishment of retinal input to the clock.
Collapse
Affiliation(s)
- M H Hastings
- Department of Anatomy, University of Cambridge, United Kingdom.
| | | | | | | | | |
Collapse
|
11
|
Both neuropeptide Y and serotonin are necessary for entrainment of circadian rhythms in mice by daily treadmill running schedules. J Neurosci 1997. [PMID: 9315915 DOI: 10.1523/jneurosci.17-20-07974.1997] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study investigated the role of the suprachiasmatic nucleus (SCN) circadian pacemaker and its neuropeptide Y (NPY) and serotonin (5-HT) afferents in entrainment (synchronization) of mouse circadian rhythms by treadmill running. Blind C57BL/6j mice were run in treadmills for 3 hr/d for 3-10 weeks after receiving radio-frequency lesions of the SCN or the intergeniculate leaflet (IGL, the source of SCN NPY) or infusions of the 5-HT neurotoxin 5,7-DHT into the SCN area. Of 25 intact mice, 22 entrained and three showed period (tau, the mean duration of the circadian cycle) modulations to scheduled running. Arrhythmic SCN-ablated mice did not synchronize to scheduled running in a way suggestive of circadian pacemaker mediation. Of 15 mice with IGL lesions, only two with partial lesions entrained. Mice with complete IGL lesions (five), confirmed by immunocytochemistry, showed no entrainment or tau changes. Of 19 mice with 5-HT lesions, only two with partial lesions entrained. All but two mice with complete (10) or nearly complete (4) 5-HT denervation, confirmed by immunocytochemistry, showed tau modulations during the treadmill schedule. Failure to entrain was not explained by group differences in tau before the treadmill schedules. The results indicate that the SCN and both NPY and 5-HT are necessary for entrainment to 24 hr schedules of forced running but that complete loss of 5-HT does not prevent modulations of pacemaker motion by behavioral stimuli. Treadmill entrainment in mice may involve synergistic interactions between 5-HT and NPY afferents at some site within the circadian system.
Collapse
|
12
|
5HT1B receptor agonists inhibit light-induced phase shifts of behavioral circadian rhythms and expression of the immediate-early gene c-fos in the suprachiasmatic nucleus. J Neurosci 1997. [PMID: 8987845 DOI: 10.1523/jneurosci.16-24-08208.1996] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The suprachiasmatic nucleus (SCN) is a circadian oscillator and a critical component of the mammalian circadian system. It receives afferents from the retina and the mesencephalic raphe. Retinal afferents mediate photic entrainment of the SCN, whereas the serotonergic afferents originating from the midbrain modulate photic responses in the SCN; however, the serotonin (5HT) receptor subtypes in the SCN responsible for these modulatory effects are not well characterized. In this study, we tested the hypothesis that 5HT1B receptors are located presynaptically on retinal axon terminals in the SCN and that activation of these receptors inhibits retinal input. The 5HT1B receptor agonists TFMPP and CGS 12066A, administered systemically, inhibited light-induced phase shifts of the circadian activity rhythm in a dose-dependent manner at phase delay and phase advance time points. This inhibition was not affected by previous systemic application of either the selective 5HT1A receptor antagonist (+)WAY 100135 or by the 5HT2 receptor antagonist mesulergine, whereas pretreatment with the nonselective 5HT1 antagonist methiothepin significantly attenuated the effect of TFMPP. TFMPP also produced a dose-dependent reduction in light-stimulated Fos expression in the SCN, although a small subset of cells in the dorsolateral aspect of the caudal SCN were TFMPP-insensitive. TFMPP (1 mM) infused into the SCN produced complete inhibition of light-induced phase advances. Finally, bilateral orbital enucleation reduced the density of SCN 5HT1B receptors as determined using [125I]-iodocyanopindolol to define 5HT1B binding sites. These results are consistent with the interpretation that 5HT1B receptors are localized presynaptically on retinal terminals in the SCN and that activation of these receptors by 5HT1B agonists inhibits retinohypothalamic input.
Collapse
|
13
|
Ueda S, Aikawa M, Ishizuya-Oka A, Nishimura A, Kawata M. Alteration of serotonergic innervation in the suprachiasmatic nucleus of the rat following removal of input fibers from retina and lateral geniculate nucleus. Neurosci Lett 1996; 211:97-100. [PMID: 8830853 DOI: 10.1016/0304-3940(96)12721-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To examine the influence of afferent input to the suprachiasmatic nucleus (SCN) on the development of serotonergic fibers in the SCN, afferent fibers from the retina and lateral geniculate nucleus (LGN) were eliminated in neonatal rats. Eight weeks after lesion, the distribution pattern of serotonergic fibers in the SCN was examined immunohistochemically. Neither bilateral enucleation nor LGN ablation altered the serotonergic fiber distribution in the SCN as compared to the normal adult rat. However, following combined lesions of bilateral enucleation and bilateral LGN ablation, the density of serotonergic fibers decreased throughout the SCN. The present results indicate that both retino-hypothalamic and geniculo-hypothalamic fibers may play an important role in the development of serotonergic innervation in the SCN in vivo.
Collapse
Affiliation(s)
- S Ueda
- Department of Histology and Neurobiology, Dokkyo University School of Medicine, Tochigi, Japan
| | | | | | | | | |
Collapse
|
14
|
Jacomy H, Bosler O. Catecholaminergic innervation of the suprachiasmatic nucleus in the adult rat: ultrastructural relationships with neurons containing vasoactive intestinal peptide or vasopressin. Cell Tissue Res 1995; 280:87-96. [PMID: 7750139 DOI: 10.1007/bf00304514] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Catecholaminergic fibers in the suprachiasmatic nucleus of adult rats were investigated by use of light- and electron-microscopic immunocytochemistry. The suprachiasmatic nucleus receives a modest density of tyrosine hydroxylase-containing axons, homogeneously distributed in the nucleus and forming varicosities throughout its entire rostro-caudal extension. Immunolabeling with antibodies against dopamine showed that this catecholamine input comprises a dopaminergic component. Many tyrosine hydroxylase-positive cells were localized at the immediate periphery of the suprachiasmatic nucleus. With electron-microscopic examination, dendrites of these neurons were found within the limits of the nucleus as well as at a border zone between the suprachiasmatic nucleus proper and the optic tract where they received unlabeled synapses, providing a morphological support for a possible role of dopaminergic neurons in the integration and/or transfer of light-related signals. More than 91% of catecholaminergic axonal varicosities were found to establish morphologically defined synapses with dendrites. To investigate whether these synapses might be shared with neurons of one or both of the two main peptidergic populations of the nucleus, namely vasoactive intestinal peptide- and vasopressin-containing neurons, we carried out double-labelling experiments combining immunoperoxidase and immunogold-silver labeling. Results showed only a few cases of direct association of the catecholaminergic terminals with these peptidergic categories. In both types of dually stained sections, catecholaminergic synapses were preferentially made with unlabeled dendrites. The homogeneous distribution of tyrosine hydroxylase-immunoreactive fibers in the suprachiasmatic nucleus could therefore reflect a lack of significant catecholaminergic innervation of both vasoactive intestinal peptide- and vasopressin-synthesizing neurons.
Collapse
Affiliation(s)
- H Jacomy
- Laboratoire de Neuroendocrinologie Expérimentale, INSERM U297, Institut Fédératif Jean Roche, Faculté de Médecine, Marseille, France
| | | |
Collapse
|
15
|
Ueda S, Matsumoto Y, Nisimura A, Azmitia EC, Kawata M. Role of neuropeptide Y projection on the development of serotonergic innervation in the suprachiasmatic nucleus of the rat, shown by triple intraocular grafts. Brain Res 1995; 673:325-30. [PMID: 7606448 DOI: 10.1016/0006-8993(94)01454-p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In our previous paper, the intraocular double grafts of fetal mesencephalic raphe and suprachiasmatic nucleus (SCN) demonstrated that the serotonergic fibers from raphe tissue did not show a dense innervation of SCN [28]. To examine the influence of NPY innervation from lateral geniculate nucleus (LGN) on the development of serotonergic fibers in the SCN, fetal mesencephalic raphe, SCN and LGN tissues were transplanted together into the eye chamber of adult rat. 6 weeks after transplantation, triple grafts were immunohistochemically examined. The SCN cell cluster was recognized by vasoactive intestinal polypeptide (VIP)- and arginine vasopressin (AVP)-immunoreactive neurons and The SCN cell cluster also contained a large number of serotonin-immunoreactive fibers from raphe tissue and a moderate number of neuropeptide Y (NPY)-immunoreactive fibers from LGN tissue. The present results provide information on possible NPY-serotonin interactions in the developing SCN.
Collapse
Affiliation(s)
- S Ueda
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Japan
| | | | | | | | | |
Collapse
|