1
|
Hirono M, Yanagawa Y. Endocannabinoids regulate cerebellar GABAergic transmission in a synapse type-dependent manner. J Neurosci Res 2020; 99:898-913. [PMID: 33271631 DOI: 10.1002/jnr.24765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/03/2020] [Accepted: 11/14/2020] [Indexed: 12/28/2022]
Abstract
Endocannabinoids (eCBs) act as ubiquitous modulators of synaptic transmission via the activation of cannabinoid receptors (CBRs). Cerebellar Purkinje cells (PCs) make strong inhibitory synaptic contacts not only with neurons in the deep cerebellar nuclei (DCN) but also with Lugaro cells and globular cells, whose cell bodies are located underneath the PC layer. However, little is known about the modulatory actions of eCBs on GABA release from PC axon terminals. Here, we examined the effects of eCBs on the GABAergic transmission at PC-globular cell synapses and PC-large DCN neuron synapses electrophysiologically using mouse cerebellar slices. We showed that the types 1 and 2 CBR agonist WIN55212 did not affect either spontaneous or miniature inhibitory postsynaptic currents (IPSCs) in globular cells under control conditions and in a state of enhanced synaptic activity. By contrast, another Gi/o protein-coupled receptor agonist, baclofen, significantly reduced the miniature IPSC frequency in globular cells. WIN55212 had no effects on IPSCs in large DCN neurons. A type 2 CBR agonist, HU308, also had no effects on IPSCs in either globular cells or large DCN neurons. Moreover, the PCs' target neurons did not elicit depolarization-induced suppression of inhibition. These results suggest the lack of a functional role of CBRs at PCs' axon terminals. This is in sharp contrast to the fact that PCs receive abundant excitatory and inhibitory inputs that are under eCB-mediated presynaptic inhibitory modulation. The actions of eCBs are selective to distinct synapses and possibly contribute to information processes and rigorous signal transmission in the cerebellum.
Collapse
Affiliation(s)
- Moritoshi Hirono
- Organization for Research Initiatives and Development, Doshisha University, Kyoto, Japan.,Laboratory for Motor Learning Control, RIKEN BSI, Wako, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
2
|
Brandalise F, Gerber U, Rossi P. Golgi cell-mediated activation of postsynaptic GABA(B) receptors induces disinhibition of the Golgi cell-granule cell synapse in rat cerebellum. PLoS One 2012; 7:e43417. [PMID: 22937048 PMCID: PMC3425594 DOI: 10.1371/journal.pone.0043417] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/20/2012] [Indexed: 12/24/2022] Open
Abstract
In the cerebellar glomerulus, GABAergic synapses formed by Golgi cells regulate excitatory transmission from mossy fibers to granule cells through feed-forward and feedback mechanisms. In acute cerebellar slices, we found that stimulating Golgi cell axons with a train of 10 impulses at 100 Hz transiently inhibited both the phasic and the tonic components of inhibitory responses recorded in granule cells. This effect was blocked by the GABAB receptor blocker CGP35348, and could be mimicked by bath-application of baclofen (30 µM). This depression of IPSCs was prevented when granule cells were dialyzed with GDPβS. Furthermore, when synaptic transmission was blocked, GABAA currents induced in granule cells by localized muscimol application were inhibited by the GABAB receptor agonist baclofen. These findings indicate that postsynaptic GABAB receptors are primarily responsible for the depression of IPSCs. This inhibition of inhibitory events results in an unexpected excitatory action by Golgi cells on granule cell targets. The reduction of Golgi cell-mediated inhibition in the cerebellar glomerulus may represent a regulatory mechanism to shift the balance between excitation and inhibition in the glomerulus during cerebellar information processing.
Collapse
Affiliation(s)
- Federico Brandalise
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, University of Pavia, Pavia, Italy
- Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Urs Gerber
- Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Paola Rossi
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, University of Pavia, Pavia, Italy
- * E-mail:
| |
Collapse
|
3
|
Tadayonnejad R, Anderson D, Molineux ML, Mehaffey WH, Jayasuriya K, Turner RW. Rebound discharge in deep cerebellar nuclear neurons in vitro. THE CEREBELLUM 2011; 9:352-74. [PMID: 20396983 PMCID: PMC2949560 DOI: 10.1007/s12311-010-0168-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neurons of the deep cerebellar nuclei (DCN) play a critical role in defining the output of cerebellum in the course of encoding Purkinje cell inhibitory inputs. The earliest work performed with in vitro preparations established that DCN cells have the capacity to translate membrane hyperpolarizations into a rebound increase in firing frequency. The primary means of distinguishing between DCN neurons has been according to cell size and transmitter phenotype, but in some cases, differences in the firing properties of DCN cells maintained in vitro have been reported. In particular, it was shown that large diameter cells in the rat DCN exhibit two phenotypes of rebound discharge in vitro that may eventually help define their functional roles in cerebellar output. A transient burst and weak burst phenotype can be distinguished based on the frequency and pattern of rebound discharge immediately following a hyperpolarizing stimulus. Work to date indicates that the difference in excitability arises from at least the degree of activation of T-type Ca(2+) current during the immediate phase of rebound firing and Ca(2+)-dependent K(+) channels that underlie afterhyperpolarizations. Both phenotypes can be detected following stimulation of Purkinje cell inhibitory inputs under conditions that preserve resting membrane potential and natural ionic gradients. In this paper, we review the evidence supporting the existence of different rebound phenotypes in DCN cells and the ion channel expression patterns that underlie their generation.
Collapse
Affiliation(s)
- Reza Tadayonnejad
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta Canada T2N 4N1
| | - Dustin Anderson
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta Canada T2N 4N1
| | - Michael L. Molineux
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta Canada T2N 4N1
| | - W. Hamish Mehaffey
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta Canada T2N 4N1
| | - Kusala Jayasuriya
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta Canada T2N 4N1
| | - Ray W. Turner
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta Canada T2N 4N1
- Hotchkiss Brain Institute, HRIC 1AA14, University of Calgary, 3330 Hospital Dr. N.W., Calgary, Alberta Canada T2N 4N1
| |
Collapse
|
4
|
Ishii H, Nakajo K, Yanagawa Y, Kubo Y. Identification and characterization of Cs+-permeable K+ channel current in mouse cerebellar Purkinje cells in lobules 9 and 10 evoked by molecular layer stimulation. Eur J Neurosci 2010; 32:736-48. [DOI: 10.1111/j.1460-9568.2010.07336.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Zheng N, Raman IM. Synaptic inhibition, excitation, and plasticity in neurons of the cerebellar nuclei. THE CEREBELLUM 2010; 9:56-66. [PMID: 19847585 DOI: 10.1007/s12311-009-0140-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neurons of the cerebellar nuclei generate the non-vestibular output of the cerebellum. Like other neurons, they integrate excitatory and inhibitory synaptic inputs and filter them through their intrinsic properties to produce patterns of action potential output. The synaptic and intrinsic features of cerebellar nuclear cells are unusual in several respects, however: these neurons receive an overwhelming amount of basal and driven inhibition from Purkinje neurons, but are also spontaneously active, producing action potentials even without excitation. Moreover, not only is spiking by nuclear cells sensitive to the amount of inhibition, but the strength of inhibition is also sensitive to the amount of spiking, through multiple forms of long-term plasticity. Here, we review the properties of synaptic excitation and inhibition, their short-term plasticity, and their influence on action potential firing of cerebellar nuclear neurons, as well as the interactions among excitation, inhibition, and spiking that produce long-term changes in synaptic strength. The data provide evidence that electrical and synaptic signaling in the cerebellar circuit is both plastic and resilient: the strength of IPSPs and EPSPs readily changes as the activity of cerebellar nuclear cells is modified. Notably, however, many of the identified forms of plasticity have an apparently homeostatic effect, responding to perturbations of input by restoring cerebellar output toward pre-perturbation values. Such forms of self-regulation appear consistent with the role of cerebellar output in coordinating movements. In contrast, other forms of plasticity in nuclear cells, including a long-term potentiation of excitatory postsynaptic currents (EPSCs) and excitation-driven increases in intrinsic excitability, are non-homeostatic, and instead appear suited to bring the circuit to a new set point. Interestingly, the combinations of inhibitory and excitatory stimuli that potentiate EPSCs resemble patterns of activity predicted to occur during eyelid conditioning, suggesting that this form long-term potentiation, perhaps amplified by intrinsic plasticity, may represent a cellular mechanism that is engaged during cerebellar learning.
Collapse
Affiliation(s)
- Nan Zheng
- Northwestern University Interdepartmental Neuroscience Program, Evanston, IL 60208, USA
| | | |
Collapse
|
6
|
Ca currents activated by spontaneous firing and synaptic disinhibition in neurons of the cerebellar nuclei. J Neurosci 2009; 29:9826-38. [PMID: 19657035 DOI: 10.1523/jneurosci.2069-09.2009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In neurons of the cerebellar nuclei, long-term potentiation of EPSCs is induced by high-frequency synaptic excitation by mossy fibers followed by synaptic inhibition by Purkinje cells. Induction requires activation of synaptic receptors as well as voltage-gated Ca channels. To examine how Purkinje-mediated inhibition of nuclear neurons affects Ca levels during plasticity-inducing stimuli, we have combined electrophysiology, Ca imaging, and pharmacology of cerebellar nuclear neurons in mouse cerebellar slices. We find that spontaneous firing generates tonic Ca signals in both somata and dendrites, which drop during 500 ms, 100 Hz trains of Purkinje IPSPs or hyperpolarizing steps. Although the presence of low-voltage-activated (T-type) Ca channels in nuclear neurons has fostered the inference that disinhibition activates these channels, synaptic inhibition with a physiological chloride equilibrium potential (E(Cl)) (-75 mV) fails to hyperpolarize neurons sufficiently for T-type channels to recover substantially. Consequently, after IPSPs, Ca signals return to baseline, although firing is accelerated by approximately 20 Hz for approximately 300 ms. Only after hyperpolarizations beyond E(Cl) does Ca rise gradually beyond baseline, as firing further exceeds spontaneous rates. Cd(2+) (100 microm), which nearly eliminates L-type, N-type, P/Q-type, and R-type Ca currents while sparing approximately one-half the T-type current, prevents Ca changes during and after hyperpolarizations to E(Cl). Thus, high-frequency IPSPs in cerebellar nuclear neurons evoke little postinhibitory current through T-type channels. Instead, inhibition regulates Ca levels simply by preventing action potentials, which usually permit Ca influx through high-voltage-activated channels. The decreases and restoration of Ca levels associated with Purkinje-mediated inhibition are likely to contribute to synaptic plasticity.
Collapse
|
7
|
Mapelli L, Rossi P, Nieus T, D'Angelo E. Tonic activation of GABAB receptors reduces release probability at inhibitory connections in the cerebellar glomerulus. J Neurophysiol 2009; 101:3089-99. [PMID: 19339456 DOI: 10.1152/jn.91190.2008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the cerebellum, granule cells are inhibited by Golgi cells through GABAergic synapses generating complex responses involving both phasic neurotransmitter release and the establishment of ambient gamma-aminobutyric acid (GABA) levels. Although at this synapse the mechanisms of postsynaptic integration have been clarified to a considerable extent, the mechanisms of neurotransmitter release remained largely unknown. Here we have investigated the quantal properties of release during repetitive neurotransmission, revealing that tonic GABA(B) receptor activation by ambient GABA regulates release probability. Blocking GABA(B) receptors with CGP55845 enhanced the first inhibitory postsynaptic current (IPSC) and short-term depression in a train while reducing trial-to-trial variability and failures. The changes caused by CGP55845 were similar to those caused by increasing extracellular Ca(2+) concentration, in agreement with a presynaptic GABA(B) receptor modulation of release probability. However, the slow tail following IPSC peak demonstrated a remarkable temporal summation and was not modified by CGP55845 or extracellular Ca(2+) increase. This result shows that tonic activation of presynaptic GABA(B) receptors by ambient GABA selectively regulates the onset of inhibition bearing potential consequences for the dynamic regulation of signal transmission through the mossy fiber-granule cell pathway of the cerebellum.
Collapse
Affiliation(s)
- Lisa Mapelli
- Department of Physiological and Pharmacological Sciences and National Consortium for the Physics of Matter, University of Pavia, I-27100 Pavia, Italy
| | | | | | | |
Collapse
|
8
|
Pugh JR, Raman IM. Nothing can be coincidence: synaptic inhibition and plasticity in the cerebellar nuclei. Trends Neurosci 2009; 32:170-7. [PMID: 19178955 DOI: 10.1016/j.tins.2008.12.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Revised: 11/29/2008] [Accepted: 12/01/2008] [Indexed: 12/28/2022]
Abstract
Many cerebellar neurons fire spontaneously, generating 10-100 action potentials per second even without synaptic input. This high basal activity correlates with information-coding mechanisms that differ from those of cells that are quiescent until excited synaptically. For example, in the deep cerebellar nuclei, Hebbian patterns of coincident synaptic excitation and postsynaptic firing fail to induce long-term increases in the strength of excitatory inputs. Instead, excitatory synaptic currents are potentiated by combinations of inhibition and excitation that resemble the activity of Purkinje and mossy fiber afferents that is predicted to occur during cerebellar associative learning tasks. Such results indicate that circuits with intrinsically active neurons have rules for information transfer and storage that distinguish them from other brain regions.
Collapse
Affiliation(s)
- Jason R Pugh
- Vollum Institute, Oregon Health Science University, Portland, OR 97201, USA
| | | |
Collapse
|
9
|
Xu JY, Yang B, Sastry BR. The involvement of GABA-C receptors in paired-pulse depression of inhibitory postsynaptic currents in rat hippocampal CA1 pyramidal neurons. Exp Neurol 2008; 216:243-6. [PMID: 19100735 DOI: 10.1016/j.expneurol.2008.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/04/2008] [Accepted: 11/19/2008] [Indexed: 11/25/2022]
Abstract
In rat hippocampal CA1 pyramidal neurons, gamma-aminobutyric acid (GABA) A receptor-mediated inhibitory postsynaptic currents (IPSCs) undergo a paired-pulse depression (PPD) by the second of two pulses, with inter-pulse intervals of 100-2000 ms, applied to the stratum radiatum. While GABA-C receptors are described in the CA1 area, their functional significance is unknown. In this study, the involvement of GABA-C receptors in PPD was examined using an in vitro hippocampal slice preparation. IPSCs evoked by stimulations in stratum radiatum were recorded with patch pipettes from CA1 pyramidal cells. PPD, when induced in the above fashion, was blocked by the GABA-C receptor antagonist (1,2,5,6-Tetrahydropyridin-4-yl) methylphosphinic acid (TPMPA, 10 muM, applied in the superfusing medium). GABA-A and GABA-B receptor-mediated IPSCs, as well as the baclofen-induced suppression of the GABA-A receptor mediated IPSC, were not antagonized by TPMPA (10-20 muM). These results indicate that PPD of the IPSC is mediated by the activation of GABA-C receptors.
Collapse
Affiliation(s)
- J-Y Xu
- Neuroscience Research Laboratory, Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
10
|
Mechanisms of potentiation of mossy fiber EPSCs in the cerebellar nuclei by coincident synaptic excitation and inhibition. J Neurosci 2008; 28:10549-60. [PMID: 18923031 DOI: 10.1523/jneurosci.2061-08.2008] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurons of the cerebellar nuclei receive synaptic excitation from cerebellar mossy fibers. Unlike in many principal neurons, coincident presynaptic activity and postsynaptic depolarization do not generate long-term potentiation at these synapses. Instead, EPSCs are potentiated by high-frequency trains of presynaptic activity applied with postsynaptic hyperpolarization, in patterns resembling mossy-fiber-mediated excitation and Purkinje-cell-mediated inhibition that are predicted to occur during delay eyelid conditioning. Here, we have used electrophysiology and Ca imaging to test how synaptic excitation and inhibition interact to generate long-lasting synaptic plasticity in nuclear cells in cerebellar slices. We find that the extent of plasticity varies with the relative timing of synaptic excitation and hyperpolarization. Potentiation is most effective when synaptic stimuli precede the postinhibitory rebound by approximately 400 ms, whereas with longer intervals, or with a reverse sequence, EPSCs tend to depress. When basal intracellular Ca is raised by spontaneous firing or reduced by voltage clamping at subthreshold potentials, potentiation is induced as long as the synaptic-rebound temporal sequence is maintained, suggesting that plasticity does not require Ca levels to exceed a threshold or attain a specific concentration. Although rebound and spike-dependent Ca influx are global, potentiation is synapse specific, and is disrupted by inhibitors of calcineurin or Ca-calmodulin-dependent protein kinase II, but not PKC. When IPSPs replace the hyperpolarizing step in the induction protocol, potentiation proceeds normally. These results lead us to propose that synaptic and inhibitory/rebound stimuli initiate separate processes, with local NMDA receptor-mediated Ca influx "priming" synapses, and Ca changes from the inhibition and rebound "triggering" potentiation at recently activated synapses.
Collapse
|
11
|
Chen K, Li HZ, Ye N, Zhang J, Wang JJ. Role of GABAB receptors in GABA and baclofen-induced inhibition of adult rat cerebellar interpositus nucleus neurons in vitro. Brain Res Bull 2006; 67:310-8. [PMID: 16182939 DOI: 10.1016/j.brainresbull.2005.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 07/05/2005] [Indexed: 10/25/2022]
Abstract
Previous studies suggested that the postsynaptic GABA(B) receptors of deep cerebellar nuclear neurons of adult rats were not activated by selective GABA(B) receptor agonist baclofen or endogenous GABA released by cerebellar cortical Purkinje cells, although the receptors have been demonstrated to exist in the deep cerebellar nuclei. In this study, cerebellar slices of adult rats were prepared for testing effects of GABA, baclofen and muscimol (selective GABA(A) receptor agonist) on cerebellar interpositus nucleus (IN) neurons. Perfusing slices with GABA (10-1000 microM), baclofen (1-30 microM) and muscimol (1-100 microM) respectively produced a dose-dependent inhibitory response on the IN neurons (n = 39, 62 and 50), which was not blocked by low-Ca(2+)/high-Mg(2+) medium (n = 5, 6 and 6), supporting a direct postsynaptic action of these GABAergic agonists. Moreover, both selective GABA(B) receptor antagonist CGP35348 and selective GABA(A) receptor antagonist bicuculline were capable of partially blocking the inhibitory response of IN neurons to GABA (n = 14 and 11), suggesting that the GABA-induced inhibition may contain two components, a GABA(B) receptors-mediated component and a GABA(A) receptors-mediated one. Further experiments revealed that not only muscimol (n = 50) but also baclofen (n = 62) suppressed IN cells' activity. The baclofen-induced inhibition was selectively blocked by CGP35348 (n = 12) but not by bicuculline (n = 8), whereas the muscimol-induced inhibition was selectively antagonized by bicuculline (n = 8) instead of CGP35348 (n = 9). These results indicate that GABA(B) receptors in the IN neurons can be activated not only by GABA but also by baclofen, suggesting that besides GABA(A) receptors, GABA(B) receptors may also be involved in mediating the inhibitory effect of GABA on cerebellar IN neurons of adult rats.
Collapse
Affiliation(s)
- Kun Chen
- Department of Biological Science and Technology, School of Life Sciences, Mailbox 426, Nanjing University, China
| | | | | | | | | |
Collapse
|
12
|
Zhang W, Shin JH, Linden DJ. Persistent changes in the intrinsic excitability of rat deep cerebellar nuclear neurones induced by EPSP or IPSP bursts. J Physiol 2004; 561:703-19. [PMID: 15498810 PMCID: PMC1665390 DOI: 10.1113/jphysiol.2004.071696] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The deep cerebellar nuclei (DCN) are the major output of the cerebellum, and have been proposed as a site of memory storage for certain forms of motor learning. Microelectrode and whole-cell patch recordings were performed on DCN neurones in acute slices of juvenile rat cerebellum. DCN neurones display tonic and bursting basal firing patterns. In tonically firing neurones, a stimulus consisting of EPSP bursts produced a brief increase in dendritic Ca(2+) concentration and a persistent increase in the number of spikes elicited by a depolarizing test pulse, along with a decrease in spike threshold. In intrinsically bursting DCN neurones, EPSP bursts induced an increase in the number of depolarization-evoked spikes in some neurones, but in others produced a change to a more tonic firing pattern. Application of IPSP bursts evoked a large number of rebound spikes and an associated dendritic Ca(2+) transient, which also produced a persistent increase in the number of spikes elicited by a test pulse. Intracellular perfusion of the Ca(2+) chelator BAPTA prevented the increase in intrinsic excitability. Thus, rapid changes in intrinsic excitability in the DCN may be driven by bursts of both EPSPs and IPSPs, and may result in persistent changes to both firing frequency and pattern.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neuroscience, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, 916 Hunterian Building, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
13
|
Porter JT, Nieves D. Presynaptic GABAB receptors modulate thalamic excitation of inhibitory and excitatory neurons in the mouse barrel cortex. J Neurophysiol 2004; 92:2762-70. [PMID: 15254073 PMCID: PMC3677950 DOI: 10.1152/jn.00196.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cortical inhibition plays an important role in the processing of sensory information, and the enlargement of receptive fields by the in vivo application of GABAB receptor antagonists indicates that GABAB receptors mediate some of this cortical inhibition. Although there is evidence of postsynaptic GABAB receptors on cortical neurons, there is no evidence of GABAB receptors on thalamocortical terminals. Therefore to determine if presynaptic GABAB receptors modulate the thalamic excitation of layer IV inhibitory neurons and excitatory neurons in layers II-III and IV of the somatosensory "barrel" cortex of mice, we used a thalamocortical slice preparation and patch-clamp electrophysiology. Stimulation of the ventrobasal thalamus elicited excitatory postsynaptic currents (EPSCs) in cortical neurons. Bath application of baclofen, a selective GABAB receptor agonist, reversibly decreased AMPA receptor-mediated and N-methyl-D-aspartate (NMDA) receptor-mediated EPSCs in inhibitory and excitatory neurons. The GABAB receptor antagonist, CGP 35348, reversed the inhibition produced by baclofen. Blocking the postsynaptic GABAB receptor-mediated effects with a Cs+ -based recording solution did not affect the inhibition, suggesting a presynaptic effect of baclofen. Baclofen reversibly increased the paired-pulse ratio and the coefficient of variation, consistent with the presynaptic inhibition of glutamate release. Our results indicate that the presynaptic activation of GABAB receptors modulates thalamocortical excitation of inhibitory and excitatory neurons and provide another mechanism by which cortical inhibition can modulate the processing of sensory information.
Collapse
Affiliation(s)
- James T Porter
- Department of Pharmacology and Toxicology, Ponce School of Medicine, Ponce, Puerto Rico, 00732.
| | | |
Collapse
|
14
|
Luján R, Shigemoto R, Kulik A, Juiz JM. Localization of the GABAB receptor 1a/b subunit relative to glutamatergic synapses in the dorsal cochlear nucleus of the rat. J Comp Neurol 2004; 475:36-46. [PMID: 15176083 DOI: 10.1002/cne.20160] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabotropic gamma-aminobutyric acid receptors (GABA(B)) are involved in pre- and postsynaptic inhibitory effects upon auditory neurons and have been implicated in different aspects of acoustic information processing. To understand better the mechanisms by which GABA(B) receptors mediate their inhibitory effects, we used pre-embedding immunocytochemical techniques combined with quantification of immunogold particles to reveal the precise subcellular distribution of the GABA(B1) subunit in the rat dorsal cochlear nucleus. At the light microscopic level, GABA(B1) was detected in all divisions of the cochlear complex. The most intense immunoreactivity for GABA(B1) was found in the dorsal cochlear nucleus, whereas immunoreactivity in the anteroventral and posteroventral cochlear nuclei was very low. In the dorsal cochlear nucleus, a punctate labeling was observed in the superficial (molecular and fusiform cell) layers. At the electron microscopic level, GABA(B1) was found at both post- and presynaptic locations. Postsynaptically, GABA(B1) was localized mainly in the dendritic spines of presumed fusiform cells. Quantitative immunogold immunocytochemistry revealed that the highest concentration of GABA(B1) in the plasma membrane was in dendritic spines, followed by dendritic shafts and somata. Thus, the most intense immunoreactivity for GABA(B1) was observed in dendritic spines with a high density of immunogold particles at extrasynaptic sites, peaking around 300 nm from glutamatergic synapses. This is in contrast to GABAergic synapses, in which GABA(B1) was only occasionally found. Presynaptically, receptor immunoreactivity was detected primarily in axospinous endings, probably from granule cells, in both the active zone and extrasynaptic sites. The localization of GABA(B1) relative to synaptic sites in the DCN suggests a role for the receptor in the regulation of dendritic excitability and excitatory inputs.
Collapse
Affiliation(s)
- Rafael Luján
- Facultad de Medicina-Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Campus Biosanitario, 02006 Albacete, Spain
| | | | | | | |
Collapse
|
15
|
Telgkamp P, Padgett DE, Ledoux VA, Woolley CS, Raman IM. Maintenance of High-Frequency Transmission at Purkinje to Cerebellar Nuclear Synapses by Spillover from Boutons with Multiple Release Sites. Neuron 2004; 41:113-26. [PMID: 14715139 DOI: 10.1016/s0896-6273(03)00802-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cerebellar Purkinje neurons maintain high firing rates but their synaptic terminals depress only moderately, raising the question of how vesicle depletion is minimized. To identify mechanisms that limit synaptic depression, we evoked 100 Hz trains of GABAergic inhibitory postsynaptic currents (IPSCs) in cerebellar nuclear neurons by stimulating Purkinje axons in mouse brain slices. The paired-pulse ratio (IPSC(2)/IPSC(1)) of the total IPSC was approximately 1 and the steady-state ratio (IPSC(20)/IPSC(1)) was approximately 0.5, suggesting a high response probability of postsynaptic receptors, without an unusually high release probability. Three-dimensional electron microscopic reconstructions of Purkinje boutons revealed multiple active zones without intervening transporters, suggestive of "spillover"-mediated transmission. Simulations of boutons with 10-16 release sites, in which transmitter from any site can reach all receptors opposite the bouton, replicated multiple-pulse depression during normal, high, and low presynaptic Ca influx. These results suggest that release from multiple-site boutons limits depletion-based depression, permitting prolonged, high-frequency inhibition at corticonuclear synapses.
Collapse
Affiliation(s)
- Petra Telgkamp
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | | |
Collapse
|
16
|
Pedroarena CM, Schwarz C. Efficacy and short-term plasticity at GABAergic synapses between Purkinje and cerebellar nuclei neurons. J Neurophysiol 2003; 89:704-15. [PMID: 12574448 DOI: 10.1152/jn.00558.2002] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although the entire output of the cerebellar cortex is conveyed to the deep cerebellar nuclei neurons (DCNs) via the GABAergic synapses established by Purkinje cells (PCs), very little is known about the strength and dynamic properties of PC-DCN connections. Here we show that activation of PC-DCN unitary connections induced large conductance changes (11.7 nS) in DCNs recorded in whole cell patch configuration in acute slices, suggesting that activity of single PCs might significantly affect the output of its target neurons. Based on the large unitary quantal content (18) inferred from calculations of PC-DCN quantal size (0.65 nS) and the near absence of failures in synaptic transmission during control conditions, we conclude that PC-DCN connections are highly multi-sited. The analysis of dynamic properties of PC-DCN synapses demonstrated remarkable paired pulse depression (PPD), maximal at short intervals (paired pulse ratio of 0.15 at 7-ms interval). We provide evidence that PPD is presynaptic in origin and release-independent. In addition, multiple pulse stimulation revealed that PC-DCN synapses exhibited larger sensitivity to dynamic than to steady signals. We postulate that the, otherwise paradoxical, combination of marked short-term depression with strong multi-sited connections is optimal to transfer dynamic information at unitary level by performing spatial average of release probability across the numerous release sites. This feature could enable these synapses to encode presynaptic time-varying signals of single PCs as moment-to-moment changes in synaptic strength, a capacity well suited to the postulated role of cerebellum in control of temporal aspects of motor or cognitive behaviors.
Collapse
|
17
|
Barbaresi P, Gazzanelli G, Malatesta M. gamma-Aminobutyric acid transporters in the cat periaqueductal gray: a light and electron microscopic immunocytochemical study. J Comp Neurol 2001; 429:337-54. [PMID: 11116224 DOI: 10.1002/1096-9861(20000108)429:2<337::aid-cne12>3.0.co;2-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The gamma-aminobutyric acid (GABA) plasma membrane transporters (GATs) mediate GABA uptake into presynaptic axon terminals and glial processes, thus contributing to the regulation of the magnitude and duration of the action of GABA at the synaptic cleft. The aim of the present study was to investigate the expression of three high-affinity GABA transporters (GAT-1, GAT-2, and GAT-3) in the periaqueductal gray matter (PAG) of adult cats by using immunocytochemistry with affinity-purified antibodies. Light microscopic observations revealed GAT-1 immunoreactivity in punctate structures, particularly dense in the lateral portion of the dorsolateral PAG column. Weak GAT-2-immunopositive puncta were homogeneously distributed in the PAG. GAT-3 immunoreactivity was detected in each column of the PAG but was more intense in the dorsolateral PAG column and around the aqueduct. Electron microscopic studies showed GAT-1 immunoreactivity in distal astroglial processes, in unmyelinated and small myelinated axons, and in axon terminals making symmetric synapses on both PAG neurons and dendrites. GAT-2 immunoreactivity was present mostly in the form of patches of different sizes in the cytoplasm of neuronal elements like the perikarya and dendrites of PAG neurons, in myelinated and unmyelinated axons, and in the axon terminals forming both symmetric and asymmetric synapses. Labeling was also observed in nonneuronal elements. Astrocytic cell bodies and their distal processes as well as the ependymal cells lining the wall of the aqueduct showed patches of GAT-2 immunoreactivity. Electron microscopic observation revealed GAT-3 immunoreactivity exclusively in distal astrocytic processes adjacent to the somata of PAG neurons and in axon terminals making both symmetric and asymmetric synapses. The present results suggest that three types of termination systems of GABAergic transmission are present in the cat periaqueductal gray matter.
Collapse
Affiliation(s)
- P Barbaresi
- Insitute of Human Physiology, University of Ancona, I-60020 Ancona, Italy.
| | | | | |
Collapse
|
18
|
Jackson GL, Wood SG, Kuehl DE. A gamma-aminobutyric acidB agonist reverses the negative feedback effect of testosterone on gonadotropin-releasing hormone and luteinizing hormone secretion in the male sheep. Endocrinology 2000; 141:3940-5. [PMID: 11089523 DOI: 10.1210/endo.141.11.7754] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infusion of baclofen, a GABA(B) agonist, into the medial basal hypothalamus (MBH) of castrated rams rapidly increases LH pulse amplitude without altering pulse frequency. The objectives of this study were to determine whether baclofen infusion increased LH in testosterone (T)-treated and intact rams, the increased LH was due to increased GnRH release, and FSH secretion also was increased. In the first experiment we tested the main effects and interaction of baclofen and T on FSH and LH pulse patterns in castrated rams (n = 7). In the second experiment we determined whether baclofen affected GnRH and LH pulses in intact males. Microdialysis guide cannulae were implanted bilaterally into the MBH. After recovery of the animal from surgery, the MBH was perfused using concentric microdialysis probes (2-mm tip) with artificial cerebrospinal fluid (aCSF) for a 3-h control period followed by either aCSF or 1 mM baclofen for 4 h. Blood samples were taken at 10-min intervals. T suppressed mean LH concentrations (10.4 +/- 1.3 vs. 3.3 +/- 1.3 ng/ml) such that LH pulses were undetectable in some T-treated animals during the control period. The change (control period vs. drug infusion period) in mean LH was greater in response to baclofen than in response to aCSF and was not altered by T. The baclofen x T interaction was nonsignificant. Mean FSH was decreased by T, but was not altered by baclofen. In the second experiment hypophyseal portal blood was collected coincident with microdialysis. Infusion of baclofen into the MBH of intact males (n = 7) resulted within 1 h in the onset of frequent and robust GnRH pulses (0.10/h before baclofen vs. 1.57/h after baclofen) that were followed either immediately or gradually by coincident LH pulses. One interpretation is that baclofen acts downstream of the site of action of T. GABA(B) receptors may regulate pulse amplitude in both the presence and absence of T and regulate pulse frequency by modulating the inhibitory effect of T.
Collapse
Affiliation(s)
- G L Jackson
- Department of Veterinary Biosciences, University of Illinois, Urbana 61802, USA.
| | | | | |
Collapse
|
19
|
Liang F, Hatanaka Y, Saito H, Yamamori T, Hashikawa T. Differential expression of ?-aminobutyric acid type B receptor-1a and -1b mRNA variants in GABA and non-GABAergic neurons of the rat brain. J Comp Neurol 2000. [DOI: 10.1002/(sici)1096-9861(20000124)416:4<475::aid-cne5>3.0.co;2-v] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Margeta-Mitrovic M, Mitrovic I, Riley RC, Jan LY, Basbaum AI. Immunohistochemical localization of GABA(B) receptors in the rat central nervous system. J Comp Neurol 1999; 405:299-321. [PMID: 10076927 DOI: 10.1002/(sici)1096-9861(19990315)405:3<299::aid-cne2>3.0.co;2-6] [Citation(s) in RCA: 274] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The recent cloning of two gamma-aminobutyric acid(B) (GABA(B)) receptor isoforms (GABA(B)R1a/b), which are probably splice variants of the same gene transcript, allowed us to develop an antiserum that recognized the receptors in fixed tissue and to map their distribution in the rat central nervous system (CNS). We also investigated whether GABA(B)R1 colocalizes with glutamic acid decarboxylase (GAD), a marker of GABAergic cell bodies and terminals. Although GABA(B)R1-like immunoreactivity (GABA(B)R1-LI) was distributed throughout the CNS, several distinct distribution patterns emerged: (1) all monoaminergic brainstem cell groups appeared to contain very high levels of GABA(B)R1, (2) a very high intensity of GABA(B)R1-LI was observed in the majority of the cholinergic regions in the CNS, with exception of motoneurons of the third through sixth cranial nerve nuclei, and (3) a low density of the receptor was observed in most of the nuclei that contain cell bodies of GABAergic projection neurons. The highest GABA(B)R1 labeling was observed in the thalamus, interpeduncular nucleus and medial habenula. Cell bodies were labeled throughout the neuroaxis. We also observed dense neuropil labeling in many regions, suggesting that this receptor is localized in dendrites and/or axon terminals. However, in immunofluorescent double-labeling experiments for GABA(B)R1 and GAD, we never observed GABA(B)R1-LI in GAD-positive axon terminals; this result suggests that the GABA(B)R1 may not function as an autoreceptor. Double labeling was observed in the cell bodies of Purkinje neurons and in some interneurons. In general, the immunohistochemical localization of the GABA(B)R1 correlates well with physiologic and autoradiographic data on the distribution of GABA(B) receptors, but some critical differences were noted. Thus, it is likely that additional GABA(B) receptor subtypes remain to be identified.
Collapse
Affiliation(s)
- M Margeta-Mitrovic
- Department of Physiology, Howard Hughes Medical Institute, University of California San Francisco, 94143, USA
| | | | | | | | | |
Collapse
|
21
|
Billinton A, Upton N, Bowery NG. GABA(B) receptor isoforms GBR1a and GBR1b, appear to be associated with pre- and post-synaptic elements respectively in rat and human cerebellum. Br J Pharmacol 1999; 126:1387-92. [PMID: 10217533 PMCID: PMC1565927 DOI: 10.1038/sj.bjp.0702460] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/1998] [Accepted: 01/11/1999] [Indexed: 11/08/2022] Open
Abstract
1. Metabotropic gamma-aminobutyric acid (GABA) receptors, GABA(B), are coupled through G-proteins to K+ and Ca2+ channels in neuronal membranes. Cloning of the GABAB receptor has not uncovered receptor subtypes, but demonstrated two isoforms, designated GBR1a and GBR1b, which differ in their N terminal regions. In the rodent cerebellum GABA(B) receptors are localized to a greater extent in the molecular layer, and are reported to exist on granule cell parallel fibre terminals and Purkinje cell (PC) dendrites, which may represent pre- and post-synaptic receptors. 2. The objective of this study was to localize the mRNA splice variants, GBR1a and GBR1b for GABA(B) receptors in rat cerebellum, for comparison with the localization in human cerebellum using in situ hybridization. 3. Receptor autoradiography was performed utilizing [3H]-CGP62349 to localize GABA(B) receptors in rat and human cerebellum. Radioactively labelled oligonucleotide probes were used to localize GBR1a and GBR1b, and by dipping slides in photographic emulsion, silver grain images were obtained for quantification at the cellular level. 4. Binding of 0.5 nM [3H]-CGP62349 demonstrated significantly higher binding to GABA(B) receptors in the molecular layer than the granule cell (GC) layer of rat cerebellum (molecular layer binding 200+/-11% of GC layer; P<0.0001). GBR1a mRNA expression was found to be predominantly in the GC layer (PC layer grains 6+/-6% of GC layer grains; P<0.05), and GBR1b expression predominantly in PCs (PC layer grains 818+/-14% of GC layer grains; P<0.0001). 5. The differential distribution of GBR1a and GBR1b mRNA splice variants for GABA(B) receptors suggests a possible association of GBR1a and GBR1b with pre- and post-synaptic elements respectively.
Collapse
Affiliation(s)
- A Billinton
- Department of Pharmacology, The Medical School, University of Birmingham, Edgbaston
| | | | | |
Collapse
|
22
|
Mouginot D, Kombian SB, Pittman QJ. Activation of presynaptic GABAB receptors inhibits evoked IPSCs in rat magnocellular neurons in vitro. J Neurophysiol 1998; 79:1508-17. [PMID: 9497428 DOI: 10.1152/jn.1998.79.3.1508] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1508-1517, 1998. Whole cell recordings (nystatin-perforated patch) were carried out on magnocellular neurons of the rat supraoptic nucleus (SON) to study the modulation of inhibitory postsynaptic currents (IPSCs) by gamma-aminobutyric acid-B (GABAB) receptors. Field stimulation adjacent to the SON in the presence of kynurenic acid, evoked monosynaptic GABAergic IPSCs. Baclofen reversibly reduced the amplitude of the IPSCs in a dose-dependent manner (EC50: 0.68 microM) without apparent effect on the holding current (Vh = -80 mV) or input resistance and altered neither the kinetic properties, nor the reversal potential of IPSCs. Concomittant to IPSC depression, baclofen enhanced the paired-pulse ratio for two consecutive IPSCs [interstimulus interval (ISI): 50 ms], an effect consistent with a presynaptic locus of action. Both actions of baclofen were abolished by CGP35348 (500 microM), a GABAB receptor antagonist. In testing for involvement of synaptically activated presynaptic GABAB receptors, we only recorded paired-pulse facilitation at most ISIs tested (50-500 ms), suggesting that the classical GABAB autoreceptors may not normally be activated in our conditions. However, enhancement of local GABA concentration by perfusion of a GABA uptake inhibitor (NO-711) revealed an action of endogenous GABA at these presynaptic GABAB receptors. The nonselective K+ channel blocker Ba2+ abolished baclofen's effect and pertussis toxin (PTX) pretreatment (200-500 ng/ml for 18-24 h) was ineffective in blocking the baclofen-induced inhibition, making an involvement of PTX-sensitive G protein unlikely. The present results show that presynaptic GABAB receptors that are coupled to PTX-insensitive G-proteins may be activated by endogenous GABA under conditions of reduced GABA uptake, thus regulating the inhibitory synaptic input to SON.
Collapse
Affiliation(s)
- D Mouginot
- Neuroscience Research Group, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | | | | |
Collapse
|
23
|
Abstract
gamma-Aminobutyric acid (GABA) is the inhibitory transmitter released at Purkinje cell axon terminals in deep cerebellar nuclei (DCN). Neurons in DCN also receive excitatory glutamatergic inputs from the inferior olive. The output of DCN neurons, which depends on the balance between excitation and inhibition on these cells, is involved in cerebellar control of motor coordination. Plasticity of synaptic transmission observed in other areas of the mammalian central nervous system (CNS) has received wide attention. If GABA-ergic and/or glutamatergic synapses in DCN also undergo plasticity, it would have major implications for cerebellar function. In this review, literature evidence for GABA-ergic synaptic transmission in DCN as well as its plasticity are discussed. Studies indicate that fast inhibitory postsynaptic potentials (IPSPs) and currents (IPSCs) in neurons of DCN are mediated by GABAA receptors. While GABAB receptors are present in DCN, they do not appear to be activated by Purkinje cell axons. The IPSPs undergo paired-pulse, as well as frequency-dependent, depressions. In addition, tetanic stimulation of inputs can induce a long-term depression (LTD) of the IPSPs and IPSCs. Excitatory synapses do not appear to undergo long-term potentiation or LTD. The LTD of the IPSP is not input-specific, as it can be induced heterosynaptically and is associated with a reduced response of DCN neurons to a GABAA receptor agonist. Postsynaptic Ca2+ and protein phosphatases appear to contribute to the LTD. The N-methyl-D-aspartate receptor-gated, as well as the voltage-gated Ca2+ channels are proposed to be sources of the Ca2+. It is suggested that LTD of GABA-ergic transmission, by regulating DCN output, can modulate cerebellar function.
Collapse
Affiliation(s)
- B R Sastry
- Department of Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada.
| | | | | | | |
Collapse
|
24
|
Grobaski KC, Ping H, daSilva HM, Bowery NG, Connelly ST, Shepard PD. Responses of rat substantia nigra dopamine-containing neurones to (-)-HA-966 in vitro. Br J Pharmacol 1997; 120:575-80. [PMID: 9051293 PMCID: PMC1564499 DOI: 10.1038/sj.bjp.0700938] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Extracellular single unit recording techniques were used to compare the effects of (-)-3-amino-1-hydroxypyrrolidin-2-one ((-)-HA-966) and (+/-)-baclofen on the activity of dopamine-containing neurones in 300 microns slices of rat substantia nigra. Electrophysiological data were compared with the outcome of in vitro binding experiments designed to assess the affinity of (-)-HA-966 for gamma-aminobutyric acid (GABAB) receptors. 2. Bath application of (-)-HA-966 produced a concentration-dependent inhibition of dopaminergic neuronal firing (EC50 = 444.0 microM; 95% confidence interval: 277.6 microM - 710.1 microM, n = 27) which was fully reversible upon washout from the recording chamber. Although similar effects were observed in response to (+/-)-baclofen, the direct-acting GABAB receptor agonist proved to be considerably more potent than (-)-HA-966 (EC50 = 0.54 microM; 95% confidence interval: 0.44 microM - 0.66 microM, n = 29) in vitro. 3. Low concentrations of chloral hydrate (10 microM) were without effect on the basal firing rate of nigral dopaminergic neurones but significantly increased the inhibitory effects produced by concomitant application of (-)-HA-966. 4. The inhibitory effects of (-)-HA-966 were completely reversed in the presence of the GABAB receptor antagonists, CGP-35348 (100 microM) and 2-hydroxysaclofen (500 microM). Bath application of CGP-35348 alone increased basal firing rate. However, the magnitude of the excitation (9.2 +/- 0.3%) was not sufficient to account for the ability of the antagonist to reverse fully the inhibitory effects of (-)-HA-966. 5. (-)-HA-966 (0.1-1.0 mM) produced a concentration-dependent displacement of [3H]-GABA from synaptic membranes in the presence of isoguvacine (40 microM). However, the affinity of the drug for GABAB binding sites was significantly less than that of GABA (0.0005 potency ratio) and showed no apparent stereoselectivity. 6. These results indicate that while (-)-HA-966 appears to act as a direct GABAB receptor agonist in vitro, its affinity for this receptor site is substantially less than that of GABA or baclofen and unlikely to account for the depressant actions of this drug which occur at levels approximately ten fold lower in vivo.
Collapse
Affiliation(s)
- K C Grobaski
- Maryland Psychiatric Research Center, Baltimore, USA
| | | | | | | | | | | |
Collapse
|