1
|
Soldatov V, Venediktov A, Belykh A, Piavchenko G, Naimzada MD, Ogneva N, Kartashkina N, Bushueva O. Chaperones vs. oxidative stress in the pathobiology of ischemic stroke. Front Mol Neurosci 2024; 17:1513084. [PMID: 39723236 PMCID: PMC11668803 DOI: 10.3389/fnmol.2024.1513084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
As many proteins prioritize functionality over constancy of structure, a proteome is the shortest stave in the Liebig's barrel of cell sustainability. In this regard, both prokaryotes and eukaryotes possess abundant machinery supporting the quality of the proteome in healthy and stressful conditions. This machinery, namely chaperones, assists in folding, refolding, and the utilization of client proteins. The functions of chaperones are especially important for brain cells, which are highly sophisticated in terms of structural and functional organization. Molecular chaperones are known to exert beneficial effects in many brain diseases including one of the most threatening and widespread brain pathologies, ischemic stroke. However, whether and how they exert the antioxidant defense in stroke remains unclear. Herein, we discuss the chaperones shown to fight oxidative stress and the mechanisms of their antioxidant action. In ischemic stroke, during intense production of free radicals, molecular chaperones preserve the proteome by interacting with oxidized proteins, regulating imbalanced mitochondrial function, and directly fighting oxidative stress. For instance, cells recruit Hsp60 and Hsp70 to provide proper folding of newly synthesized proteins-these factors are required for early ischemic response and to refold damaged polypeptides. Additionally, Hsp70 upregulates some dedicated antioxidant pathways such as FOXO3 signaling. Small HSPs decrease oxidative stress via attenuation of mitochondrial function through their involvement in the regulation of Nrf- (Hsp22), Akt and Hippo (Hsp27) signaling pathways as well as mitophagy (Hsp27, Hsp22). A similar function has also been proposed for the Sigma-1 receptor, contributing to the regulation of mitochondrial function. Some chaperones can prevent excessive formation of reactive oxygen species whereas Hsp90 is suggested to be responsible for pro-oxidant effects in ischemic stroke. Finally, heat-resistant obscure proteins (Hero) are able to shield client proteins, thus preventing their possible over oxidation.
Collapse
Affiliation(s)
- Vladislav Soldatov
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Artem Venediktov
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Andrei Belykh
- Pathophysiology Department, Kursk State Medical University, Kursk, Russia
- Research Institute of General Pathology, Kursk State Medical University, Kursk, Russia
| | - Gennadii Piavchenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Mukhammad David Naimzada
- Research Institute of Experimental Medicine, Kursk State Medical University, Kursk, Russia
- Laboratory of Public Health Indicators Analysis and Health Digitalization, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Nastasya Ogneva
- Scientific Center of Biomedical Technologies, Federal Medical and Biological Agency of Russia, Moscow, Russia
| | - Natalia Kartashkina
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Olga Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| |
Collapse
|
2
|
Nicosia N, Giovenzana M, Misztak P, Mingardi J, Musazzi L. Glutamate-Mediated Excitotoxicity in the Pathogenesis and Treatment of Neurodevelopmental and Adult Mental Disorders. Int J Mol Sci 2024; 25:6521. [PMID: 38928227 PMCID: PMC11203689 DOI: 10.3390/ijms25126521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Glutamate is the main excitatory neurotransmitter in the brain wherein it controls cognitive functional domains and mood. Indeed, brain areas involved in memory formation and consolidation as well as in fear and emotional processing, such as the hippocampus, prefrontal cortex, and amygdala, are predominantly glutamatergic. To ensure the physiological activity of the brain, glutamatergic transmission is finely tuned at synaptic sites. Disruption of the mechanisms responsible for glutamate homeostasis may result in the accumulation of excessive glutamate levels, which in turn leads to increased calcium levels, mitochondrial abnormalities, oxidative stress, and eventually cell atrophy and death. This condition is known as glutamate-induced excitotoxicity and is considered as a pathogenic mechanism in several diseases of the central nervous system, including neurodevelopmental, substance abuse, and psychiatric disorders. On the other hand, these disorders share neuroplasticity impairments in glutamatergic brain areas, which are accompanied by structural remodeling of glutamatergic neurons. In the current narrative review, we will summarize the role of glutamate-induced excitotoxicity in both the pathophysiology and therapeutic interventions of neurodevelopmental and adult mental diseases with a focus on autism spectrum disorders, substance abuse, and psychiatric disorders. Indeed, glutamatergic drugs are under preclinical and clinical development for the treatment of different mental diseases that share glutamatergic neuroplasticity dysfunctions. Although clinical evidence is still limited and more studies are required, the regulation of glutamate homeostasis is attracting attention as a potential crucial target for the control of brain diseases.
Collapse
Affiliation(s)
- Noemi Nicosia
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
- PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Mattia Giovenzana
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
- PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Paulina Misztak
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
| | - Jessica Mingardi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
- Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| |
Collapse
|
3
|
Krystal JH, Kaye AP, Jefferson S, Girgenti MJ, Wilkinson ST, Sanacora G, Esterlis I. Ketamine and the neurobiology of depression: Toward next-generation rapid-acting antidepressant treatments. Proc Natl Acad Sci U S A 2023; 120:e2305772120. [PMID: 38011560 DOI: 10.1073/pnas.2305772120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Ketamine has emerged as a transformative and mechanistically novel pharmacotherapy for depression. Its rapid onset of action, efficacy for treatment-resistant symptoms, and protection against relapse distinguish it from prior antidepressants. Its discovery emerged from a reconceptualization of the neurobiology of depression and, in turn, insights from the elaboration of its mechanisms of action inform studies of the pathophysiology of depression and related disorders. It has been 25 y since we first presented our ketamine findings in depression. Thus, it is timely for this review to consider what we have learned from studies of ketamine and to suggest future directions for the optimization of rapid-acting antidepressant treatment.
Collapse
Affiliation(s)
- John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Psychiatry and Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT 06510
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Alfred P Kaye
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Sarah Jefferson
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Matthew J Girgenti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Samuel T Wilkinson
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Psychiatry and Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT 06510
| | - Gerard Sanacora
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Psychiatry and Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT 06510
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| |
Collapse
|
4
|
Plitman E, Nakajima S, de la Fuente-Sandoval C, Gerretsen P, Chakravarty MM, Kobylianskii J, Chung JK, Caravaggio F, Iwata Y, Remington G, Graff-Guerrero A. Glutamate-mediated excitotoxicity in schizophrenia: a review. Eur Neuropsychopharmacol 2014; 24:1591-605. [PMID: 25159198 PMCID: PMC4470624 DOI: 10.1016/j.euroneuro.2014.07.015] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/22/2014] [Accepted: 07/26/2014] [Indexed: 12/16/2022]
Abstract
Findings from neuroimaging studies in patients with schizophrenia suggest widespread structural changes although the mechanisms through which these changes occur are currently unknown. Glutamatergic activity appears to be increased in the early phases of schizophrenia and may contribute to these structural alterations through an excitotoxic effect. The primary aim of this review was to describe the possible role of glutamate-mediated excitotoxicity in explaining the presence of neuroanatomical changes within schizophrenia. A Medline(®) literature search was conducted, identifying English language studies on the topic of glutamate-mediated excitotoxicity in schizophrenia, using the terms "schizophreni" and "glutam" and (("MRS" or "MRI" or "magnetic resonance") or ("computed tomography" or "CT")). Studies concomitantly investigating glutamatergic activity and brain structure in patients with schizophrenia were included. Results are discussed in the context of findings from preclinical studies. Seven studies were identified that met the inclusion criteria. These studies provide inconclusive support for the role of glutamate-mediated excitotoxicity in the occurrence of structural changes within schizophrenia, with the caveat that there is a paucity of human studies investigating this topic. Preclinical data suggest that an excitotoxic effect may occur as a result of a paradoxical increase in glutamatergic activity following N-methyl-D-aspartate receptor hypofunction. Based on animal literature, glutamate-mediated excitotoxicity may account for certain structural changes present in schizophrenia, but additional human studies are required to substantiate these findings. Future studies should adopt a longitudinal design and employ magnetic resonance imaging techniques to investigate whether an association between glutamatergic activity and structural changes exists in patients with schizophrenia.
Collapse
Affiliation(s)
- Eric Plitman
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Shinichiro Nakajima
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Geriatric Mental Health Division, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Camilo de la Fuente-Sandoval
- Experimental Psychiatry Laboratory, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico; Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Philip Gerretsen
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Departments of Psychiatry and Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Jane Kobylianskii
- Department of Medicine, Queen׳s University, Kingston, Ontario, Canada
| | - Jun Ku Chung
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Fernando Caravaggio
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Yusuke Iwata
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Gary Remington
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Campbell Institute Research Program, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Schizophrenia Program, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Ariel Graff-Guerrero
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Campbell Institute Research Program, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Krystal JH, Sanacora G, Duman RS. Rapid-acting glutamatergic antidepressants: the path to ketamine and beyond. Biol Psychiatry 2013; 73:1133-41. [PMID: 23726151 PMCID: PMC3671489 DOI: 10.1016/j.biopsych.2013.03.026] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 12/31/2022]
Abstract
Traditional antidepressants require many weeks to reveal their therapeutic effects. However, the widely replicated observation that a single subanesthetic dose of the N-methyl-D-aspartate glutamate receptor antagonist ketamine produced meaningful clinical improvement within hours, suggested that rapid-acting antidepressants might be possible. The ketamine studies stimulated a new generation of basic antidepressant research that identified new neural signaling mechanisms in antidepressant response and provided a conceptual framework linking a group of novel antidepressant mechanisms. This article presents the path that led to the testing of ketamine, considers its promise as an antidepressant, and reviews novel treatment mechanisms that are emerging from this line of research.
Collapse
Affiliation(s)
- John H. Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT,for correspondence: Department of Psychiatry, Yale University School of Medicine, Suite #901, 300 George St, New Haven, CT 06511; , tel: 203-785-6396, fax: 203-785-6196
| | - Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT
| | - Ronald S. Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT
| |
Collapse
|
6
|
Abstract
An increasing level of N-methyl-D-aspartate (NMDA) receptor hypofunction within the brain is associated with memory and learning impairments, with psychosis, and ultimately with excitotoxic brain injury. As the brain ages, the NMDA receptor system becomes progressively hypofunctional, contributing to decreases in memory and learning performance. In those individuals destined to develop Alzheimer's disease, other abnormalities (eg, amyloidopathy and oxidative stress) interact to increase the NMDA receptor hypofunction (NRHypo) burden. In these vulnerable individuals, the brain then enters into a severe and persistent NRHypo state, which can lead to widespread neurodegeneration with accompanying mental symptoms and further cognitive deterioration. If the hypotheses described herein prove correct, treatment implications may be considerable. Pharmacological methods for preventing the overstimulation of vulnerable corticolimbic pyramidal neurons developed in an animal model may be applicable to the prevention and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- J W Newcomer
- Departement of Psychiatry, Washington University School of Medicine, St Louis, Mo, USA
| | | | | |
Collapse
|
7
|
Karch SB. Possible Strategies for the Diagnosis of Fatal Excited Delirium Syndrome. Acad Forensic Pathol 2012. [DOI: 10.23907/2012.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Excited Delirium Syndrome (ExDS) is a term traditionally used in forensic literature to describe the symptoms and signs seen in a subgroup of patients with delirium who die in an agitated state. Components of this syndrome are altered mental status, combativeness and/or aggressiveness, increased tolerance to significant pain, tachypnea, profuse sweating, severe agitation, elevated temperature, delirium, and noncompliance with law enforcement and medical personnel. The individual may display “superhuman” strength and wear clothing inappropriate for the environment. Patients with this presentation are almost guaranteed to cause difficulties for law enforcement officers and medical staff. This review is written in hopes of minimizing some of these difficulties by 1) increasing general awareness and specific knowledge about this condition, 2) explaining the neurochemical and neuroanatomical alterations that have been shown to cause those symptoms, and 3) by suggesting new lines of research that might identify easily measured biomarkers for the disease. If the disease mechanism can be deciphered, then it should be possible to devise effective strategies for treatment. It would also be of enormous value to the legal system. When defending a diagnosis before the court, physical evidence always trumps knowledge and experience. It would be far better to be able to present physical proof than to opine that the decedent's behavior was typical for the disease. In this aspect, ExDS is analogous to myocardial infarction: if a man dies suddenly, it is much easier to prove the cardiac origin of the event if an occlusive thrombus is found in a major coronary artery.
Collapse
Affiliation(s)
- Steven B. Karch
- (Royal College of Physicians, London). Royal London Hospital and Cardiac Pathology at the Stanford Transplant Laboratory. San Francisco Medical Examiner
| |
Collapse
|
8
|
Abstract
Schizophrenia affects approximately 1% of the population and continues to be associated with poor outcome because of the limited efficacy of and noncompliance with existing antipsychotic medications. An alternative hypothesis invoking the excitatory neurotransmitter, glutamate, arose out of clinical observations that NMDA receptor antagonists, the dissociative anesthetics like ketamine, can replicate in normal individuals the full range of symptoms of schizophrenia including psychosis, negative symptoms, and cognitive impairments. Low dose ketamine can also re-create a number of physiologic abnormalities characteristic of schizophrenia. Postmortem studies have revealed abnormalities in endogenous modulators of NMDA receptors in schizophrenia as well as components of a postsynaptic density where NMDA receptors are localized. Gene association studies have revealed several genes that affect NMDA receptor function whose allelic variants are associated with increased risk for schizophrenia including genes encoding D-amino acid oxidase, its modulator G72, dysbindin, and neuregulin. The parvalbumin-positive, fast-firing GABAergic interneurons that provide recurrent inhibition to cortical-limbic pyramidal neurons seem to be most sensitive to NMDA receptor hypofunction. As a consequence, disinhibition of glutamatergic efferents disrupts cortical processing, causing cognitive impairments and negative symptoms, and drives subcortical dopamine release, resulting in psychosis. Drugs designed to correct the cortical-limbic dysregulated glutamatergic neurotransmission show promise for reducing negative and cognitive symptoms of schizophrenia as well as its positive symptoms.
Collapse
|
9
|
Bitanihirwe BKY, Woo TUW. Oxidative stress in schizophrenia: an integrated approach. Neurosci Biobehav Rev 2010; 35:878-93. [PMID: 20974172 DOI: 10.1016/j.neubiorev.2010.10.008] [Citation(s) in RCA: 342] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 09/18/2010] [Accepted: 10/17/2010] [Indexed: 01/17/2023]
Abstract
Oxidative stress has been suggested to contribute to the pathophysiology of schizophrenia. In particular, oxidative damage to lipids, proteins, and DNA as observed in schizophrenia is known to impair cell viability and function, which may subsequently account for the deteriorating course of the illness. Currently available evidence points towards an alteration in the activities of enzymatic and nonenzymatic antioxidant systems in schizophrenia. In fact, experimental models have demonstrated that oxidative stress induces behavioral and molecular anomalies strikingly similar to those observed in schizophrenia. These findings suggest that oxidative stress is intimately linked to a variety of pathophysiological processes, such as inflammation, oligodendrocyte abnormalities, mitochondrial dysfunction, hypoactive N-methyl-d-aspartate receptors and the impairment of fast-spiking gamma-aminobutyric acid interneurons. Such self-sustaining mechanisms may progressively worsen producing the functional and structural consequences associated with schizophrenia. Recent clinical studies have shown antioxidant treatment to be effective in ameliorating schizophrenic symptoms. Hence, identifying viable therapeutic strategies to tackle oxidative stress and the resulting physiological disturbances provide an exciting opportunity for the treatment and ultimately prevention of schizophrenia.
Collapse
Affiliation(s)
- Byron K Y Bitanihirwe
- Laboratory of Behavioural Neurobiology, Swiss Federal Institute of Technology, Zurich, Schorenstrasse 16, Schwerzenbach CH 8603, Switzerland.
| | | |
Collapse
|
10
|
Bender C, Rassetto M, de Olmos J, de Olmos S, Lorenzo A. Involvement of AMPA/kainate-excitotoxicity in MK801-induced neuronal death in the retrosplenial cortex. Neuroscience 2010; 169:720-32. [DOI: 10.1016/j.neuroscience.2010.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/22/2010] [Accepted: 05/03/2010] [Indexed: 11/16/2022]
|
11
|
He J, Kong J, Tan QR, Li XM. Neuroprotective effect of atypical antipsychotics in cognitive and non-cognitive behavioral impairment in animal models. Cell Adh Migr 2009; 3:129-37. [PMID: 19372744 DOI: 10.4161/cam.3.1.7401] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Antipsychotic drugs are divided into two groups: typical and atypical. Recent clinical studies show atypical antipsychotics have advantages over typical antipsychotics in a wide variety of neuropsychiatric conditions, in terms of greater efficacy for positive and negative symptoms, beneficial effects on cognitive functioning, and fewer extra pyramidal side effects in treating schizophrenia. As such, atypical antipsychotics may be effective in the treatment of depressive symptoms associated with psychotic and mood disorders, posttraumatic stress disorder and psychosis in Alzheimer disease. In this paper, we describe the effects and potential neurochemical mechanisms of action of atypical antipsychotics in several animal models showing memory impairments and/or non-cognitive behavioral changes. The data provide new insights into the mechanisms of action of atypical antipsychotics that may broaden their clinical applications.
Collapse
Affiliation(s)
- Jue He
- Department of Psychiatry, Xijing Hospital, The Fouth Military Medical University, Xi'an, China
| | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Eun Yong Chung
- Department of Anesthesiology and Pain Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Jun Rho Yoon
- Department of Anesthesiology and Pain Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Sharp FR, Hendren RL. Psychosis: atypical limbic epilepsy versus limbic hyperexcitability with onset at puberty? Epilepsy Behav 2007; 10:515-20. [PMID: 17416210 PMCID: PMC2680611 DOI: 10.1016/j.yebeh.2007.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 02/18/2007] [Accepted: 02/22/2007] [Indexed: 11/20/2022]
Abstract
Phencyclidine (PCP), ketamine (Special K), and MK-801 are noncompetitive N-methyl-d-aspartate (NMDA) antagonists that produce acute psychosis in humans. The psychosis produced by these psychomimetic drugs is indistinguishable from schizophrenia and includes both positive and negative symptoms. This drug-induced psychosis occurs after puberty in humans. On the basis of the MK-801-induced spike-and-wave activity in rats and increased blood flow and metabolism in brain of patients with psychosis caused by these psychomimetics, this brief review argues that this psychosis is an atypical form of limbic epilepsy. Moreover, there is a specific limbic thalamcortical psychosis circuit that mediates cell injury in limbic cortex of rodents and may mediate this PCP-induced psychosis in humans. It is proposed that this thalamocortical psychosis circuit develops at puberty and can mediate PCP and ketamine-mediated psychosis and possibly the psychosis of schizophrenia, bipolar disease and other disorders that have their onset at puberty. Finally, based on this developmentally regulated psychosis/epilepsy-related thalamocortical circuitry, it is proposed that antiepileptic drugs that promote GABAergic mechanisms may decrease the probability of episodic psychosis from any cause.
Collapse
Affiliation(s)
- Frank R Sharp
- Department of Neurology, MIND Institute, University of California at Davis, Wet Labs Room 2416, 2805 50th Street, Sacramento, CA 95817, USA.
| | | |
Collapse
|
14
|
Willis CL, Ray DE. Antioxidants attenuate MK-801-induced cortical neurotoxicity in the rat. Neurotoxicology 2007; 28:161-7. [PMID: 17141325 DOI: 10.1016/j.neuro.2006.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 10/30/2006] [Accepted: 10/30/2006] [Indexed: 11/19/2022]
Abstract
Oxidative stress has been implicated in the pathogenesis of several neurodegenerative diseases and may result from excessive free radical production due to increased local metabolism. Non-competitive N-methyl-D-aspartate (NMDA) antagonists (MK-801 and phencyclidine) increase glucose metabolism in many brain areas and induce cytoplasmic vacuoles, heat shock protein and necrotic cell death in neurones of the rodent posterior cingulate and retrosplenial cortex. We have investigated the effect of several antioxidants with differing properties on MK-801-induced neuronal loss. Free radical scavengers (dimethyl sulfoxide (DMSO) and alpha-tocopherol) and spin traps (N-tert-butyl-alpha-(2-sulfophenyl)-nitrone (S-PBN) and 5-(diethoxyphosphoryl)-5-methyl-1-pyrrole N-oxide (DEPMPO)), produced marked attenuation of MK-801-induced neuronal necrosis in the rat posterior cingulate and retrosplenial cortex. Further, administration of DMSO could be delayed by up to 4 h after MK-801 dosing and still achieve between 80 and 86% reduction in neuronal loss. We also show that MK-801 administration rapidly induced a four-fold and prolonged increase in cerebral blood flow in the posterior cingulate. This elevated regional blood flow was only transiently reduced by DMSO administration. The anterior cingulate, a region which undergoes no neuronal loss, showed only a two-fold increase in regional blood flow following MK-801 administration. These results support a hypothesis that oxidative stress plays a role in MK-801-induced neuronal necrosis since pathological changes can be attenuated by several antioxidants.
Collapse
Affiliation(s)
- Colin L Willis
- MRC Applied Neuroscience Group, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, NG7 2UH, UK.
| | | |
Collapse
|
15
|
Dickerson J, Sharp FR. Atypical antipsychotics and a Src kinase inhibitor (PP1) prevent cortical injury produced by the psychomimetic, noncompetitive NMDA receptor antagonist MK-801. Neuropsychopharmacology 2006; 31:1420-30. [PMID: 16123741 DOI: 10.1038/sj.npp.1300878] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists such as phencyclidine, ketamine, and MK-801 produce schizophrenia-like psychosis in humans. The same NMDA antagonists injure retrosplenial cortical neurons in adult rats. We examined the effects of atypical antipsychotics and an inhibitor of nonreceptor tyrosine kinase pp60 (Src) on the cortical injury produced by MK-801. An atypical antipsychotic (either clozapine, ziprasidone, olanzapine, quetiapine, or risperidone) or vehicle was administered to adult female Sprague-Dawley rats. PP1 (Src inhibitor), PP3 (nonfunctional analog of PP1) or vehicle (DMSO) was administered to another group of animals. After pretreatment, animals were injected with MK-801, killed 24 h after the MK-801, and injury to retrosplenial cortex assessed by neuronal Hsp70 protein expression. All atypical antipsychotics examined significantly attenuated MK-801-induced cortical damage. PP1 protected compared to vehicle, whereas PP3 did not protect. The ED50s (decrease injury by 50%) were as follows: PP1 <0.1 mg/kg; olanzapine 0.8 mg/kg; risperdal 1 mg/kg; clozapine 3 mg/kg; ziprasidone 32 mg/kg; and quetiapine 45 mg/kg. The data show that the atypical antipsychotics tested as well as a Src kinase inhibitor prevent the injury produced by the psychomimetic MK-801, and the potency of the atypical antipsychotics for preventing cortical injury was roughly similar to the potency of these drugs for treating psychosis in patients.
Collapse
Affiliation(s)
- Jon Dickerson
- Neurosciences Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| | | |
Collapse
|
16
|
Newell KA, Deng C, Huang XF. Increased cannabinoid receptor density in the posterior cingulate cortex in schizophrenia. Exp Brain Res 2006; 172:556-60. [PMID: 16710682 DOI: 10.1007/s00221-006-0503-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2006] [Accepted: 04/07/2006] [Indexed: 10/24/2022]
Abstract
The posterior cingulate cortex (PCC) has recently been implicated in the pathophysiology of schizophrenia, through both animal and human studies. We have recently shown abnormal glutamate, GABA, and muscarinic receptor binding in the PCC in schizophrenia. In addition, there is evidence for an abnormal endogenous cannabinoid system in schizophrenia. The endogenous cannabinoid system, including CB1 receptors, is proposed to play a role in modulating neurotransmission via affecting the release of a variety of neurotransmitters, (e.g. GABA). In the present study, we used quantitative autoradiography to investigate the binding of [(3)H]CP-55940 to CB1 receptors in the PCC in schizophrenia subjects compared to controls. A significant 25% increase in CB1 binding was found in the superficial layers (layer I, II) of the PCC of schizophrenia subjects compared to controls, none of whom had recently used cannabis. There was no statistical difference in CB1 binding in the deeper layers (layers III-VI) between the two groups. There were no significant correlations between CB1 binding density and age, PMI, pH, brain weight, freezer storage time, or final recorded antipsychotic drug dose. These results show an increase in CB1 receptor density in the PCC in schizophrenia, and therefore provide support for a role of the endogenous cannabinoid system in schizophrenia.
Collapse
Affiliation(s)
- Kelly A Newell
- Neurobiology Research Center for Metabolic and Psychiatric Disorders, School of Health Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.
| | | | | |
Collapse
|
17
|
He J, Xu H, Yang Y, Rajakumar D, Li X, Li XM. The effects of chronic administration of quetiapine on the phencyclidine-induced reference memory impairment and decrease of Bcl-XL/Bax ratio in the posterior cingulate cortex in rats. Behav Brain Res 2006; 168:236-42. [PMID: 16360889 DOI: 10.1016/j.bbr.2005.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 11/10/2005] [Accepted: 11/14/2005] [Indexed: 11/18/2022]
Abstract
Quetiapine, a new atypical antipsychotic drug, effectively alleviates positive and negative symptoms, as well as cognitive impairment that may be caused by neurodegeneration, in schizophrenia patients. Earlier in vivo and in vitro studies have demonstrated that quetiapine may be a neuroprotectant. The present study was designed to examine the beneficial effects of quetiapine on the possible cognitive impairment and changes of brain apoptotic regulation proteins induced by phencyclidine (PCP) in rats. Rats were treated with quetiapine (10 mg/kg/day; intraperitoneal (i.p.)) or vehicle for 16 days. On day 14, 1 h after the administration of quetiapine, the rats were given PCP (50 mg/kg; subcutaneous (s.c.)) or vehicle. Then quetiapine was administrated for an additional 2 days. One day after the last quetiapine injection (3 days after the PCP injection), the rats were trained on a spatial memory task in a radial arm maze. After the behavioural test, the rats were decapitated for Western blot analysis. PCP induced reference memory impairment, and a decrease of the ratio of an anti-apoptotic Bcl-2 family member (Bcl-XL) to a pro-apoptotic analogue (Bax) in the posterior cingulate cortex. Chronic administration of quetiapine counteracted the PCP-induced reference memory impairment and decrease of Bcl-XL/Bax ratio in the posterior cingulate cortex. These results suggest that quetiapine may have ameliorating effects on the cognitive impairment and brain apoptotic processes induced by PCP.
Collapse
Affiliation(s)
- Jue He
- Laboratory of Neuropharmacology, Wenzhou Medical College, Wenzhou, China
| | | | | | | | | | | |
Collapse
|
18
|
Ouchi Y, Kubota Y, Kuramasu A, Watanabe T, Ito C. Gene expression profiling in whole cerebral cortices of phencyclidine- or methamphetamine-treated rats. ACTA ACUST UNITED AC 2005; 140:142-9. [PMID: 16122833 DOI: 10.1016/j.molbrainres.2005.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Revised: 07/05/2005] [Accepted: 07/18/2005] [Indexed: 11/22/2022]
Abstract
Both phencyclidine (PCP) and methamphetamine (MAP) can cause schizophrenia-like symptoms. To identify the molecules relating to the drug-induced psychotic state, we used serial analysis of gene expression in rodent cerebral cortices isolated 1 h after intraperitoneal injection of saline, PCP (10 mg/kg), or MAP (4 mg/kg). We analyzed a total of 150,000 tags and found significantly up- or down-regulated genes. The number of MAP-, PCP-, and MAP and PCP-reactive tags were 229, 215, and 41, respectively.
Collapse
Affiliation(s)
- Yuta Ouchi
- Department of Psychiatry, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | | | | | | | | |
Collapse
|
19
|
Newell KA, Zavitsanou K, Huang XF. Ionotropic glutamate receptor binding in the posterior cingulate cortex in schizophrenia patients. Neuroreport 2005; 16:1363-7. [PMID: 16056140 DOI: 10.1097/01.wnr.0000174056.11403.71] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Using quantitative autoradiography, the present study examined ionotropic glutamatergic receptor binding sites using [3H]dizocilpine, [3H]alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate, and [3H]kainate in the posterior cingulate cortex of schizophrenia patients and matched controls. We found a significant increase in [3H]dizocilpine binding in the superficial layers (41%, p<0.001) and deep layers (30%, p=0.004) of the posterior cingulate cortex in the schizophrenia group compared with controls. No significant differences were observed in [3H]alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate and [3H]kainate binding. In summary, the present study has for the first time demonstrated that the glutamatergic system is affected in the posterior cingulate cortex in schizophrenia patients. The fact that only the N-methyl-D-aspartate receptor densities are significantly altered suggests that this is unlikely to be caused by a simple decrease in glutamatergic transmission.
Collapse
Affiliation(s)
- Kelly A Newell
- Neuroscience Institute of Schizophrenia and Allied Disorders, University of Wollongong, New South Wales, Australia
| | | | | |
Collapse
|
20
|
Wang C, Sadovova N, Fu X, Schmued L, Scallet A, Hanig J, Slikker W. The role of the N-methyl-D-aspartate receptor in ketamine-induced apoptosis in rat forebrain culture. Neuroscience 2005; 132:967-77. [PMID: 15857702 DOI: 10.1016/j.neuroscience.2005.01.053] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 12/09/2004] [Accepted: 01/12/2005] [Indexed: 11/21/2022]
Abstract
Recent data suggest that anesthetic drugs may cause widespread and dose-dependent apoptotic neurodegeneration during development. The window of vulnerability to this neurotoxic effect, particularly with N-methyl-D-aspartate (NMDA) antagonists such as ketamine, is restricted to the period of synaptogenesis. The purposes of this study are to determine whether treatment of forebrain cultures with ketamine results in a dose-related increase in neurotoxicity and whether upregulation of NMDA receptor subunit NR1 promotes ketamine-induced apoptosis. Forebrain cultures were treated for 12 h with 0.1, 1, 10 and 20 microM ketamine or co-incubated with NR1 antisense oligonucleotide (2 microM). After washout of the ketamine, cultures were kept in serum-containing medium (in presence of glutamate) for 24 h. Application of ketamine (10 and 20 microM) resulted in a substantial increase in DNA fragmentation as measured by cell death enzyme-linked immunosorbent assay, increased number of terminal dUTP nick-end labeling positive cells, and a reduction in mitochondrial metabolism of the dye 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide. No significant effect was seen in the release of lactate dehydrogenase, indicating that cell death presumably occurred via an apoptotic mechanism. Co-incubation of ketamine with NR1 antisense significantly reduced ketamine-induced apoptosis. Western analysis showed that neurotoxic concentrations of ketamine increased Bax and NR1 protein levels. NR1 antisense prevented this increase caused by ketamine, suggesting that ketamine-induced cell death is associated with a compensatory upregulation of the NMDA receptor. These data suggest that NR1 antisense offers neuroprotection from apoptosis in vitro, and that upregulation of the NR1 following ketamine administration is, at least, partially responsible for the observed apoptosis.
Collapse
Affiliation(s)
- C Wang
- Division of Neurotoxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079-0502, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Pongrac JL, Middleton FA, Peng L, Lewis DA, Levitt P, Mirnics K. Heat shock protein 12A shows reduced expression in the prefrontal cortex of subjects with schizophrenia. Biol Psychiatry 2004; 56:943-50. [PMID: 15601604 DOI: 10.1016/j.biopsych.2004.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Revised: 08/11/2004] [Accepted: 09/13/2004] [Indexed: 02/08/2023]
Abstract
BACKGROUND Deoxyribonucleic acid microarray analyses of dorsolateral prefrontal cortex (DLPFC) area 9 from 10 matched pairs of schizophrenic and control subjects revealed a consistent and significant decrease (p = .001; mean log2 signal difference = -.58) in transcript expression for a gene clone KIAA0417. This database entry has been recently annotated as two highly homologous members of a heat-shock protein family (HSPA12A and HSPA12B). METHODS We followed up our initial results by in situ hybridization in subjects with schizophrenia, major depression, and a chronic haloperidol-treated nonhuman primate model. Furthermore, we investigated the distribution of HSPA12A and HSPA12B transcripts across the human and nonhuman primate brain. RESULTS We found that HSPA12A (but not HSPA12B) is highly expressed in the human brain and shows a neuron- and region-specific transcript distribution, with strongest expression in the frontal and occipital cortical regions. HSPA12A messenger ribonucleic acid was significantly reduced (p < .01; mean log2 optical density difference = -.84) across subjects with schizophrenia but not in the DLPFC of subjects with major depression or in monkeys chronically treated with haloperidol. CONCLUSIONS The data are consistent with metabolic alterations in schizophrenia, reflected in selective changes in the expression of certain genes encoding proteins involved in cellular metabolism or metabolic responsiveness.
Collapse
Affiliation(s)
- Julie L Pongrac
- Department of Psychiatry, E1655 BST, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA. karoly+@pitt.edu
| | | | | | | | | | | |
Collapse
|
22
|
Carter K, Dickerson J, Schoepp DD, Reilly M, Herring N, Williams J, Sallee FR, Sharp JW, Sharp FR. The mGlu2/3 receptor agonist LY379268 injected into cortex or thalamus decreases neuronal injury in retrosplenial cortex produced by NMDA receptor antagonist MK-801: possible implications for psychosis. Neuropharmacology 2004; 47:1135-45. [PMID: 15567423 DOI: 10.1016/j.neuropharm.2004.08.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 06/29/2004] [Accepted: 08/03/2004] [Indexed: 10/26/2022]
Abstract
The non-competitive NMDA receptor antagonists, including PCP (phencyclidine), ketamine, and MK-801 (dizocilpine) produce psychosis in humans and injure neurons in retrosplenial cortex in adult rodent brain. This study examined the effects of the metabotropic mGlu2/3 agonist LY379268 and antagonist LY341495 on cortical injury produced by systemic MK-801 (1 mg/kg i.p.) in adult female rats. Systemic injections of mGlu2/3 agonist LY379268, but not mGlu2/3 antagonist LY341495, decreased the injury in the retrosplenial cortex produced by systemic MK-801 as assessed by Hsp70 induction. Bilateral injections of LY379268, but not vehicle, into retrosplenial cortex or bilateral injections of LY379268 into anterior thalamus also decreased the injury in retrosplenial cortex produced by systemic MK-801. The data show that bilateral activation of mGlu2/3 glutamate receptors in cortex or anterior thalamus decreases the neuronal injury in retrosplenial cortex produced by systemic MK-801. Because antipsychotic medications decrease cortical injury produced by NMDA antagonists in rodents and decrease psychosis in humans, mGlu2/3 agonists that decrease cortical injury produced by NMDA antagonists in rodents might be evaluated for decreasing psychosis in people.
Collapse
Affiliation(s)
- Kevin Carter
- Department of Neurology, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Jevtovic-Todorovic V, Beals J, Benshoff N, Olney JW. Prolonged exposure to inhalational anesthetic nitrous oxide kills neurons in adult rat brain. Neuroscience 2004; 122:609-16. [PMID: 14622904 DOI: 10.1016/j.neuroscience.2003.07.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Short-term exposure of adult rats to nitrous oxide (N2O), an inhalational anesthetic and NMDA (N-methyl-D-aspartate) antagonist, causes a reversible neurotoxic vacuole reaction in neurons of the posterior cingulate/retrosplenial cortex (PC/RSC) which resembles that caused by low doses of other NMDA antagonists. Since high doses or prolonged exposure to other NMDA antagonists can cause neurons to die, we assessed whether prolonged N2O exposure might also cause neuronal cell death. Adult female Sprague-Dawley rats were exposed to 150-vol% N2O (approximately EC50 for N2O anesthesia in rats) for various durations from 1 to 16 h. The time course for onset and disappearance of the reversible vacuole reaction was studied, as was the time course and dose requirement for triggering cell death. A maximum vacuole reaction was observed in PC/RSC neurons in brains examined immediately after 3 h of 150-vol% N2O exposure and the same magnitude of vacuole reaction was observed when brains were examined immediately after a longer period of N2O exposure. When N2O was terminated at 3 h and the rats were killed 1 h later, the vacuole reaction was markedly diminished and if the rats were killed 3 h later the vacuole reaction had completely disappeared. Prolonged exposure to 150-vol% N2O (for 8 h or more) caused neuronal cell death which was detectable by silver staining 32 h later. Concurrently administered GABAergic agents, diazepam (an i.v. anesthetic), or isoflurane (an inhalational anesthetic), prevented this cell death reaction. Our findings demonstrate that short-term exposure of adult rats to N2O causes injury to PC/RSC neurons that is rapidly reversible, and prolonged N2O exposure causes neuronal cell death. These neurotoxic effects, including the cell death reaction, can be prevented by coadministration of GABAmimetic anesthetic agents. Duration of NMDA receptor blockade appears to be an important determinant of whether neurons are reversibly injured or are driven to cell death by an NMDA antagonist drug.
Collapse
Affiliation(s)
- V Jevtovic-Todorovic
- Department of Anesthesiology, University of Virginia Health System, P.O. Box 800710, Charlottesville, VA 22908, USA.
| | | | | | | |
Collapse
|
24
|
Abstract
Antagonists of the NMDA glutamate receptor, including phencyclidine (PCP), ketamine, and CGS-19755, produce cognitive and behavioral changes in humans. In rodents these agents produce a myriad of histopathological and neurochemical changes. Several lines of evidence suggest that a large number of these drug-induced effects are dose-dependent manifestations of the same general disinhibition process in which NMDA antagonists abolish GABAergic inhibition, resulting in the simultaneous excessive release of acetylcholine and glutamate. Progressive increases in the severity of NMDA receptor hypofunction (NRHypo) within the brain produce an increasing range of effects on brain function. Underexcitation of NMDA receptors, induced by even relatively low doses of NMDA antagonist drugs, can produce specific forms of memory dysfunction without clinically evident psychosis. More severe NRHypo can produce a clinical syndrome very similar to a psychotic schizophrenic exacerbation. Finally, sustained and severe NRHypo in the adult brain is associated with a form of neurotoxicity with well-characterized neuropathological features. In this paper several of these effects of NMDA antagonists and a likely mechanism responsible for producing them will be reviewed. In addition the possible role of NRHypo in the pathophysiology of idiopathic psychotic disorders will be considered.
Collapse
Affiliation(s)
- Nuri B Farber
- Department of Psychiatry, Washington University, St. Louis, Missouri 63110-1093, USA.
| |
Collapse
|
25
|
Farber NB, Jiang X, Dikranian K, Nemmers B. Muscimol prevents NMDA antagonist neurotoxicity by activating GABAA receptors in several brain regions. Brain Res 2004; 993:90-100. [PMID: 14642834 DOI: 10.1016/j.brainres.2003.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
N-Methyl-D-aspartate (NMDA) glutamate receptor antagonists are being developed as therapeutic agents for several clinical conditions. However, the ability of these agents to produce neurotoxicity and psychosis can compromise their clinical usefulness. In addition, an NMDA receptor hypofunction (NRHypo) state may play a role in neurodegenerative and psychotic disorders. A better understanding of the mechanism underlying these adverse effects should allow for the safer use of these agents and might clarify mechanisms underlying certain clinical disorders. NRHypo neurotoxicity is mediated by a complex disinhibition mechanism in which NMDA antagonists abolish GABAergic inhibition, resulting in the simultaneous excessive release of acetylcholine and glutamate onto the vulnerable retrosplenial cortex (RSC) neurons. Systemically administered GABAergic agents are potent protectors against NRHypo neurotoxicity. To determine where in brain GABAergic agents could be acting to protect against NRHypo neurotoxicity, we injected the GABAergic agonist, muscimol, into different brain regions of rats treated systemically with a neurotoxic dose of the potent NMDA antagonist, MK-801. We report that muscimol injections into the anterior thalamus or diagonal band of Broca provide substantial protection, suggesting that disinhibition of neurons in these regions underlies NRHypo neurotoxicity. Muscimol injections into the RSC also provide substantial protection possibly by directly inhibiting the vulnerable RSC neuron. Injections of muscimol into other areas known to project to the RSC (ventral orbital cortex, anterior cingulate cortex and subiculum) provide only minimal protection. We conclude that GABAergic agents prevent NRHypo neurotoxicity mainly by activating GABA receptors in the anterior thalamus, diagonal band of Broca and RSC.
Collapse
Affiliation(s)
- Nuri B Farber
- Department of Psychiatry, Washington University, Campus Box 8134, 660 S. Euclid Ave., St. Louis, MO 63110-1093, USA.
| | | | | | | |
Collapse
|
26
|
Abstract
The present paper demonstrates a remarkable pervasiveness of underlying Ca(2+) signaling motifs among the available biochemical findings in schizophrenic patients and among the major molecular hypotheses of this disease. In addition, the paper reviews the findings suggesting that Ca(2+) is capable of inducing structural and cognitive deficits seen in schizophrenia. The evidence of the ability of antipsychotic drugs to affect Ca(2+) signaling is also presented. Based on these data, it is proposed that altered Ca(2+) signaling may constitute the central unifying molecular pathology in schizophrenia. According to this hypothesis schizophrenia can result from alterations in multiple proteins and other molecules as long as these alterations lead to abnormalities in certain key aspects of intracellular Ca(2+) signaling cascades.
Collapse
Affiliation(s)
- Michael S Lidow
- Department of Biomedical Sciences and Program of Neuroscience, University of Maryland, Room 5-A-12, HHH, 666 W. Baltimore Street, Baltimore, MD 21201, USA.
| |
Collapse
|
27
|
Ammon-Treiber S, Grecksch G, Stumm R, Riechert U, Tischmeyer H, Reichenauer A, Höllt V. Rapid, transient, and dose-dependent expression of hsp70 messenger RNA in the rat brain after morphine treatment. Cell Stress Chaperones 2004; 9:182-97. [PMID: 15497504 PMCID: PMC1065297 DOI: 10.1379/csc-42.1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 03/31/2004] [Accepted: 04/01/2004] [Indexed: 01/12/2023] Open
Abstract
Induction of Hsp70 in the brain has been reported after intake of drugs of abuse like amphetamine and lysergic acid diethylamide. In this investigation, gene expression of Hsp70 and other heat shock genes in the rat brain was studied in response to morphine. Twenty milligrams per kilogram morphine intraperitoneally resulted in a marked induction of Hsp70 messenger RNA (mRNA) expression in the frontal cortex with a maximum increase of 13.2-fold after 2 hours. A moderate increase of Hsp27 mRNA expression (6.7-fold) could be observed after 4 hours, whereas mRNA expression of Hsp90 and of the constitutive Hsc70 did not exceed a mean factor of 1.8-fold during the 24 hours interval. The increase in Hsp70 mRNA was dose dependent, showing a significant elevation after doses ranging from 10 to 50 mg/kg morphine. In situ hybridization revealed enhanced Hsp70 mRNA expression mainly in cortical areas, in the hippocampus, in the paraventricular and supraoptic nuclei of the hypothalamus, in the locus coeruleus, as well in the pineal body. The double in situ hybridization technique revealed increased Hsp70 mRNA expression mainly in VGLUT1-positive neurons and to a lesser extent in olig1-positive oligodendroglia. Immunohistochemistry revealed a marked increase of Hsp70 protein in neuronal cells and blood vessels after 12 hours. In contrast to animal experiments, morphine did not increase Hsp70 mRNA expression in vitro in micro-opioid receptor (MOR1)-expressing human embryonic kidney 293 cells, suggesting no direct MOR1-mediated cellular effect. To exclude a body temperature-related morphine effect on Hsp70 mRNA expression, the temperature was recorded. Five to 20 mg/kg resulted in hyperthermia (maximum 40.6 degrees), whereas a high dose (50 mg/kg) that produced the highest mRNA induction, showed a clear hypothermia (minimum 37.2 degrees C). These findings argue against the possibility that Hsp70 induction by morphine is caused by its effect on body temperature. It may be speculated that increased expression of Hsp70 after morphine application protects brain structures against potentially hazardous effects of opiates.
Collapse
Affiliation(s)
- Susanne Ammon-Treiber
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Leipziger Street 44, D-39120 Magdeburg, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Hashimoto K, Tomitaka S, Narita N, Minabe Y, Iyo M, Fukui S. Induction of heat shock protein (HSP)-70 in posterior cingulate and retrosplenial cortex of rat brain by dizocilpine and phencyclidine: lack of protective effects of sigma receptor ligands. Addict Biol 2003; 1:61-70. [PMID: 12893487 DOI: 10.1080/1355621961000124696] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The role of sigma receptors in the induction of heat shock protein (HSP)-70 by non-competitive N-methyl-Daspartate (NMDA) receptor antagonists (+)-MK-801 (dizocilpine) and phencyclidine (PCP) was studied. HSP-70 is induced in the posterior cingulate and retrosplenial cortex of rat brain 24 hours after a single administration of dizocilpine (1 mg/kg) or PCP (50 mg/kg). The induction of heat shock protein HSP-70 by dizocilpine or PCP was attenuated partially by pre-treatment with the antipsychotic drug haloperidol (3 mg/kg, i.p., 15 minutes previously). However, pre-treatment with high potent and selective sigma receptor ligands, 4-phenyl-4-(1-phenylbutyl)piperidine (4-PPBP, 3 mg/kg, i.p., 15 minutes previously) and N,N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy)phenyl]-ethylamine monohydrochloride) (NE-100, 3 mg/kg, i.p., 15 minutes previously) did not alter the induction of HSP-70 by dizocilpine or PCP. These findings suggest that sigma receptors may not play a significant role in the induction of HSP-70 by non-competitive NMDA receptor antagonists dizocilpine and PCP, and that protective effects of haloperidol on induction of HSP-70 protein by dizocilpine or PCP may be due to other effect(s) except sigma receptors.
Collapse
Affiliation(s)
- K Hashimoto
- Division of Cortical Function Disorder, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo
| | | | | | | | | | | |
Collapse
|
29
|
Cochran SM, Fujimura M, Morris BJ, Pratt JA. Acute and delayed effects of phencyclidine upon mRNA levels of markers of glutamatergic and GABAergic neurotransmitter function in the rat brain. Synapse 2002; 46:206-14. [PMID: 12325047 DOI: 10.1002/syn.10126] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glutamatergic and GABAergic neurotransmitter systems exist in equilibrium to maintain "normal" brain function. Evidence is accumulating that disturbance of this equilibrium may be one of the key factors giving rise to schizophrenia. While there is widespread evidence that the psychotomimetic phencyclidine (PCP) induces schizophrenia-related symptoms, it is not clear how this dramatic effect is mediated. This study was designed to investigate acute and delayed effects of PCP on the mRNA expression of a range of markers of neuronal function associated with the glutamatergic and GABAergic systems within the rat brain. The mRNA levels of CaMKIIalpha, an enzyme which is located within the postsynaptic density and phosphorylates AMPA receptors, remained unaltered both 2 and 24 h posttreatment. Homer 1a, an immediate early gene associated with metabotropic glutamate receptors within the postsynaptic density, displayed region-specific differential changes within the prefrontal, primary auditory, and retrosplenial cortices 2 and 24 h posttreatment. Parvalbumin, a calcium-binding protein located within a subpopulation of GABAergic interneurones, displayed altered mRNA levels within the reticular nucleus of the thalamus at 2 and 24 h posttreatment and the substantia nigra pars reticulata 24 h posttreatment only. These phencyclidine-induced changes in mRNA expression were not accompanied by any changes in hsp-70 mRNA levels, a marker of NMDA antagonist-induced reversible neurotoxicity. These results indicate that the glutamatergic (group I metabotropic glutamate receptors) and GABAergic (parvalbumin-containing interneurones) neurotransmitter systems are differentially modulated in a region- and time-dependent manner by exposure to phencyclidine.
Collapse
Affiliation(s)
- Susan M Cochran
- Yoshitomi Research Institute of Neuroscience in Glasgow (YRING), University of Glasgow, G12 8QQ, UK
| | | | | | | |
Collapse
|
30
|
Abstract
N-methyl-D-aspartate (NMDA) receptor hypofunction is associated with a range of effects on cognition and behavior in whole animal and human studies. NMDA receptor hypofunction within the brain, which can be induced experimentally in vivo using NMDA receptor antagonist drugs, produces adverse effects on memory function. The results suggest that NMDA receptor hypofunction can preferentially affect neural mechanisms regulating the efficiency of encoding and consolidation into longer-term storage. More pronounced NMDA receptor hypofunction can produce a clinical syndrome that includes core features of psychosis, as well as dissociation. Finally, sustained and severe underexcitation of NMDA receptors in the adult brain is associated with a neurotoxic process with well-characterized neuropathological features. Progressive increases in severity of NMDA receptor hypofunction within the brain can produce a range of effects on brain function, involving local and distributed circuitry, which may underlie the observed changes in behavior. As the brain ages, the NMDA receptor system becomes progressively hypofunctional, potentially contributing to further age-related decreases in memory and learning performance. Pharmacological and genomic methods for preventing NMDA receptor hypofunction, or for preventing the upstream or downstream consequences modeled by treatment with NMDA antagonists, may be applicable to the prevention and treatment of memory and behavioral dysfunction in a variety of neuropsychiatric disease conditions.
Collapse
Affiliation(s)
- J W Newcomer
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110-1093, USA.
| | | |
Collapse
|
31
|
Marksteiner J, Weiss U, Weis C, Laslop A, Fischer-Colbrie R, Humpel C, Feldon J, Fleischhacker WW. Differential regulation of chromogranin A, chromogranin B and secretogranin II in rat brain by phencyclidine treatment. Neuroscience 2001; 104:325-33. [PMID: 11377837 DOI: 10.1016/s0306-4522(01)00081-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Chromogranin A, chromogranin B and secretogranin II belong to the chromogranin family which consists of large protein molecules that are found in large dense core vesicles. Chromogranins are endoproteolytically processed to smaller peptides. This study was designed to elucidate the regulation of chromgranin expression by acute and subchronic phencyclidine administration. The behavioral syndrome produced by phencyclidine represents a pharmacological model for some aspects of schizophrenia [Jentsch and Roth (1999) Neuropsychopharmacology 20, 201-225]. Tissue concentrations of chromogranins were measured with specific radioimmunoassays. Alterations in secretogranin II gene expression were investigated by in situ hybridization. A single dose of phencyclidine (10mg/kg) led to a transient decrease in secretoneurin tissue levels in the prefrontal cortex after 4h followed by an increase in secretoneurin tissue levels after 12h. Repeated phencyclidine treatment (10mg/kg/day) for five days resulted in elevated secretoneurin levels in cortical areas whereas chromogranin A and chromogranin B tissue levels were unchanged. After the same treatment, a significant increase in the number of secretoneurin containing neurons was found in cortical layers II-III, and V-VI as revealed by immunocytochemistry. The increases in secretoneurin levels were paralleled by an increased number of secretogranin II messenger RNA containing neurons as well as by an increased expression of secretogranin II by individual neurons. The present study shows that secretoneurin II tissue concentration and secretogranin II messenger RNA expression is distinctly altered after acute and subchronic phencyclidine application. From these results we suggest that phencyclidine may induce synaptic alterations in specific brain areas and may contribute to a better understanding of synaptic dysfunction which may also occur in schizophrenia.
Collapse
Affiliation(s)
- J Marksteiner
- Department of Psychiatry, University of Innsbruck, A-6020, Innsbruck, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Sharp FR, Tomitaka M, Bernaudin M, Tomitaka S. Psychosis: pathological activation of limbic thalamocortical circuits by psychomimetics and schizophrenia? Trends Neurosci 2001; 24:330-4. [PMID: 11356504 DOI: 10.1016/s0166-2236(00)01817-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Non-competitive NMDA receptor antagonists, such as phencyclidine, ketamine and MK801, produce psychosis in humans. These drugs also produce injury to cingulate-retrosplenial cortex in adult rodents that can be prevented by GABA-receptor agonists and antipsychotics such as haloperidol and clozapine. MK801 injections into anterior thalamus reproduce limbic cortex injury, and GABA-receptor agonist injections into anterior thalamus prevent injury produced by systemic MK801. Inhibition of NMDA receptors on GABAergic thalamic reticular nucleus neurons might activate thalamocortical 'injury' circuits in animals. Pathological activation of thalamocortical circuits might also mediate the psychosis produced by NMDA-receptor antagonists in humans, and might contribute to psychosis in schizophrenia.
Collapse
Affiliation(s)
- F R Sharp
- Department of Neurology and Neurosciences Program, University of Cincinnati Vontz Center, 3125 Eden Avenue Rm 2327, Cincinnati, OH 45267-0536, USA.
| | | | | | | |
Collapse
|
33
|
Lindén A, Storvik M, Lakso M, Haapasalo A, Lee D, Witkin JM, Sei Y, Castrén E, Wong G. Increased expression of neuronal Src and tyrosine phosphorylation of NMDA receptors in rat brain after systemic treatment with MK-801. Neuropharmacology 2001; 40:469-81. [PMID: 11249956 DOI: 10.1016/s0028-3908(00)00185-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We have observed that systemic treatment with the uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 increases Src expression and NMDA receptor phosphorylation in rat brain. A partial cDNA encoding rat neuronal Src was isolated and its sequence was used to design specific oligonucleotide probes. Systemically administered MK-801 (5 mg/kg for 4 h) increased by 28+/-4% mRNA expression of neuronal Src in the superficial layers of the parietal cortex. This effect was observed at doses as low as 0.2 mg/kg. A similar, although more modest, induction was observed 6 h after phencyclidine (15 mg/kg) administration, but not after high doses of memantine and ketamine. The MK-801-induced effect was not blocked by pretreatment with clozapine. Consistent with the increase in mRNA levels, cortical Src protein was increased to 186 +/- 24% of control 24 h after MK-801 treatment. Total cellular Src activity was also increased in parietal cortex homogenates 4 h after MK-801 (5 mg/kg). Moreover, MK-801 treatment (0.5 mg/kg and 5 mg/kg for 4 h) increased tyrosine phosphorylation, but not protein levels, of the NMDA receptor subunit NR2A. These results provide evidence for a contribution of Src and tyrosine phosphorylation of NMDA receptors in the pharmacological actions of uncompetitive NMDA receptor antagonists.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Brain/drug effects
- Brain/metabolism
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Dizocilpine Maleate/pharmacology
- Excitatory Amino Acid Antagonists/pharmacology
- Gene Expression Regulation/drug effects
- Injections, Intraperitoneal
- Ketamine/pharmacology
- Male
- Molecular Sequence Data
- Neurons/enzymology
- Phencyclidine/pharmacology
- Phosphorylation/drug effects
- Piperazines/pharmacology
- Protein Subunits
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/metabolism
- Sequence Analysis, DNA
- Time Factors
- Tyrosine/metabolism
- Up-Regulation/drug effects
- src-Family Kinases/genetics
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- A Lindén
- A.I. Virtanen Institute, University of Kuopio, P.O.B. 1627, 70211 Kuopio, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rajdev S, Hara K, Kokubo Y, Mestril R, Dillmann W, Weinstein PR, Sharp FR. Mice overexpressing rat heat shock protein 70 are protected against cerebral infarction. Ann Neurol 2001. [DOI: 10.1002/1531-8249(200006)47:6<782::aid-ana11>3.0.co;2-3] [Citation(s) in RCA: 219] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Tomitaka M, Tomitaka S, Rajdev S, Sharp FR. Fluoxetine prevents PCP- and MK801-induced HSP70 expression in injured limbic cortical neurons of rats. Biol Psychiatry 2000; 47:836-41. [PMID: 10812043 DOI: 10.1016/s0006-3223(99)00323-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND N-Methyl-D-aspartate (NMDA) receptor antagonists, including phencyclidine (PCP) and dizocilpine (MK801), cause schizophrenialike psychosis in humans, and produce vacuolated neurons in the cingulate and retrosplenial cortices of the rat brain. Since psychotically depressed patients and schizophrenic depressed patients may require treatment with selective serotonin reuptake inhibitors (SSRIs), it is of interest to examine the relationship between SSRIs and NMDA antagonist neurotoxicity. METHODS The neurotoxicity of PCP and MK801 was assessed using heat shock protein (HSP70) immunocytochemistry and HSP70 Western blots because HSP70 is expressed in the injured, vacuolated neurons. Female rats were given fluoxetine (0, 5, 10, and 20 mg/kg IP) followed 1 hour later by MK801 (1 mg/kg IP) or PCP (50 mg/kg IP). RESULTS Pretreatment with fluoxetine (20 mg/kg IP) 1 hour before MK801 prevented the induction of HSP70 by MK801 in the cingulate and retrosplenial cortices. Pretreatment with fluoxetine (10 or 20 mg/kg IP) 1 hour before PCP also prevented the HSP70 induction by PCP. CONCLUSIONS Fluoxetine prevents the neurotoxicity of NMDA receptor antagonists in rat brain. This suggests the possibility that SSRIs could modulate psychosis, and may provide a model for examining the link between the hallucinogenic properties of PCP and lysergic acid diethylamide.
Collapse
Affiliation(s)
- M Tomitaka
- Department of Neurology, University of Cincinnati, Ohio 45267-0525, USA
| | | | | | | |
Collapse
|
36
|
Tomitaka S, Tomitaka M, Tolliver BK, Sharp FR. Bilateral blockade of NMDA receptors in anterior thalamus by dizocilpine (MK-801) injures pyramidal neurons in rat retrosplenial cortex. Eur J Neurosci 2000; 12:1420-30. [PMID: 10762370 DOI: 10.1046/j.1460-9568.2000.00018.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Non-competitive N-methyl-D-aspartate (NMDA) receptor antagonists, ketamine, phencyclidine (PCP) and dizocilpine (MK-801), produce psychosis in people. In rodents they produce cytoplasmic vacuoles in injured retrosplenial cortical neurons that express HSP70 heat shock protein. This study examined possible circuits and receptors that mediate this neuronal injury. Bilateral, but not unilateral, injection of dizocilpine (5, 10, 15, 20 microg/microL per side) into the anterior thalamus induced HSP70 protein in pyramidal neurons in deep layer III of rat retrosplenial cortex 24 h later. In contrast, bilateral dizocilpine injections (5, 10, 15, 20 microg/microL per side) into the retrosplenial cortex or into the diagonal band of Broca did not induce HSP70. Bilateral injections of muscimol (0.1, 1, 10 microg/microL per side), a GABAA (gamma-aminobutyric acid) agonist, into the anterior thalamus blocked HSP70 induction in the retrosplenial cortex produced by systemic dizocilpine (1 mg/kg). Bilateral thalamic injections of baclofen (0.1, 1, 10 microg/microL per side), a GABAB agonist, were ineffective. Anterograde tracer studies confirmed that neurons in the anterior thalamus project to superficial layer III of the retrosplenial cortex where the dendrites of HSP70-immunostained neurons in deep layer III reside. Bilateral blockade of NMDA receptors on GABA neurons in the reticular nuclei of the thalamus is proposed to decrease GABA neuronal firing, decrease GABA release and decrease activation of GABAA receptors. This activates thalamic projection neurons that damage retrosplenial cortical neurons presumably via unblocked cortical glutamate alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) and kainate receptors. The increases of blood flow that occur in the thalamus and retrosplenial cortex of people that have psychosis produced by NMDA antagonists could be related to thalamic excitation of the retrosplenial cortex produced by these drugs.
Collapse
Affiliation(s)
- S Tomitaka
- Departments of Neurology, University of California at San Francisco, San Francisco, CA 94121, USA
| | | | | | | |
Collapse
|
37
|
Hashimoto K, Fujimura M, Yamagami K. Dizocilpine-induced neuropathological changes in rat retrosplenial cortex are reversed by subsequent clozapine treatment. Life Sci 2000; 66:1071-8. [PMID: 10737357 DOI: 10.1016/s0024-3205(00)00410-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, we examined the effect of post-treatment with clozapine on the neuropathological changes in the rat retrosplenial cortex induced by the administration of non-competitive NMDA receptor antagonist dizocilpine ((+)-MK-801). The maximal increase in vacuolized neurons, which are representative of neuropathology, was observed 4 hours after a single injection of dizocilpine (0.5 mg/kg s.c.), with a complete reversal of the neuropathology after 16-24 hours. The administration of clozapine (10 mg/kg, i.p.,) 4 hours after the administration of dizocilpine significantly decreased the number of vacuolized neurons in the retrosplenial cortex 6, 8 or 10 hours after administration of dizocilpine, compared to vehicle-treated animals. Furthermore, the administration of clozapine (5, 10 or 20 mg/kg i.p.) 4 hours after the administration of dizocilpine produced a significant decrease in the number of vacuolized neurons in the retrosplenial cortex in a dose-dependent manner when measure 6 hours post-dizocilpine. These results show that neuropathological changes in the rat retrosplenial cortex produced by dizocilpine can be attenuated by post-treatment with clozapine.
Collapse
Affiliation(s)
- K Hashimoto
- Tokyo Laboratories, Yoshitomi Pharmaceutical Industries, Ltd., Iruma, Saitama, Japan.
| | | | | |
Collapse
|
38
|
Griffiths MR, Cooper AJ, Barber DJ, Mitchell IJ. Pharmacological mechanisms mediating phencyclidine-induced apoptosis of striatopallidal neurons: the roles of glutamate, dopamine, acetylcholine and corticosteroids. Brain Res 2000; 855:1-10. [PMID: 10650124 DOI: 10.1016/s0006-8993(99)01917-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Phencyclidine (PCP) has recently been shown to induce apoptosis of a subpopulation of striatopallidal neurons which lie in the dorsomedial caudate-putamen. The pharmacological mechanisms underlying this PCP-induced striatal death were investigated in a series of small experiments. Striatal silver-methenamine-stained sections from rats injected acutely with dizocilpine (MK-801; 1.5-5 mg/kg, i.p.) were analysed to determine whether other non-competitive N-methyl-D-aspartate (NMDA) receptor antagonists could induce apoptotic-like changes in striatal cells. The effects of amphetamine (3-12 mg/kg, i.p.) were similarly investigated as PCP can elevate extracellular dopamine levels and dopamine has the potential to be neurotoxic. The potential involvement of dopamine transmission in PCP-induced striatal apoptosis was also tested by determining the effect of co-administering SCH23390 (D1 dopamine receptor antagonist) and quinpirole (D2 dopamine receptor agonist) on PCP (80 mg/kg, s.c.)-induced striatal apoptotic-like cell death. Equivalent experiments were performed using scopolamine (cholinergic antagonist) as this drug blocks PCP-induced damage of the retrosplenial cortex and RU38486 (corticosteroid receptor antagonist) as a similar subpopulation of striatal neurons undergoes apoptosis following dexamethasone administration. Injection of neither MK-801 nor amphetamine induced elevations of apoptotic-like cells in the striatum nor did co-administration of SCH23390 or scopolamine affect the levels of PCP-induced striatal cell death. In contrast, quinpirole elevated the levels of PCP-induced apoptotic-like striatal cell death and RU38486 markedly reduced it. Within the retrosplenial cortex, scopolamine lowered PCP-induced apoptotic-like cell death whereas RU38486 was without effect. These results suggest that PCP-induced striatal apoptosis results from a corticosteroid-dependent mechanism. The results further demonstrate that different pathological mechanisms underlie PCP-induced neuronal damage in the striatum and the retrosplenial cortex.
Collapse
Affiliation(s)
- M R Griffiths
- School of Psychology, University of Birmingham, Birmingham, UK
| | | | | | | |
Collapse
|
39
|
Pedersen V, Schmidt WJ. The neuroprotectant properties of glutamate antagonists and antiglutamatergic drugs. Neurotox Res 2000; 2:179-204. [PMID: 16787840 DOI: 10.1007/bf03033793] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In the slowly progressive neurodegenerative disorders like Parkinson's disease and Alzheimer's disease very different neuronal populations undergo degenerative processes, although the cascades of cellular events leading to death are supposed to be similar. We suggest that the complex pattern of degeneration in Parkinson's disease depends on two processes, a 'primary neurodegeneration' that takes place in the striato-nigral dopamine neurons and a 'secondary degeneration', occurring in distant structures of the basal ganglia network. For the purpose of explaining the regionally different expression of 'primary neurodegeneration' in different diseases, we postulate that the origin of neurodegeneration is associated with the local release of a neurotransmitter. For Parkinson's disease this would mean that the metabolism of dopamine in the striatum, nucleus accumbens and presumably the pedunculopontine tegmental nucleus, together with one or more pathological factors contribute to the initial neurodegeneration. There are recent studies indicating that a transneuronal retrograde degeneration of the substantia nigra pars compacta neurons might be induced by a loss of function of dopaminergic synapses in the striatum. We have recently established an animal model of retrograde striato-nigral degeneration, where the assessment of markers for cellular stress is possible. In Parkinson's disease, several structures distal from the substantia nigra pars compacta undergo neuropathological changes, characterizing the 'secondary neurodegeneration. Our recent studies provide experimental evidence for a chronic cellular stress in these structures because of a relative or absolute glutamatergic overactivity due to the initial loss of dopaminergic innervation. Thus, a loss of dopamine transforms the basal ganglia to a 'destructive network'. Both processes, the 'primary' and 'secondary neurodegeneration', affecting each other, characterize the progress of chronic neurodegeneration. From this point of view, we would further like to develop strategies for symptomatic amendment. Excitatory amino acids seem to be involved not only in the secondary processes of neurodegeneration, but also in initiation of the 'primary degeneration' of the substantia nigra pars compacta. Therefore, a reduction of glutamatergic overactivity constitutes a promising neuroprotective strategy. Especially the new antagonists of the NMDA-receptors with high affinity to the NR2B subunit of the receptor are in focus of our interest, since they reveal a favourable profile of side effects, therefore providing a promising tool for neuroprotection.
Collapse
Affiliation(s)
- V Pedersen
- Department of Neuropharmacology, University of Tübingen, Mohlstrasse 54/1, D-72074 Tübingen, Germany.
| | | |
Collapse
|
40
|
Abstract
In response to many environmental and pathophysiologic stressful stimuli, cells undergo a stress response characterized by induction of a variety of proteins, including the heat shock protein family. The inducible heat shock protein 70 (hsp70) is believed to participate in an array of cellular activities, including cytoprotection. Normal brain cells have little detectable hsp70 RNA or protein. However, following a stressful condition hsp70 mRNA and protein are induced in different cell types depending on the severity and the nature of the stimulus. The induction of hsp70 protein correlates with the regional and cellular vulnerability to a particular injury as identified by standard histologic methods. The pattern of hsp70 expression differs in response to various neurotoxic stimuli, including hyperthermia, ischemia, seizures, hemorrhage, and N-methyl-D-aspartate receptor antagonist administration. Hsp70 expression is a useful marker of cellular injury and may help to identify previously unrecognized areas of vulnerability in the nervous system after a neurotoxic stimulus. Hsp70 may also play a neuroprotective role in the brain.
Collapse
Affiliation(s)
- S Rajdev
- Department of Neurology, University of California-San Francisco and VA Medical Center, 94121, USA.
| | | |
Collapse
|
41
|
Nakahara T, Kuroki T, Hondo H, Tsutsumi T, Fukuda K, Yao H, Uchimura H. Effects of atypical antipsychotic drugs vs. haloperidol on expression of heat shock protein in the discrete brain regions of phencyclidine-treated rats. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 73:193-7. [PMID: 10581414 DOI: 10.1016/s0169-328x(99)00248-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Haloperidol augmented a trend of an increase in the heat shock protein (hsp70) mRNA levels induced by phencyclidine (PCP) in rat medial prefrontal cortex, nucleus accumbens and striatum, while the atypical antipsychotic drugs such as clozapine, olanzapine and risperidone decreased it. When administered alone, clozapine, but not haloperidol, decreased hsp70 mRNA levels. Haloperidol and the atypical antipsychotic drugs may thus have differential effects on hsp70 expression in some brain regions of PCP-treated rats.
Collapse
Affiliation(s)
- T Nakahara
- Department of Chemistry, Faculty of Science, Kyushu University, Ropponmatsu, Fukuoka, Japan.
| | | | | | | | | | | | | |
Collapse
|
42
|
Shirayama Y, Hashimoto K, Matsuki H, Tsunashima K, Iyo M, Higuchi T, Minabe Y. Increased expression of zif268 mRNA in rat retrosplenial cortex following administration of phencyclidine. Brain Res 1999; 839:180-5. [PMID: 10482811 DOI: 10.1016/s0006-8993(99)01738-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Phencyclidine (PCP) has been shown to cause neurotoxicity in rat retrosplenial cortex following a single administration, although the precise mechanism underlying PCP-induced neurotoxicity is unclear. Using in situ hybridization and immunohistochemistry, we studied the effects of PCP on expression of immediate early gene zif268 mRNA and zif268 protein in the rat brain. High constitutive levels of zif268 mRNA and zif268 immunoreactivity were observed in the brain of control rats. Administration of PCP (12.5, 25 or 50 mg/kg, i.p., 6 h) caused marked induction of zif268 mRNA in the rat retrosplenial cortex, in a dose-dependent manner. However, the basal levels of zif268 mRNA in the other regions of cerebral cortex were decreased by administration of PCP. Emulsion-autoradiographical study suggested that marked expression of zif268 mRNA was observed in the layers III and IV of retrosplenial cortex where the neurotoxicity of PCP was detected. Furthermore, zif268 immunoreactivity in the layer IV of retrosplenial cortex was not changed by administration of PCP (25 mg/kg, i.p., 5 h), but that in the other layers of retrosplenial cortex was reduced by PCP. These results suggest that immediate early gene zif268 may, in part, play a role in the neurotoxicity of NMDA receptor antagonists such as PCP.
Collapse
Affiliation(s)
- Y Shirayama
- Division of Cortical Function Disorders, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Affiliation(s)
- F R Sharp
- Dept of Neurology, University of California at San Francisco and Dept of Veterans Affairs Medical Center, 94121, USA
| | | | | |
Collapse
|
44
|
Abstract
Glutamic acid is the principal excitatory neurotransmitter in the mammalian central nervous system. Glutamic acid binds to a variety of excitatory amino acid receptors, which are ligand-gated ion channels. It is activation of these receptors that leads to depolarisation and neuronal excitation. In normal synaptic functioning, activation of excitatory amino acid receptors is transitory. However, if, for any reason, receptor activation becomes excessive or prolonged, the target neurones become damaged and eventually die. This process of neuronal death is called excitotoxicity and appears to involve sustained elevations of intracellular calcium levels. Impairment of neuronal energy metabolism may sensitise neurones to excitotoxic cell death. The principle of excitotoxicity has been well-established experimentally, both in in vitro systems and in vivo, following administration of excitatory amino acids into the nervous system. A role for excitotoxicity in the aetiology or progression of several human neurodegenerative diseases has been proposed, which has stimulated much research recently. This has led to the hope that compounds that interfere with glutamatergic neurotransmission may be of clinical benefit in treating such diseases. However, except in the case of a few very rare conditions, direct evidence for a pathogenic role for excitotoxicity in neurological disease is missing. Much attention has been directed at obtaining evidence for a role for excitotoxicity in the neurological sequelae of stroke, and there now seems to be little doubt that such a process is indeed a determining factor in the extent of the lesions observed. Several clinical trials have evaluated the potential of antiglutamate drugs to improve outcome following acute ischaemic stroke, but to date, the results of these have been disappointing. In amyotrophic lateral sclerosis, neurolathyrism, and human immunodeficiency virus dementia complex, several lines of circumstantial evidence suggest that excitotoxicity may contribute to the pathogenic process. An antiglutamate drug, riluzole, recently has been shown to provide some therapeutic benefit in the treatment of amyotrophic lateral sclerosis. Parkinson's disease and Huntington's disease are examples of neurodegenerative diseases where mitochondrial dysfunction may sensitise specific populations of neurones to excitotoxicity from synaptic glutamic acid. The first clinical trials aimed at providing neuroprotection with antiglutamate drugs are currently in progress for these two diseases.
Collapse
Affiliation(s)
- A Doble
- Neuroscience Dept. Rhŏne-Poulenc Rorer S.A., Antony, France
| |
Collapse
|
45
|
Farber NB, Newcomer JW, Olney JW. The glutamate synapse in neuropsychiatric disorders. Focus on schizophrenia and Alzheimer's disease. PROGRESS IN BRAIN RESEARCH 1999; 116:421-37. [PMID: 9932393 DOI: 10.1016/s0079-6123(08)60453-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Here we have described a novel excitotoxic process in which hypofunctional NMDA receptors cease driving GABA ergic neurons which cease inhibiting excitatory transmitters in the brain. These disinhibited excitatory transmitters then act in concert to slowly hyperstimulate neurons in corticolimbic brain regions. We have discussed how such an abnormality could exist in the brains of individuals with schizophrenia or AD and could account for the clinical stigmata of the two disorders. In addition, we have highlighted how other disorder-specific factors would account for the differences in the clinical presentation of AD and schizophrenia. In an animal model, pharmacological methods have been developed for preventing the overstimulation of these vulnerable corticolimbic pyramidal neurons and at least some of these methods may be applicable for treating AD and schizophrenia.
Collapse
Affiliation(s)
- N B Farber
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 6310-1093, USA.
| | | | | |
Collapse
|
46
|
Rajdev S, Fix AS, Sharp FR. Acute phencyclidine neurotoxicity in rat forebrain: induction of haem oxygenase-1 and attenuation by the antioxidant dimethylthiourea. Eur J Neurosci 1998; 10:3840-52. [PMID: 9875361 DOI: 10.1046/j.1460-9568.1998.00392.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Phencyclidine and other N-methyl-D-aspartate receptor antagonists are toxic to pyramidal neurons in the posterior cingulate/retrosplenial cortex of rat brain. Previous studies have shown induction of heat shock protein 70 in affected neurons. In this study, expression of haem oxygenase-1, a heat shock protein induced by oxidative stress, was examined in rat forebrain after administration of a single intraperitoneal dose of phencyclidine (50 mg/kg). Northern and Western blot analyses of brain tissue extracts from phencyclidine-treated rats revealed a marked induction of haem oxygenase-1 mRNA and protein, respectively. Immunohistochemistry studies revealed that phencyclidine increased haem oxygenase-1 immunoreactivity primarily in posterior cingulate/retrosplenial, piriform and entorhinal cortices, striatum and hippocampus. Haem oxygenase-1 protein was induced in non-neuronal cells, mainly astrocytes. Some microglia expressing haem oxygenase-1 protein were also found in the posterior cingulate/retrosplenial cortex. Haem oxygenase-1 immunoreactive astrocytes and microglia were present in close proximity to the heat shock protein 70-positive neurons in the posterior cingulate/retrosplenial cortex following phencyclidine. Pretreatment of rats with 1,3-dimethylthiourea, an antioxidant, significantly reduced haem oxygenase-1 protein induction by phencyclidine. Thus, induction of haem oxygenase-1 in glia by phencyclidine appears to be mediated mostly by oxidative stress. Experiments with the amino cupric silver stain for neuronal degeneration revealed phencyclidine-induced neurotoxicity in the posterior cingulate/retrosplenial cortex. The number of affected neurons was significantly reduced after 1,3-dimethylthiourea pretreatment. This suggests that the neurotoxicity of N-methyl-D-aspartate antagonists is due in part to the oxidative stress and may be amenable to therapeutic interventions.
Collapse
Affiliation(s)
- S Rajdev
- Department of Neurology, University of California, San Francisco 94143, USA.
| | | | | |
Collapse
|
47
|
HASHIMOTO KENJI, MINABE YOSHIO, IYO MASAOMI. Expression of brain-derived neurotrophic factor (BDNF) mRNA in rat retrosplenial cortex following administration of phencyclidine. Addict Biol 1998; 3:79-83. [PMID: 26736083 DOI: 10.1080/13556219872371] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The non-competitive NMDA receptor antagonists such as phencyclidine (PCP) cause neurotoxicity in the retrosplenial cortex of rat brain. However, the precise mechanism(s) underlying the neurotoxicity of NMDA receptor antagonists is currently unclear. Using an in situ hybridization technique, we studied the effects of PCP on expression of brain-derived neurotrophic factor (BDNF) mRNA in the rat brain. No expression of BDNA mRNA was observed in the retrosplenial cortex of rats treated with vehicle, although a high basal level of BDNF mRNA was detected in the hippocampus of control rats. Administration of PCP (12.5, 25 or 50 mg/kg, i.p., 6 hours) caused marked induction of BDNF mRNA in the retrosplenial cortex, in a dosedependent manner. These results suggest that the expression of BDNF mRNA may occur as a trophic response to the neurotoxicity of NMDA receptor antagonists such as PCP.
Collapse
|
48
|
Prince JA, Yassin MS, Oreland L. Normalization of cytochrome-c oxidase activity in the rat brain by neuroleptics after chronic treatment with PCP or methamphetamine. Neuropharmacology 1997; 36:1665-78. [PMID: 9517438 DOI: 10.1016/s0028-3908(97)00152-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous studies, primarily involving the use of positron emission tomography (PET), have contributed to the hypothesis that a state of hypometabolism may underlie schizophrenia. The chronic use of methamphetamine (MAP) or phencyclidine (PCP), both of which have been shown to enhance dopaminergic function in the brain, leads to a psychotic state in man which has prompted the suggestion that these compounds may have utility as models of schizophrenia. In the present study, regional alterations in energy metabolism were examined in the rat brain using cytochrome-c oxidase (COX) and succinate dehydrogenase (SDH) histochemistry following chronic treatment with PCP and MAP. PCP and MAP were administered alone or in the presence of fluphenazine or clozapine to animals for 28 days, after which mitochondrial enzyme activities were estimated. Both PCP and MAP produced profoundly similar decreases in COX activity in a broad spectrum of regions. Most prominent in this regard were the caudate-putamen, nucleus accumbens and septum. No changes were noted in sections stained for SDH activity, suggesting that results were dependent upon neither a generalized mitochondrial dysfunction nor mitochondrial loss. Cell counts and TUNEL histochemistry also failed to reveal any significant differences between control and treated animals, implying that reductions were not a result of cell loss. Both clozapine and fluphenazine offered varying degrees of protection from the effects of PCP and MAP. The results provide evidence which implicates dopaminergic hyperactivity in the finding of reduced energy metabolism in the brains of schizophrenics.
Collapse
Affiliation(s)
- J A Prince
- Department of Medical Pharmacology, Uppsala University, Sweden
| | | | | |
Collapse
|
49
|
Hashimoto K, Tomitaka S, Bi Y, Narita N, Minabe Y, Iyo M. Rolipram, a selective phosphodiesterase type-IV inhibitor, prevents induction of heat shock protein HSP-70 and hsp-70 mRNA in rat retrosplenial cortex by the NMDA receptor antagonist dizocilpine. Eur J Neurosci 1997; 9:1891-901. [PMID: 9383212 DOI: 10.1111/j.1460-9568.1997.tb00756.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The non-competitive NMDA receptor antagonists, such as (+)-MK-801 (dizocilpine), cause the expression of heat shock protein HSP-70 and pathomorphological damage in the retrosplenial cortex of the rat brain. However, the precise mechanism(s) underlying the neurotoxicity of NMDA receptor antagonists is unknown. The present study was undertaken to examine the role of phosphodiesterase type IV in the expression of heat shock genes induced by dizocilpine. Heat shock protein HSP-70, which is known as a sensitive marker of neuron injury, was induced in the retrosplenial cortex of the rat brain 24 h after a single administration of dizocilpine (1 mg/kg). Pretreatment with the specific phosphodiesterase type IV inhibitor rolipram (2.5, 5 or 10 mg/kg, 15 min before dizocilpine) attenuated the expression of HSP-70 and hsp-70 mRNA induced by dizocilpine (1 mg/kg) in a dose-dependent manner. Furthermore, another phosphodiesterase type IV inhibitor, Ro 20-1724 (5 or 10 mg/kg, 15 min before dizocilpine), and a non-selective phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX) (5 or 10 mg/kg, 15 min before dizocilpine), significantly attenuated the expression of HSP-70 protein and hsp-70 mRNA induced in the retrosplenial cortex by dizocilpine. However, the induction of the immediate early gene c-fos and microglial activation in the retrosplenial cortex after administration of dizocilpine was not attenuated by pretreatment with rolipram (5 or 10 mg/kg, 15 min before dizocilpine). Moreover, histopathological study indicated that pretreatment with rolipram (5 or 10 mg/kg, 15 min before dizocilpine) did not prevent the formation of vacuoles caused by treatment with dizocilpine. The present findings suggest that phosphodiesterase type IV may play a significant role in the expression of HSP-70 protein and hsp-70 mRNA in the rat retrosplenial cortex after administration of dizocilpine, and that phosphodiesterase type IV may not play a role in the neurotoxicity of NMDA receptor antagonists such as dizocilpine.
Collapse
Affiliation(s)
- K Hashimoto
- Division of Cortical Function Disorders, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Raboisson P, Flood K, Lehmann A, Berge O. MK‐801 neurotoxicity in the guinea pig cerebral cortex: Susceptibility and regional differences compared with the rat. J Neurosci Res 1997. [DOI: 10.1002/(sici)1097-4547(19970801)49:3<364::aid-jnr11>3.0.co;2-#] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Patrick Raboisson
- Laboratoire de Physiologie Oro‐Faciale, Faculté de Chirurgie Dentaire, Clermont‐Ferrand, France
- Department of Pharmacology, Astra Pain Control AB, Södertälje, Sweden
| | - Karin Flood
- Department of Pharmacology, Astra Pain Control AB, Södertälje, Sweden
| | - Anders Lehmann
- Gastrointestinal Pharmacology, Astra Hässle AB, Mölndal, Sweden
| | - Odd‐Geir Berge
- Department of Pharmacology, Astra Pain Control AB, Södertälje, Sweden
| |
Collapse
|