1
|
The Multimodal Serotonergic Agent Vilazodone Inhibits L-DOPA-Induced Gene Regulation in Striatal Projection Neurons and Associated Dyskinesia in an Animal Model of Parkinson's Disease. Cells 2020; 9:cells9102265. [PMID: 33050305 PMCID: PMC7600385 DOI: 10.3390/cells9102265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022] Open
Abstract
Levodopa (L-DOPA) treatment in Parkinson's disease is limited by the emergence of L-DOPA-induced dyskinesia. Such dyskinesia is associated with aberrant gene regulation in neurons of the striatum, which is caused by abnormal dopamine release from serotonin terminals. Previous work showed that modulating the striatal serotonin innervation with selective serotonin reuptake inhibitors (SSRIs) or 5-HT1A receptor agonists could attenuate L-DOPA-induced dyskinesia. We investigated the effects of a novel serotonergic agent, vilazodone, which combines SSRI and 5-HT1A partial agonist properties, on L-DOPA-induced behavior and gene regulation in the striatum in an animal model of Parkinson's disease. After unilateral dopamine depletion by 6-hydroxydopamine (6-OHDA), rats received repeated L-DOPA treatment (5 mg/kg) alone or in combination with vilazodone (10 mg/kg) for 3 weeks. Gene regulation was then mapped throughout the striatum using in situ hybridization histochemistry. Vilazodone suppressed the development of L-DOPA-induced dyskinesia and turning behavior but did not interfere with the prokinetic effects of L-DOPA (forelimb stepping). L-DOPA treatment drastically increased the expression of dynorphin (direct pathway), 5-HT1B, and zif268 mRNA in the striatum ipsilateral to the lesion. These effects were inhibited by vilazodone. In contrast, vilazodone had no effect on enkephalin expression (indirect pathway) or on gene expression in the intact striatum. Thus, vilazodone inhibited L-DOPA-induced gene regulation selectively in the direct pathway of the dopamine-depleted striatum, molecular changes that are considered critical for L-DOPA-induced dyskinesia. These findings position vilazodone, an approved antidepressant, as a potential adjunct medication for the treatment of L-DOPA-induced motor side effects.
Collapse
|
2
|
Giangrasso DM, Furlong TM, Keefe KA. Characterization of striatum-mediated behavior and neurochemistry in the DJ-1 knock-out rat model of Parkinson's disease. Neurobiol Dis 2020; 134:104673. [DOI: 10.1016/j.nbd.2019.104673] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/16/2019] [Accepted: 11/11/2019] [Indexed: 12/27/2022] Open
|
3
|
Principles of motivation revealed by the diverse functions of neuropharmacological and neuroanatomical substrates underlying feeding behavior. Neurosci Biobehav Rev 2013; 37:1985-98. [PMID: 23466532 DOI: 10.1016/j.neubiorev.2013.02.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 02/12/2013] [Accepted: 02/22/2013] [Indexed: 11/21/2022]
Abstract
Circuits that participate in specific subcomponents of feeding (e.g., gustatory perception, peripheral feedback relevant to satiety and energy balance, reward coding, etc.) are found at all levels of the neural axis. Further complexity is conferred by the wide variety of feeding-modulatory neurotransmitters and neuropeptides that act within these circuits. An ongoing challenge has been to refine the understanding of the functional specificity of these neurotransmitters and circuits, and there have been exciting advances in recent years. We focus here on foundational work of Dr. Ann Kelley that identified distinguishable actions of striatal opioid peptide modulation and dopamine transmission in subcomponents of reward processing. We also discuss her work in overlaying these neuropharmacological effects upon anatomical pathways that link the telencephalon (cortex and basal ganglia) with feeding-control circuits in the hypothalamus. Using these seminal contributions as a starting point, we will discuss new findings that expand our understanding of (1) the specific, differentiable motivational processes that are governed by central dopamine and opioid transmission, (2) the manner in which other striatal neuromodulators, specifically acetylcholine, endocannabinoids and adenosine, modulate these motivational processes (including via interactions with opioid systems), and (3) the organization of the cortical-subcortical network that subserves opioid-driven feeding. The findings discussed here strengthen the view that incentive-motivational properties of food are coded by substrates and neural circuits that are distinguishable from those that mediate the acute hedonic experience of food reward. Striatal opioid transmission modulates reward processing by engaging frontotemporal circuits, possibly via a hypothalamic-thalamic axis, that ultimately impinges upon hypothalamic modules dedicated to autonomic function and motor pattern control. We will conclude by discussing implications for understanding disorders of "non-homeostatic" feeding.
Collapse
|
4
|
|
5
|
Mattson BJ, Crombag HS, Mitchell T, Simmons DE, Kreuter JD, Morales M, Hope BT. Repeated amphetamine administration outside the home cage enhances drug-induced Fos expression in rat nucleus accumbens. Behav Brain Res 2007; 185:88-98. [PMID: 17720257 PMCID: PMC2135552 DOI: 10.1016/j.bbr.2007.07.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 07/09/2007] [Accepted: 07/15/2007] [Indexed: 12/28/2022]
Abstract
Induction of the immediate early gene protein product Fos has been used extensively to assess neural activation in the striatum after repeated amphetamine administration to rats in their home cages. However, this technique has not been used to examine striatal activation after repeated administration outside the home cage, an environment where repeated drug administration produces more robust psychomotor sensitization. We determined the dose-response relationship for amphetamine-induced psychomotor activity and Fos expression in nucleus accumbens and caudate-putamen 1 week after repeated administration of amphetamine or saline in locomotor activity chambers. Repeated administration of amphetamine enhanced amphetamine-induced locomotor activity and stereotypy and Fos expression in nucleus accumbens, but not in caudate-putamen. In comparison, levels of Fos expression induced by 1mg/kg amphetamine were not altered in nucleus accumbens or caudate-putamen by repeated amphetamine administration in the home cage. Double-labeling of Fos protein and enkephalin mRNA indicates that Fos is expressed in approximately equal numbers of enkephalin-negative and enkephalin-positive neurons in nucleus accumbens and caudate-putamen following injections outside the home cage. Furthermore, repeated amphetamine administration increased drug-induced Fos expression in enkephalin-positive, but not enkephalin-negative, neurons in nucleus accumbens. We conclude that repeated amphetamine administration outside the home cage recruits the activation of enkephalin-containing nucleus accumbens neurons during sensitized amphetamine-induced psychomotor activity.
Collapse
Affiliation(s)
- Brandi J Mattson
- Behavioral Neuroscience Branch, Intramural Research Program, The National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Takamatsu Y, Yamanishi Y, Hagino Y, Yamamoto H, Ikeda K. Differential effects of donepezil on methamphetamine and cocaine dependencies. Ann N Y Acad Sci 2007; 1074:418-26. [PMID: 17105940 DOI: 10.1196/annals.1369.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Donepezil, a choline esterase inhibitor, has been widely used as a medicine for Alzheimer's disease. Recently, a study showed that donepezil inhibited addictive behaviors induced by cocaine, including cocaine-conditioned place preference (CPP) and locomotor sensitization to cocaine. In the present study, we investigated the effects of donepezil on methamphetamine (METH)-induced behavioral changes in mice. In counterbalanced CPP tests, the intraperitoneal (i.p.) administration of 3 mg/kg donepezil prior to 2 mg/kg METH i.p. failed to inhibit METH CPP, whereas pretreatment with 3 mg/kg donepezil abolished the CPP for cocaine (10 mg/kg, i.p.). Similarly, in locomotor sensitization experiments, i.p. administration of 1 mg/kg donepezil prior to 2 mg/kg METH i.p. failed to inhibit locomotor sensitivity to METH, whereas pretreatment with 1 mg/kg donepezil significantly inhibited locomotor sensitivity to cocaine (10 mg/kg, i.p.). These results suggest that donepezil may be a useful tool for treating cocaine dependence but not for treating METH dependence. The differences in the donepezil effects on addictive behaviors induced by METH and cocaine might be due to differences in the involvement of acetylcholine in the mechanisms of METH and cocaine dependencies.
Collapse
Affiliation(s)
- Yukio Takamatsu
- Division of Psychobiology, Tokyo Institute of Psychiatry, 2-1-8 Kamikitazawa, Setagaya-ku, Tokyo 156-8585, Japan
| | | | | | | | | |
Collapse
|
7
|
Will MJ, Pratt WE, Kelley AE. Pharmacological characterization of high-fat feeding induced by opioid stimulation of the ventral striatum. Physiol Behav 2006; 89:226-34. [PMID: 16854442 DOI: 10.1016/j.physbeh.2006.06.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 05/20/2006] [Accepted: 06/08/2006] [Indexed: 11/28/2022]
Abstract
Nucleus accumbens mu-opioid stimulation causes marked increases in the intake of highly palatable foods, such as a high-fat diet. However, to date there has been little examination of how other striatal neurotransmitters may mediate opioid-driven feeding of palatable foodstuffs. In the current study, free feeding rats with bilateral cannulae aimed at the nucleus accumbens received intra-accumbens pretreatment with antagonists for dopamine D-1 (SCH23390; 0 microg or 1 microg/0.5 microl/side), dopamine D-2 (raclopride; 0 microg or 2.0 microg/0.5 microl/side), AMPA (LY293558; 0 microg, 0.01 microg or 0.10 microg/0.5 microl/side), muscarinic (scopolamine 0 microg, 0.1, 1.0, or 10 microg/0.5 microl/side) or nicotinic (mecamylamine; 0 microg, 10 microg/0.5 microl/side) receptors, immediately prior to infusions of the mu-receptor agonist D-Ala2, NMe-Phe4, Glyol5-enkephalin (DAMGO; 0.25 microg/0.5 microl) or vehicle. The effects of these pretreatments on 2 hr fat intake was compared to pretreatment with a general opioid antagonist (naltrexone; 0 microg or 20 microg/0.5 microl/side). DAMGO-induced feeding was unaffected by prior antagonism of dopamine, glutamate, or nicotinic receptors. As expected, naltrexone infusions blocked DAMGO-elicited fat intake. Antagonism of muscarinic acetylcholine receptors reduced feeding in both the DAMGO and vehicle-treated conditions. In an additional experiment, cholinergic receptor stimulation alone did not affect intake of the fat diet, suggesting that nucleus accumbens cholinergic stimulation is insufficient to alter feeding of a highly palatable food. These data suggest that the feeding effects caused by striatal opioid stimulation are independent from or downstream to the actions of dopamine and glutamate signaling, and provide novel insight into the role of striatal acetylcholine on feeding behaviors.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Appetite Regulation/drug effects
- Appetite Regulation/physiology
- Dietary Fats
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/administration & dosage
- Feeding Behavior/drug effects
- Feeding Behavior/physiology
- Male
- Microinjections
- Neurotransmitter Agents/administration & dosage
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/physiology
- Rats
- Rats, Sprague-Dawley
- Receptors, Cholinergic/drug effects
- Receptors, Cholinergic/physiology
- Receptors, Dopamine/drug effects
- Receptors, Dopamine/physiology
- Receptors, Glutamate/drug effects
- Receptors, Glutamate/physiology
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/physiology
- Taste/drug effects
- Taste/physiology
Collapse
Affiliation(s)
- Matthew J Will
- Department of Psychological Sciences, University of Missouri, Columbia, Christopher Bond Life Sciences Center, 1201 Rollins St., Columbia, MO 65211, United States
| | | | | |
Collapse
|
8
|
Pollack AE, Angerer MR. Muscarinic receptor blockade attenuates reserpine-mediated Fos induction in the rat striatopallidal pathway. Brain Res 2005; 1058:189-92. [PMID: 16153612 DOI: 10.1016/j.brainres.2005.07.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 07/21/2005] [Accepted: 07/22/2005] [Indexed: 11/28/2022]
Abstract
Acute administration of the dopamine-depleting agent reserpine (10 mg/kg) induces Fos expression in striatopallidal neurons of intact rats-an effect that is blocked by pretreatment with the D2 agonist quinpirole (0.5 mg/kg). Systemic administration of the muscarinic antagonist scopolamine (50 mg/kg) partially attenuates reserpine-mediated striatal Fos expression. These data suggest that muscarinic receptors, either within the striatum or in extrastriatal sites, regulate D2 receptor-mediated Fos expression in rat striatopallidal neurons.
Collapse
Affiliation(s)
- Alexia E Pollack
- Department of Biology, University of Massachusetts-Boston, Boston, MA 02125, USA.
| | | |
Collapse
|
9
|
Masini CV, Holmes PV, Freeman KG, Maki AC, Edwards GL. Dopamine overflow is increased in olfactory bulbectomized rats: an in vivo microdialysis study. Physiol Behav 2004; 81:111-9. [PMID: 15059690 DOI: 10.1016/j.physbeh.2004.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2003] [Revised: 11/07/2003] [Accepted: 01/15/2004] [Indexed: 10/26/2022]
Abstract
Olfactory bulbectomy (OBX) in rats produces behavioral, physiological, and neurochemical changes that resemble symptoms of depression in humans. The procedure thus serves as a rodent model of affective disorder. Many of the behavioral effects of OBX resemble psychomotor agitation. The possible role of dysregulation of ventral striatal dopamine (DA) systems in this phenomenon was investigated. Basal levels of DA, norepinephrine (NE), homovanillic acid, dihydroxyphenylacetic acid, and 5-hydroxyindoleacetic acid were examined in the striatum of OBX and sham-operated controls using in vivo microdialysis. OBX rats exhibited significantly higher basal DA levels (192%) and lower NE levels (12%) than sham-operated controls. Locomotor activity in response to novelty and footshock stress was elevated in OBX rats. The finding of higher DA levels in striatum may explain this "agitation-like" behavior, a commonly observed phenomenon in the OBX model.
Collapse
Affiliation(s)
- Cher V Masini
- Neuroscience and Behavior Program, Psychology Department, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
10
|
Winkler C, Bentlage C, Cenci MA, Nikkhah G, Björklund A. Regulation of neuropeptide mRNA expression in the basal ganglia by intrastriatal and intranigral transplants in the rat Parkinson model. Neuroscience 2003; 118:1063-77. [PMID: 12732251 DOI: 10.1016/s0306-4522(03)00007-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous studies have shown that intrastriatal transplants of dopamine (DA)-rich fetal ventral mesencephalic (VM) tissue can correct denervation-induced changes in the cellular expression of neuropeptide and receptor mRNAs in the rat Parkinson model. However, with the standard transplantation approach normalization of all cellular parameters has not been obtained. This may be due either to the incomplete striatal reinnervation achieved by these transplants, or to the ectopic placement of the grafts. In the present study we have used a microtransplantation approach to obtain a more complete reinnervation of the denervated striatum (20 micrograft deposits spread over the entire structure). Neurons were also implanted directly into the substantia nigra. In rats with multiple intrastriatal VM transplants the lesion-induced upregulation of mRNAs encoding for preproenkephalin (PPE), the D(2)-type DA-receptor, and the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD(67)) was normalized throughout the striatum, whereas the lesion-induced downregulation of preprotachykinin mRNA was unaffected. Intranigral grafts of either fetal DA-rich VM tissue or GABA-rich striatal tissue did not induce any changes in striatal neuropeptide and D(2)-receptor mRNA expression despite significant behavioral improvement. Comparison of the behavioral data with levels of neuropeptide expression showed that in rats with intrastriatal VM transplants a complete normalization of striatal PPE and GAD(67) mRNA expression did not translate into a complete recovery of spontaneous motor behaviors. The results show that extensive DA reinnervation of the host striatum by multiple VM microtransplants is insufficient to obtain full recovery of all lesion-induced changes at both the cellular and the behavioral level. A full reconstruction of the nigrostriatal pathway or, alternatively, modulation of basal ganglia function by grafting in non-striatal regions may be required to further improve the functional outcome in the DA-denervated brain.
Collapse
Affiliation(s)
- C Winkler
- Lund University, Wallenberg Neuroscience Center, Department of Physiological Sciences, BMC A11, S-22184. , Sweden
| | | | | | | | | |
Collapse
|
11
|
Hikida T, Kaneko S, Isobe T, Kitabatake Y, Watanabe D, Pastan I, Nakanishi S. Increased sensitivity to cocaine by cholinergic cell ablation in nucleus accumbens. Proc Natl Acad Sci U S A 2001; 98:13351-4. [PMID: 11606786 PMCID: PMC60874 DOI: 10.1073/pnas.231488998] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chronic exposure to cocaine causes long-lasting behavioral changes associated with cocaine reinforcement and addiction. An important neural substrate for cocaine addiction is the nucleus accumbens (NAc), which receives dopaminergic input from the ventral tegmental area. Although the neural circuit of the NAc is controlled by several other neurotransmitters, their involvement in cocaine addiction remains elusive. In this investigation, we ablated cholinergic interneurons from the adult NAc with immunotoxin-mediated cell targeting and examined the role of acetylcholine transmitter in adaptive behavioral changes associated with cocaine reinforcement and addiction. Acute exposure to cocaine induced abnormal rotation in unilaterally cholinergic cell-eliminated mice. This abnormal turning was enhanced by repeated exposure of cocaine. In bilaterally cholinergic cell-eliminated mice, chronic cocaine administration induced a prominent and progressive increase in locomotor activity. Moreover, these mice showed robust conditioned place preference with a lower dose of cocaine, compared with wild-type littermates. This investigation demonstrates that acetylcholine in the NAc plays a key role in both acute and chronic actions of cocaine.
Collapse
Affiliation(s)
- T Hikida
- Department of Biological Sciences, Faculty of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The basal ganglia consist of five interconnected nuclei in the basal forebrain that influence cortical control of voluntary movement. Synaptic information travels through the basal ganglia using distinct pathways from the input structure, the striatum, to the output nuclei, the substantia nigra pars reticulata and the globus pallidus internal segment. The activity of the striatal output pathways is influenced by glutamatergic input from the cerebral cortex, dopaminergic input from the substantia nigra pars compacta, and cholinergic interneurons. Since the basal ganglia output nuclei tonically inhibit the motor nuclei of the thalamus, the basal ganglia facilitate motor activity by disinhibiting the thalamus.
Collapse
Affiliation(s)
- A E Pollack
- Department of Biology, University of Massachusetts-Boston, 02125-3393, USA
| |
Collapse
|
13
|
Smiałowska M, Bajkowska M, Heilig M, Obuchowicz E, Turchan J, Maj M, Przewłocki R. Pharmacological studies on the monoaminergic influence on the synthesis and expression of neuropeptide Y and corticotropin releasing factor in rat brain amygdala. Neuropeptides 2001; 35:82-91. [PMID: 11384203 DOI: 10.1054/npep.2001.0849] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Our earlier findings concerning the 6-OHDA lesion suggested dopaminergic regulation of neuropeptide Y (NPY) and corticotropin releasing factor (CRF) synthesis and expression in amygdala neurons. On the other hand, some other studies indicated that not only dopamine, but also other monoamines may modulate peptidergic neurons. Therefore the present study examined the effect of pharmacological deprivation of monoaminergic influences on NPY and CRF neurons in rat brain amygdala by means of in situ hybridization and immunohistochemical methods. It was found that NPY mRNA expression in the amygdala decreased after 24h blockade of dopaminergic D1 and D2 receptors, by haloperidol or SCH23390. At the same time the NPY-peptide expression measured immunohistochemically was not significantly changed. A prolonged, 14-day, blockade of dopaminergic receptors by haloperidol induced an opposite effect, an increase in NPY mRNA expression. Impairment of the serotonergic transmission by blockade of 5-HT synthesis using p-chlorophenylalanine, as well as attenuation of the noradrenergic transmission by NA depletion from terminals by DSP4, did not significantly change NPY mRNA expression or the mean number of NPY-immunoreactive neurons in the amygdala. Only a decrease in the staining intensity observed as a decreased number of darkly stained neurons was found after both compounds. Neither the dopamine receptor blockade nor the impairment of serotonergic or noradrenergic transmission changed CRF mRNA or the peptide expression in the amygdala. The obtained results indicate that in rat brain amygdala, of all the monoamines, dopamine seems to be the most important modulator of NPY biosynthesis and expression. The effect of blockade of dopaminergic receptors is biphasic: first it induces a decrease and then - after prolonged treatment an increase in NPY mRNA. Serotonergic and noradrenergic systems in the amygdala seem to be connected with regulation of NPY release rather than the biosynthesis.
Collapse
Affiliation(s)
- M Smiałowska
- Department of Neurobiology, Institute of Pharmacology, Kraków, Poland.
| | | | | | | | | | | | | |
Collapse
|
14
|
Wirtshafter D, Asin KE. Comparative effects of scopolamine and quinpirole on the striatal fos expression induced by stimulation of D(1) dopamine receptors in the rat. Brain Res 2001; 893:202-14. [PMID: 11223008 DOI: 10.1016/s0006-8993(00)03315-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Treatment of intact rats with the full D(1) dopamine agonist A-77636 induced Fos-like immunoreactivity in the medial and, to a lesser extent, the lateral portions of the striatum. Pretreatment with the muscarinic antagonist scopolamine hydrobromide (1.5-6 mg/kg) potentiated the response to A-77636 and eliminated the mediolateral staining gradient seen after A-77636 alone. Similar effects were not produced by scopolamine methylbromide, which fails to cross the blood-brain barrier, demonstrating that the actions of scopolamine were centrally mediated. The effects of scopolamine were further compared to those of the D(2)-like dopamine agonist quinpirole using a factorial design in which subjects were pretreated with either scopolamine, quinpirole, or a combination of the two drugs before receiving A-77636. Pretreatment with either scopolamine or quinpirole increased staining in the lateral striatum, but the combination of the two drugs was no more effective than was quinpirole alone. Pretreatment with quinpirole, but not scopolamine, resulted in a markedly "patchy" pattern of staining and actually suppressed staining in the region between patches in the medial striatum. These findings demonstrate that there are both differences and similarities between the effects of scopolamine and quinpirole on D(1) agonist-induced Fos expression and suggest that although inhibition of cholinergic neurons may be one of the mechanisms through which the effects of quinpirole are produced, other factors must also contribute.
Collapse
Affiliation(s)
- D Wirtshafter
- Department of Psychology, M/C 285 and Laboratory of Integrative Neuroscience, The University of Illinois at Chicago, 1007 W. Harrison, Chicago, IL 60607-7137, USA.
| | | |
Collapse
|
15
|
Kaneko S, Hikida T, Watanabe D, Ichinose H, Nagatsu T, Kreitman RJ, Pastan I, Nakanishi S. Synaptic integration mediated by striatal cholinergic interneurons in basal ganglia function. Science 2000; 289:633-7. [PMID: 10915629 DOI: 10.1126/science.289.5479.633] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The physiological role of striatal cholinergic interneurons was investigated with immunotoxin-mediated cell targeting (IMCT). Unilateral cholinergic cell ablation caused an acute abnormal turning behavior. These mice showed gradual recovery but displayed abnormal turning by both excess stimulation and inhibition of dopamine actions. In the acute phase, basal ganglia function was shifted to a hyperactive state by stimulation and suppression of striatonigral and striatopallidal neurons, respectively. D1 and D2 dopamine receptors were then down-regulated, relieving dopamine-predominant synaptic perturbation but leaving a defect in controlling dopamine responses. The acetylcholine-dopamine interaction is concertedly and adaptively regulated for basal ganglia synaptic integration.
Collapse
Affiliation(s)
- S Kaneko
- Department of Biological Sciences, Kyoto University Faculty of Medicine, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Dopaminergic lesions result in the acute loss of striatal dopamine content, the loss of tyrosine hydroxylase-immunoreactive fibers, upregulation of preproenkephalin mRNA expression, and compensatory changes in the synthesis and metabolism of dopamine. Despite the severe loss of fine tyrosine hydroxylase-immunoreactive fibers, larger fibers persist. We found that some tyrosine hydroxylase fiber types increase their branching and become thicker after partial lesion. To determine whether the remaining tyrosine hydroxylase fibers were degenerative or part of a compensatory response, we morphologically characterized striatal tyrosine hydroxylase fibers and compared them to silver-stained degenerative structures. Branched and large tyrosine hydroxylase fiber types were nondegenerative. Furthermore, normal preproenkephalin mRNA expression was maintained despite severe overall loss of tyrosine hydroxylase fibers in striatal regions with abundant branching, whereas preproenkephalin mRNA expression increased in severely depleted regions that lacked branched fibers, indicating that branching or sprouting was involved in the compensation for dopamine depletion and the maintenance of normal preproenkephalin expression. In support of compensatory sprouting by tyrosine hydroxylase fibers, mRNA for growth associated protein-43 was upregulated in dopaminergic midbrain cells. We conclude that an important compensatory response to partial dopaminergic depletion is the formation of new branches or sprouting.
Collapse
|
17
|
Smiałowska M, Bajkowska M, Prezewłocka B, Maj M, Turchan J, Przewłocki R. Effect of 6-hydroxydopamine on neuropeptide Y and corticotropin-releasing factor expression in rat amygdala. Neuroscience 2000; 94:1125-32. [PMID: 10625052 DOI: 10.1016/s0306-4522(99)00393-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The influence of dopaminergic denervation on neuropeptide Y and corticotropin-releasing factor-containing neurons in the amygdala was investigated in rats by examining the effects of a selective, unilateral 6-hydroxydopamine lesion of mesencephalic dopaminergic neurons in both the substantia nigra and the ventral tegmental area on these peptides and their messenger RNA expression, observed eight to 10 days after the lesion. The studies were conducted by immunocytochemical and in situ hybridization methods. Neuropeptide Y or corticotropin-releasing factor-immunoreactive neurons were counted in sections of the amygdala under a microscope, and the messenger RNA expression was measured as optical density units in autoradiograms. A significant increase in both neuropeptide Y and corticotropin-releasing factor messenger RNA expression was found in the amygdala on the lesioned side in comparison with the contralateral one, as well as with the ipsilateral side of vehicle-injected controls. Immunohistochemical studies showed that the number of neuropeptide Y-immunoreactive neurons increased in the whole amygdala on the lesioned side. At the same time, the number of corticotropin-releasing factor-immunoreactive neurons grouped in the central amygdaloid nucleus declined, and so did the staining intensity. The obtained results indicate that dopaminergic denervation stimulates the synthesis of neuropeptide Y and corticotropin-releasing factor in rat amygdala, but the peptide levels are differently regulated, which points to a diverse release of these peptides.
Collapse
Affiliation(s)
- M Smiałowska
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Kraków
| | | | | | | | | | | |
Collapse
|
18
|
Regulation of the subcellular distribution of m4 muscarinic acetylcholine receptors in striatal neurons in vivo by the cholinergic environment: evidence for regulation of cell surface receptors by endogenous and exogenous stimulation. J Neurosci 1999. [PMID: 10575021 DOI: 10.1523/jneurosci.19-23-10237.1999] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Our aim was to determine how the cholinergic environment influences, in vivo, the membrane abundance and the intracellular trafficking of the muscarinic receptor m4 (m4R). Immunohistochemistry at light and electron microscopic level was used to detect the subcellular localization of m4R in several populations of striatal cholinoceptive neurons, including cholinergic neurons and medium spiny neurons. (1) In control rats, in cholinergic neurons, m4R is mostly restricted to intracytoplasmic sites involved in its synthesis, especially endoplasmic reticulum. In contrast, m4R is preferentially located at the plasma membrane in cell bodies and dendritic shafts and spines of medium spiny neurons. The density of m4R was greater at the membrane of perikarya in patches (striatal areas with low acetylcholine activity) than in matrix (striatal areas with high acetylcholine activity). (2) Stimulation of muscarinic receptor with oxotremorine provokes translocation of m4R from the membrane to endosomes in perikarya and dendrites of medium spiny neurons but has no influence on the localization of m4R in the cytoplasm of cholinergic cell bodies. Our results suggest that the intraneuronal trafficking and the abundance of membrane-bound m4R in vivo is under regulation of the cholinergic environment. The m4R subcellular compartmentalization depends on the phenotype of the cholinoceptive neuron and on its neurochemical environment. Such regulation, by modulating availability of receptor for endogenous and exogenous ligands, may play key roles in the response of target neurons.
Collapse
|
19
|
Abstract
The effects of bilateral olfactory bulbectomy (OBX) on prepro-enkephalin, thyrotropin-releasing hormone, and D-2 receptor mRNA levels in the ventral striatum were examined by in situ hybridization histochemistry. Pre- pro-enkephalin mRNA levels were significantly increased in the olfactory tubercle (OT), but not in the nucleus accumbens, 14 days following bilateral OBX. Levels of D-2 receptor mRNA were also increased in the OT, though to a lesser degree. Prepro-thyrotropin-releasing hormone mRNA was unaffected by OBX. A separate experiment revealed no effect of OBX on enkephalin gene expression 7 days following surgery but a comparable elevation in pre- pro-enkephalin mRNA 14 and 28 days post-surgery. The findings are consistent with previously-reported effects of dopamine lesions on striatal gene expression, suggesting that the observed effects may be mediated by deafferentation-induced alterations in dopaminergic transmission in the OT. Altered dopaminergic function in the OT may be particularly relevant to the 'anhedonia' that has been associated with the olfactory bulbectomized rat model of depression.
Collapse
Affiliation(s)
- P V Holmes
- Biopsychology Program, Psychology Department, Athens, GA, USA.
| |
Collapse
|
20
|
Subcellular redistribution of m2 muscarinic acetylcholine receptors in striatal interneurons in vivo after acute cholinergic stimulation. J Neurosci 1998. [PMID: 9822774 DOI: 10.1523/jneurosci.18-23-10207.1998] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The purpose of our work was to investigate how the cholinergic environment influences the targeting and the intracellular trafficking of the muscarinic receptor m2 (m2R) in vivo. To address this question, we have used immunohistochemical approaches at light and electron microscopic levels to detect the m2R in control rats and rats treated with muscarinic receptor agonists. In control animals, m2Rs were located mostly at postsynaptic sites at the plasma membrane of perikarya and dendrites of cholinergic and NPY-somatostatin interneurons as autoreceptors and heteroreceptors, respectively. Presynaptic receptors were also detected in boutons. The m2Rs were usually detected at extrasynaptic sites, but they could be found rarely in association with symmetrical synapses, suggesting that the cholinergic transmission mediated by m2R occurs via synaptic and nonsynaptic mechanisms. The stimulation of muscarinic receptors with oxotremorine provoked a dramatic alteration of m2R compartmentalization, including endocytosis with a decrease of the density of m2R at the membrane (-63%) and an increase of those associated with endosomes (+86%) in perikarya. The very strong increase of m2R associated with multivesicular bodies (+732%) suggests that oxotremorine activated degradation. The slight increase in the Golgi apparatus (+26%) suggests that the m2R stimulation had an effect on the maturation of m2R. The substance P receptor located at the membrane of the same neurons was unaffected by oxotremorine. Our data demonstrate that cholinergic stimulation dramatically influences the subcellular distribution of m2R in striatal interneurons in vivo. These events may have key roles in controlling abundance and availability of muscarinic receptors via regulation of receptor endocytosis, degradation, and/or neosynthesis. Further, the control of muscarinic receptor trafficking may influence the activity of striatal interneurons, including neurotransmitter release and/or electric activity.
Collapse
|
21
|
Sañudo-Peña MC, Force M, Tsou K, Miller AS, Walker JM. Effects of intrastriatal cannabinoids on rotational behavior in rats: interactions with the dopaminergic system. Synapse 1998; 30:221-6. [PMID: 9723792 DOI: 10.1002/(sici)1098-2396(199810)30:2<221::aid-syn12>3.0.co;2-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The effect of unilateral intrastriatal cannabinoid receptor stimulation on rotational behavior in rats was explored. The potent cannabinoid agonist CP 55,940 (5 microg/0.5 microl) induced contralateral turning when microinjected unilaterally into the striatum. The D2 dopamine agonist quinpirole reversed this contralateral rotation but failed to affect motor behavior on its own. Finally, the D1 dopamine agonist SKF 82958 inhibited movement when administered into the striatum and this inhibition was reversed by co-administration of the cannabinoid agonist. Surprisingly, microinjections of the cannabinoid agonist into the striatum induced movement through activation of the striatonigral pathway and/or inhibition of the striatopallidal pathway, while the D1 dopamine agonist produced the opposite effect.
Collapse
Affiliation(s)
- M C Sañudo-Peña
- Department of Psychology, Brown University, Providence, Rhode Island 02912, USA.
| | | | | | | | | |
Collapse
|
22
|
Baca SM, Lipska BK, Egan MF, Bachus SE, Ferguson JN, Hyde TM. Effects of prefrontal cortical lesions on neuropeptide and dopamine receptor gene expression in the striatum-accumbens complex. Brain Res 1998; 797:55-64. [PMID: 9630515 DOI: 10.1016/s0006-8993(98)00343-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the rat, neurochemical, behavioral, and anatomical investigations suggest that medial prefrontal cortical input modulates the activity of the basal ganglia. To understand how prefrontal dysfunction might alter striatal-accumbens function, in situ hybridization histochemistry with S35-labeled oligonucleotide probes was used to assess changes in striatal-accumbens gene expression following bilateral excitotoxic ibotenic acid (IA) lesions of the rat medial prefrontal cortex. Quantitative densitometry was used to measure changes in mRNA levels for preproenkephalin A (ENK), D1 dopamine receptor, protachykinin (SubP), glutamic acid decarboxylase (GAD65), and D2 dopamine receptor. No differences were found between sham and lesion groups for ENK, D1, SubP, or GAD65 mRNA levels in the striatum or nucleus accumbens (NAC). D2 receptor mRNA levels were, however, significantly higher in the dorsomedial striatum and in the core area of the NAC of the lesioned rats. Although the functional significance of increased D2 mRNA is unclear, these findings demonstrate that glutamate mPFC projections modulate gene expression in relatively regionally-localized subcortical neuronal populations.
Collapse
Affiliation(s)
- S M Baca
- Clinical Brain Disorders Branch, Intramural Research Program, National Institute of Mental Health, Neuroscience Center, St. Elizabeths Hospital, Washington, DC 20032, USA
| | | | | | | | | | | |
Collapse
|
23
|
Morissette M, Goulet M, Soghomonian JJ, Blanchet PJ, Calon F, Bédard PJ, Di Paolo T. Preproenkephalin mRNA expression in the caudate-putamen of MPTP monkeys after chronic treatment with the D2 agonist U91356A in continuous or intermittent mode of administration: comparison with L-DOPA therapy. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 49:55-62. [PMID: 9387863 DOI: 10.1016/s0169-328x(97)00123-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effect of chronic treatment with the D2 dopamine agonist U91356A or L-DOPA therapy on the regulation of preproenkephalin (PPE) mRNA was investigated in the caudate-putamen of previously drug-naive cynomolgus monkeys Macaca fascicularis rendered parkinsonian by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In MPTP monkeys, pulsatile treatment with either L-DOPA or U91356A relieved parkinsonian symptoms but caused progressive sensitization to treatment and, as expected, induced choreic dyskinesias. In contrast, U91356A given in a continuous mode led to partial behavioral tolerance without appearance of dyskinesias. Using in situ hybridization histochemistry, lesioning was shown to produce elevation of PPE mRNA levels in the lateral and medial parts of the putamen and in the lateral part of the caudate nucleus compared to control animals at the three rostrocaudal regions analyzed. In general, no change of PPE mRNA levels were observed in the medial caudate after MPTP lesioning with or without L-DOPA or U91356A treatments in the three rostrocaudal regions measured except for an increase in the caudal part of L-DOPA-treated MPTP monkeys. In the putamen and lateral caudate nucleus, elevated PPE mRNA expression by MPTP generally was not corrected (or only partially corrected) by chronic L-DOPA treatment except for the rostral medial putamen where correction to control values was observed. In general, pulsatile administration of U91356A partially corrected the lesion-induced elevation of PPE mRNA levels in the putamen and lateral caudate nucleus whereas the correction was more pronounced and widespread when MPTP monkeys received the continuous administration of this drug. These results indicate that the mode of administration of a D2 dopamine receptor agonist, such as U91356A, although at a roughly equivalent dosage influences the extent of inhibition of the expression of PPE in the denervated striatum of monkeys. In addition, the general lack of correction of the MPTP-induced increase of PPE mRNA in the striatum of L-DOPA-treated monkeys compared to the decreases observed with the D2 agonist treatments suggest that the D1 agonist component of L-DOPA therapy opposes the D2 agonist activity. Hence, D1 receptor agonist activity would stimulate PPE mRNA expression whereas D2 receptor agonists inhibit the expression of this peptide. Increases in PPE expression in the striatum may be implicated in the induction of dyskinesias since both groups of treated MPTP monkeys displaying dyskinesias had elevated striatal PPE mRNA levels whereas the MPTP monkeys with the lowest striatal PPE mRNA levels developed tolerance without dyskinesias.
Collapse
Affiliation(s)
- M Morissette
- Neurobiology Research Center, Enfant-Jésus Hospital, Qúebec, Qué., Canada
| | | | | | | | | | | | | |
Collapse
|
24
|
Lapchak PA, Miller PJ, Collins F, Jiao S. Glial cell line-derived neurotrophic factor attenuates behavioural deficits and regulates nigrostriatal dopaminergic and peptidergic markers in 6-hydroxydopamine-lesioned adult rats: comparison of intraventricular and intranigral delivery. Neuroscience 1997; 78:61-72. [PMID: 9135089 DOI: 10.1016/s0306-4522(97)83045-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of intranigrally- or intraventricularly-administered glial cell line-derived neurotrophic factor were tested on low dose (0.05 mg/kg) apomorphine-induced rotations and tyrosine hydroxylase activity in the substantia nigra and striatum of stable 6-hydroxydopamine-lesioned rats. In addition, we determined if 6-hydroxydopamine lesions in the absence or presence of treatment affected neuropeptide (substance P, met-enkephalin, dynorphin) content in the striatum. Glial cell line-derived neurotrophic factor, when administered intranigrally, prevented apomorphine-induced rotational behaviour for 11 weeks following a single injection. In comparison, intraventricularly-administered glial cell line-derived neurotrophic factor produced a transient reduction in rotational behaviour that lasted for two to three weeks following a single injection. We also show that rotational behaviour is reduced following each subsequent intraventricular injection of glial cell line-derived neurotrophic factor given every six weeks, a time-point when baseline rotation deficits were re-established. Intranigrally- or intraventricularly-administered glial cell line-derived neurotrophic factor significantly reduced weight gain in all 6-hydroxydopamine-lesioned rats in this study. Following behavioural analysis where a confirmed improvement of behaviour was established, tissues were dissected for neurochemical analysis. In lesioned rats with intranigral injections of administered glial cell line-derived neurotrophic factor, significant increases of nigral, but not striatal tyrosine hydroxylase activity were measured. Additionally, 6-hydroxydopamine lesions significantly increased striatal dynorphin (61-139%) and met-enkephalin (81-139%), but not substance P levels. In these rats, intranigrally-administered glial cell line-derived neurotrophic factor injections reversed lesion-induced increases in nigral dynorphin A levels and increased nigral dopamine levels, but did not alter nigral met-enkephalin or substance P levels nor striatal dopamine levels. In lesioned rats with intraventricular injections of glial cell line-derived neurotrophic factor, tyrosine hydroxylase ispilateral to the lesion was increased in the substantia nigra, but not in the striatum. Intraventricularly-administered glial cell line-derived neurotrophic factor did not reverse lesion-induced increases in nigral dynorphin A or met-enkephalin levels nor did glial cell line-derived neurotrophic factor affect substance P levels in the striatum. These results suggest that in an animal model of Parkinson's disease, the neurotrophic factor glial cell line-derived neurotrophic factor reverses behavioural consequences of 6-hydroxydopamine administration, an effect that may involve both dopaminergic and peptidergic neurotransmission.
Collapse
Affiliation(s)
- P A Lapchak
- AMGEN INC., Department of Neuroscience, Thousand Oaks, CA 91320-1789, U.S.A
| | | | | | | |
Collapse
|
25
|
Wang JQ, McGinty JF. Intrastriatal injection of a muscarinic receptor agonist and antagonist regulates striatal neuropeptide mRNA expression in normal and amphetamine-treated rats. Brain Res 1997; 748:62-70. [PMID: 9067445 DOI: 10.1016/s0006-8993(96)01244-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Systemic administration of the muscarinic receptor antagonist, scopolamine, augments, whereas the muscarinic receptor agonist, oxotremorine, attenuates behaviors (locomotion and stereotypies) and preprodynorphin (PPD) and substance P (SP) gene expression in striatonigral neurons induced by the indirect dopamine receptor agonist, amphetamine (AMPH). In contrast, systemic scopolamine blocks, whereas oxotremorine augments, AMPH-stimulated preproenkephalin (PPE) gene expression in striatopallidal neurons. This study investigated the site of action of these effects by administering scopolamine and oxotremorine directly into the striatum and assessing the expression of neuropeptide mRNAs with quantitative in situ hybridization. Unilateral injection of scopolamine into the dorsal striatum augmented, and oxotremorine attenuated, AMPH (2.5 mg/kg, i.p.)-stimulated behaviors. Intrastriatal scopolamine at a concentration of 62 mM, but not 6.2 mM, increased basal levels of PPD and SP mRNAs in the dorsal striatum. In addition, both 6.2 and 62 mM scopolamine significantly augmented AMPH-stimulated PPD and SP mRNA levels. Intrastriatal infusion of 1.6 or 8.1 mM oxotremorine did not alter basal levels of striatal PPD and SP mRNAs. However, both concentrations of oxotremorine completely blocked AMPH-stimulated SP mRNA and oxotremorine at 8.1 mM blocked AMPH-stimulated PPD mRNA. In contrast, PPE induction by AMPH was blocked by 62, but not 6.2, mM scopolamine. Both concentrations of oxotremorine tended to augment basal and AMPH-stimulated PPE mRNA in the dorsal striatum but the trend was not significant. These data demonstrate an inhibition of striatonigral, and facilitation of striatopallidal, gene expression through activation of local striatal muscarinic receptors, which is consistent with the changes seen after systemic administration of muscarinic agents. Therefore, muscarinic cholinergic regulation of basal and stimulated expression of neuropeptide mRNA is processed within the striatum.
Collapse
Affiliation(s)
- J Q Wang
- Department of Anatomy and Cell Biology, East Carolina University School of Medicine, Greenville, NC 27858-4354, USA
| | | |
Collapse
|
26
|
Schwarting RK, Huston JP. Unilateral 6-hydroxydopamine lesions of meso-striatal dopamine neurons and their physiological sequelae. Prog Neurobiol 1996; 49:215-66. [PMID: 8878304 DOI: 10.1016/s0301-0082(96)00015-9] [Citation(s) in RCA: 257] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
One of the primary approaches in experimental brain research is to investigate the effects of specific destruction of its parts. Here, several neurotoxins are available which can be used to eliminate neurons of a certain neurochemical type or family. With respect to the study of dopamine neurons in the brain, especially within the basal ganglia, the neurotoxin 6-hydroxydopamine (6-OHDA) provides an important tool. The most common version of lesion induced with this toxin is the unilateral lesion placed in the area of mesencephalic dopamine somata or their ascending fibers, which leads to a lateralized loss of striatal dopamine. This approach has contributed to neuroscientific knowledge at the basic and clinical levels, since it has been used to clarify the neuroanatomy, neurochemistry, and electrophysiology of mesencephalic dopamine neurons and their relationships with the basal ganglia. Furthermore, unilateral 6-OHDA lesions have been used to investigate the role of these dopamine neurons with respect to behavior, and to examine the brain's capacity to recover from or compensate for specific neurochemical depletions. Finally, in clinically-oriented research, the lesion has been used to model aspects of Parkinson's disease, a human neurodegenerative disease which is neuronally characterized by a severe loss of the meso-striatal dopamine neurons. In the present review, which is the first of two, the lesion's effects on physiological parameters are being dealt with, including histological manifestations, effects on dopaminergic measures, other neurotransmitters (e.g. GABA, acetylcholine, glutamate), neuromodulators (e.g. neuropeptides, neurotrophins), electrophysiological activity, and measures of energy consumption. The findings are being discussed especially in relation to time after lesion and in relation to lesion severeness, that is, the differential role of total versus partial depletions of dopamine and the possible mechanisms of compensation. Finally, the advantages and possible drawbacks of such a lateralized lesion model are discussed.
Collapse
Affiliation(s)
- R K Schwarting
- Institute of Physiological Psychology I, Heinrich-Heine University of Düsseldorf, Germany
| | | |
Collapse
|
27
|
Hauber W, Münkle M. Stimulation of adenosine A2a receptors in the rat striatum induces catalepsy that is reversed by antagonists of N-methyl-D-aspartate receptors. Neurosci Lett 1995; 196:205-8. [PMID: 7501284 DOI: 10.1016/0304-3940(95)11871-s] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Bilateral infusion of the selective adenosine A2a agonist CGS 21680C (1 microgram per side) into the anterodorsal striatum of rats produced profound catalepsy. Intraperitoneal coadministration of the non-competitive N-methyl-D-aspartate (NMDA) antagonist dizocilpine (0.16 mg/kg) or the competitive NMDA antagonist CGP 37849 (4 mg/kg) completely reversed CGS 21680C-induced catalepsy, while lower doses of both NMDA antagonists induced no or only weak anticataleptic effects. The adenosine A2a receptor localization to striatopallidal neurons suggests that a selective activation of the striatopallidal efferent pathway is involved in the expression of catalepsy induced by intrastriatal infusion of CGS 21680C. In addition, striatopallidal neurons seem to be an important neuronal substrate of the anticataleptic effects of NMDA antagonists.
Collapse
Affiliation(s)
- W Hauber
- Department of Animal Physiology, University of Stuttgart, Germany
| | | |
Collapse
|