1
|
Tasma Z, Rees TA, Guo S, Tan S, O'Carroll SJ, Faull RLM, Curtis MA, Christensen SL, Hay DL, Walker CS. Pharmacology of PACAP and VIP receptors in the spinal cord highlights the importance of the PAC 1 receptor. Br J Pharmacol 2024; 181:2655-2675. [PMID: 38616050 DOI: 10.1111/bph.16376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/18/2023] [Accepted: 01/20/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND AND PURPOSE The spinal cord is a key structure involved in the transmission and modulation of pain. Pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP), are expressed in the spinal cord. These peptides activate G protein-coupled receptors (PAC1, VPAC1 and VPAC2) that could provide targets for the development of novel pain treatments. However, it is not clear which of these receptors are expressed within the spinal cord and how these receptors signal. EXPERIMENTAL APPROACH Dissociated rat spinal cord cultures were used to examine agonist and antagonist receptor pharmacology. Signalling profiles were determined for five signalling pathways. The expression of different PACAP and VIP receptors was then investigated in mouse, rat and human spinal cords using immunoblotting and immunofluorescence. KEY RESULTS PACAP, but not VIP, potently stimulated cAMP, IP1 accumulation and ERK and cAMP response element-binding protein (CREB) but not Akt phosphorylation in spinal cord cultures. Signalling was antagonised by M65 and PACAP6-38. PACAP-27 was more effectively antagonised than either PACAP-38 or VIP. The patterns of PAC1 and VPAC2 receptor-like immunoreactivity appeared to be distinct in the spinal cord. CONCLUSIONS AND IMPLICATIONS The pharmacological profile in the spinal cord suggested that a PAC1 receptor is the major functional receptor subtype present and thus likely mediates the nociceptive effects of the PACAP family of peptides in the spinal cord. However, the potential expression of both PAC1 and VPAC2 receptors in the spinal cord highlights that these receptors may play differential roles and are both possible therapeutic targets.
Collapse
MESH Headings
- Animals
- Spinal Cord/metabolism
- Spinal Cord/drug effects
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/agonists
- Humans
- Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology
- Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
- Vasoactive Intestinal Peptide/metabolism
- Vasoactive Intestinal Peptide/pharmacology
- Mice
- Rats
- Signal Transduction/drug effects
- Receptors, Vasoactive Intestinal Peptide/metabolism
- Receptors, Vasoactive Intestinal Peptide/antagonists & inhibitors
- Cells, Cultured
- Rats, Sprague-Dawley
- Male
- Mice, Inbred C57BL
- Cyclic AMP/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/agonists
Collapse
Affiliation(s)
- Zoe Tasma
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Tayla A Rees
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Song Guo
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Odontology, Panum Institute, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Sheryl Tan
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Simon J O'Carroll
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Sarah L Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Debbie L Hay
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Toxicology, The University of Otago, Dunedin, New Zealand
| | - Christopher S Walker
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Rudd JA, Nalivaiko E, Matsuki N, Wan C, Andrews PL. The involvement of TRPV1 in emesis and anti-emesis. Temperature (Austin) 2015; 2:258-76. [PMID: 27227028 PMCID: PMC4843889 DOI: 10.1080/23328940.2015.1043042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 12/29/2022] Open
Abstract
Diverse transmitter systems (e.g. acetylcholine, dopamine, endocannabinoids, endorphins, glutamate, histamine, 5-hydroxytryptamine, substance P) have been implicated in the pathways by which nausea and vomiting are induced and are targets for anti-emetic drugs (e.g. 5-hydroxytryptamine3 and tachykinin NK1 antagonists). The involvement of TRPV1 in emesis was discovered in the early 1990s and may have been overlooked previously as TRPV1 pharmacology was studied in rodents (mice, rats) lacking an emetic reflex. Acute subcutaneous administration of resiniferatoxin in the ferret, dog and Suncus murinus revealed that it had “broad–spectrum” anti-emetic effects against stimuli acting via both central (vestibular system, area postrema) and peripheral (abdominal vagal afferents) inputs. One of several hypotheses discussed here is that the anti-emetic effect is due to acute depletion of substance P (or another peptide) at a critical site (e.g. nucleus tractus solitarius) in the central emetic pathway. Studies in Suncus murinus revealed a potential for a long lasting (one month) effect against the chemotherapeutic agent cisplatin. Subsequent studies using telemetry in the conscious ferret compared the anti-emetic, hypothermic and hypertensive effects of resiniferatoxin (pungent) and olvanil (non-pungent) and showed that the anti-emetic effect was present (but reduced) with olvanil which although inducing hypothermia it did not have the marked hypertensive effects of resiniferatoxin. The review concludes by discussing general insights into emetic pathways and their pharmacology revealed by these relatively overlooked studies with TRPV1 activators (pungent an non-pungent; high and low lipophilicity) and antagonists and the potential clinical utility of agents targeted at the TRPV1 system.
Collapse
Key Words
- 12-HPETE, 12-hydroperoxy-eicosatetraenoic acid
- 5-HT, 5-hydroxytryptamine
- 5-HT3, 5-hdroxytryptamine3
- 8-OH-DPAT, (±)-8-Hydroxy-2-dipropylaminotetralin
- AM404
- AM404, N-arachidonoylaminophenol
- AMT, anandamide membrane transporter
- AP, area postrema
- BBB, blood brain barrier
- CB1, cannabinoid1
- CGRP, calcitonin gene-related peptide
- CINV, chemotherapy-induced nausea and vomiting
- CP 99,994
- CTA, conditioned taste aversion
- CVO's, circumventricular organs
- D2, dopamine2
- DRG, dorsal root ganglia
- FAAH, fatty acid amide hydrolase
- H1, histamine1
- LTB4, leukotriene B4
- NADA, N-arachidonoyl-dopamine
- NK1, neurokinin1
- POAH, preoptic anterior hypothalamus
- RTX
- Suncus murinus
- TRPV1
- TRPV1, transient receptor potential vanilloid receptor1
- anti-emetic
- capsaicin
- ferret
- i.v., intravenous
- nausea
- olvanil
- thermoregulation
- vanilloid
- vomiting
Collapse
Affiliation(s)
- John A Rudd
- Brain and Mind Institute; Chinese University of Hong Kong; Shatin; New Territories, Hong Kong SAR; School of Biomedical Sciences; Faculty of Medicine; Chinese University of Hong Kong; Shatin; New Territories, Hong Kong SAR
| | - Eugene Nalivaiko
- School of Biomedical Sciences and Pharmacy; University of Newcastle ; Callaghan, NSW, Australia
| | - Norio Matsuki
- Laboratory of Chemical Pharmacology; Graduate School of Pharmaceutical Sciences; The University of Tokyo ; Tokyo, Japan
| | - Christina Wan
- School of Biomedical Sciences; Faculty of Medicine; Chinese University of Hong Kong ; Shatin; New Territories, Hong Kong SAR
| | - Paul Lr Andrews
- Division of Biomedical Sciences; St George's University of London ; London, UK
| |
Collapse
|
3
|
Abstract
Peptides released in the spinal cord from the central terminals of nociceptors contribute to the persistent hyperalgesia that defines the clinical experience of chronic pain. Using substance P (SP) and calcitonin gene-related peptide (CGRP) as examples, this review addresses the multiple mechanisms through which peptidergic neurotransmission contributes to the development and maintenance of chronic pain. Activation of CGRP receptors on terminals of primary afferent neurons facilitates transmitter release and receptors on spinal neurons increases glutamate activation of AMPA receptors. Both effects are mediated by cAMP-dependent mechanisms. Substance P activates neurokinin receptors (3 subtypes) which couple to phospholipase C and the generation of the intracellular messengers whose downstream effects include depolarizing the membrane and facilitating the function of AMPA and NMDA receptors. Activation of neurokinin-1 receptors also increases the synthesis of prostaglandins whereas activation of neurokinin-3 receptors increases the synthesis of nitric oxide. Both products act as retrograde messengers across synapses and facilitate nociceptive signaling in the spinal cord. Whereas these cellular effects of CGRP and SP at the level of the spinal cord contribute to the development of increased synaptic strength between nociceptors and spinal neurons in the pathway for pain, the different intracellular signaling pathways also activate different transcription factors. The activated transcription factors initiate changes in the expression of genes that contribute to long-term changes in the excitability of spinal and maintain hyperalgesia.
Collapse
Affiliation(s)
- V S Seybold
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church St., S.E., Minneapolis, MN 55455, USA.
| |
Collapse
|
4
|
Groth RD, Coicou LG, Mermelstein PG, Seybold VS. Neurotrophin activation of NFAT-dependent transcription contributes to the regulation of pro-nociceptive genes. J Neurochem 2007; 102:1162-74. [PMID: 17488277 DOI: 10.1111/j.1471-4159.2007.04632.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) play key roles in the development of inflammation-induced hyperalgesia by triggering the expression of pro-nociceptive genes within primary afferent and spinal neurons. However, the mechanisms by which neurotrophins elicit gene expression remain largely unknown. Recently, neurotrophins have been shown to activate members of the calcineurin (CaN)-regulated, nuclear factor of activated T-cells (NFATc) family of transcription factors within brain. Thus, we hypothesized that NFATc transcription factors couple neurotrophin signaling to gene expression within primary afferent and spinal neurons. In situ hybridization revealed NFATc4 mRNA within the dorsal root ganglion and spinal cord. In cultured dorsal root ganglion cells, NGF triggered NFAT-dependent transcription in a CaN-sensitive manner. Further, increased BDNF expression following NGF treatment relied on CaN, thereby suggesting that NGF regulates BDNF transcription via activation of NFATc4. Within cultured spinal cells, BDNF also activated CaN-dependent, NFAT-regulated gene expression. Interestingly, BDNF stimulation increased the expression of the pro-nociceptive genes cyclooxygenase-2, neurokinin-1 receptor, inositol trisphosphates receptor type 1, and BDNF itself, through both NFAT-dependent and NFAT-independent transcriptional mechanisms. Our results suggest that regulation of pro-nociceptive genes through activation of NFAT-dependent transcription is one mechanism by which NGF and BDNF signaling contributes to the development of persistent pain states.
Collapse
Affiliation(s)
- Rachel D Groth
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
5
|
Groth RD, Coicou LG, Mermelstein PG, Seybold VS. Neurotrophin activation of NFAT-dependent transcription contributes to the regulation of pro-nociceptive genes. J Neurochem 2007. [DOI: 10.1111/j.1471-4159.2007.4632.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Seybold VS, Coicou LG, Groth RD, Mermelstein PG. Substance P initiates NFAT-dependent gene expression in spinal neurons. J Neurochem 2006; 97:397-407. [PMID: 16539671 DOI: 10.1111/j.1471-4159.2006.03744.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Persistent hyperalgesia is associated with increased expression of proteins that contribute to enhanced excitability of spinal neurons, however, little is known about how expression of these proteins is regulated. We tested the hypothesis that Substance P stimulation of neurokinin receptors on spinal neurons activates the transcription factor nuclear factor of activated T cells isoform 4 (NFATc4). The occurrence of NFATc4 in spinal cord was demonstrated with RT-PCR and immunocytochemistry. Substance P activated NFAT-dependent gene transcription in primary cultures of neonatal rat spinal cord transiently transfected with a luciferase DNA reporter construct. The effect of Substance P was mediated by neuronal neurokinin-1 receptors that coupled to activation of protein kinase C, l-type voltage-dependent calcium channels, and calcineurin. Interestingly, Substance P had no effect on cyclic AMP response element (CRE)-dependent gene expression. Conversely, calcitonin gene-related peptide, which activated CRE-dependent gene expression, did not activate NFAT signaling. These data provide evidence that peptides released from primary afferent neurons regulate discrete patterns of gene expression in spinal neurons. Because the release of Substance P and calcitonin gene-related peptide from primary afferent neurons is increased following peripheral injury, these peptides may differentially regulate the expression of proteins that underlie persistent hyperalgesia.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Calcitonin Gene-Related Peptide/pharmacology
- Calcium Channel Blockers/pharmacology
- Cells, Cultured
- Dose-Response Relationship, Drug
- Drug Interactions
- Enzyme Inhibitors/pharmacology
- Gene Expression/drug effects
- Hippocampus/drug effects
- Indoles/pharmacology
- NFATC Transcription Factors/genetics
- NFATC Transcription Factors/metabolism
- NFATC Transcription Factors/physiology
- Neurokinin A/pharmacology
- Neurons, Afferent/metabolism
- Nimodipine/pharmacology
- Phorbol 12,13-Dibutyrate/pharmacology
- Quinuclidines/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Neurokinin-1/genetics
- Receptors, Neurokinin-1/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Spinal Cord/cytology
- Spleen/drug effects
- Substance P/agonists
- Substance P/analogs & derivatives
- Substance P/pharmacology
- Tacrolimus/pharmacology
Collapse
Affiliation(s)
- V S Seybold
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, 55455, USA.
| | | | | | | |
Collapse
|
7
|
Abstract
Although neurokinin 1 (NK1) receptors contribute to hyperalgesia, and their expression is increased in the spinal cord during peripheral inflammation, little is known regarding the signaling molecules and the second messenger pathways that they activate in regulating the expression of the NK1 receptor gene. Because the promoter region of the NK1 receptor contains a cAMP response element (CRE), we tested the hypothesis that calcitonin gene-related peptide (CGRP) regulates the expression of NK1 receptors via a pathway involving activation of the transcription factor cAMP response element binding protein (CREB). Experiments were conducted on primary cultures of neonatal rat spinal neurons. Treatment of cultures with CGRP for 8-24 hr increased (125)I-substance P binding on spinal neurons; the increase in binding was preceded by an elevation in NK1 receptor mRNA. The CGRP-induced change in (125)I-substance P binding was concentration-dependent and was inhibited by the antagonist CGRP(8-37). CGRP increased phosphorylated CREB immunoreactivity and CRE-dependent transcription in neurons, indicating the involvement of the transcription factor CREB. Evidence that CGRP increased cAMP levels in spinal neurons and that the protein kinase A inhibitor H89 attenuated CGRP-induced CRE-dependent transcription suggests that the intracellular pathway stimulated by CGRP leads to activation of protein kinase A. Collectively these data define a role for CGRP as a signaling molecule that induces expression of NK1 receptors in spinal neurons. The data provide evidence that a neuropeptide receptor controls gene expression in the CNS and add another dimension to understanding the cotransmission of substance P and CGRP by primary afferent neurons.
Collapse
|
8
|
Velázquez RA, McCarson KE, Cai Y, Kovács KJ, Shi Q, Evensjö M, Larson AA. Upregulation of neurokinin-1 receptor expression in rat spinal cord by an N-terminal metabolite of substance P. Eur J Neurosci 2002; 16:229-41. [PMID: 12169105 DOI: 10.1046/j.1460-9568.2002.02064.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chronic inflammatory conditions are associated with an upregulation of both substance P (SP) and neurokinin-1 (NK-1) receptors in the dorsal spinal cord. These receptors have been implicated in hyperalgesia as well as stress-induced analgesia. On the basis of the release of SP during chronic pain, and its rapid metabolism, we tested the hypothesis that SP metabolites regulate the synthesis of either SP or NK-1 receptors in the spinal cord. We measured expression of preprotachykinin mRNA and NK-1 receptor mRNA following intrathecally administered substance P(1-7) (SP1-7), the major metabolite of SP in rat, and following capsaicin, a compound known to induce release of endogenous SP. SP(1-7) and capsaicin each increased NK-1 receptor mRNA in the spinal cord (6 h) followed by an increase in NK-1 receptor-immunoreactivity (24 h and 1 week). D-SP(1-7), a D-isomer and antagonist of SP(1-7), did not mimic the effect of SP(1-7), indicating stereoselectivity. Instead, D-SP(1-7) prevented the upregulation of NK-1 receptor immunoreactivity that was induced by capsaicin injected intrathecally, suggesting that the effect of capsaicin is also mediated by SP N-terminal metabolites. In contrast, the decrease in SP synthesis produced by capsaicin was not dependent on SP metabolites as SP(1-7) failed to decrease either preprotachykinin mRNA content in dorsal root ganglia (6 h) or SP immunoreactivity in the lumbar spinal cord (24 h and 1 week). In addition, the effects of capsaicin on SP synthesis were not prevented by D-SP(1-7). Thus, SP metabolites, at times and doses that are antinociceptive, appear to enhance SP-mediated signal transduction by upregulating NK-1 receptor expression without affecting SP synthesis.
Collapse
MESH Headings
- Afferent Pathways/drug effects
- Afferent Pathways/metabolism
- Animals
- Capsaicin/pharmacology
- Dose-Response Relationship, Drug
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Immunohistochemistry
- Inflammation/metabolism
- Inflammation/physiopathology
- Isomerism
- Male
- Pain/metabolism
- Pain/physiopathology
- Peptide Fragments/metabolism
- Peptide Fragments/pharmacology
- Posterior Horn Cells/metabolism
- Presynaptic Terminals/drug effects
- Presynaptic Terminals/metabolism
- Protein Precursors/genetics
- Protein Structure, Tertiary/drug effects
- Protein Structure, Tertiary/physiology
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Neurokinin-1/genetics
- Receptors, Neurokinin-1/metabolism
- Substance P/metabolism
- Substance P/pharmacology
- Tachykinins/genetics
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Rubén A Velázquez
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Abrahams LG, Reutter MA, McCarson KE, Seybold VS. Cyclic AMP regulates the expression of neurokinin1 receptors by neonatal rat spinal neurons in culture. J Neurochem 1999; 73:50-8. [PMID: 10386954 DOI: 10.1046/j.1471-4159.1999.0730050.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurokinin1 (NK1) receptors are up-regulated in the spinal cord during peripheral inflammation, but the biochemical mediators regulating this change have not been resolved. The promoter region of the gene encoding the NK1 receptor contains a cyclic AMP (cAMP)-responsive element. Therefore, we used primary cultures of neonatal rat spinal cord to test whether increasing intracellular cAMP can increase expression of NK1 receptors. Treatment with dibutyryl-cAMP (dbcAMP) resulted in a time-dependent increase in 125I-Bolton-Hunter-substance P (BHSP) binding in the cultures; treatment with dibutyryl-cyclic GMP did not. Treatment with forskolin plus 3-isobutyl-1-methylxanthine mimicked the increase in binding, providing further evidence for the involvement of cAMP in this effect. Scatchard analyses indicated that the increase in BHSP binding was due to an increase in binding capacity. The cAMP-induced increase in BHSP binding was preceded by an increase in levels of mRNA for NK1 receptor and was attenuated by pretreatment with cycloheximide. These data indicate that the cAMP-induced increase in binding was due to increased synthesis of NK1 receptors. Comparison of substance P (SP)-induced production of inositol phosphates between cultures pretreated with dbcAMP and controls suggested that increased expression of NK1 receptors did not result in increased generation of second messenger by NK1 receptor activation. Together, these data indicate that a persistent increase in intracellular cAMP increases expression of NK1 receptors. Because NK1 receptor activation contributes to increased excitability of spinal neurons, the increased expression of NK1 receptors may be important in maintaining responsiveness of spinal neurons to SP in central mechanisms underlying hyperalgesia.
Collapse
Affiliation(s)
- L G Abrahams
- Department of Cell Biology and Neuroanatomy, University of Minnesota, Minneapolis 55455, USA
| | | | | | | |
Collapse
|
10
|
Southwell BR, Seybold VS, Woodman HL, Jenkinson KM, Furness JB. Quantitation of neurokinin 1 receptor internalization and recycling in guinea-pig myenteric neurons. Neuroscience 1998; 87:925-31. [PMID: 9759980 DOI: 10.1016/s0306-4522(98)00176-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Agonist-induced endocytosis and recycling of G protein-coupled receptors contributes to desensitization and resensitization of the receptors. In this study, we have used fluorescence immunohistochemistry, confocal microscopy and digital image analysis to quantify the proportion of receptor in the cytoplasm and on the surfaces of nerve cells in the guinea-pig ileum. With these methods we examined the dynamics of internalization of the neurokinin 1 receptor in response to agonist, return of receptor to the cell membrane and its capacity to be re-internalized in response to further exposure to agonist. The basal level of neurokinin 1 receptor immunoreactivity in the cytoplasm was 12-15% of total cellular immunoreactivity. Concentration-response relations were generated for neurokinin 1 receptor internalization after incubation of isolated ileum with 10(-11) to 10(-6) M substance P at 4 degrees C and warming to 37 degrees C for 20 min. The threshold concentration for cytoplasmic receptor to exceed baseline was 10(-11) M and the proportion of receptor in the cytoplasm increased with increasing substance P concentration. The effect of two exposures to agonist was studied using 10(-8) M and 10(-6) M substance P. After equilibration with substance P at 4 degrees C for 1 h followed by 20 min at 37 degrees C with no substance P, neurokinin 1 receptor immunoreactivity in the cytoplasm increased significantly from 12% to 36+/-3% for incubation with 10(-8) M and to 64+/-3% for 10(-6) M. When return of receptor to the surface was blocked with monensin (10(-5) M), 90% of the receptor was in the cytoplasm after 1 h at 37 degrees C following exposure to 10(-6) M substance P. After 60 min without substance P and no monensin, receptor in the cytoplasm decreased to 19+/-2% (10(-8) M) and 38+/-4% (10(-6) M). A second period of equilibration with substance P at 4 degrees C for 1 h followed by 20 min at 37 degrees C, without substance P, resulted in a second wave of endocytosis; the fractions of receptor in the cytoplasm were 47+/-2% (10(-8) M) and 70 2% (10(-6) M). These results indicate that most of the receptors on the cell surface are available for internalization and that the receptors that return to the cell surface after endocytosis rapidly regain their ability to bind ligand and undergo endocytosis.
Collapse
Affiliation(s)
- B R Southwell
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
11
|
Parsons AM, Seybold VS. Calcitonin gene-related peptide induces the formation of second messengers in primary cultures of neonatal rat spinal cord. Synapse 1997; 26:235-42. [PMID: 9183813 DOI: 10.1002/(sici)1098-2396(199707)26:3<235::aid-syn5>3.0.co;2-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study investigated second messengers formed in response to calcitonin gene-related peptide (CGRP) in primary cultures of neonatal rat spinal cord. CGRP increased the level of cAMP above basal levels (50 pmol/mg protein) over a large range of concentrations. The concentration-response curve had an intermediate plateau at 180 pmol cAMP/mg protein in response to 0.01-0.1 nM CGRP and a maximal plateau of 850 pmol cAMP/mg protein at 300 nM CGRP. The biphasic concentration-response curve (EC50S of 0.7 pM and 22 nM) suggests activation of high- and low-affinity receptors for CGRP. Both neurons and nonneuronal cells contributed to the increase in cAMP formation in response to CGRP. The CGRP receptor blocker, CGRP8-37, inhibited the response to both 1 and 100 nM CGRP, providing additional support for the hypothesis that both high- and low-affinity receptors mediate the formation of cAMP. Only a high concentration of CGRP (1 microM) increased the formation of cGMP, and CGRP had no effect on the formation of inositol phosphates at any of the concentrations tested (0.1-1 microM). These results suggest that CGRP-induced responses in the spinal cord are mediated predominately via the formation of cAMP. The observation that both neurons and nonneuronal cells responded to CGRP indicate that this peptide may have multiple actions in the spinal cord.
Collapse
Affiliation(s)
- A M Parsons
- Department of Cell Biology and Neuroanatomy, University of Minnesota, Minneapolis 55455, USA
| | | |
Collapse
|
12
|
Parsons AM, el-Fakahany EE, Seybold VS. Tachykinins alter inositol phosphate formation, but not cyclic AMP levels, in primary cultures of neonatal rat spinal neurons through activation of neurokinin receptors. Neuroscience 1995; 68:855-65. [PMID: 8577379 DOI: 10.1016/0306-4522(95)00140-e] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The naturally occurring tachykinins, substance P, neurokinin A and neurokinin B, induce the formation of inositol phosphates or cAMP in a variety of tissues but their effects on neurons have not been resolved. We used primary cultures of neonatal rat spinal cord to determine whether neurokinin receptors mediate changes in these second messengers in spinal neurons. We found that substance P, neurokinin A and neurokinin B induced the formation of inositol phosphates in a concentration-dependent manner with similar potencies (EC50S: 3.6, 5.7 and 21.3 nM, respectively), but at concentrations tested (0.1-1.0 microM) these peptides had no effect on cAMP levels. All three tachykinins induced the formation of inositol phosphates predominately by activation of neurokinin1 receptors. CP-96,345 and WIN 51,708, neurokinin1 receptor antagonists, attenuated the response to substance P, neurokinin A and neurokinin B. GR 103,537, a neurokinin2 receptor antagonist, had no effect on the responses induced by any of the tachykinins. Furthermore, the selective neurokinin1 receptor agonist, GR-73632, induced the formation of inositol phosphates in a concentration-dependent manner, whereas the selective neurokinin2 receptor agonist, GR-64349, generated inositol phosphates only at the highest concentration tested (10 microM). Senktide, a neurokinin3 receptor agonist, did not induce the formation of inositol phosphates at any of the concentrations tested (0.01-10 microM). Inositol phosphate formation appeared to be due to a direct effect of the tachykinins on neuronal neurokinin1 receptors. These results suggest that biological responses in spinal neurons following activation of neurokinin1 receptors are mediated mainly by the hydrolysis of phosphoinositol 4,5-bisphosphate to form inositol 1,4,5-trisphosphate and diacylglycerol. It remains to be determined which of these second messengers mediates the increased neuronal excitability and depolarization that occurs in response to substance P.
Collapse
Affiliation(s)
- A M Parsons
- Department of Cell Biology, University of Minnesota, Minneapolis 55455, USA
| | | | | |
Collapse
|