1
|
Brandebura AN, Asbell QN, Micael MKB, Allen NJ. Dysregulation of astrocyte-secreted pleiotrophin contributes to neuronal structural and functional deficits in Down Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559633. [PMID: 37808668 PMCID: PMC10557700 DOI: 10.1101/2023.09.26.559633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Neuronal dendrite patterning and synapse formation are tightly regulated during development to promote proper connectivity. Astrocyte-secreted proteins act as guidance and pro-synaptogenic factors during development, but little is known about how astrocytes may contribute to neurodevelopmental disorders. Here we identify down-regulation of the astrocyte-secreted molecule pleiotrophin as a major contributor to neuronal morphological alterations in the Ts65Dn mouse model of Down Syndrome. We find overlapping deficits in neuronal dendrites, spines and intracortical synapses in Ts65Dn mutant and pleiotrophin knockout mice. By targeting pleiotrophin overexpression to astrocytes in adult Ts65Dn mutant mice in vivo , we show that pleiotrophin can rescue dendrite morphology and spine density and increase excitatory synapse number. We further demonstrate functional improvements in behavior. Our findings identify pleiotrophin as a molecule that can be used in Down Syndrome to promote proper circuit connectivity, importantly at later stages of development after typical periods of circuit refinement have completed.
Collapse
|
2
|
Protective Effects of a synthetic glycosaminoglycan mimetic (OTR4132) in a rat immunotoxic lesion model of septohippocampal cholinergic degeneration. Glycoconj J 2022; 39:107-130. [PMID: 35254602 PMCID: PMC8979900 DOI: 10.1007/s10719-022-10047-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/20/2021] [Accepted: 01/28/2022] [Indexed: 11/06/2022]
Abstract
Using a partial hippocampal cholinergic denervation model, we assessed the effects of the RGTA® named OTR4132, a synthetic heparan-mimetic biopolymer with neuroprotective/neurotrophic properties. Long-Evans male rats were injected with the cholinergic immunotoxin 192 IgG-saporin into the medial septum/diagonal band of Broca (0.37 µg); vehicle injections served as controls. Immediately after surgery, OTR4132 was injected into the lateral ventricles (0.25 µg/5 µl/rat) or intramuscularly (1.5 mg/kg). To determine whether OTR4132 reached the lesion site, some rats received intracerebroventricular (ICV) or intramuscular (I.M.) injections of fluorescent OTR4132. Rats were sacrificed at 4, 10, 20, or 60 days post-lesion (DPL). Fluorescein-labeled OTR4132 injected ICV or I.M. was found in the lesion from 4 to 20 DPL. Rats with partial hippocampal cholinergic denervation showed decreases in hippocampal acetylcholinesterase reaction products and in choline acetyltransferase-positive neurons in the medial septum. These lesions were the largest at 10 DPL and then remained stable until 60 DPL. Both hippocampal acetylcholinesterase reaction products and choline acetyltransferase-positive neurons in the medial septum effects were significantly attenuated in OTR4132-treated rats. These effects were not related to competition between OTR4132 and 192 IgG-saporin for the neurotrophin receptor P75 (p75NTR), as OTR4132 treatment did not alter the internalization of Cy3-labelled 192 IgG. OTR4132 was more efficient at reducing the acetylcholinesterase reaction products and choline acetyltransferase-positive neurons than a comparable heparin dose used as a comparator. Using the slice superfusion technique, we found that the lesion-induced decrease in muscarinic autoreceptor sensitivity was abolished by intramuscular OTR4132. After partial cholinergic damage, OTR4132 was able to concentrate at the brain lesion site possibly due to the disruption of the blood-brain barrier and to exert structural and functional effects that hold promises for neuroprotection/neurotrophism.
Collapse
|
3
|
Linnerbauer M, Lößlein L, Farrenkopf D, Vandrey O, Tsaktanis T, Naumann U, Rothhammer V. Astrocyte-Derived Pleiotrophin Mitigates Late-Stage Autoimmune CNS Inflammation. Front Immunol 2022; 12:800128. [PMID: 35046956 PMCID: PMC8762329 DOI: 10.3389/fimmu.2021.800128] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/09/2021] [Indexed: 11/21/2022] Open
Abstract
Astrocytes are the most abundant glial cells in the central nervous system (CNS) with the capacity to sense and react to injury and inflammatory events. While it has been widely documented that astrocytes can exert tissue-degenerative functions, less is known about their protective and disease-limiting roles. Here, we report the upregulation of pleiotrophin (PTN) by mouse and human astrocytes in multiple sclerosis (MS) and its preclinical model experimental autoimmune encephalomyelitis (EAE). Using CRISPR-Cas9-based genetic perturbation systems, we demonstrate in vivo that astrocyte-derived PTN is critical for the recovery phase of EAE and limits chronic CNS inflammation. PTN reduces pro-inflammatory signaling in astrocytes and microglia and promotes neuronal survival following inflammatory challenge. Finally, we show that intranasal administration of PTN during the late phase of EAE successfully reduces disease severity, making it a potential therapeutic candidate for the treatment of progressive MS, for which existing therapies are limited.
Collapse
Affiliation(s)
- Mathias Linnerbauer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Lena Lößlein
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Daniel Farrenkopf
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Vandrey
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Thanos Tsaktanis
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Ulrike Naumann
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Kulesskaya N, Molotkov D, Sliepen S, Mugantseva E, Garcia Horsman A, Paveliev M, Rauvala H. Heparin-Binding Growth-Associated Molecule (Pleiotrophin) Affects Sensory Signaling and Selected Motor Functions in Mouse Model of Anatomically Incomplete Cervical Spinal Cord Injury. Front Neurol 2021; 12:738800. [PMID: 34938257 PMCID: PMC8685413 DOI: 10.3389/fneur.2021.738800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/02/2021] [Indexed: 11/23/2022] Open
Abstract
Heparin-binding growth-associated molecule (pleiotrophin) is a neurite outgrowth-promoting secretory protein that lines developing fiber tracts in juvenile CNS (central nervous system). Previously, we have shown that heparin-binding growth-associated molecule (HB-GAM) reverses the CSPG (chondroitin sulfate proteoglycan) inhibition on neurite outgrowth in the culture medium of primary CNS neurons and enhances axon growth through the injured spinal cord in mice demonstrated by two-photon imaging. In this study, we have started studies on the possible role of HB-GAM in enhancing functional recovery after incomplete spinal cord injury (SCI) using cervical lateral hemisection and hemicontusion mouse models. In vivo imaging of blood-oxygen-level-dependent (BOLD) signals associated with functional activity in the somatosensory cortex was used to assess the sensory functions during vibrotactile hind paw stimulation. The signal displays an exaggerated response in animals with lateral hemisection that recovers to the level seen in the sham-operated mice by injection of HB-GAM to the trauma site. The effect of HB-GAM treatment on sensory-motor functions was assessed by performance in demanding behavioral tests requiring integration of afferent and efferent signaling with central coordination. Administration of HB-GAM either by direct injection into the trauma site or by intrathecal injection improves the climbing abilities in animals with cervical hemisection and in addition enhances the grip strength in animals with lateral hemicontusion without affecting the spontaneous locomotor activity. Recovery of sensory signaling in the sensorimotor cortex by HB-GAM to the level of sham-operated mice may contribute to the improvement of skilled locomotion requiring integration of spatiotemporal signals in the somatosensory cortex.
Collapse
Affiliation(s)
- Natalia Kulesskaya
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Dmitry Molotkov
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Sonny Sliepen
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ekaterina Mugantseva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Arturo Garcia Horsman
- Real-time Imaging Laboratory, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Mikhail Paveliev
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Heikki Rauvala
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Rountree I, Polucha C, Coulombe KLK, Munarin F. Assessing the Angiogenic Efficacy of Pleiotrophin Released from Injectable Heparin-Alginate Gels. Tissue Eng Part A 2021; 27:703-713. [PMID: 33430704 DOI: 10.1089/ten.tea.2020.0335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
With this work, we design alginate-based hydrogels for therapeutically directing revascularization and repair processes in vivo. We immobilize pleiotrophin (PTN) in injectable hydrogel formulations as the target factor to stimulate proangiogenic responses in endothelial cells. The optimized heparin-alginate/chitosan hydrogels, produced by internal crosslinking with calcium carbonate, show good biocompatibility and injectability and allow controlling the release of immobilized proteins in the subcutaneous tissue over a period of 7 days. In vitro assays, performed with translational human induced pluripotent stem cell-derived endothelial cells, and the in vivo Matrigel plug assay are conducted to demonstrate the angiogenic effects of PTN on endothelial cells. Our results indicate that PTN stimulates endothelial cell morphogenesis in vitro and the migration of endothelial cells and macrophages as soon as 4 days after injections of the developed hydrogels, promoting the formation of structures similar to the healthy granulation tissue, which is an indicator of healing in ischemic wounds. These studies provide the rationale for further investigating this novel therapeutic for pursuing increased vascular density for efficient regeneration of ischemic tissues, by leveraging the host endothelial cell population to initiate angiogenic and reparative processes in vivo. Impact statement Localized, sustained, and controlled delivery of angiogenic factors is crucial for enabling the formation of novel vascular networks in ischemic tissues. This study describes the development of an injectable heparin-alginate/collagen hydrogel for controlling the in vivo release and bioactivity of pleiotrophin (PTN), a heparin-binding factor with significant angiogenic activity. We demonstrate that PTN promotes angiogenesis in an in vitro model of hypoxia and in preclinical subcutaneous models. These results advance our understanding of PTN function in guiding therapeutic angiogenesis and are critical to inform the development of novel translational strategies for ischemic tissue repair and regeneration.
Collapse
Affiliation(s)
- Isobel Rountree
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, USA
| | - Collin Polucha
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, USA
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, USA
| | - Fabiola Munarin
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
6
|
Systematic Identification of Cell-Cell Communication Networks in the Developing Brain. iScience 2019; 21:273-287. [PMID: 31677479 PMCID: PMC6838536 DOI: 10.1016/j.isci.2019.10.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/24/2019] [Accepted: 10/13/2019] [Indexed: 01/07/2023] Open
Abstract
Since the generation of cell-type specific knockout models, the importance of inter-cellular communication between neural, vascular, and microglial cells during neural development has been increasingly appreciated. However, the extent of communication between these major cell populations remains to be systematically mapped. Here, we describe EMBRACE (embryonic brain cell extraction using FACS), a method to simultaneously isolate neural, mural, endothelial, and microglial cells to more than 94% purity in ∼4 h. Utilizing EMBRACE we isolate, transcriptionally analyze, and build a cell-cell communication map of the developing mouse brain. We identify 1,710 unique ligand-receptor interactions between neural, endothelial, mural, and microglial cells in silico and experimentally confirm the APOE-LDLR, APOE-LRP1, VTN-KDR, and LAMA4-ITGB1 interactions in the E14.5 brain. We provide our data via the searchable “Brain interactome explorer”, available at https://mpi-ie.shinyapps.io/braininteractomeexplorer/. Together, this study provides a comprehensive map that reveals the richness of communication within the developing brain. Isolation of embryonic neural, mural, endothelial, and microglial cells to >94% purity Transcriptome analyses of neural, vascular, and microglial cells from E14.5 brain Generation of inter-cellular communication network with 1,710 unique interactions Established “Brain interactome explorer,” a searchable cell communication database
Collapse
|
7
|
Rauvala H, Paveliev M, Kuja-Panula J, Kulesskaya N. Inhibition and enhancement of neural regeneration by chondroitin sulfate proteoglycans. Neural Regen Res 2017; 12:687-691. [PMID: 28616017 PMCID: PMC5461598 DOI: 10.4103/1673-5374.206630] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The current dogma in neural regeneration research implies that chondroitin sulfate proteoglycans (CSPGs) inhibit plasticity and regeneration in the adult central nervous system (CNS). We argue that the role of the CSPGs can be reversed from inhibition to activation by developmentally expressed CSPG-binding factors. Heparin-binding growth-associated molecule (HB-GAM; also designated as pleiotrophin) has been studied as a candidate molecule that might modulate the role of CSPG matrices in plasticity and regeneration. Studies in vitro show that in the presence of soluble HB-GAM chondroitin sulfate (CS) chains of CSPGs display an enhancing effect on neurite outgrowth. Based on the in vitro studies, we suggest a model according to which the HB-GAM/CS complex binds to the neuron surface receptor glypican-2, which induces neurite growth. Furthermore, HB-GAM masks the CS binding sites of the neurite outgrowth inhibiting receptor protein tyrosine phosphatase sigma (PTPσ), which may contribute to the HB-GAM-induced regenerative effect. In vivo studies using two-photon imaging after local HB-GAM injection into prick-injury of the cerebral cortex reveal regeneration of dendrites that has not been previously demonstrated after injuries of the mammalian nervous system. In the spinal cord, two-photon imaging displays HB-GAM-induced axonal regeneration. Studies on the HB-GAM/CS mechanism in vitro and in vivo are expected to pave the way for drug development for injuries of brain and spinal cord.
Collapse
Affiliation(s)
- Heikki Rauvala
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | | | | | - Natalia Kulesskaya
- Neuroscience Center, University of Helsinki, Helsinki, Finland.,Department of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
González-Castillo C, Ortuño-Sahagún D, Guzmán-Brambila C, Márquez-Aguirre AL, Raisman-Vozari R, Pallás M, Rojas-Mayorquín AE. The absence of pleiotrophin modulates gene expression in the hippocampus in vivo and in cerebellar granule cells in vitro. Mol Cell Neurosci 2016; 75:113-21. [PMID: 27468976 DOI: 10.1016/j.mcn.2016.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/04/2016] [Accepted: 07/25/2016] [Indexed: 12/28/2022] Open
Abstract
Pleiotrophin (PTN) is a secreted growth factor recently proposed to act as a neuromodulatory peptide in the Central Nervous System. PTN appears to be involved in neurodegenerative diseases and neural disorders, and it has also been implicated in learning and memory. Specifically, PTN-deficient mice exhibit a lower threshold for LTP induction in the hippocampus, which is attenuated in mice overexpressing PTN. However, there is little information about the signaling systems recruited by PTN to modulate neural activity. To address this issue, the gene expression profile in hippocampus of mice lacking PTN was analyzed using microarrays of 22,000 genes. In addition, we corroborated the effect of the absence of PTN on the expression of these genes by silencing this growth factor in primary neuronal cultures in vitro. The microarray analysis identified 102 genes that are differentially expressed (z-score>3.0) in PTN null mice, and the expression of eight of those modified in the hippocampus of KO mice was also modified in vitro after silencing PTN in cultured neurons with siRNAs. The data obtained indicate that the absence of PTN affects AKT pathway response and modulates the expression of genes related with neuroprotection (Mgst3 and Estrogen receptor 1, Ers 1) and cell differentiation (Caspase 6, Nestin, and Odz4), both in vivo and in vitro.
Collapse
Affiliation(s)
- Celia González-Castillo
- Doctorado en Ciencias en Biología Molecular en Medicina (DCBMM), CUCS, Universidad de Guadalajara, Jalisco, Mexico
| | - Daniel Ortuño-Sahagún
- Instituto de Investigación en Ciencias Biomédicas (IICB), CUCS, Universidad de Guadalajara, Jalisco, Mexico.
| | - Carolina Guzmán-Brambila
- Tecnológico de Monterrey, División de Biotecnología y Salud, Escuela de Medicina, Campus Guadalajara, Jalisco, Mexico
| | - Ana Laura Márquez-Aguirre
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., 44270 Guadalajara, Jalisco, Mexico
| | - Rita Raisman-Vozari
- Sorbonne Université UPMC UM75 INSERM U1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Mercé Pallás
- Department of Pharmacology and Medical Chemistry, Faculty of Pharmacy, Institute of Neuroscience (INUB), Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, Spain
| | - Argelia E Rojas-Mayorquín
- Departamento de Ciencias Ambientales, Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, Jalisco, Mexico.
| |
Collapse
|
9
|
González-Castillo C, Ortuño-Sahagún D, Guzmán-Brambila C, Pallàs M, Rojas-Mayorquín AE. Pleiotrophin as a central nervous system neuromodulator, evidences from the hippocampus. Front Cell Neurosci 2015; 8:443. [PMID: 25620911 PMCID: PMC4287103 DOI: 10.3389/fncel.2014.00443] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/10/2014] [Indexed: 02/04/2023] Open
Abstract
Pleiotrophin (PTN) is a secreted growth factor, and also a cytokine, associated with the extracellular matrix, which has recently starting to attract attention as a significant neuromodulator with multiple neuronal functions during development. PTN is expressed in several tissues, where its signals are generally related with cell proliferation, growth, and differentiation by acting through different receptors. In Central Nervous System (CNS), PTN exerts post-developmental neurotrophic and -protective effects, and additionally has been involved in neurodegenerative diseases and neural disorders. Studies in Drosophila shed light on some aspects of the different levels of regulatory control of PTN invertebrate homologs. Specifically in hippocampus, recent evidence from PTN Knock-out (KO) mice involves PTN functioning in learning and memory. In this paper, we summarize, discuss, and contrast the most recent advances and results that lead to proposing a PTN as a neuromodulatory molecule in the CNS, particularly in hippocampus.
Collapse
Affiliation(s)
- Celia González-Castillo
- Doctorwado en Ciencias en Biología Molecular en Medicina (DCBMM), CUCS, Universidad de Guadalajara Guadalajara, Jalisco, México
| | - Daniel Ortuño-Sahagún
- Instituto de Investigación en Ciencias Biomédicas (IICB), CUCS, Universidad de Guadalajara, Guadalajara Jalisco, México
| | - Carolina Guzmán-Brambila
- Tecnológico de Monterrey, División de Biotecnología y Salud, Escuela de Medicina, Campus Guadalajara Guadalajara, Jalisco, México
| | - Mercè Pallàs
- Department of Pharmacology and Medical Chemistry, Faculty of Pharmacy School of Pharmacy, Institute of Biomedicine (IBUB), Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona Barcelona, Spain
| | | |
Collapse
|
10
|
Wang Y, Qiu B, Liu J, Zhu WG, Zhu S. Cocaine- and amphetamine-regulated transcript facilitates the neurite outgrowth in cortical neurons after oxygen and glucose deprivation through PTN-dependent pathway. Neuroscience 2014; 277:103-10. [DOI: 10.1016/j.neuroscience.2014.06.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/12/2014] [Accepted: 06/28/2014] [Indexed: 01/11/2023]
|
11
|
Behavioral and neuroanatomical abnormalities in pleiotrophin knockout mice. PLoS One 2014; 9:e100597. [PMID: 25000129 PMCID: PMC4085064 DOI: 10.1371/journal.pone.0100597] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/28/2014] [Indexed: 11/30/2022] Open
Abstract
Pleiotrophin (PTN) is an extracellular matrix-associated protein with neurotrophic and neuroprotective effects that is involved in a variety of neurodevelopmental processes. Data regarding the cognitive-behavioral and neuroanatomical phenotype of pleiotrophin knockout (KO) mice is limited. The purpose of this study was to more fully characterize this phenotype, with emphasis on the domains of learning and memory, cognitive-behavioral flexibility, exploratory behavior and anxiety, social behavior, and the neuronal and vascular microstructure of the lateral entorhinal cortex (EC). PTN KOs exhibited cognitive rigidity, heightened anxiety, behavioral reticence in novel contexts and novel social interactions suggestive of neophobia, and lamina-specific decreases in neuronal area and increases in neuronal density in the lateral EC. Initial learning of spatial and other associative tasks, as well as vascular density in the lateral EC, was normal in the KOs. These data suggest that the absence of PTN in vivo is associated with disruption of specific cognitive and affective processes, raising the possibility that further study of PTN KOs might have implications for the study of human disorders with similar features.
Collapse
|
12
|
Asai H, Morita S, Miyata S. Effect of pleiotrophin on glutamate-induced neurotoxicity in cultured hippocampal neurons. Cell Biochem Funct 2011; 29:660-5. [DOI: 10.1002/cbf.1802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 07/15/2011] [Accepted: 07/28/2011] [Indexed: 11/11/2022]
Affiliation(s)
- Hitomi Asai
- Department of Applied Biology; Kyoto Institute of Technology; Sakyo-ku; Kyoto; Japan
| | - Shoko Morita
- Department of Applied Biology; Kyoto Institute of Technology; Sakyo-ku; Kyoto; Japan
| | - Seiji Miyata
- Department of Applied Biology; Kyoto Institute of Technology; Sakyo-ku; Kyoto; Japan
| |
Collapse
|
13
|
Gramage E, Martín Y, Ramanah P, Pérez-García C, Herradón G. Midkine regulates amphetamine-induced astrocytosis in striatum but has no effects on amphetamine-induced striatal dopaminergic denervation and addictive effects: functional differences between pleiotrophin and midkine. Neuroscience 2011; 190:307-17. [DOI: 10.1016/j.neuroscience.2011.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/30/2011] [Accepted: 06/02/2011] [Indexed: 12/22/2022]
|
14
|
Dash-Wagh S, Neumann JR, Veitinger S, Grote-Westrick C, Landgraf P, Pape HC, Kreutz MR, von Holst A, Wahle P. The survival promoting peptide Y-P30 promotes cellular migration. Mol Cell Neurosci 2011; 48:195-204. [PMID: 21820515 DOI: 10.1016/j.mcn.2011.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 06/01/2011] [Accepted: 07/14/2011] [Indexed: 11/25/2022] Open
Abstract
Y-P30, the 30 amino acid N-terminal peptide of the dermcidin gene, has been found to promote neuronal survival and differentiation. Its early presence in development and import to the fetal brain led to the hypothesis that Y-P30 has an influence on proliferation, differentiation and migration. Neurospheres derived from neural stem cells isolated from E13 mouse cortex and striatal ganglionic eminences were treated with Y-P30, however, the proportion of progenitors, neurons and astrocytes generated in differentiation assays was not altered. A short Y-P30 treatment of undifferentiated striatal and cortical neurospheres failed to alter the proportion of BrdU-positive cells. A longer treatment reduced the percentage of BrdU-positive cells and GABA-immunoreactive neurons only in striatal spheres. The presence of Y-P30 enhanced migration of T24 human bladder carcinoma cells in a wound-healing assay in vitro. Further, Y-P30 enhanced migration of T24 cells, rat primary cortical astrocytes and PC12 cells in chemotactic Boyden chamber assays. Together, these findings suggest that a major function of Y-P30 is to promote migration of neural and non-neural cell types.
Collapse
Affiliation(s)
- Suvarna Dash-Wagh
- AG Developmental Neurobiology, Faculty for Biology and Biotechnology, Ruhr-University Bochum, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Li F, Tian F, Wang L, Williamson IK, Sharifi BG, Shah PK. Pleiotrophin (PTN) is expressed in vascularized human atherosclerotic plaques: IFN-{gamma}/JAK/STAT1 signaling is critical for the expression of PTN in macrophages. FASEB J 2010; 24:810-22. [PMID: 19917672 PMCID: PMC2830133 DOI: 10.1096/fj.09-140780] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 10/15/2009] [Indexed: 02/02/2023]
Abstract
Neovascularization is critical to destabilization of atheroma. We previously reported that the angiogenic growth factor pleiotrophin (PTN) coaxes monocytes to assume the phenotype of functional endothelial cells in vitro and in vivo. In this study we show that PTN expression is colocalized with capillaries of human atherosclerotic plaques. Among the various reagents that are critical to the pathogenesis of atherosclerosis, interferon (IFN)-gamma was found to markedly induce PTN mRNA expression in a dose-dependent manner in macrophages. Mechanistic studies revealed that the Janus kinase inhibitors, WHI-P154 and ATA, efficiently blocked STAT1 phosphorylation in a concentration- and time-dependent manner. Notably, the level of phosphorylated STAT1 was found to correlate directly with the PTN mRNA levels. In addition, STAT1/STAT3/p44/42 signaling molecules were found to be phosphorylated by IFN-gamma in macrophages, and they were translocated into the nucleus. Further, PTN promoter analysis showed that a gamma-activated sequence (GAS) located at -2086 to -2078 bp is essential for IFN-gamma-regulated promoter activity. Moreover, electrophoretic mobility shift, supershift, and chromatin immunoprecipitation analyses revealed that both STAT1 and STAT3 bind to the GAS at the chromatin level in the IFN-gamma stimulated cells. Finally, to test whether the combined effect of STAT1/STAT3/p44/42 signaling is required for the expression of PTN in macrophages, gene knockdowns of these transcription factors were performed using siRNA. Cells lacking STAT1, but not STAT3 or p42, have markedly reduced PTN mRNA levels. These data suggest that PTN expression in the human plaques may be in part regulated by IFN-gamma and that PTN is involved in the adaptive immunity.-Li, F., Tian, F., Wang, L., Williamson, I. K., Sharifi, B. G., Shah, P. K. Pleiotrophin (PTN) is expressed in vascularized human atherosclerotic plaques: IFN-gamma/JAK/STAT1 signaling is critical for the expression of PTN in macrophages.
Collapse
Affiliation(s)
- Fuqiang Li
- Cedars-Sinai Medical Center, Davis Bldg. 1016, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | | | | | | | | | | |
Collapse
|
16
|
Ferrario JE, Rojas-Mayorquín AE, Saldaña-Ortega M, Salum C, Gomes MZ, Hunot S, Raisman-Vozari R. Pleiotrophin receptor RPTP-ζ/β expression is up-regulated by l-DOPA in striatal medium spiny neurons of parkinsonian rats. J Neurochem 2008; 107:443-52. [DOI: 10.1111/j.1471-4159.2008.05640.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Sorensen G, Medina S, Parchaliuk D, Phillipson C, Robertson C, Booth SA. Comprehensive transcriptional profiling of prion infection in mouse models reveals networks of responsive genes. BMC Genomics 2008; 9:114. [PMID: 18315872 PMCID: PMC2294129 DOI: 10.1186/1471-2164-9-114] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 03/03/2008] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Prion infection results in progressive neurodegeneration of the central nervous system invariably resulting in death. The pathological effects of prion diseases in the brain are morphologically well defined, such as gliosis, vacuolation, and the accumulation of disease-specific protease-resistant prion protein (PrPSc). However, the underlying molecular events that lead to the death of neurons are poorly characterised. RESULTS In this study cDNA microarrays were used to profile gene expression changes in the brains of two different strains of mice infected with three strains of mouse-adapted scrapie. Extensive data was collected and analyzed, from which we identified a core group of 349 prion-related genes (PRGs) that consistently showed altered expression in mouse models. Gene ontology analysis assigned many of the up-regulated genes to functional groups associated with one of the primary neuropathological features of prion diseases, astrocytosis and gliosis; protein synthesis, inflammation, cell proliferation and lipid metabolism. Using a computational tool, Ingenuity Pathway Analysis (IPA), we were able to build networks of interacting genes from the PRG list. The regulatory cytokine TGFB1, involved in modulating the inflammatory response, was identified as the outstanding interaction partner for many of the PRGs. The majority of genes expressed in neurons were down-regulated; a number of these were involved in regulatory pathways including synapse function, calcium signalling, long-term potentiation and ERK/MAPK signalling. Two down-regulated genes coding for the transcription regulators, EGR1 and CREB1, were also identified as central to interacting networks of genes; these factors are often used as markers of neuronal activity and their deregulation could be key to loss of neuronal function. CONCLUSION These data provides a comprehensive list of genes that are consistently differentially expressed in multiple scrapie infected mouse models. Building networks of interactions between these genes provides a means to understand the complex interplay in the brain during neurodegeneration. Resolving the key regulatory and signaling events that underlie prion pathogenesis will provide targets for the design of novel therapies and the elucidation of biomarkers.
Collapse
Affiliation(s)
- Garrett Sorensen
- Prion Diseases Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada.
| | | | | | | | | | | |
Collapse
|
18
|
Marchionini DM, Lehrmann E, Chu Y, He B, Sortwell CE, Becker KG, Freed WJ, Kordower JH, Collier TJ. Role of heparin binding growth factors in nigrostriatal dopamine system development and Parkinson's disease. Brain Res 2007; 1147:77-88. [PMID: 17368428 DOI: 10.1016/j.brainres.2007.02.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 11/11/2006] [Accepted: 02/06/2007] [Indexed: 11/17/2022]
Abstract
The developmental biology of the dopamine (DA) system may hold important clues to its reconstruction. We hypothesized that factors highly expressed during nigrostriatal development and re-expressed after injury and disease may play a role in protection and reconstruction of the nigrostriatal system. Examination of gene expression in the developing striatum suggested an important role for the heparin binding growth factor family at time points relevant to establishment of dopaminergic innervation. Midkine, pleiotrophin (PTN), and their receptors syndecan-3 and receptor protein tyrosine phosphatase beta/zeta, were highly expressed in the striatum during development. Furthermore, PTN was up-regulated in the degenerating substantia nigra of Parkinson's patients. The addition of PTN to ventral mesencephalic cultures augmented DA neuron survival and neurite outgrowth. Thus, PTN was identified as a factor that plays a role in the nigrostriatal system during development and in response to disease, and may therefore be useful for neuroprotection or reconstruction of the DA system.
Collapse
Affiliation(s)
- Deanna M Marchionini
- Dept. Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sharifi BG, Zeng Z, Wang L, Song L, Chen H, Qin M, Sierra-Honigmann MR, Wachsmann-Hogiu S, Shah PK. Pleiotrophin induces transdifferentiation of monocytes into functional endothelial cells. Arterioscler Thromb Vasc Biol 2006; 26:1273-80. [PMID: 16614316 PMCID: PMC3579570 DOI: 10.1161/01.atv.0000222017.05085.8e] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Pleiotrophin (PTN) is a cytokine that is expressed by monocytes/macrophages in ischemic tissues and that promotes neovascularization, presumably by stimulating proliferation of local endothelial cells. However, the effect of PTN on monocytes/macrophages remains unknown. We investigated the role of PTN in regulating the phenotype of monocytes/macrophages. METHODS AND RESULTS RT-PCR, real-time PCR, and fluorescence-activated cell sorter analysis revealed that the expression of PTN by monocytic cells led to a downregulation of CD68, c-fms, and CD14 monocytic cell markers and an upregulation of FLK-1, Tie-2, vascular endothelial-cadherin, platelet endothelial cell adhesion molecule-1, endothelial NO synthase, von Willebrand factor, CD34, GATA-2, and GATA-3 endothelial cell markers. Fibrin gel assays showed that the treatment of mouse and human monocytic cells with PTN led to the formation of tube-like structures. In vivo studies showed that PTN-expressing monocytic cells incorporated into the blood vessels of the quail chorioallantoic membrane. The intracardial injection of PTN-expressing monocytic cells into chicken embryos showed that cells integrated only into the developing vasculature. Finally, the injection of PTN-expressing monocytes into a murine ischemic hindlimb model significantly improved perfusion of the ischemic tissue. CONCLUSIONS PTN expression by monocytes/macrophages led to a downregulation of their monocytic cell markers and an upregulation of endothelial cell characteristics, thus inducing the transdifferentiation of monocytes into functional endothelial cells.
Collapse
Affiliation(s)
- Behrooz G Sharifi
- Atherosclerosis Research Center, Burns and Allen Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Taravini IRE, Ferrario JE, Delbe J, Ginestet L, Debeir T, Courty J, Murer MG, Gershanik OS, Raisman-Vozari R. Immunodetection of heparin-binding growth associated molecule (pleiotrophin) in striatal interneurons. Brain Res 2005; 1066:196-200. [PMID: 16325783 DOI: 10.1016/j.brainres.2005.10.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2005] [Revised: 10/03/2005] [Accepted: 10/11/2005] [Indexed: 11/21/2022]
Abstract
Pleiotrophin (PTN), a developmentally-regulated trophic factor, is over-expressed in the striatum of parkinsonian rats. Because striatal PTN can provide trophic support to dopamine neurons, we identified the cellular types containing PTN in the striatum of adult rats. By means of fluorescent double-immunolabeling, we found PTN to co-localize with a neuronal nuclei marker but not with glial fibrillary acidic protein. The number, distribution, and morphology of the PTN-immunolabeled cells suggested that they were interneurons. Further double-immunolabeling studies ruled out PTN localization to calretinin- and parvalbumin-containing interneurons. Instead, approximately 40% of the PTN-immunolabeled neurons contained nitric oxide synthase or somatostatin and approximately 60% expressed the vesicular acetylcholine transporter, supporting that they were GABAergic nitric oxide synthase/somatostatin-containing and cholinergic interneurons. Further work is necessary to determine if PTN from striatal interneurons can provide trophic support to dopamine neurons.
Collapse
Affiliation(s)
- Irene R E Taravini
- Laboratorio de Parkinson Experimental, Instituto de Investigaciones Farmacológicas, CONICET, Junín 956, 5 Piso, C1113AAD Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mourlevat S, Debeir T, Ferrario JE, Delbe J, Caruelle D, Lejeune O, Depienne C, Courty J, Raisman-Vozari R, Ruberg M. Pleiotrophin mediates the neurotrophic effect of cyclic AMP on dopaminergic neurons: analysis of suppression-subtracted cDNA libraries and confirmation in vitro. Exp Neurol 2005; 194:243-54. [PMID: 15899261 DOI: 10.1016/j.expneurol.2005.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2004] [Revised: 02/22/2005] [Accepted: 02/24/2005] [Indexed: 11/21/2022]
Abstract
To better understand the particular vulnerability of mesencephalic dopaminergic neurons to toxins or gene mutations causing parkinsonism, we have taken advantage of a primary cell culture system in which these neurons die selectively. Antimitotic agents, such as cytosine arabinoside or cAMP, prevent the death of the neurons by arresting astrocyte proliferation. To identify factors implicated in either the death of the dopaminergic neurons or in the neuroprotective effect of cAMP, we constructed cDNA libraries enriched by subtractive hybridization and suppressive PCR in transcripts that are preferentially expressed in either control or cAMP-treated cultures. Differentially expressed transcripts were identified by hybridization of the enriched cDNAs with a commercially available cDNA expression array. The proteoglycan receptors syndecan-3 and the receptor protein tyrosine phosphatase zeta/beta were found among the transcripts preferentially expressed under control conditions, and their ligand, the cytokine pleiotrophin, was highly represented in the cDNA libraries for both conditions. Since pleiotrophin is expressed during embryonic and perinatal neural development and following lesions in the adult brain, we investigated its role in our cell culture model. Pleiotrophin was not responsible for the death of dopaminergic neurons under control conditions, or for their survival in cAMP-treated cultures. It was, however, implicated in the initial and cAMP-dependent enhancement of the differentiation of the dopaminergic neurons in our cultures. In addition, our experiments have provided evidence for a cAMP-dependent regulatory pathway leading to protease activation, and the identification of pleiotrophin as a target of this pathway.
Collapse
Affiliation(s)
- Sophie Mourlevat
- INSERM U679, Hôpital de la Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Le Grevès P. Pleiotrophin gene transcription in the rat nucleus accumbens is stimulated by an acute dose of amphetamine. Brain Res Bull 2005; 65:529-32. [PMID: 15862925 DOI: 10.1016/j.brainresbull.2005.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Accepted: 03/08/2005] [Indexed: 11/28/2022]
Abstract
Pleiotrophin (PTN) is a heparin-binding protein with diverse functions. For example, it stimulates neurite outgrowth, mitogenesis, repair and differentiation, effects that are similar to those of the neurotrophins. The neurotrophins have, in recent years, been implicated as mediators of structural plasticity, suggested to underlie the development of behavioural sensitisation to many drugs of abuse. Since NMDA receptor antagonists inhibit the underlying morphological changes, the mechanisms are thought to be highly dependent on the activation of the NMDA subtype of glutamate receptors. To investigate if PTN has a possible role in structural plasticity, its responsiveness to an acute dose of amphetamine was studied. Amphetamine is a well-characterised inducer of sensitisation. A group of rats was systemically treated with amphetamine (10 mg/kg) and the effect on the PTN gene transcription was studied 4 h later. A separate group of rats was pretreated with the NMDA receptor antagonist MK-801 (0.25 mg/kg) 30 min prior to the administration of amphetamine. Northern blot analysis revealed a significant increase of the PTN transcript after the administration of amphetamine. However, MK-801 pretreatment did not block this effect; in contrast, it further increased PTN mRNA levels. As the response to the two drugs resembles the one earlier reported on the gene expression of brain-derived neurotrophic factor (BDNF), the present results suggest that PTN may be an attractive protein to study further in the field of synaptic plasticity.
Collapse
Affiliation(s)
- Pierre Le Grevès
- Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591, BMC SE-751 24 Uppsala, Sweden.
| |
Collapse
|
23
|
Zhang KH, Xiao HS, Lu PH, Shi J, Li GD, Wang YT, Han S, Zhang FX, Lu YJ, Zhang X, Xu XM. Differential gene expression after complete spinal cord transection in adult rats: an analysis focused on a subchronic post-injury stage. Neuroscience 2004; 128:375-88. [PMID: 15350649 DOI: 10.1016/j.neuroscience.2004.07.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2004] [Indexed: 01/29/2023]
Abstract
In an attempt to characterize changes in transcription after a sub-chronic spinal cord injury (SCI), we investigated gene expression profiles using cDNA microarray. Among 7523 genes and expressed sequence tags (ESTs) examined, 444 transcripts, including 218 genes and 226 ESTs, were identified to be either up-regulated (373 of 444) or down-regulated (71 of 444) greater than 2.0-fold in the spinal cord at 14 days after a complete spinal transection at the 11th thoracic level in adult rats. Based on their potential function, these differentially expressed genes were categorized into seven classes which include cell division-related protein, channels and receptors, cytoskeletal elements, extracellular matrix proteins, metalloproteinases and inhibitors, growth-associated molecules, metabolism, intracellular transducers and transcription factors, as well as others. Strong expressional changes were found in all classes revealing the complexity and diversity of gene expression profiles following SCI. We verified array results with RT-PCR for eight genes, Northern blotting for nine genes, and in situ hybridization for one gene and immunohistochemistry for four genes. These analyses confirmed, to a large extent, that the array results have accurately reflected the molecular changes occurring at 14 days post-SCI. Importantly, the current study has identified a number of genes, including annexins, heparin-binding growth-associated protein (HB-GAM), P9ka (S100A4), matrix metalloproteinases, and lysozyme, that may shed new light on SCI-related inflammation, neuroprotection, neurite-outgrowth, synaptogenesis, and astrogliosis. In conclusion, the identification of molecular changes using the large-scale microarray analysis may lead to a better understanding of underlying mechanisms, thus, the development of new repair strategies for SCI.
Collapse
Affiliation(s)
- K-H Zhang
- Department of Neurobiology, Shanghai Second Medical University, 280 South Chong-Qing Road, 200025, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kadomatsu K, Muramatsu T. Midkine and pleiotrophin in neural development and cancer. Cancer Lett 2004; 204:127-43. [PMID: 15013213 DOI: 10.1016/s0304-3835(03)00450-6] [Citation(s) in RCA: 240] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2002] [Accepted: 12/26/2002] [Indexed: 01/05/2023]
Abstract
The midkine (MK) family consists of only two members, namely heparin-binding growth factors MK and pleiotrophin (PTN). During embryogenesis, MK is highly expressed in the mid-gestational period, whereas PTN expression reaches the maximum level around birth. Both proteins are localized in the radial glial processes of the embryonic brain, along which neural stem cells migrate and differentiate. Zebrafish and Xenopus MK can induce neural tissues. In addition, deposits of MK and/or PTN are found in neurodegenerative diseases, such as Alzheimer's disease and multiple system atrophy. Both molecules are induced in reactive astrocytes by ischemic insults. In this context, it is interesting that LDL receptor-related protein is a receptor for MK and PTN, and this receptor has been implicated in the pathogenesis of Alzheimer's disease. MK and PTN share receptors, and show similar biological activities that include fibrinolytic, anti-apoptotic, mitogenic, transforming, angiogenic, and chemotactic ones. These activities explain how these molecules are involved in carcinogenesis. MK is detected in human carcinoma specimens from pre-cancerous stages to advanced stages. Strong expression of PTN is also detected in several carcinomas, although, in general, MK is expressed more intensely and in a wide range of carcinomas than PTN. The blood MK level is frequently elevated in advanced human carcinomas, decreases after surgical removal of the tumors, and is correlated with prognostic factors. Thus, it is a good market for evaluating the progress of carcinomas. Furthermore, antisense oligonucleotides for MK and ribozymes for PTN show anti-tumor activity. Therefore, MK and PTN are candidate molecular targets for therapy for human carcinomas.
Collapse
Affiliation(s)
- Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | | |
Collapse
|
25
|
Nagata T, Takahashi Y, Sugahara M, Murata A, Nishida Y, Ishikawa K, Asai S. Profiling of genes associated with transcriptional responses in mouse hippocampus after transient forebrain ischemia using high-density oligonucleotide DNA array. ACTA ACUST UNITED AC 2004; 121:1-11. [PMID: 14969731 DOI: 10.1016/j.molbrainres.2003.10.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2003] [Indexed: 01/01/2023]
Abstract
Several cascades of changes in gene expression have been shown to be involved in the neuronal injury after transient cerebral ischemia; however, little is known about the profile of genes showing alteration of expression in a mouse model of transient forebrain ischemia. We analyzed the gene expression profile in the mouse hippocampus during 24 h of reperfusion, after 20 min of transient forebrain ischemia, using a high-density oligonucleotide DNA array. Using statistical filtration (Welch's ANOVA and Welch's t-test), we identified 25 genes with a more than 3.0-fold higher or lower level of expression on average, with statistical significance set at p<0.05, in at least one ischemia-reperfusion group than in the sham group. Using unsupervised clustering methods (hierarchical clustering and k-means clustering algorithms), we identified four types of gene expression pattern that may be associated with the response of cell populations in the hippocampus to an ischemic insult in this mouse model. Functional classification of the 25 genes demonstrated alterations of expression of several kinds of biological pathways, regulating transcription (Bhlhb2, Jun, c-fos, Egr1, Egr2, Fosb, Junb, Ifrd1, Neurod6), the cell cycle (c-fos, Fosb, Jun, Junb, Dusp1), stress response (Dusp1, Dnajb1, Dnaja4), chaperone activity (Dnajb1, Dnaja4) and cell death (Ptgs2, Gadd45g, Tdag51), in the mouse hippocampus by 24 h of reperfusion. Using hierarchical clustering analysis, we also found that the same 25 genes clearly discriminated between the sham group and the ischemia-reperfusion groups. The alteration of expression of 25 genes identified in this study suggests the involvement of these genes in the transcriptional response of cell populations in the mouse hippocampus after transient forebrain ischemia.
Collapse
Affiliation(s)
- Toshihito Nagata
- Department of Advanced Medicine, Nihon University, School of Medicine, 30-1 Oyaguchikami-cho, Itabashi-ku, Tokyo 173-8610, Japan.
| | | | | | | | | | | | | |
Collapse
|
26
|
Pavlov I, Lauri S, Taira T, Rauvala H. The role of ECM molecules in activity-dependent synaptic development and plasticity. ACTA ACUST UNITED AC 2004; 72:12-24. [PMID: 15054901 DOI: 10.1002/bdrc.20001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Growth and guidance of neurites (axons and dendrites) during development is the prerequisite for the establishment of functional neural networks in the adult organism. In the adult, mechanisms similar to those used during development may regulate plastic changes that underlie important nervous system functions, such as memory and learning. There is now ever-increasing evidence that extracellular matrix (ECM)-associated factors are critically involved in the formation of neuronal connections during development, and their plastic changes in the adult. Here, we review the current literature on the role of ECM components in activity-dependent synaptic development and plasticity, with the major focus on the thrombospondin type I repeat (TSR) domain-containing proteins. We propose that ECM components may modulate neuronal development and plasticity by: 1) regulating cellular motility and morphology, thus contributing to structural alterations that are associated with the expression of synaptic plasticity, 2) coordinating transsynaptic signaling during plasticity via their cell surface receptors, and 3) defining the physical parameters of the extracellular space, thereby regulating diffusion of soluble signaling molecules in the extracellular space (ECS).
Collapse
Affiliation(s)
- Ivan Pavlov
- Neuroscience Center and Department of Biosciences, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
27
|
Hida H, Jung CG, Wu CZ, Kim HJ, Kodama Y, Masuda T, Nishino H. Pleiotrophin exhibits a trophic effect on survival of dopaminergic neurons in vitro. Eur J Neurosci 2003; 17:2127-34. [PMID: 12786979 DOI: 10.1046/j.1460-9568.2003.02661.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To understand what kind of trophic factors are up-regulated in dopamine (DA)-depleted striatum, we first analysed the up-regulation of mRNAs using a DNA microarray in DA-depleted striatum where DAergic inputs were denervated by 6-OHDA. We then investigated whether or not such trophic factors had an effect on cultured dopaminergic neurons. The microarray analysis revealed that pleiotrophin (PTN), glial-derived neurotopic factor (GDNF) and others were up-regulated in DA-depleted striatum. As PTN has been reported to have a wide range of trophic effects on neurons, we focused on the functional role of PTN in the present study. The increase in PTN mRNA was confirmed by Northern blotting at 1-3 weeks after the lesion, reaching a peak at 1 week. In embryonic day 15 mesencephalic neuron culture, PTN increased the number of tyrosine hydroxylase (TH) -positive neurons in a dose-dependent manner (125.2 +/- 2.0% of the control at 50 ng/mL), while a family protein, midkine (10 ng/mL) did not show any trophic effect (99.3 +/- 0.7%). In addition, the PTN effect on DAergic neurons was additive to the GDNF effect. As PTN did not increase the number of microtubule-associated protein-2 (MAP 2)-positive neurons or promote the proliferation of dopaminergic progenitors in a bromodeoxyuridine (BrdU) labelling study, the effect appeared to enhance the specific survival of dopaminergic neurons. Expression of PTN receptors (syndecan-3, PTP-zeta) was detected on the cultured mesencephalic neurons, and also up-regulated in DA-depleted striatum. The data indicate that PTN is up-regulated in DA-depleted striatum and exhibits a trophic effect specifically on the survival of cultured dopaminergic neurons.
Collapse
Affiliation(s)
- Hideki Hida
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-Ku, Nagoya 467-8601, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Matsui F, Kawashima S, Shuo T, Yamauchi S, Tokita Y, Aono S, Keino H, Oohira A. Transient expression of juvenile-type neurocan by reactive astrocytes in adult rat brains injured by kainate-induced seizures as well as surgical incision. Neuroscience 2002; 112:773-81. [PMID: 12088737 DOI: 10.1016/s0306-4522(02)00136-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurocan is one of the major chondroitin sulfate proteoglycans expressed in nervous tissues. The expression of neurocan is developmentally regulated, and full-length neurocan is detected in juvenile brains but not in adult brains. In the present study, we demonstrated by western blot analysis that full-length neurocan transiently appeared in adult rat hippocampus when it was lesioned by kainate-induced seizures. Immunohistochemical studies showed that neurocan was detected mainly around the CA1 region although the seizure resulted in neuronal cell degeneration in both the CA1 and CA3 regions of the hippocampus. Double-labeling for neurocan mRNA and glial fibrillary acidic protein demonstrated that many reactive astrocytes expressed neurocan mRNA. The re-expression of full-length neurocan was also observed in the surgically injured adult rat brain. In contrast, the expression of other nervous tissue chondroitin sulfate proteoglycans, such as phosphacan and neuroglycan C, was not intensified but rather was either reduced in the kainate-lesioned hippocampus or in the surgically injured cerebral cortex. These observations indicate that induction of neurocan expression by reactive astrocytes is a common phenomenon in the repair process of adult brain injury, and therefore, it can be postulated that juvenile-type neurocan plays some roles in brain repair.
Collapse
Affiliation(s)
- F Matsui
- Department of Perinatology, Institute for Developmental Research, Kasugai, Aichi 480-0392, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Pavlov I, Võikar V, Kaksonen M, Lauri SE, Hienola A, Taira T, Rauvala H. Role of heparin-binding growth-associated molecule (HB-GAM) in hippocampal LTP and spatial learning revealed by studies on overexpressing and knockout mice. Mol Cell Neurosci 2002; 20:330-42. [PMID: 12093164 DOI: 10.1006/mcne.2002.1104] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heparin-binding growth-associated molecule (HB-GAM) is an extracellular matrix-associated protein with neurite outgrowth-promoting activity and which is suggested to be implicated in hippocampal synaptic plasticity. To study the functions of HB-GAM in adult brain we have produced HB-GAM overexpressing mice and compared phenotypic changes in the transgenic mice to those in the HB-GAM null mice. Both mutants were viable and displayed no gross morphological abnormalities. The basal synaptic transmission was normal in the area CA1 of hippocampal slices from the genetically modified mice. However, long-term potentiation (LTP) was attenuated in the mice overexpressing HB-GAM, whereas enhanced LTP was detected in the HB-GAM-deficient mice. Changes in LTP seen in vitro were paralleled by behavioral alterations in vivo. The animals overexpressing HB-GAM displayed faster learning in water maze and decreased anxiety in elevated plus-maze, while the HB-GAM knockouts demonstrated an opposite behavioral phenotype. These results show that HB-GAM suppresses LTP in hippocampus and plays a role in regulation of learning-related behavior.
Collapse
Affiliation(s)
- Ivan Pavlov
- Laboratory of Molecular Neurobiology, Institute of Biotechnology and Department of Biosciences, University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
30
|
Haynes L, Rumsby M. The pleiotropin/midkine family of cytokines: role in glial-neuronal signalling. PROGRESS IN BRAIN RESEARCH 2001; 132:313-24. [PMID: 11545000 DOI: 10.1016/s0079-6123(01)32085-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- L Haynes
- School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK
| | | |
Collapse
|
31
|
Zagulska-Szymczak S, Filipkowski RK, Kaczmarek L. Kainate-induced genes in the hippocampus: lessons from expression patterns. Neurochem Int 2001; 38:485-501. [PMID: 11248397 DOI: 10.1016/s0197-0186(00)00101-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Kainate, the analog of the excitatory amino acid L-glutamate, upon binding to non-NMDA glutamate receptors, causes depolarization of neurons followed by severe status epilepticus, neurodegeneration, plasticity and gliosis. These events are best observed in hippocampus, the limbic structure implicated in learning and long-term memory formation. Neurons in all hippocampal structures undergo hyper-activation, however, whereas the cells in the CA subfields degenerate within 2--3 days following the application of kainate, the granule cells of the dentate gyrus are resistant to any form of neurodegeneration and even initiate new synaptic contacts. These physiological and histological changes are modulated by short-term and long-term alterations in gene expression. Perhaps close examination of the changing spatio-temporal patterns of mRNAs of various genes may help in generating a clearer picture of the molecular events leading to complex cognitive functions.
Collapse
Affiliation(s)
- S Zagulska-Szymczak
- Department of Molecular and Cellular Neurobiology, Nencki Institute, Pasteura 3, 02-093 Warsaw, Poland
| | | | | |
Collapse
|
32
|
Rodríguez MJ, Ursu G, Bernal F, Cusí V, Mahy N. Perinatal human hypoxia-ischemia vulnerability correlates with brain calcification. Neurobiol Dis 2001; 8:59-68. [PMID: 11162240 DOI: 10.1006/nbdi.2000.0332] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Deregulation of intracellular calcium homeostasis is widely considered as one of the underlying pathophysiological mechanisms of hypoxic-ischemic brain injury. Whether this alteration can result in cerebral calcification was investigated in basal ganglia, cerebral cortex, and hippocampus of human premature and term neonates together with glial reaction. In all samples nonarteriosclerotic calcifications were observed, their number and size were area-specific and increased in term neonates. Basal ganglia always presented the highest degree of calcification and hippocampus the lowest, located mainly in the CA1 subfield. In all cases, neuronal damage was associated with astroglial reaction and calcium precipitates, with microglial reaction only in basal ganglia and cerebral cortex, and argues for the participation of excitatory amino acid receptors in hypoxia-ischemia damage. These data correlate with hypoxia-ischemia vulnerability in the perinatal period. The clinical relevance of these precipitates and the neuroprotective interest of non-NMDA receptor manipulation are discussed in the light of our results.
Collapse
Affiliation(s)
- M J Rodríguez
- Unitat de Bioquímica, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | | | | | | |
Collapse
|
33
|
Fan QW, Muramatsu T, Kadomatsu K. Distinct expression of midkine and pleiotrophin in the spinal cord and placental tissues during early mouse development. Dev Growth Differ 2000; 42:113-9. [PMID: 10830434 DOI: 10.1046/j.1440-169x.2000.00497.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Midkine and pleiotrophin comprise a family of heparin-binding growth factors, and are expressed in overlapping tissues during the mid- to late-gestation periods of mouse development. Their distinct expression during early mouse development, as revealed by in situ hybridization, was reported. Midkine was expressed in the embryonic ectoderm from as early as embryonic day (E5.5). In the neural tube midkine was expressed specifically in the neuroepithelium, that is, in the whole area of the neural tube at E9.5, and in the ventricular zone from E10.5-13.5. At E15.5, when the neuroepithelium disappeared, midkine concomitantly became undetectable. In contrast, pleiotrophin expression started exclusively in the neural plate at E8.5, and in the lateral plate of the neural tube at E9.5. It then became restricted to a dorsal ventricular zone from E11.5-13.5, and finally to the central gray neurons at E15.5. Moreover, pleiotrophin was expressed in the ventral horns. Among placental tissues, midkine was detected in the chorion, the fetal component of the placenta, whereas pleiotrophin was found in the decidua basalis, the maternal component of the placenta. The distinct expression of midkine and pleiotrophin suggests their differential role in early development.
Collapse
Affiliation(s)
- Q W Fan
- Department of Biochemistry, Nagoya University School of Medicine, Japan
| | | | | |
Collapse
|
34
|
Rumsby M, Suggitt F, Haynes L, Hughson E, Kidd D, McNulty S. Substratum of pleiotrophin (HB-GAM) stimulates rat CG-4 line oligodendrocytes to adopt a bipolar morphology and disperse: primary O-2A progenitor glial cells disperse similarly on pleiotrophin. Glia 1999; 26:361-7. [PMID: 10383055 DOI: 10.1002/(sici)1098-1136(199906)26:4<361::aid-glia10>3.0.co;2-q] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pleiotrophin (HB-GAM), an extracellular matrix-associated protein with a high content of basic amino acid residues, is expressed in the central nervous system during late pre- and early post-natal development and promotes neurite outgrowth in vitro. Here, we show that, on a substratum of pleiotrophin formed from a 5 or 10 microg/ml solution, undifferentiated rat CG-4 line oligodendrocytes adopt a bipolar morphology and disperse over the substratum, as we have previously shown with poly-L-lysine (Rumsby et al. Neurosci. Res. Commun. 23:101-109, 1998). On pleiotrophin substrata formed from coating solutions of 1 microg/ml and below, CG-4 line cells form aggregates and do not disperse, as is also the case with poly-L-lysine. The same dispersing effect is observed with rat primary 0-2A progenitor glial cells on pleiotrophin substrata from solutions of 5 and 10 microg/ml: 0-2A cells aggregate together on pleiotrophin substrata formed from lower concentrations and do not disperse. A pleiotrophin substratum enhances proliferation of CG-4 line oligodendrocytes and primary 0-2A progenitor glial cells. The results show that pleiotrophin provides a substratum that can influence progenitor oligodendrocyte morphology, aid cell dispersion, and perhaps also enhance progenitor oligodendrocyte cell growth.
Collapse
Affiliation(s)
- M Rumsby
- Department of Biology, University of York, England.
| | | | | | | | | | | |
Collapse
|
35
|
Miyashiro M, Kadomatsu K, Ogata N, Yamamoto C, Takahashi K, Uyama M, Muramatsu H, Muramatsu T. Midkine expression in transient retinal ischemia in the rat. Curr Eye Res 1998; 17:9-13. [PMID: 9472465 DOI: 10.1076/ceyr.17.1.9.5257] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Midkine (MK), a 13-kDa heparin-binding growth factor, is known to exert neurotrophic activities on various nerve cells including retinal cells. To initiate studies toward determining the physiological role of endogenous MK, we investigated the spatial and temporal expression profile of MK before and after intraocular pressure-induced retinal ischemia. METHODS Retinal ischemia was induced in Wistar strain rats by increasing the intraocular pressure to 110 mm Hg for 45 min via cannulation into the anterior chamber. The localization and abundance of the MK protein and mRNA were determined by the use of immunohistochemistry and in situ hybridization in the normal retina, as well as the retina after reperfusion. The protein expression profile was confirmed by Western blot analysis. RESULTS Immunohistochemical analysis showed that MK protein was expressed in the ganglion cell layer, the inner portion of the inner nuclear layer, and in the retinal pigment epithelium of the normal rat. MK expression transiently decreased 3 h to 2 days after reperfusion, and then dramatically increased to a level higher than normal after 7 to 28 days. The temporal expression profile of the MK protein was confirmed by Western blot analysis. In situ hybridization analysis gave results comparable to those obtained with immunohistochemistry. CONCLUSIONS MK was expressed in the neural cells of the retina in the normal state, but became more abundant after pressure-induced retinal ischemia. Thus, endogenous MK responds to ischemic treatment by an initial decrease in expression and then a period of expression above basal levels.
Collapse
Affiliation(s)
- M Miyashiro
- Department of Ophthalmology, Kansai Medical University, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Mochizuki R, Takeda A, Sato N, Kimpara T, Onodera H, Itoyama Y, Muramatsu T. Induction of midkine expression in reactive astrocytes following rat transient forebrain ischemia. Exp Neurol 1998; 149:73-8. [PMID: 9454616 DOI: 10.1006/exnr.1997.6687] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Midkine (MK), a retinoic acid-responsive gene product, is a 13-kDa heparin-binding protein with neurotropic activity. Previous studies demonstrated the expression of MK in embryonal and neonatal brains and its potent neurotropic activities in vitro. Data concerning its role in the mature central nervous system, however, are still limited. We examined the changes of MK expression in the adult rat brain following transient forebrain ischemia, by Northern blot, in situ hybridization and immunohistochemical analyses. In the control brain, MK mRNA was expressed in the cortical and hippocampal neurons. Following the ischemia, up-regulation of MK mRNA and a corresponding increase of its protein products were found in the hippocampal CA1 subfield. The maximal expression was demonstrated on day 4 after the insult. The cells expressing MK were distributed around the depleted CA1 pyramidal cells and identified as reactive astrocytes by double immunostaining. These data suggest that MK may be an insult-induced molecule which participates in the reparative processes following neuronal injury.
Collapse
Affiliation(s)
- R Mochizuki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Lauri SE, Rauvala H, Kaila K, Taira T. Effect of heparin-binding growth-associated molecule (HB-GAM) on synaptic transmission and early LTP in rat hippocampal slices. Eur J Neurosci 1998; 10:188-94. [PMID: 9753126 DOI: 10.1046/j.1460-9568.1998.00039.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heparin-binding growth-associated molecule (HB-GAM) is an 18-kDa developmentally regulated protein, which promotes neurite outgrowth, axonal guidance and synaptogenesis through interaction with cell-surface heparan-sulphate proteoglycans. We have studied the effect of HB-GAM on synaptic transmission and long-term potentiation (LTP) in the area CA1 of rat hippocampal slices, where HB-GAM mRNA is expressed in an activity-dependent manner. Injection of recombinant HB-GAM into the dendritic area inhibited tetanus-induced LTP without affecting baseline synaptic responses or the N-methyl-D-aspartate (NMDA)-receptor mediated transmission. HB-GAM did not depotentiate tetanus-induced LTP or prevent heterosynaptic LTP induced by application of tetraethylammonium (TEA), indicating that the effect was limited to early, synapse-specific stages of LTP induction. These results suggest that HB-GAM is involved in the regulation of synaptic plasticity in hippocampus.
Collapse
Affiliation(s)
- S E Lauri
- Department of Biosciences, University of Helsinki, Finland
| | | | | | | |
Collapse
|
38
|
Ridet JL, Malhotra SK, Privat A, Gage FH. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 1997; 20:570-7. [PMID: 9416670 DOI: 10.1016/s0166-2236(97)01139-9] [Citation(s) in RCA: 1337] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
For several decades, the reactive gliosis that occurs after an injury to the CNS has been considered one of the major impediments to axonal regeneration. Nevertheless, recent studies have suggested that in certain conditions, reactive astrocytes may provide a permissive substratum to support axonal regrowth. The important criteria, allowing for the distinction between permissive and non-permissive gliosis, are the ultrastructural 3D organization of the scar and more importantly the recognition molecules expressed by reactive astrocytes. Reactive astrocytes express surface molecules and produce various neurotrophic factors and cytokines. The latter in turn might modulate the production of recognition molecules by reactive astrocytes, allowing them to support post-lesional axonal regrowth. Although numerous recent articles have focused on cytokines and cell adhesion molecules, scant attention has been paid to reactive astrocytes. Reactive astrocytes should be considered a key element, like neurons, of a dynamic environment, thus forming with neurons a functional unit involved in homeostasis, plasticity and neurotransmission. Attempts are in progress to identify molecular markers for reactive astrocytes.
Collapse
Affiliation(s)
- J L Ridet
- INSERM U. 336, Université Montpellier II, Montpellier, France
| | | | | | | |
Collapse
|
39
|
Kadomatsu K, Hagihara M, Akhter S, Fan QW, Muramatsu H, Muramatsu T. Midkine induces the transformation of NIH3T3 cells. Br J Cancer 1997; 75:354-9. [PMID: 9020479 PMCID: PMC2063356 DOI: 10.1038/bjc.1997.58] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Midkine (MK) is a heparin-binding growth factor and is frequently expressed at high levels in many human carcinomas. To investigate further the roles of MK in the regulation of cell growth, we introduced MK expression in NIH3T3 cells. A mixture of transfectants of an MK expression vector, but not a control vector, formed colonies in soft agar, showed an elevated cell number at confluence, and formed tumours in nude mice. An interesting characteristic of the transformed cells was that they became spontaneously detached from the culture dish substratum. In the transformed cells, MK was not only secreted, but also localized, in the perinuclear region as spots. The present data indicate that MK has the potential to transform NIH3T3 cells and suggest that overexpression of the MK gene may promote unregulated cell growth in vivo.
Collapse
Affiliation(s)
- K Kadomatsu
- Department of Biochemistry, Nagoya University School of Medicine, Tsurumai-cho, Showa-ku, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Takeda A, Kimpara T, Onodera H, Itoyama Y, Shibahara S, Kogure K. Regional difference in induction of heme oxygenase-1 protein following rat transient forebrain ischemia. Neurosci Lett 1996; 205:169-72. [PMID: 8852585 DOI: 10.1016/0304-3940(96)12405-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Heme oxygenase (HO) is a rate-limiting enzyme in heme catabolism, the end products of which include iron, carbon monoxide and bilirubin. We investigated the changes in expression of an inducible form, heme oxygenase-1 (HO-1), and a constitutive form, HO-2, in rat brain following 20 min of forebrain ischemia, using specific antisera for HO-1 and HO-2. HO-1 protein was remarkably induced in brain following ischemia, while the level of HO-2 protein was not noticeably affected. The level of HO-1 protein expression was maximal at 12 h, which is in good agreement with the time course of the HO-1 mRNA induction. In the cortical mantle, most of the cells expressing increased HO-1 protein were identified as pyramidal neurons and astrocytes by their shapes and locations. In hippocampal CA-2 and CA-3 subfields, prominent induction was observed in astrocytes rather than in neuronal cells. By contrast, the HO-1 protein was not detected in the CA1 subfield following the insult, although the increased level of transcripts was evident in neurons and glial cells. These results suggest that not only in neuronal cells but also in astrocytes within the CA1 subfield, there may be an impairment of protein metabolism, preceding the delayed CA1 pyramidal cell losses.
Collapse
Affiliation(s)
- A Takeda
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | |
Collapse
|