1
|
Pratelli M, Spitzer NC. Drugs of abuse drive neurotransmitter plasticity that alters behavior: implications for mental health. Front Behav Neurosci 2025; 19:1551213. [PMID: 40177329 PMCID: PMC11962007 DOI: 10.3389/fnbeh.2025.1551213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
Neurotransmission is a complex process with multiple levels of regulation that, when altered, can significantly impact mental health. Neurons in the adult brain can release more than one transmitter and environmental stimuli can change the type of transmitter neurons express. Changes in the transmitter neurons express can generate changes in animal behavior. The ability of neurons to express multiple transmitters and/or switch them in response to environmental stimuli likely evolved to provide flexibility and complexity to neuronal circuit function in an ever-changing environment. However, this adaptability can become maladaptive when generating behavioral alterations that are unfit for the environment in which the animal lives or the tasks it needs to perform. Repeated exposure to addictive substances induces long-lasting molecular and synaptic changes, driving the appearance of maladaptive behaviors that can result in drug misuse and addiction. Recent findings have shown that one way drugs of abuse alter the brain is by inducing changes in the transmitter neurons express. Here, we review evidence of prolonged exposure to addictive substances inducing changes in the number of neurons expressing the neuropeptide orexin, the neuromodulator dopamine, and the inhibitory transmitter GABA. These findings show that drug-induced transmitter plasticity is conserved across species, that addictive substances belonging to different classes of chemicals can induce the same type of plasticity, and that exposure to only one drug can cause different neuronal types to change the transmitter they express. Importantly, drug-induced transmitter plasticity contributes to the long-term negative effects of drug consumption, and it can, in some cases, be either prevented or reversed to alleviate these outcomes. Regional neuronal hyperactivity appears to modulate the appearance and stabilization of drug-induced changes in transmitter expression, which are no longer observed when activity is normalized. Overall, these findings underscore the importance of continuing to investigate the extent and behavioral significance of drug-induced neurotransmitter plasticity and exploring whether non-invasive strategies can be used to reverse it as a means to mitigate the maladaptive effects of drug use.
Collapse
Affiliation(s)
- Marta Pratelli
- Department of Neurobiology, School of Biological Sciences, Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA, United States
- Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, United States
| | - Nicholas C. Spitzer
- Department of Neurobiology, School of Biological Sciences, Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA, United States
- Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
2
|
Fan J, Dong X, Tang Y, Wang X, Lin D, Gong L, Chen C, Jiang J, Shen W, Xu A, Zhang X, Xie Y, Huang X, Zeng L. Preferential pruning of inhibitory synapses by microglia contributes to alteration of the balance between excitatory and inhibitory synapses in the hippocampus in temporal lobe epilepsy. CNS Neurosci Ther 2023; 29:2884-2900. [PMID: 37072932 PMCID: PMC10493672 DOI: 10.1111/cns.14224] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND A consensus has formed that neural circuits in the brain underlie the pathogenesis of temporal lobe epilepsy (TLE). In particular, the synaptic excitation/inhibition balance (E/I balance) has been implicated in shifting towards elevated excitation during the development of TLE. METHODS Sprague Dawley (SD) rats were intraperitoneally subjected to kainic acid (KA) to generate a model of TLE. Next, electroencephalography (EEG) recording was applied to verify the stability and detectability of spontaneous recurrent seizures (SRS) in rats. Moreover, hippocampal slices from rats and patients with mesial temporal lobe epilepsy (mTLE) were assessed using immunofluorescence to determine the alterations of excitatory and inhibitory synapses and microglial phagocytosis. RESULTS We found that KA induced stable SRSs 14 days after status epilepticus (SE) onset. Furthermore, we discovered a continuous increase in excitatory synapses during epileptogenesis, where the total area of vesicular glutamate transporter 1 (vGluT1) rose considerably in the stratum radiatum (SR) of cornu ammonis 1 (CA1), the stratum lucidum (SL) of CA3, and the polymorphic layer (PML) of the dentate gyrus (DG). In contrast, inhibitory synapses decreased significantly, with the total area of glutamate decarboxylase 65 (GAD65) in the SL and PML diminishing enormously. Moreover, microglia conducted active synaptic phagocytosis after the formation of SRSs, especially in the SL and PML. Finally, microglia preferentially pruned inhibitory synapses during recurrent seizures in both rat and human hippocampal slices, which contributed to the synaptic alteration in hippocampal subregions. CONCLUSIONS Our findings elaborately characterize the alteration of neural circuits and demonstrate the selectivity of synaptic phagocytosis mediated by microglia in TLE, which could strengthen the comprehension of the pathogenesis of TLE and inspire potential therapeutic targets for epilepsy treatment.
Collapse
Affiliation(s)
- Jianchen Fan
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of ChinaZhejiang UniversityHangzhouChina
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouChina
| | - Xinyan Dong
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Yejiao Tang
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of ChinaZhejiang UniversityHangzhouChina
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouChina
| | - Xuehui Wang
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Donghui Lin
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Lifen Gong
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Chen Chen
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Jie Jiang
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Weida Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouChina
| | - Anyu Xu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouChina
| | - Xiangnan Zhang
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of ChinaZhejiang UniversityHangzhouChina
| | - Yicheng Xie
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Xin Huang
- Department of NeurosurgeryThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Linghui Zeng
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of ChinaZhejiang UniversityHangzhouChina
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouChina
| |
Collapse
|
3
|
İMDAT NN, ÇİLİNGİR-KAYA ÖT, TURGAN ÂŞIK ZN, KARAMAHMUTOĞLU T, GÜLÇEBİ İDRİZ OĞLU M, AKAKIN D, ONAT F, ŞİRVANCI S. Electron microscopic GABA evaluation in hippocampal mossy terminals of genetic absence epilepsy rats receiving kindling stimulations. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2022. [DOI: 10.33808/clinexphealthsci.1030132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Objective: The hypotheses related to the fact of epileptic mechanisms are mainly based on excitation-inhibition imbalance in central nervous system. GAERS (Genetic Absence Epilepsy Rats from Strasbourg) is a well-known animal model of absence epilepsy, and frequently used in experimental studies. In the present study, we aimed to examine possible morphological and gamma-aminobutyric acid (GABA) density changes in GAERS hippocampus after electrical kindling stimulations.
Methods: All control and test group rats received 6 kindling stimulations. Rats were decapitated 1 h after the last stimulation. Ultrastructural GABA immunocytochemistry was used to evaluate GABA density quantitatively in mossy terminals of hippocampal CA3 region.
Results: GABA levels were less in kindling groups compared to their controls, and in GAERS groups compared to Wistar groups; mitochondrial and dendritic spine area ratios were greater in GAERS groups compared to Wistar groups, although all these evaluations were statistically nonsignificant. Depletion of synaptic vesicles was evident in the mossy terminals of kindling groups.
Conclusion: The reason of decreased levels of GABA found in the present study might be that GABA has been released from the synaptic pool rapidly at an early time period after the last stimulation, for compansation mechanisms. Depletion of synaptic vesicles observed in kindling groups shows that even 6 kindling stimulations have an impact of changing hippocampal morphology in trisynaptic cycle. The increased mitochondrial area in GAERS might be related to the increased mitochondrial activity. The increased dendritic spine area might be related to the increased performance of learning in GAERS. Our findings indicating that absence epilepsy and temporal lobe epilepsy have different mechanisms of epileptogenesis might be a basis for further experimental studies
Collapse
|
4
|
Auer T, Schreppel P, Erker T, Schwarzer C. Impaired chloride homeostasis in epilepsy: Molecular basis, impact on treatment, and current treatment approaches. Pharmacol Ther 2020; 205:107422. [DOI: 10.1016/j.pharmthera.2019.107422] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022]
|
5
|
Barzroodi Pour M, Bayat M, Golab F, Eftekharzadeh M, Katebi M, Soleimani M, Karimzadeh F. The effect of exercise on GABA signaling pathway in the model of chemically induced seizures. Life Sci 2019; 232:116667. [PMID: 31326567 DOI: 10.1016/j.lfs.2019.116667] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 01/31/2023]
Abstract
AIMS Gamma amino butyric acid (GABA) imbalance plays a critical role in most neurological disorders including epilepsy. This study assessed the involvement of mild exercise on GABA imbalance following by seizure induction in rats. MAIN METHODS Seizure was induced by pentylentetrazole (PTZ) injection. Animals were divided into sham, seizure, exercise (EX), co-seizure-induced exercise (Co-SI EX) and Pre-SI EX groups. In the Co-SI EX group, doing exercise and seizure induction was carried out during four weeks. Animals in the Pre-SI EX group exercised in week 1 to week 8 and seizures were induced in week 5 to week 8. Seizure properties, neural viability and expressions of glutamic acid decarboxylase 65 (GAD65) and GABAA receptor α1 in the hippocampus were assessed. KEY FINDINGS Seizure severity reduced and latency increased in the Co-SI EX and Pre-SI EX groups compared to seizure group. The mean number of dark neurons decreased in all exercise groups compared to seizure group in both CA1 and CA3 areas. The gene level of GAD65 and GABAA receptor α1 was highly expressed in the Co-SI EX group in the hippocampal area. Distribution of GAD65 in the both CA1 and CA3 areas increased in the EX and Co-SI EX groups. GABAA receptor α1 was up-regulated in the CA3 area of Co-SI EX group and down-regulated in the CA1 and CA3 areas of Pre-SI EX group. SIGNIFICANCE These findings suggest that exercise develop anti-epileptic as well as neuroprotective effects by modulating of GABA disinhibition.
Collapse
Affiliation(s)
- Mitra Barzroodi Pour
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Mohamad Bayat
- Department of Anatomy, Arak University of Medical Sciences, Arak, Iran
| | - Freshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Eftekharzadeh
- Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Katebi
- Department of Anatomy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran.
| | - Fariba Karimzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Ortiz-Pérez A, Limón-Morales O, Rojas-Castañeda J, Cerbón M, Picazo O. Prolactin prevents the kainic acid-induced neuronal loss in the rat hippocampus by inducing prolactin receptor and putatively increasing the VGLUT1 overexpression. Neurosci Lett 2019; 694:116-123. [DOI: 10.1016/j.neulet.2018.11.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 01/08/2023]
|
7
|
Shimazaki K, Kobari T, Oguro K, Yokota H, Kasahara Y, Murashima Y, Watanabe E, Kawai K, Okada T. Hippocampal GAD67 Transduction Using rAAV8 Regulates Epileptogenesis in EL Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:180-186. [PMID: 30788386 PMCID: PMC6369250 DOI: 10.1016/j.omtm.2018.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/29/2018] [Indexed: 12/01/2022]
Abstract
Gene therapy has been employed as a therapeutic approach for intractable focal epilepsies. Considering the potential of focal GABAergic neuromodulation in regulating epileptogenesis, the GABA-producing enzyme, γ-aminobutyric acid decarboxylase 67 (GAD67), is highly suitable for epilepsy therapy. The EL/Suz (EL) mouse is a model of multifactorial temporal lobe epilepsy. In the present study, we examined focal gene transduction in epileptic EL mice using recombinant adeno-associated virus serotype 8 (rAAV8) expressing human GAD67 to enhance GABA-mediated neural inhibition. Eight-week-old mice were bilaterally injected with rAAV8-GFP or rAAV8-GAD67 in the hippocampal CA3 region. After four weeks, the GAD67-transduced EL mice, but not the rAAV-GFP-treated EL mice, exhibited a significant reduction in seizure generation. The GAD67-mediated depression became stable after 14 weeks. The excitability of the CA3 region was markedly reduced in the GAD67-transduced EL mice, consistent with the results of the Ca2+ imaging using hippocampal slices. In addition, downregulation of c-Fos expression was observed in GAD67-transduced hippocampi. Our findings showed that rAAV8-GAD67 induced significant changes in the GABAergic system in the EL hippocampus. Thus, rAAV8-mediated GAD67 gene transfer is a promising therapeutic strategy for the treatment of epilepsies.
Collapse
Affiliation(s)
- Kuniko Shimazaki
- Department of Neurosurgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Takashi Kobari
- Department of Neurosurgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Keiji Oguro
- Department of Neurosurgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Hidenori Yokota
- Department of Neurosurgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Yuko Kasahara
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Yoshiya Murashima
- Division of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashioku, Arakawa-ku, Tokyo, Japan
| | - Eiju Watanabe
- Department of Neurosurgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Takashi Okada
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
8
|
Distribution of FMRFamide-related peptides and co-localization with glutamate in Cupiennius salei, an invertebrate model system. Cell Tissue Res 2018; 376:83-96. [PMID: 30406824 DOI: 10.1007/s00441-018-2949-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/09/2018] [Indexed: 01/18/2023]
Abstract
FMRFamide-related proteins have been described in both vertebrate and invertebrate nervous systems and have been suggested to play important roles in a variety of physiological processes. One proposed function is the modulation of signal transduction in mechanosensory neurons and their associated behavioral pathways in the Central American wandering spider Cupiennius salei; however, little is known about the distribution and abundance of FMRFamide-related proteins (FaRPs) within this invertebrate system. We employ immunohistochemistry, Hoechst nuclear stain and confocal microscopy of serial sections to detect, characterize and quantify FMRFamide-like immunoreactive neurons throughout all ganglia of the spider brain and along leg muscle. Within the different ganglia, between 3.4 and 12.6% of neurons showed immunolabeling. Among the immunoreactive cells, weakly and strongly labeled neurons could be distinguished. Between 71.4 and 81.7% of labeled neurons showed weak labeling, with 18.3 to 28.6% displaying strong labeling intensity. Among the weakly labeled neurons were characteristic motor neurons that have previously been shown to express ɣ-aminobutyric acid or glutamate. Ultrastructural investigations of neuromuscular junctions revealed mixed presynaptic vesicle populations including large electron-dense vesicles characteristic of neuropeptides. Double labeling for glutamate and FaRPs indicated that a subpopulation of neurons may co-express both neuroactive compounds. Our findings suggest that FaRPs are expressed throughout all ganglia and that different neurons have different expression levels. We conclude that FaRPs are likely utilized as neuromodulators in roughly 8% of neurons in the spider nervous system and that the main transmitter in a subpopulation of these neurons is likely glutamate.
Collapse
|
9
|
Targeting the Mouse Ventral Hippocampus in the Intrahippocampal Kainic Acid Model of Temporal Lobe Epilepsy. eNeuro 2018; 5:eN-NWR-0158-18. [PMID: 30131968 PMCID: PMC6102375 DOI: 10.1523/eneuro.0158-18.2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/08/2018] [Accepted: 06/29/2018] [Indexed: 11/21/2022] Open
Abstract
Here we describe a novel mouse model of temporal lobe epilepsy (TLE) that moves the site of kainate injection from the rodent dorsal hippocampus (corresponding to the human posterior hippocampus) to the ventral hippocampus (corresponding to the human anterior hippocampus). We compare the phenotypes of this new model—with respect to seizures, cognitive impairment, affective deficits, and histopathology—to the standard dorsal intrahippocampal kainate model. Our results demonstrate that histopathological measures of granule cell dispersion and mossy fiber sprouting maximize near the site of kainate injection. Somewhat surprisingly, both the dorsal and ventral models exhibit similar spatial memory impairments in addition to similar electrographic and behavioral seizure burdens. In contrast, we find a more pronounced affective (anhedonic) phenotype specifically in the ventral model. These results demonstrate that the ventral intrahippocampal kainic acid model recapitulates critical pathologies of the dorsal model while providing a means to further study affective phenotypes such as depression in TLE.
Collapse
|
10
|
Karyakin VB, Vasil'ev DS, Zhuravin IA, Zaitsev AV, Magazanik LG. Early morphological and functional changes in the GABAergic system of hippocampus in the rat lithium-pilocarpine model of epilepsy. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2017; 472:4-7. [PMID: 28429259 DOI: 10.1134/s0012496617010045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Indexed: 11/23/2022]
Abstract
We studied early alterations in the GABAergic system of the rat hippocampus in the lithium-pilocarpine model of epilepsy. Twenty-four hours after the pilocarpine treatment, a decrease in the number of calretinin-positive interneurons was observed in the CA1 field of the hippocampus, whereas the number of parvalbumin-positive interneurons remained unchanged. The decreased levels of the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD67) and the membrane GABA transporter GAT1 were revealed using Western blot analysis. These data indicate an altered excitation/inhibition balance in the hippocampus with excitation dominance.
Collapse
Affiliation(s)
- V B Karyakin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.,St. Petersburg State University, St. Petersburg, Russia
| | - D S Vasil'ev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - I A Zhuravin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - A V Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - L G Magazanik
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia. .,St. Petersburg State University, St. Petersburg, Russia.
| |
Collapse
|
11
|
Botterill JJ, Nogovitsyn N, Caruncho HJ, Kalynchuk LE. Selective plasticity of hippocampal GABAergic interneuron populations following kindling of different brain regions. J Comp Neurol 2016; 525:389-406. [PMID: 27362579 DOI: 10.1002/cne.24071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/06/2016] [Accepted: 06/28/2016] [Indexed: 12/20/2022]
Abstract
The vulnerability and plasticity of hippocampal GABAergic interneurons is a topic of broad interest and debate in the field of epilepsy. In this experiment, we used the electrical kindling model of epilepsy to determine whether seizures that originate in different brain regions have differential effects on hippocampal interneuron subpopulations. Long-Evans rats received 99 electrical stimulations of the hippocampus, amygdala, or caudate nucleus, followed by sacrifice and immunohistochemical or western blot analyses. We analyzed markers of dendritic (somatostatin), perisomatic (parvalbumin), and interneuron-selective (calretinin) inhibition, as well as an overall indicator (GAD67) of interneuron distribution across all major hippocampal subfields. Our results indicate that kindling produces selective effects on the number and morphology of different functional classes of GABAergic interneurons. In particular, limbic kindling appears to enhance dendritic inhibition, indicated by a greater number of somatostatin-immunoreactive (-ir) cells in the CA1 pyramidal layer and robust morphological sprouting in the dentate gyrus. We also found a reduction in the number of interneuron-selective calretinin-ir cells in the dentate gyrus of hippocampal-kindled rats, which suggests a possible reduction of synchronized dendritic inhibition. In contrast, perisomatic inhibition indicated by parvalbumin immunoreactivity appears to be largely resilient to the effects of kindling. Finally, we found a significant induction in the number of GAD67-cells in caudate-kindled rats in the dentate gyrus and CA3 hippocampal subfields. Taken together, our results demonstrate that kindling has subfield-selective effects on the different functional classes of hippocampal GABAergic interneurons. J. Comp. Neurol. 525:389-406, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- J J Botterill
- Department of Psychology, University of Saskatchewan, Saskatoon, SK, Canada
| | - N Nogovitsyn
- Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - H J Caruncho
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - L E Kalynchuk
- Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
12
|
Abstract
Molecular genetics has led to major advances in the study of neurological disease over the last 2 decades. Initial advances were made in understanding specific mutations that were associated with disease, such as epilepsy and other neurological conditions. In addition to specific mutations, recent research has focused on long-lasting or permanent changes in genetic expression as an underlying substrate of acquired diseases such as epilepsy. In symptomatic epilepsy, normal brain tissue is permanently altered and develops spon taneous recurrent seizures. Evidence indicates that long-lasting changes in gene expression at both tran scriptional and post-transcriptional levels are associated with epileptogenesis. The expression of transcription factors and other regulatory proteins represent a molecular mechanism for mediating these changes. Understanding the effects of severe environmental stresses on the multiple sites of transcriptional and post-transcriptional regulation of gene expression is likely to provide important insights into the devel opment of altered neuronal function in a number of important disease states, including epilepsy. NEURO SCIENTIST 5:86-99, 1999
Collapse
Affiliation(s)
- Robert J. Delorenzo
- Departments of Neurology, Pharmacology and Toxicology,
and Biochemistry and Molecular Biophysics Virginia Commonwealth University
Richmond, Virginia
| | - T. Allen Morris
- Departments of Neurology, Pharmacology and Toxicology,
and Biochemistry and Molecular Biophysics Virginia Commonwealth University
Richmond, Virginia
| |
Collapse
|
13
|
Naserpour Farivar T, Nassiri-Asl M, Johari P, Najafipour R, Hajiali F. The Effects of Kainic Acid-Induced Seizure on Gene Expression of Brain Neurotransmitter Receptors in Mice Using RT 2 PCR Array. Basic Clin Neurosci 2016; 7:291-298. [PMID: 27872690 PMCID: PMC5102558 DOI: 10.15412/j.bcn.03070402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Introduction: Kainic acid (KA) induces neuropathological changes in specific regions of the mouse hippocampus comparable to changes seen in patients with chronic temporal lobe epilepsy (TLE). According to different studies, the expression of a number of genes are altered in the adult rat hippocampus after status epilepticus (SE) induced by KA. This study aimed to quantitatively evaluate changes in the gene expression of brain neurotransmitter receptors one week after administration of kainic acid in the mouse hippocampus. Methods: We used 12 BALB/c mice in this study and randomly divided them into 2 groups. To both groups, saline (IP) was administered for 7 days, and on the last day, KA (10 mg/kg, IP) was injected 30 minutes after administration of saline. Subsequently, behavioural changes were observed in mice. Then, in one group (1 day group), 2 hours and in another group (7 days group), 7 days after KA administration, the hippocampus tissue of mice was removed and used for gene expression analyses. Total brain RNA was isolated and reversely transcribed. We performed qPCR using RT2 Profiler TMPCR Array Mouse Neurotransmitter Receptors and Regulators (QIAGEN) containing primers for 84 genes. In this regard, we selected 50 related genes for KA model. Results: Our results showed significant changes in the gene expression of GABAA subunits receptors, including α1-α3, α5, α6, β2, β3, γ1, ρ, and rho1-2 on day 7 compared with the day 1. Conclusion: Expression of both inhibitory and excitatory receptors changed after one week. Further studies are needed to find more molecular changes in the gene expression of brain neurotransmitter receptors and regulators over longer periods of time in KA models using RT2 PCR array.
Collapse
Affiliation(s)
| | - Marjan Nassiri-Asl
- Cellular and Molecular Research Centre, Qazvin University of Medical Sciences, Qazvin, Iran.; Department of Pharmacology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Pouran Johari
- Cellular and Molecular Research Centre, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Reza Najafipour
- Cellular and Molecular Research Centre, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Farid Hajiali
- Department of Pharmacology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
14
|
The plastic neurotransmitter phenotype of the hippocampal granule cells and of the moss in their messy fibers. J Chem Neuroanat 2015; 73:9-20. [PMID: 26703784 DOI: 10.1016/j.jchemneu.2015.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/29/2015] [Accepted: 11/03/2015] [Indexed: 01/09/2023]
Abstract
The granule cells (GCs) and their axons, the mossy fibers (MFs), make synapses with interneurons in the hilus and CA3 area of the hippocampus and with pyramidal cells of CA3, each with distinct anatomical and functional characteristics. Many features of synaptic communication observed at the MF synapses are not usually observed in most cortical synapses, and thus have drawn the attention of many groups studying different aspects of the transmission of information. One particular aspect of the GCs, that makes their study unique, is that they express a dual glutamatergic-GABAergic phenotype and several groups have contributed to the understanding of how two neurotransmitters of opposing actions can act on a single target when simultaneously released. Indeed, the GCs somata and their mossy fibers express in a regulated manner glutamate and GABA, GAD, VGlut and VGAT, all markers of both phenotypes. Finally, their activation provokes both glutamate-R-mediated and GABA-R-mediated synaptic responses in the postsynaptic cell targets and even in the MFs themselves. The developmental and activity-dependent expression of these phenotypes seems to follow a "logical" way to maintain an excitation-inhibition balance of the dentate gyrus-to-CA3 communication.
Collapse
|
15
|
Dicken MS, Hughes AR, Hentges ST. Gad1 mRNA as a reliable indicator of altered GABA release from orexigenic neurons in the hypothalamus. Eur J Neurosci 2015; 42:2644-53. [PMID: 26370162 DOI: 10.1111/ejn.13076] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/02/2015] [Accepted: 09/07/2015] [Indexed: 11/29/2022]
Abstract
The strength of γ-aminobutyric acid (GABA)-mediated inhibitory synaptic input is a principle determinant of neuronal activity. However, because of differences in the number of GABA afferent inputs and the sites of synapses, it is difficult to directly assay for altered GABA transmission between specific cells. The present study tested the hypothesis that the level of mRNA for the GABA synthetic enzyme glutamate decarboxylase (GAD) can provide a reliable proxy for GABA release. This was tested in a mouse hypothalamic circuit important in the regulation of energy balance. Fluorescent in situ hybridization results show that the expression of Gad1 mRNA (encoding the GAD67 enzyme) was increased in hypothalamic neuropeptide Y/agouti-related peptide (NPY/AgRP) neurons after an overnight fast, consistent with the ability of GABA from these neurons to stimulate food intake. Optogenetic studies confirmed that the observed increase in Gad1 mRNA correlated with an increase in the probability of GABA release from NPY/AgRP neurons onto downstream proopiomelanocortin neurons. Likewise, there was an increase in the readily releasable pool of GABA in NPY/AgRP neurons. Selective inhibition of GAD activity in NPY/AgRP neurons decreased GABA release, indicating that GAD67 activity, which is largely dictated by expression level, is a key determinant of GABA release. Altogether, it appears that Gad expression may be a reliable proxy of altered GABAergic transmission. Examining changes in Gad mRNA as a proxy for GABA release may be particularly helpful when the downstream targets are not known or when limited tools exist for detecting GABA release at a particular synapse.
Collapse
Affiliation(s)
- Matthew S Dicken
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Alexander R Hughes
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Shane T Hentges
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, CO, 80523, USA
| |
Collapse
|
16
|
Schipper S, Aalbers MW, Rijkers K, Swijsen A, Rigo JM, Hoogland G, Vles JSH. Tonic GABAA Receptors as Potential Target for the Treatment of Temporal Lobe Epilepsy. Mol Neurobiol 2015; 53:5252-65. [PMID: 26409480 PMCID: PMC5012145 DOI: 10.1007/s12035-015-9423-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/03/2015] [Indexed: 12/11/2022]
Abstract
Tonic GABAA receptors are a subpopulation of receptors that generate long-lasting inhibition and thereby control network excitability. In recent years, these receptors have been implicated in various neurological and psychiatric disorders, including Parkinson’s disease, schizophrenia, and epilepsy. Their distinct subunit composition and function, compared to phasic GABAA receptors, opens the possibility to specifically modulate network properties. In this review, the role of tonic GABAA receptors in epilepsy and as potential antiepileptic target will be discussed.
Collapse
Affiliation(s)
- S Schipper
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands.
- Faculty of Health Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - M W Aalbers
- Faculty of Health Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - K Rijkers
- Faculty of Health Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Neurosurgery and Orthopedic Surgery, Atrium Hospital Heerlen, Heerlen, The Netherlands
| | - A Swijsen
- BIOMED Research Institute, Hasselt University/Transnational University Limburg, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - J M Rigo
- BIOMED Research Institute, Hasselt University/Transnational University Limburg, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - G Hoogland
- Faculty of Health Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - J S H Vles
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
- Faculty of Health Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
17
|
Altered sensory processing and dendritic remodeling in hyperexcitable visual cortical networks. Brain Struct Funct 2015; 221:2919-36. [PMID: 26163822 DOI: 10.1007/s00429-015-1080-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 07/01/2015] [Indexed: 01/20/2023]
Abstract
Epilepsy is characterized by impaired circuit function and a propensity for spontaneous seizures, but how plastic rearrangements within the epileptic focus trigger cortical dysfunction and hyperexcitability is only partly understood. Here we have examined alterations in sensory processing and the underlying biochemical and neuroanatomical changes in tetanus neurotoxin (TeNT)-induced focal epilepsy in mouse visual cortex. We documented persistent epileptiform electrographic discharges and upregulation of GABAergic markers at the completion of TeNT effects. We also found a significant remodeling of the dendritic arbors of pyramidal neurons, with increased dendritic length and branching, and overall reduction in spine density but significant preservation of mushroom, mature spines. Functionally, spontaneous neuronal discharge was increased, visual responses were less reliable, and electrophysiological and behavioural visual acuity was consistently impaired in TeNT-injected mice. These data demonstrate robust, long-term remodeling of both inhibitory and excitatory circuitry associated with specific disturbances of network function in neocortical epilepsy.
Collapse
|
18
|
Winden KD, Bragin A, Engel J, Geschwind DH. Molecular alterations in areas generating fast ripples in an animal model of temporal lobe epilepsy. Neurobiol Dis 2015; 78:35-44. [PMID: 25818007 DOI: 10.1016/j.nbd.2015.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/26/2015] [Accepted: 02/13/2015] [Indexed: 01/05/2023] Open
Abstract
The molecular basis of epileptogenesis is poorly characterized. Studies in humans and animal models have identified an electrophysiological signature that precedes the onset of epilepsy, which has been termed fast ripples (FRs) based on its frequency. Multiple lines of evidence implicate regions generating FRs in epileptogenesis, and FRs appear to demarcate the seizure onset zone, suggesting a role in ictogenesis as well. We performed gene expression analysis comparing areas of the dentate gyrus that generate FRs to those that do not generate FRs in a well-characterized rat model of epilepsy. We identified a small cohort of genes that are differentially expressed in FR versus non-FR brain tissue and used quantitative PCR to validate some of those that modulate neuronal excitability. Gene expression network analysis demonstrated conservation of gene co-expression between non-FR and FR samples, but examination of gene connectivity revealed changes that were most pronounced in the cm-40 module, which contains several genes associated with synaptic function and the differentially expressed genes Kcna4, Kcnv1, and Npy1r that are down-regulated in FRs. We then demonstrate that the genes within the cm-40 module are regulated by seizure activity and enriched for the targets of the RNA binding protein Elavl4. Our data suggest that seizure activity induces co-expression of genes associated with synaptic transmission and that this pattern is attenuated in areas displaying FRs, implicating the failure of this mechanism in the generation of FRs.
Collapse
Affiliation(s)
- Kellen D Winden
- Interdepartmental Program for Neuroscience, University of California, Los Angeles, Los Angeles, CA, USA; Program in Neurogenetics, University of California, Los Angeles, Los Angeles, CA, USA; Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anatol Bragin
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA; The Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jerome Engel
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, USA; The Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Dan H Geschwind
- Interdepartmental Program for Neuroscience, University of California, Los Angeles, Los Angeles, CA, USA; Program in Neurogenetics, University of California, Los Angeles, Los Angeles, CA, USA; Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Valente P, Orlando M, Raimondi A, Benfenati F, Baldelli P. Fine Tuning of Synaptic Plasticity and Filtering by GABA Released from Hippocampal Autaptic Granule Cells. Cereb Cortex 2015; 26:1149-67. [PMID: 25576534 DOI: 10.1093/cercor/bhu301] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The functional consequence of γ-aminobutyric acid (GABA) release at mossy fiber terminals is still a debated topic. Here, we provide multiple evidence of GABA release in cultured autaptic hippocampal granule cells. In ∼50% of the excitatory autaptic neurons, GABA, VGAT, or GAD67 colocalized with vesicular glutamate transporter 1-positive puncta, where both GABAB and GABAA receptors (Rs) were present. Patch-clamp recordings showed a clear enhancement of autaptic excitatory postsynaptic currents in response to the application of the GABABR antagonist CGP58845 only in neurons positive to the selective granule cell marker Prox1, and expressing low levels of GAD67. Indeed, GCP non-responsive excitatory autaptic neurons were both Prox1- and GAD67-negative. Although the amount of released GABA was not sufficient to activate functional postsynaptic GABAARs, it effectively activated presynaptic GABABRs that maintain a tonic "brake" on the probability of release and on the size of the readily releasable pool and contributed to resting potential hyperpolarization possibly through extrasynaptic GABAAR activation. The autocrine inhibition exerted by GABABRs on glutamate release enhanced both paired-pulse facilitation and post-tetanic potentiation. Such GABABR-mediated changes in short-term plasticity confer to immature granule cells the capability to modulate their filtering properties in an activity-dependent fashion, with remarkable consequences on the dynamic behavior of neural circuits.
Collapse
Affiliation(s)
- Pierluigi Valente
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova 16163, Italy Department of Experimental Medicine, Section of Physiology, University of Genova, Genova 16132, Italy
| | - Marta Orlando
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Andrea Raimondi
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Fabio Benfenati
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova 16163, Italy Department of Experimental Medicine, Section of Physiology, University of Genova, Genova 16132, Italy
| | - Pietro Baldelli
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova 16163, Italy Department of Experimental Medicine, Section of Physiology, University of Genova, Genova 16132, Italy
| |
Collapse
|
20
|
Hadera MG, Faure JB, Berggaard N, Tefera TW, Nehlig A, Sonnewald U. The anticonvulsant actions of carisbamate associate with alterations in astrocyte glutamine metabolism in the lithium-pilocarpine epilepsy model. J Neurochem 2014; 132:532-545. [PMID: 25345404 DOI: 10.1111/jnc.12977] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/30/2014] [Accepted: 10/13/2014] [Indexed: 01/18/2023]
Abstract
As reported previously, in the lithium-pilocarpine model of temporal lobe epilepsy (TLE), carisbamate (CRS) produces strong neuroprotection, leads to milder absence-like seizures, and prevents behavioral impairments in a subpopulation of rats. To understand the metabolic basis of these effects, here we injected 90 mg/kg CRS or vehicle twice daily for 7 days starting 1 h after status epilepticus (SE) induction in rats. Two months later, we injected [1-13 C]glucose and [1,2-13 C]acetate followed by head microwave fixation after 15 min. 13 C incorporation into metabolites was analyzed using 13 C magnetic resonance spectroscopy. We found that SE reduced neuronal mitochondrial metabolism in the absence but not in the presence of CRS. Reduction in glutamate level was prevented by CRS and aspartate levels were similar to controls only in rats displaying absence-like seizures after treatment [CRS-absence-like epilepsy (ALE)]. Glutamine levels in CRS-ALE rats were higher compared to controls in hippocampal formation and limbic structures while unchanged in rats displaying motor spontaneous recurrent seizures after treatment (CRS-TLE). Astrocytic mitochondrial metabolism was reduced in CRS-TLE, and either enhanced or unaffected in CRS-ALE rats, which did not affect the transfer of glutamine from astrocytes to neurons. In conclusion, CRS prevents reduction in neuronal mitochondrial metabolism but its effect on astrocytes is likely key in determining outcome of treatment in this model. To understand the metabolic basis of the strong neuroprotection and reduction in seizure severity caused by carisbamate (CRS) in the lithium-pilocarpine (Li-Pilo) model of temporal lobe epilepsy (TLE), we injected CRS for 7 days starting 1 h after status epilepticus and 2 months later [1-13 C]glucose and [1,2-13 C]acetate. 13 C Magnetic resonance spectroscopy analysis was performed on brain extracts and we found that CRS prevented reduction in neuronal mitochondrial metabolism but its effect on astrocytes was likely key in determining outcome of treatment in this model. ALE = absence like epilepsy; acetyl CoA = acetyl coenzyme A; GS = glutamine synthetase; PAG = phosphate activated glutaminase; PC = pyruvate carboxylase; OAA = oxaloacetate; TCA cycle = tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Mussie Ghezu Hadera
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jean-Baptiste Faure
- Faculty of Medicine, INSERM U 666, University of Strasbourg, Strasbourg, France.,Laboratory of Cognitive and Adaptive Neuroscience (LNCA), Faculty of Psychology, UMR 7364, University of Strasbourg-CNRS, Strasbourg, France
| | - Nina Berggaard
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tesfaye Wolde Tefera
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Astrid Nehlig
- Faculty of Medicine, INSERM U 666, University of Strasbourg, Strasbourg, France
| | - Ursula Sonnewald
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
21
|
Trifonov S, Yamashita Y, Kase M, Maruyama M, Sugimoto T. Glutamic acid decarboxylase 1 alternative splicing isoforms: characterization, expression and quantification in the mouse brain. BMC Neurosci 2014; 15:114. [PMID: 25322942 PMCID: PMC4295415 DOI: 10.1186/1471-2202-15-114] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/25/2014] [Indexed: 11/24/2022] Open
Abstract
Background GABA has important functions in brain plasticity related processes like memory, learning, locomotion and during the development of the nervous system. It is synthesized by the glutamic acid decarboxylase (GAD). There are two isoforms of GAD, GAD1 and GAD2, which are encoded by different genes. During embryonic development the transcription of GAD1 mRNA is regulated by alternative splicing and several alternative transcripts were distinguished in human, mouse and rat. Despite the fact that the structure of GAD1 gene has been extensively studied, knowledge of its exact structural organization, alternative promoter usage and splicing have remained incomplete. Results In the present study we report the identification and characterization of novel GAD1 splicing isoforms (GenBank: KM102984, KM102985) by analyzing genomic and mRNA sequence data using bioinformatics, cloning and sequencing. Ten mRNA isoforms are generated from GAD1 gene locus by the combined actions of utilizing different promoters and alternative splicing of the coding exons. Using RT-PCR we found that GAD1 isoforms share similar pattern of expression in different mouse tissues and are expressed early during development. Quantitative RT-PCR was used to investigate the expression of GAD1 isoforms and GAD2 in olfactory bulb, cortex, medial and lateral striatum, hippocampus and cerebellum of adult mouse. Olfactory bulb showed the highest expression of GAD1 transcripts. Isoforms 1/2 are the most abundant forms. Their expression is significantly higher in the lateral compared to the medial striatum. Isoforms 3/4, 5/6, 7/8 and 9/10 are barely detectable in all investigated regions except of the high expression in olfactory bulb. When comparing GAD1 expression with GAD2 we found that Isoforms 1/2 are the predominant isoforms. In situ hybridization confirmed the predominant expression of Isoforms 7/8 and 9/10 in the olfactory bulb and revealed their weak expression in hippocampus, cerebellum and some other areas known to express GAD1. Conclusions Generation of ten splicing isoforms of GAD1 was described including two so far uncharacterized transcripts. GAD1 splicing isoforms producing the shorter, enzymatically inactive GAD25 protein are expressed at very low level in adult mouse brain except in the olfactory bulb that is associated with neurogenesis and synaptic plasticity even during adulthood. Electronic supplementary material The online version of this article (doi:10.1186/1471-2202-15-114) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Tetsuo Sugimoto
- Department of Anatomy and Brain Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan.
| |
Collapse
|
22
|
Wang X, Gao F, Zhu J, Guo E, Song X, Wang S, Zhan RZ. Immunofluorescently labeling glutamic acid decarboxylase 65 coupled with confocal imaging for identifying GABAergic somata in the rat dentate gyrus-A comparison with labeling glutamic acid decarboxylase 67. J Chem Neuroanat 2014; 61-62:51-63. [PMID: 25058170 DOI: 10.1016/j.jchemneu.2014.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 07/11/2014] [Accepted: 07/12/2014] [Indexed: 01/23/2023]
Abstract
As γ-aminobutyric acid (GABA) is synthesized by two isoforms of glutamic acid decarboxylase (GAD), namely, GAD65 and GAD67, immunohistochemically targeting either isoform of GAD is theoretically useful for identifying GABAergic cell bodies. In practice, targeting GAD67 remains to be a popular choice. However, identifying GABAergic cell bodies with GAD67 immunoreactivity in the hippocampal dentate gyrus, especially in the hilus, is not without pitfalls. In the present study, we compared the characteristics of GAD65 immunoreactivity to GAD67 immunoreactivity in the rat dentate gyrus and examined perikaryal expression of GAD65 in four neurochemically prevalent subgroups of interneurons in the hilus. Experiments were done in normal adult Sprague-Dawley rats and GAD67-GFP knock-in mice. Horizontal hippocampal slices cut from the ventral portion of hippocampi were immunofluorescently stained and scanned using a confocal microscope. Immunoreactivity for both GAD67 and GAD65 was visible throughout the dentate gyrus. Perikaryal GAD67 immunoreactivity was denser but variable in terms of distribution pattern and intensity among cells whereas perikaryal GAD65 immunoreactivity displayed similar distribution pattern and staining intensity. Among different layers of the dentate gyrus, GAD67 immunoreactivity was densest in the hilus despite GAD65 immunoreactivity being more intense in the granule cell layer. Co-localization experiments showed that GAD65, but not GAD67, was expressed in all hilar calretinin (CR)-, neuronal nitric oxide synthase (nNOS)-, parvalbumin (PV)- or somatostatin (SOM)-positive somata. Labeling CR, nNOS, PV, and SOM in sections obtained from GAD67-GFP knock-in mice revealed that a large portion of SOM-positive cells had weak GFP expression. In addition, double labeling of GAD65/GABA and GAD67/GABA showed that nearly all of GABA-immunoreactive cells had perikaryal GAD65 expression whereas more than one-tenth of GABA-immunoreactive cells lacked perikaryal GAD67 immunoreactivity. Inhibition of axonal transport with colchicine dramatically improved perikaryal GAD65 immunoreactivity in GABAergic cells without significant augmentation to be seen in granule cells. Double labeling GAD65 and GAD67 in the sections obtained from colchicine-pretreated animals confirmed that a portion of GAD65-immunoreactive cells had weak or even no GAD67 immunoreactivity. We conclude that for confocal imaging, immunofluorescently labeling GAD65 for identifying GABAergic somata in the hilus of the dentate gyrus has advantages over labeling GAD67 in terms of easier recognition of perikaryal labeling and more consistent expression in GABAergic somata. Inhibition of axonal transport with colchicine further improves perikaryal GAD65 labeling, making GABAergic cells more distinguishable.
Collapse
Affiliation(s)
- Xiaochen Wang
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - Fei Gao
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - Jianchun Zhu
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - Enpu Guo
- Division of General Surgery, The Second Affiliated Hospital, Shandong University of Traditional Chinese Medicine, China
| | - Xueying Song
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - Shuanglian Wang
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - Ren-Zhi Zhan
- Department of Physiology, Shandong University School of Medicine, Jinan, China.
| |
Collapse
|
23
|
Pedroni A, Minh DD, Mallamaci A, Cherubini E. Electrophysiological characterization of granule cells in the dentate gyrus immediately after birth. Front Cell Neurosci 2014; 8:44. [PMID: 24592213 PMCID: PMC3924035 DOI: 10.3389/fncel.2014.00044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/30/2014] [Indexed: 11/13/2022] Open
Abstract
Granule cells (GCs) in the dentate gyrus are generated mainly postnatally. Between embryonic day 10 and 14, neural precursors migrate from the primary dentate matrix to the dentate gyrus where they differentiate into neurons. Neurogenesis reaches a peak at the end of the first postnatal week and it is completed at the end of the first postnatal month. This process continues at a reduced rate throughout life. Interestingly, immediately after birth, GCs exhibit a clear GABAergic phenotype. Only later they integrate the classical glutamatergic trisynaptic hippocampal circuit. Here, whole cell patch clamp recordings, in current clamp mode, were performed from immature GCs, intracellularly loaded with biocytin (in hippocampal slices from P0 to P3 old rats) in order to compare their morphological characteristics with their electrophysiological properties. The vast majority of GCs were very immature with small somata, few dendritic branches terminating with small varicosities and growth cones. In spite of their immaturity their axons reached often the cornu ammonis 3 area. Immature GCs generated, upon membrane depolarization, either rudimentary sodium spikes or more clear overshooting action potentials that fired repetitively. They exhibited also low threshold calcium spikes. In addition, most spiking neurons showed spontaneous synchronized network activity, reminiscent of giant depolarizing potentials (GDPs) generated in the hippocampus by the synergistic action of glutamate and GABA, both depolarizing and excitatory. This early synchronized activity, absent during adult neurogenesis, may play a crucial role in the refinement of local neuronal circuits within the developing dentate gyrus.
Collapse
Affiliation(s)
- Andrea Pedroni
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy
| | - Do Duc Minh
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy
| | - Antonello Mallamaci
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy
| | - Enrico Cherubini
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy ; European Brain Research Institute Rome, Italy
| |
Collapse
|
24
|
Münster-Wandowski A, Gómez-Lira G, Gutiérrez R. Mixed neurotransmission in the hippocampal mossy fibers. Front Cell Neurosci 2013; 7:210. [PMID: 24319410 PMCID: PMC3837298 DOI: 10.3389/fncel.2013.00210] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/23/2013] [Indexed: 01/14/2023] Open
Abstract
The hippocampal mossy fibers (MFs), the axons of the granule cells (GCs) of the dentate gyrus, innervate mossy cells and interneurons in the hilus on their way to CA3 where they innervate interneurons and pyramidal cells. Synapses on each target cell have distinct anatomical and functional characteristics. In recent years, the paradigmatic view of the MF synapses being only glutamatergic and, thus, excitatory has been questioned. Several laboratories have provided data supporting the hypothesis that the MFs can transiently release GABA during development and, in the adult, after periods of enhanced excitability. This transient glutamate-GABA co-transmission coincides with the transient up-regulation of the machinery for the synthesis and release of GABA in the glutamatergic GCs. Although some investigators have deemed this evidence controversial, new data has appeared with direct evidence of co-release of glutamate and GABA from single, identified MF boutons. However, this must still be confirmed by other groups and with other methodologies. A second, intriguing observation is that MF activation produced fast spikelets followed by excitatory postsynaptic potentials in a number of pyramidal cells, which, unlike the spikelets, underwent frequency potentiation and were strongly depressed by activation of metabotropic glutamate receptors. The spikelets persisted during blockade of chemical transmission and were suppressed by the gap junction blocker carbenoxolone. These data are consistent with the hypothesis of mixed electrical-chemical synapses between MFs and some pyramidal cells. Dye coupling between these types of principal cells and ultrastructural studies showing the co-existence of AMPA receptors and connexin 36 in this synapse corroborate their presence. A deeper consideration of mixed neurotransmission taking place in this synapse may expand our search and understanding of communication channels between different regions of the mammalian CNS.
Collapse
|
25
|
Marx M, Haas CA, Häussler U. Differential vulnerability of interneurons in the epileptic hippocampus. Front Cell Neurosci 2013; 7:167. [PMID: 24098270 PMCID: PMC3787650 DOI: 10.3389/fncel.2013.00167] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 09/07/2013] [Indexed: 11/30/2022] Open
Abstract
The loss of hippocampal interneurons has been considered as one reason for the onset of temporal lobe epilepsy (TLE) by shifting the excitation-inhibition balance. Yet, there are many different interneuron types which show differential vulnerability in the context of an epileptogenic insult. We used the intrahippocampal kainate (KA) mouse model for TLE in which a focal, unilateral KA injection induces status epilepticus (SE) followed by development of granule cell dispersion (GCD) and hippocampal sclerosis surrounding the injection site but not in the intermediate and temporal hippocampus. In this study, we characterized the loss of interneurons with respect to septotemporal position and to differential vulnerability of interneuron populations. To this end, we performed intrahippocampal recordings of the initial SE, in situ hybridization for glutamic acid decarboxylase 67 (GAD67) mRNA and immunohistochemistry for parvalbumin (PV) and neuropeptide Y (NPY) in the early phase of epileptogenesis at 2 days and at 21 days after KA injection, when recurrent epileptic activity and GCD have fully developed. We show that SE extended along the entire septotemporal axis of both hippocampi, but was stronger at distant sites than at the injection site. There was an almost complete loss of interneurons surrounding the injection site and expanding to the intermediate hippocampus already at 2 days but increasing until 21 days after KA. Furthermore, we observed differential vulnerability of PV- and NPY-expressing cells: while the latter were lost at the injection site but preserved at intermediate sites, PV-expressing cells were gone even at sites more temporal than GCD. In addition, we found upregulation of GAD67 mRNA expression in dispersed granule cells and of NPY staining in ipsilateral granule cells and ipsi- and contralateral mossy fibers. Our data thus indicate differential survival capacity of interneurons in the epileptic hippocampus and compensatory plasticity mechanisms depending on the hippocampal position.
Collapse
Affiliation(s)
- Markus Marx
- Experimental Epilepsy Research, Department of Neurosurgery, University of Freiburg Freiburg, Germany
| | | | | |
Collapse
|
26
|
Cabezas C, Irinopoulou T, Cauli B, Poncer JC. Molecular and functional characterization of GAD67-expressing, newborn granule cells in mouse dentate gyrus. Front Neural Circuits 2013; 7:60. [PMID: 23565079 PMCID: PMC3613764 DOI: 10.3389/fncir.2013.00060] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/14/2013] [Indexed: 11/13/2022] Open
Abstract
Dentate gyrus granule cells (GCs) have been suggested to synthesize both GABA and glutamate immediately after birth and under pathological conditions in the adult. Expression of the GABA synthesizing enzyme GAD67 by GCs during the first few weeks of postnatal development may then allow for transient GABA synthesis and synaptic release from these cells. Here, using the GAD67-EGFP transgenic strain G42, we explored the phenotype of GAD67-expressing GCs in the mouse dentate gyrus. We report a transient, GAD67-driven EGFP expression in differentiating GCs throughout ontogenesis. EGFP expression correlates with the expression of GAD and molecular markers of GABA release and uptake in 2–4 weeks post-mitotic GCs. These rather immature cells are able to fire action potentials (APs) and are synaptically integrated in the hippocampal network. Yet they show physiological properties that differentiate them from mature GCs. Finally, GAD67-expressing GCs express a specific complement of GABAA receptor subunits as well as distinctive features of synaptic and tonic GABA signaling. Our results reveal that GAD67 expression in dentate gyrus GCs is a transient marker of late differentiation that persists throughout life and the G42 strain may be used to visualize newborn GCs at a specific, well-defined differentiation stage.
Collapse
Affiliation(s)
- Carolina Cabezas
- INSERM, UMR-S 839 Paris, France ; Université Pierre et Marie Curie Paris, France ; Institut du Fer à Moulin Paris, France
| | | | | | | |
Collapse
|
27
|
Chai X, Münzner G, Zhao S, Tinnes S, Kowalski J, Häussler U, Young C, Haas CA, Frotscher M. Epilepsy-induced motility of differentiated neurons. ACTA ACUST UNITED AC 2013; 24:2130-40. [PMID: 23505288 DOI: 10.1093/cercor/bht067] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Neuronal ectopia, such as granule cell dispersion (GCD) in temporal lobe epilepsy (TLE), has been assumed to result from a migration defect during development. Indeed, recent studies reported that aberrant migration of neonatal-generated dentate granule cells (GCs) increased the risk to develop epilepsy later in life. On the contrary, in the present study, we show that fully differentiated GCs become motile following the induction of epileptiform activity, resulting in GCD. Hippocampal slice cultures from transgenic mice expressing green fluorescent protein in differentiated, but not in newly generated GCs, were incubated with the glutamate receptor agonist kainate (KA), which induced GC burst activity and GCD. Using real-time microscopy, we observed that KA-exposed, differentiated GCs translocated their cell bodies and changed their dendritic organization. As found in human TLE, KA application was associated with decreased expression of the extracellular matrix protein Reelin, particularly in hilar interneurons. Together these findings suggest that KA-induced motility of differentiated GCs contributes to the development of GCD and establish slice cultures as a model to study neuronal changes induced by epileptiform activity.
Collapse
Affiliation(s)
- Xuejun Chai
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gert Münzner
- Experimental Epilepsy Research, Department of Neurosurgery, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Shanting Zhao
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Stefanie Tinnes
- Experimental Epilepsy Research, Department of Neurosurgery, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Janina Kowalski
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Ute Häussler
- Experimental Epilepsy Research, Department of Neurosurgery, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Christina Young
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Michael Frotscher
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
28
|
González MI, Cruz Del Angel Y, Brooks-Kayal A. Down-regulation of gephyrin and GABAA receptor subunits during epileptogenesis in the CA1 region of hippocampus. Epilepsia 2013; 54:616-24. [PMID: 23294024 DOI: 10.1111/epi.12063] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2012] [Indexed: 12/22/2022]
Abstract
PURPOSE Epileptogenesis is the process by which a brain becomes hyperexcitable and capable of generating recurrent spontaneous seizures. In humans, it has been hypothesized that following a brain insult there are a number of molecular and cellular changes that underlie the development of spontaneous seizures. Studies in animal models have shown that an injured brain may develop epileptiform activity before appearance of epileptic seizures and that the pathophysiology accompanying spontaneous seizures is associated with a dysfunction of γ-aminobutyric acid (GABA)ergic neurotransmission. Here, we analyzed the effects of status epilepticus on the expression of GABAA receptors (GABAA Rs) and scaffolding proteins involved in the regulation of GABAA R trafficking and anchoring. METHODS Western blot analysis was used to determine the levels of proteins involved in GABAA R trafficking and anchoring in adult rats subjected to pilocarpine-induced status epilepticus (SE) and controls. Cell surface biotinylation using a cell membrane-impermeable reagent was used to assay for changes in the expression of receptors at the plasma membrane. Finally, immunoprecipitation experiments were used to evaluate the composition of GABAA Rs. We examined for a correlation between total GABAA R subunit expression, plasma membrane expression, and receptor composition. KEY FINDINGS Analysis of tissue samples from the CA1 region of hippocampus show that SE promotes a loss of GABAA R subunits and of the scaffolding proteins associated with them. We also found a decrease in the levels of receptors located at the plasma membrane and alterations in GABAA R composition. SIGNIFICANCE The changes in protein expression of GABAA Rs and scaffolding proteins detected in these studies provide a potential mechanism to explain the deficits in GABAergic neurotransmission observed during the epileptogenic period. Our current observations represent an additional step toward the elucidation of the molecular mechanisms underlying GABAA R dysfunction during epileptogenesis.
Collapse
Affiliation(s)
- Marco I González
- Division of Neurology and Translational Epilepsy Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA.
| | | | | |
Collapse
|
29
|
Heldt SA, Mou L, Ressler KJ. In vivo knockdown of GAD67 in the amygdala disrupts fear extinction and the anxiolytic-like effect of diazepam in mice. Transl Psychiatry 2012; 2:e181. [PMID: 23149445 PMCID: PMC3565763 DOI: 10.1038/tp.2012.101] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In mammals, γ-aminobutyric acid (GABA) transmission in the amygdala is particularly important for controlling levels of fear and anxiety. Most GABA synthesis in the brain is catalyzed in inhibitory neurons from L-glutamic acid by the enzyme glutamic acid decarboxylase 67 (GAD67). In the current study, we sought to examine the acquisition and extinction of conditioned fear in mice with knocked down expression of the GABA synthesizing enzyme GAD67 in the amygdala using a lentiviral-based (LV) RNA interference strategy to locally induce loss-of-function. In vitro experiments revealed that our LV-siRNA-GAD67 construct diminished the expression of GAD67 as determined with western blot and fluorescent immunocytochemical analyses. In vivo experiments, in which male C57BL/6J mice received bilateral amygdala microinjections, revealed that LV-siRNA-GAD67 injections produce significant inhibition of endogenous GAD67 when compared with control injections. In contrast, no significant changes in GAD65 expression were detected in the amygdala, validating the specificity of LV knockdown. Behavioral experiments showed that LV knockdown of GAD67 results in a deficit in the extinction, but not the acquisition or retention, of fear as measured by conditioned freezing. GAD67 knockdown did not affect baseline locomotion or basal measures of anxiety as measured in open field apparatus. However, diminished GAD67 in the amygdala blunted the anxiolytic-like effect of diazepam (1.5 mg kg(-1)) as measured in the elevated plus maze. Together, these studies suggest that of GABAergic transmission in amygdala mediates the inhibition of conditioned fear and the anxiolytic-like effect of diazepam in adult mice.
Collapse
Affiliation(s)
- S A Heldt
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - L Mou
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - K J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA,Howard Hughes Medical Institute, Bethesda, MD, USA
| |
Collapse
|
30
|
Medina-Ceja L, Sandoval-García F, Morales-Villagrán A, López-Pérez SJ. Rapid compensatory changes in the expression of EAAT-3 and GAT-1 transporters during seizures in cells of the CA1 and dentate gyrus. J Biomed Sci 2012; 19:78. [PMID: 22931236 PMCID: PMC3438021 DOI: 10.1186/1423-0127-19-78] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 08/21/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Epilepsy is a neurological disorder produced by an imbalance between excitatory and inhibitory neurotransmission, in which transporters of both glutamate and GABA have been implicated. Hence, at different times after local administration of the convulsive drug 4-aminopyridine (4-AP) we analyzed the expression of EAAT-3 and GAT-1 transporter proteins in cells of the CA1 and dentate gyrus. METHODS Dual immunofluorescence was used to detect the co-localization of transporters and a neuronal marker. In parallel, EEG recordings were performed and convulsive behavior was rated using a modified Racine Scale. RESULTS By 60 min after 4-AP injection, EAAT-3/NeuN co-labelling had increased in dentate granule cells and decreased in CA1 pyramidal cells. In the latter, this decrease persisted for up to 180 min after 4-AP administration. In both the DG and CA1, the number of GAT-1 labeled cells increased 60 min after 4-AP administration, although by 180 min GAT-1 labeled cells decreased in the DG alone. The increase in EAAT-3/NeuN colabelling in DG was correlated with maximum epileptiform activity and convulsive behavior. CONCLUSIONS These findings suggest that a compensatory mechanism exists to protect against acute seizures induced by 4-AP, whereby EAAT-3/NeuN cells is rapidly up regulated in order to enhance the removal of glutamate from the extrasynaptic space, and attenuating seizure activity.
Collapse
Affiliation(s)
- Laura Medina-Ceja
- Laboratorio de Neurofisiología y Neuroquímica, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Km, 15,5 Carretera Guadalajara-Nogales Predio "Las Agujas", Nextipac, Zapopan, Jalisco CP 45110, Mexico.
| | | | | | | |
Collapse
|
31
|
Darrah SD, Miller MA, Ren D, Hoh NZ, Scanlon JM, Conley YP, Wagner AK. Genetic variability in glutamic acid decarboxylase genes: associations with post-traumatic seizures after severe TBI. Epilepsy Res 2012; 103:180-94. [PMID: 22840783 DOI: 10.1016/j.eplepsyres.2012.07.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 11/18/2022]
Abstract
Post traumatic seizures (PTS) occur frequently after traumatic brain injury (TBI). Since gamma-amino butyric acid (GABA) neurotransmission is central to excitotoxicity and seizure development across multiple models, we investigated how genetic variability for glutamic acid decarboxylase (GAD) influences risk for PTS. Using both a tagging and functional single nucleotide polymorphism (SNP) approach, we genotyped the GAD1 and GAD2 genes and linked them with PTS data, regarding time to first seizure, obtained for 257 adult subjects with severe TBI. No significant associations were found for GAD2. In the GAD1 gene, the tagging SNP (tSNP) rs3828275 was associated with an increased risk for PTS occurring <1 wk. The tSNP rs769391 and the functional SNP rs3791878 in the GAD1 gene were associated with increased PTS risk occurring 1 wk-6 mo post-injury. Both risk variants conferred an increased susceptibility to PTS compared to subjects with 0-1 risk variant. Also, those with haplotypes having both risk variants had a higher PTS risk 1 wk-6 mo post-injury than those without these haplotypes. Similarly, diplotype analysis showed those with 2 copies of the haplotype containing both risk alleles were at the highest PTS risk. These results implicate genetic variability within the GABA system in modulating the development of PTS.
Collapse
Affiliation(s)
- Shaun D Darrah
- University of Pittsburgh, Department of Physical Medicine & Rehabilitation, 3471 Fifth Avenue, Suite 202, Pittsburgh, PA 15213, United States.
| | | | | | | | | | | | | |
Collapse
|
32
|
Golechha M, Bhatia J, Ojha S, Arya DS. Hydroalcoholic extract of Emblica officinalis protects against kainic acid-induced status epilepticus in rats: evidence for an antioxidant, anti-inflammatory, and neuroprotective intervention. PHARMACEUTICAL BIOLOGY 2011; 49:1128-1136. [PMID: 21749189 DOI: 10.3109/13880209.2011.571264] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
CONTEXT Emblica officinalis (Euphorbiaceae), commonly known as amla, is traditionally used for central nervous system (CNS) disorders. OBJECTIVE In the present study, the effect of standardized hydroalcoholic extract of E. officinalis fruit (HAEEO), an Indian medicinal plant with potent antioxidant activity, was studied against kainic acid (KA)-induced seizures, cognitive deficits and on markers of oxidative stress. MATERIALS AND METHODS Rats were administered KA (10 mg/kg, i.p.) and observed for behavioral changes, incidence, and latency of convulsions over 4 h. The rats were thereafter sacrificed for estimation of oxidative stress parameters: thiobarbituric acid-reactive substances (TBARS) and glutathione (GSH). The proinflammatory cytokine tumor necrosis factor alpha (TNF-α) was also determined in the rat brain. RESULTS Pretreatment with HAEEO (500 and 700 mg/kg, i.p.) significantly (P < 0.001) increased the latency of seizures as compared with the vehicle-treated KA group. HAEEO significantly prevented the increase in TBARS levels and ameliorated the fall in GSH. Furthermore, HAEEO dose-dependently attenuated the KA-induced increase in the TNF-α level in the brain. HAEEO also significantly improved the cognitive deficit induced by KA, as evidenced by increased latency in passive avoidance task. DISCUSSION AND CONCLUSION HAEEO at the dose of 700 mg/kg, i.p., was most effective in suppressing KA-induced seizures, cognitive decline, and oxidative stress in the brain. These neuroprotective effects may be due to the antioxidant and anti-inflammatory effects of HAEEO.
Collapse
Affiliation(s)
- Mahaveer Golechha
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | |
Collapse
|
33
|
Medina-Ceja L, Sandoval-García F, Pardo-Peña K. Effect of Early Glutamate Exposure on EAAT-3 and GAT-1 Protein Expression in Cells of the Dentate Gyrus and CA1 Region of the Adult Rat Hippocampus. Arch Med Res 2011; 42:433-8. [DOI: 10.1016/j.arcmed.2011.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 08/10/2011] [Indexed: 10/17/2022]
|
34
|
Sperk G, Wieselthaler-Hölzl A, Pirker S, Tasan R, Strasser SS, Drexel M, Pifl C, Marschalek J, Ortler M, Trinka E, Heitmair-Wietzorrek K, Ciofi P, Feucht M, Baumgartner C, Czech T. Glutamate decarboxylase 67 is expressed in hippocampal mossy fibers of temporal lobe epilepsy patients. Hippocampus 2011; 22:590-603. [PMID: 21509853 DOI: 10.1002/hipo.20923] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2010] [Indexed: 11/12/2022]
Abstract
Recently, expression of glutamate decarboxylase-67 (GAD67), a key enzyme of GABA synthesis, was detected in the otherwise glutamatergic mossy fibers of the rat hippocampus. Synthesis of the enzyme was markedly enhanced after experimentally induced status epilepticus. Here, we investigated the expression of GAD67 protein and mRNA in 44 hippocampal specimens from patients with mesial temporal lobe epilepsy (TLE) using double immunofluorescence histochemistry, immunoblotting, and in situ hybridization. Both in specimens with (n = 37) and without (n = 7) hippocampal sclerosis, GAD67 was highly coexpressed with dynorphin in terminal areas of mossy fibers, including the dentate hilus and the stratum lucidum of sector CA3. In the cases with Ammon's horn sclerosis, also the inner molecular layer of the dentate gyrus contained strong staining for GAD67 immunoreactivity, indicating labeling of mossy fiber terminals that specifically sprout into this area. Double immunofluorescence revealed the colocalization of GAD67 immunoreactivity with the mossy fiber marker dynorphin. The extent of colabeling correlated with the number of seizures experienced by the patients. Furthermore, GAD67 mRNA was found in granule cells of the dentate gyrus. Levels, both of GAD67 mRNA and of GAD67 immunoreactivity were similar in sclerotic and nonsclerotic specimens and appeared to be increased compared to post mortem controls. Provided that the strong expression of GAD67 results in synthesis of GABA in hippocampal mossy fibers this may represent a self-protecting mechanism in TLE. In addition GAD67 expression also may result in conversion of excessive intracellular glutamate to nontoxic GABA within mossy fiber terminals.
Collapse
Affiliation(s)
- Günther Sperk
- Department of Pharmacology, Medical University Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Stanić D, Mulder J, Watanabe M, Hökfelt T. Characterization of NPY Y2 receptor protein expression in the mouse brain. II. Coexistence with NPY, the Y1 receptor, and other neurotransmitter-related molecules. J Comp Neurol 2011; 519:1219-57. [DOI: 10.1002/cne.22608] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Cherubini E, Caiati MD, Sivakumaran S. In the developing hippocampus kainate receptors control the release of GABA from mossy fiber terminals via a metabotropic type of action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 717:11-26. [PMID: 21713663 DOI: 10.1007/978-1-4419-9557-5_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Kainate receptors (KARs) are glutamate-gated ion channels assembled from various combinations of GluK1-GluK5 subunits with different physiological and pharmacological properties. In the hippocampus, KARs expressed at postsynaptic sites mediate a small component of excitatory postsynaptic currents while at presynaptic sites they exert a powerful control on transmitter release at both excitatory and inhibitory connections. KARs are developmentally regulated and play a key role in several developmental processes including neuronal migration, differentiation and synapse formation. Interestingly, they can signal through a canonical ionotropic pathway but also through a noncanonical modality involving pertussis toxin-sensitive G proteins and downstream signaling molecules.In this Chapter some of our recent data concerning the functional role of presynaptic KARs in regulation of transmitter release from immature mossy fiber terminals and in synaptic plasticity processes will be reviewed. Early in postnatal development, MFs release into their targeted neurons mainly GABA which is depolarizing and excitatory. Endogenous activation of GluK1 KARs localized on MF terminals by glutamate present in the extracellular space down regulates GABA release, leading sometimes to synapse silencing. The depressant effect of GluK1 on MF responses is mediated by a metabotropic process, sensitive to pertussis toxin and phospholipase C (PLC) along the transduction pathway downstream to G protein activation. Blocking PLC with the selective antagonist U73122, unmasks the potentiating effect of GluK1 on MF-evoked GABAergic currents, which probably depend on the ionotropic type of action of these receptors.In addition, GluK1 KARs dynamically regulate the direction of spike-time dependent plasticity, a particular form of Hebbian type of learning which consists in bidirectional modifications in synaptic strength according to the temporal order of pre and postsynaptic spiking. At immature MF-CA3 synapses pairing MF stimulation with postsynaptic spiking and vice versa induces long term depression of MF-evoked GABAergic currents. In the case of positive pairing synaptic depression can be switched into spike-time dependent potentiation by blocking GluK1 KARs with UBP 302. The depressant action exerted by GluK1 KARs on MF responses would prevent the excessive activation of the CA3 associative network by the excitatory action of GABA early in postnatal development.
Collapse
Affiliation(s)
- Enrico Cherubini
- Neurobiology Sector and IIT Unit, Internationa School of Advanced Studies (SISSA), Ed. Q1 Area Science Park, S.S. 14 Km 163.5, 34012, Basovizza, (Trieste), Italy.
| | | | | |
Collapse
|
37
|
Golechha M, Chaudhry U, Bhatia J, Saluja D, Arya DS. Naringin Protects against Kainic Acid-Induced Status Epilepticus in Rats: Evidence for an Antioxidant, Anti-inflammatory and Neuroprotective Intervention. Biol Pharm Bull 2011; 34:360-5. [DOI: 10.1248/bpb.34.360] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Uma Chaudhry
- Department of Biomedical Sciences, University of Delhi
| | - Jagriti Bhatia
- Department of Pharmacology, All India Institute of Medical Sciences
| | - Daman Saluja
- Department of Biomedical Sciences, University of Delhi
| | | |
Collapse
|
38
|
Akakin D, Sirvanci S, Gurbanova A, Aker R, Onat F, San T. Ultrastructural GABA immunocytochemistry in the mossy fiber terminals of Wistar and genetic absence epileptic rats receiving amygdaloid kindling stimulations. Brain Res 2010; 1377:101-8. [PMID: 21195064 DOI: 10.1016/j.brainres.2010.12.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 12/20/2010] [Accepted: 12/21/2010] [Indexed: 10/18/2022]
Abstract
The existence of absence epilepsy and temporal lobe epilepsy in the same patient is not common in clinical practice. The reason why both types of seizures are rarely seen in the same patient is not well understood. Therefore, we aimed to investigate kindling in a well known model of human absence epilepsy, genetic absence epilepsy rats from Strasbourg (GAERS). In the present study, we analyzed whether the GABA content of GAERS that received kindling stimulations was altered in the hippocampal mossy fiber terminals compared to non-epileptic control (NEC) Wistar rats. For this purpose, we used an immunocytochemical technique at the ultrastructural level. Ultrathin sections were immunolabeled with anti-GABA antibody and transmission electron microscopy was used for the ultrastructural examination. The number of gold particles per nerve terminal was counted and the area of the nerve terminal was determined using NIH image analysis program. The GABA density was found to be higher in sham-operated GAERS than sham-operated Wistar rats. The density was increased in kindling Wistar group compared to sham-operated Wistar and kindling GAERS groups. No statistical difference was observed between sham-operated GAERS and kindling GAERS groups. The increase in GABA levels in stimulated Wistar rats may be a result of a protective mechanism. Furthermore, there may be strain differences between Wistar rats and GAERS and our findings addressing different epileptogenesis mechanisms in these strains might be a basis for future experimental studies.
Collapse
Affiliation(s)
- Dilek Akakin
- Department of Histology and Embryology, Faculty of Medicine, Marmara University, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
39
|
Zhao S, Zhou Y, Gross J, Miao P, Qiu L, Wang D, Chen Q, Feng G. Fluorescent labeling of newborn dentate granule cells in GAD67-GFP transgenic mice: a genetic tool for the study of adult neurogenesis. PLoS One 2010; 5. [PMID: 20824075 PMCID: PMC2932690 DOI: 10.1371/journal.pone.0012506] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Accepted: 06/05/2010] [Indexed: 12/12/2022] Open
Abstract
Neurogenesis in the adult hippocampus is an important form of structural plasticity in the brain. Here we report a line of BAC transgenic mice (GAD67-GFP mice) that selectively and transitorily express GFP in newborn dentate granule cells of the adult hippocampus. These GFP(+) cells show a high degree of colocalization with BrdU-labeled nuclei one week after BrdU injection and express the newborn neuron marker doublecortin and PSA-NCAM. Compared to mature dentate granule cells, these newborn neurons show immature morphological features: dendritic beading, fewer dendritic branches and spines. These GFP(+) newborn neurons also show immature electrophysiological properties: higher input resistance, more depolarized resting membrane potentials, small and non-typical action potentials. The bright labeling of newborn neurons with GFP makes it possible to visualize the details of dendrites, which reach the outer edge of the molecular layer, and their axon (mossy fiber) terminals, which project to the CA3 region where they form synaptic boutons. GFP expression covers the whole developmental stage of newborn neurons, beginning within the first week of cell division and disappearing as newborn neurons mature, about 4 weeks postmitotic. Thus, the GAD67-GFP transgenic mice provide a useful genetic tool for studying the development and regulation of newborn dentate granule cells.
Collapse
Affiliation(s)
- Shengli Zhao
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Yang Zhou
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jimmy Gross
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Pei Miao
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Li Qiu
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Dongqing Wang
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Qian Chen
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Guoping Feng
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
40
|
Schunk E, Aigner C, Stefanova N, Wenning G, Herzog H, Schwarzer C. Kappa opioid receptor activation blocks progressive neurodegeneration after kainic acid injection. Hippocampus 2010; 21:1010-20. [PMID: 21391243 DOI: 10.1002/hipo.20813] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2010] [Indexed: 11/07/2022]
Abstract
We recently demonstrated that endogenous prodynorphin-derived peptides mediate anticonvulsant, antiepileptogenic and neuroprotective effects via kappa opioid receptors (KOP). Here we show acute and delayed neurodegeneration and its pharmacology after local kainic acid injection in prodynorphin knockout and wild-type mice and neuroprotective effect(s) of KOP activation in wild-type mice. Prodynorphin knockout and wild-type mice were injected with kainic acid (3 nmoles in 50 nl saline) into the stratum radiatum of CA1 of the right dorsal hippocampus. Knockout mice displayed significantly more neurodegeneration of pyramidal cells and interneurons than wild-type mice 2 days after treatment. This phenotype could be mimicked in wild-type animals by treatment with the KOP antagonist GNTI and rescued in knockout animals by the KOP agonist U-50488. Minor differences in neurodegeneration remained 3 weeks after treatment, mostly because of higher progressive neurodegeneration in wild-type mice compared with prodynorphin-deficient animals. In wild-type mice progressive neurodegeneration, but not acute neuronal loss, could be mostly blocked by U-50488 treatment. Our data suggest that endogenous prodynorphin-derived peptides sufficiently activate KOP receptors during acute seizures, and importantly in situations of reduced dynorphinergic signaling-like in epilepsy-the exogenous activation of KOP receptors might also have strong neuroprotective effects during excitotoxic events.
Collapse
Affiliation(s)
- Eduard Schunk
- Department of Pharmacology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
41
|
Safiulina VF, Caiati MD, Sivakumaran S, Bisson G, Migliore M, Cherubini E. Control of GABA Release at Mossy Fiber-CA3 Connections in the Developing Hippocampus. Front Synaptic Neurosci 2010; 2:1. [PMID: 21423487 PMCID: PMC3059712 DOI: 10.3389/neuro.19.001.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 02/02/2010] [Indexed: 12/03/2022] Open
Abstract
In this review some of the recent work carried out in our laboratory concerning the functional role of GABAergic signalling at immature mossy fibres (MF)-CA3 principal cell synapses has been highlighted. While in adulthood MF, the axons of dentate gyrus granule cells release onto CA3 principal cells and interneurons glutamate, early in postnatal life they release GABA, which exerts into targeted cells a depolarizing and excitatory action. We found that GABAA-mediated postsynaptic currents (MF-GPSCs) exhibited a very low probability of release, were sensitive to L-AP4, a group III metabotropic glutamate receptor agonist, and revealed short-term frequency-dependent facilitation. Moreover, MF-GPSCs were down regulated by presynaptic GABAB and kainate receptors, activated by spillover of GABA from MF terminals and by glutamate present in the extracellular medium, respectively. Activation of these receptors contributed to the low release probability and in some cases to synapses silencing. By pairing calcium transients, associated with network-driven giant depolarizing potentials or GDPs (a hallmark of developmental networks thought to represent a primordial form of synchrony between neurons), generated by the synergistic action of glutamate and GABA with MF activation increased the probability of GABA release and caused the conversion of silent synapses into conductive ones suggesting that GDPs act as coincident detector signals for enhancing synaptic efficacy. Finally, to compare the relative strength of CA3 pyramidal cell output in relation to their MF glutamatergic or GABAergic inputs in adulthood or in postnatal development, respectively, a realistic model was constructed taking into account different biophysical properties of these synapses.
Collapse
Affiliation(s)
- Victoria F Safiulina
- Department of Neurobiology, International School for Advanced Studies Trieste, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Sperk G, Drexel M, Pirker S. Neuronal plasticity in animal models and the epileptic human hippocampus. Epilepsia 2010; 50 Suppl 12:29-31. [PMID: 19941518 DOI: 10.1111/j.1528-1167.2009.02365.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Gunther Sperk
- Department of Pharmacology, Medical University Innsbruck, Austria.
| | | | | |
Collapse
|
43
|
Safiulina VF, Cherubini E. At immature mossy fibers-CA3 connections, activation of presynaptic GABA(B) receptors by endogenously released GABA contributes to synapses silencing. Front Cell Neurosci 2009; 3:1. [PMID: 19277216 PMCID: PMC2654018 DOI: 10.3389/neuro.03.001.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 02/18/2009] [Indexed: 01/24/2023] Open
Abstract
Early in postnatal life correlated GABAergic activity in the hippocampus is thought to play a crucial role in synaptogenesis and in the development of adult neuronal networks. Unlike adulthood, at this developmental stage, mossy fibers (MF) which are the axons of granule cells, release GABA into CA3 principal cells and interneurons. Here, we tested the hypothesis that at MF-CA3 connections, tonic activation of GABA(B) autoreceptors by GABA is responsible for the low probability of release and synapse silencing. Blocking GABA(B) receptors with CGP55845 enhanced the probability of GABA release and switched on silent synapses while the opposite was observed with baclofen. Both these effects were presynaptic and were associated with changes in paired-pulse ratio and coefficient of variation. In addition, enhancing the extracellular GABA concentration by repetitive stimulation of MF or by blocking the GABA transporter GAT-1, switched off active synapses, an effect that was prevented by CGP55845. In the presence of CGP55845, stimulation of MF-induced synaptic potentiation. The shift of E(GABA) from the depolarizing to the hyperpolarizing direction with bumetanide, a blocker of the cation-chloride co-transporter NKCC1, prevented synaptic potentiation and caused synaptic depression, suggesting that the depolarizing action of GABA observed in the presence of CGP55845 is responsible for the potentiating effect. It is proposed that, activation of GABA(B) receptors by spillover of GABA from MF terminals reduces the probability of release and contributes to synapses silencing. This would act as a filter to prevent excessive activation of the auto-associative CA3 network and the emergence of seizures.
Collapse
Affiliation(s)
- Victoria F Safiulina
- Neuroscience Programme, International School for Advanced Studies Trieste, Italy
| | | |
Collapse
|
44
|
Popp A, Urbach A, Witte OW, Frahm C. Adult and embryonic GAD transcripts are spatiotemporally regulated during postnatal development in the rat brain. PLoS One 2009; 4:e4371. [PMID: 19190758 PMCID: PMC2629816 DOI: 10.1371/journal.pone.0004371] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 12/22/2008] [Indexed: 12/02/2022] Open
Abstract
Background GABA (gamma-aminobutyric acid), the main inhibitory neurotransmitter in the brain, is synthesized by glutamic acid decarboxylase (GAD). GAD exists in two adult isoforms, GAD65 and GAD67. During embryonic brain development at least two additional transcripts exist, I-80 and I-86, which are distinguished by insertions of 80 or 86 bp into GAD67 mRNA, respectively. Though it was described that embryonic GAD67 transcripts are not detectable during adulthood there are evidences suggesting re-expression under certain pathological conditions in the adult brain. In the present study we systematically analyzed for the first time the spatiotemporal distribution of different GADs with emphasis on embryonic GAD67 mRNAs in the postnatal brain using highly sensitive methods. Methodology/Principal Findings QPCR was used to precisely investigate the postnatal expression level of GAD related mRNAs in cortex, hippocampus, cerebellum, and olfactory bulb of rats from P1 throughout adulthood. Within the first three postnatal weeks the expression of both GAD65 and GAD67 mRNAs reached adult levels in hippocampus, cortex, and cerebellum. The olfactory bulb showed by far the highest expression of GAD65 as well as GAD67 transcripts. Embryonic GAD67 splice variants were still detectable at birth. They continuously declined to barely detectable levels during postnatal development in all investigated regions with exception of a comparatively high expression in the olfactory bulb. Radioactive in situ hybridizations confirmed the occurrence of embryonic GAD67 transcripts in the olfactory bulb and furthermore detected their localization mainly in the subventricular zone and the rostral migratory stream. Conclusions/Significance Embryonic GAD67 transcripts can hardly be detected in the adult brain, except for specific regions associated with neurogenesis and high synaptic plasticity. Therefore a functional role in processes like proliferation, migration or synaptogenesis is suggested.
Collapse
Affiliation(s)
- Anke Popp
- Department of Neurology, Friedrich-Schiller-University, Jena, Germany
| | - Anja Urbach
- Department of Neurology, Friedrich-Schiller-University, Jena, Germany
| | - Otto W. Witte
- Department of Neurology, Friedrich-Schiller-University, Jena, Germany
| | - Christiane Frahm
- Department of Neurology, Friedrich-Schiller-University, Jena, Germany
- * E-mail:
| |
Collapse
|
45
|
Developmental and target-dependent regulation of vesicular glutamate transporter expression by dopamine neurons. J Neurosci 2008; 28:6309-18. [PMID: 18562601 DOI: 10.1523/jneurosci.1331-08.2008] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mesencephalic dopamine (DA) neurons have been suggested to use glutamate as a cotransmitter. Here, we suggest a mechanism for this form of cotransmission by showing that a subset of DA neurons both in vitro and in vivo expresses vesicular glutamate transporter 2 (VGluT2). Expression of VGluT2 decreases with age. Moreover, when DA neurons are grown in isolation using a microculture system, there is a marked upregulation of VGluT2 expression. We provide evidence that expression of this transporter is normally repressed through a contact-dependent interaction with GABA and other DA neurons, thus providing a partial explanation for the highly restricted expression of VGluT2 in DA neurons in vivo. Our results demonstrate that the neurotransmitter phenotype of DA neurons is both developmentally and dynamically regulated. These findings may have implications for a better understanding of the fast synaptic action of DA neurons as well as basal ganglia circuitry.
Collapse
|
46
|
Kim ST, Jeon S, Park HJ, Hong MS, Jeong WB, Kim JH, Kim Y, Lee HJ, Park HJ, Chung JH. Acupuncture Inhibits Kainic Acid–Induced Hippocampal Cell Death in Mice. J Physiol Sci 2008; 58:31-8. [DOI: 10.2170/physiolsci.rp010907] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 01/05/2008] [Indexed: 11/05/2022]
|
47
|
Guo J, Liu J, Fu W, Ma W, Xu Z, Yuan M, Song J, Hu J. The effect of electroacupuncture on spontaneous recurrent seizure and expression of GAD(67) mRNA in dentate gyrus in a rat model of epilepsy. Brain Res 2007; 1188:165-72. [PMID: 18022144 DOI: 10.1016/j.brainres.2007.10.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2007] [Revised: 09/30/2007] [Accepted: 10/03/2007] [Indexed: 11/13/2022]
Abstract
Concerns regarding the side effects of pharmacological approaches have recently increased interest in the use of acupuncture for treatment of epilepsy. Although clinical evidence for the acupunctural anti-epileptic effect has been demonstrated, the precise mechanism still remains unknown. The purpose of this study was to investigate the effect of electroacupuncture (EA) on spontaneous recurrent seizure (SRS) and expression of GAD(67) mRNA in dentate gyrus (DG) in epileptic rats. EA at bilateral acupoints of Zusanli (St36) was administered. Two sham EA controls were set: sham EA at bilateral nearby nonacupoints in the hamstring muscles, and sham EA at bilateral St36 without electrical stimulation. Lithium-pilocarpine injection was performed to establish the rat model of epilepsy at the 1st day. Three time points were set according to the day when the rats were killed (30th, 45th, 60th day). The results showed that EA at St36 significantly reduced the times of spontaneous recurrent seizure, neither of the two sham EA controls displayed significant effect on spontaneous recurrent seizure. Moreover, EA at St36 significantly elevated the expression of GAD(67) mRNA in DG granule cell layer (GCL), but not in the hilus; neither of the two sham controls showed significant effect on the expression of GAD(67) mRNA in granule cell layer or hilus. The findings suggest that EA at St36 possess some curative effect on epileptic rats, related with change of GAD(67) mRNA level in DG region.
Collapse
Affiliation(s)
- Jianjun Guo
- Department of Analysis-Measurement Science, College of Chemistry and Molecular Sciences, Wuhan University, Wuchang District, Wuhan, PR China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Li Q, Guo M, Xu X, Xiao X, Xu W, Sun X, Tao H, Li R. Rapid Decrease of GAD 67 Content Before the Convulsion Induced by Hyperbaric Oxygen Exposure. Neurochem Res 2007; 33:185-93. [PMID: 17712632 DOI: 10.1007/s11064-007-9436-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 07/05/2007] [Indexed: 10/22/2022]
Abstract
Exposure to hyperbaric oxygen (HBO) can lead to seizures, the etiology of which is not completely understood. Glutamic acid decarboxylase (GAD) plays a very important role in maintaining excitatory-inhibitory balance of the central nervous system (CNS). In the present study we investigated the effects of HBO on the activity and content of GAD in vivo and in primarily cultured neurons to probe in detail its effect on the formation of convulsion induced by HBO exposure. The results obtained from in vivo and in vitro experiments were identical. In the latent period before the onset of seizure, the GAD activity followed a rise-and-fall pattern with the prolongation of HBO exposure. At the time of the onset of seizure, GAD activity descended to the normal level. Besides, in the latent period, GAD content also reduced. Such reduction came from a GAD subtype, GAD67, while the content of another GAD subtype, GAD65, remained almost unchanged. Our investigations indicated that GAD is indeed an enzyme highly sensitive to the effect of HBO exposure. The rapid reduction in GAD67 content may be very closely related to seizures induced by HBO exposure.
Collapse
Affiliation(s)
- Quan Li
- Department of Diving Medicine, Faculty of Naval Medicine, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Boulland JL, Ferhat L, Tallak Solbu T, Ferrand N, Chaudhry FA, Storm-Mathisen J, Esclapez M. Changes in vesicular transporters for gamma-aminobutyric acid and glutamate reveal vulnerability and reorganization of hippocampal neurons following pilocarpine-induced seizures. J Comp Neurol 2007; 503:466-85. [PMID: 17503488 DOI: 10.1002/cne.21384] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The reorganizations of the overall intrinsic glutamatergic and gamma-aminobutyric acid (GABA)-ergic hippocampal networks as well as the time course of these reorganizations during development of pilocarpine-induced temporal lobe epilepsy were studied with in situ hybridization and immunohistochemistry experiments for the vesicular glutamate transporter 1 (VGLUT1) and the vesicular GABA transporter (VGAT). These transporters are particularly interesting as specific markers for glutamatergic and GABAergic neurons, respectively, whose expression levels could reflect the demand for synaptic transmission and their average activity. We report that 1) concomitantly with the loss of some subpopulations of VGAT-containing neurons, there was an up-regulation of VGAT synthesis in all remaining GABA neurons as early as 1 week after pilocarpine injection. This enhanced synthesis is characterized by marked increases in the relative amount of VGAT mRNAs in interneurons associated with increased intensity of axon terminal labeling for VGAT in all hippocampal layers. 2) There was a striking loss of mossy cells during the latent period, demonstrated by a long-term decrease of VGLUT1 mRNA-containing hilar neurons and associated loss of VGLUT1-containing terminals in the dentate gyrus inner molecular layer. 3) There were aberrant VGLUT1-containing terminals at the chronic stage resulting from axonal sprouting of granule and pyramidal cells. This is illustrated by a recovery of VGLUT1 immunoreactivity in the inner molecular layer and an increased VGLUT1 immunolabeling in the CA1-CA3 dendritic layers. These data indicate that an increased activity of remaining GABAergic interneurons occurs during the latent period, in parallel with the loss of vulnerable glutamatergic and GABAergic neurons preceding the reorganization of glutamatergic networks.
Collapse
Affiliation(s)
- Jean-Luc Boulland
- The Biotechnology Centre of Oslo, University of Oslo, Oslo, N-0349 Norway
| | | | | | | | | | | | | |
Collapse
|
50
|
Raedt R, Boon P, Persson A, Alborn AM, Boterberg T, Van Dycke A, Linder B, De Smedt T, Wadman WJ, Ben-Menachem E, Eriksson PS. Radiation of the rat brain suppresses seizure-induced neurogenesis and transiently enhances excitability during kindling acquisition. Epilepsia 2007; 48:1952-63. [PMID: 17555527 DOI: 10.1111/j.1528-1167.2007.01146.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Adult hippocampal neurogenesis is enhanced in several models for temporal lobe epilepsy (TLE). In this study, we used low-dose whole brain radiation to suppress hippocampal neurogenesis and then studied the effect of this treatment on epileptogenesis in a kindling model for TLE. METHODS Half of the rats were exposed to a radiation dose of 8 Gy one day before the initiation of a rapid kindling protocol. Afterdischarge threshold (ADT), afterdischarge duration (ADD), clinical seizure severity, and inflammation were compared between groups. On the first and third day after radiation, rats were injected with 5'-bromo-2'-deoxyuridine (BrdU) to evaluate neurogenesis. Seven and 21 days after radiation, numbers of doublecortin (DCX) positive neuroblasts in subgranular zone and granule cell layer were compared between groups. RESULTS We showed that radiation significantly suppressed neurogenesis and neuroblast production during kindling acquisition. Radiation prevented an increase in ADT that became significantly lower in radiated rats. On the third and fourth kindling acquisition day radiated rats developed more severe seizures more rapidly, which resulted in a significantly higher mean severity score on these days. Differences in ADD could not be demonstrated. DISCUSSION Our results demonstrate that brain radiation with a relatively low dose effectively suppressed the generation of new granule cells and transiently enhanced excitability during kindling acquisition. Although seizure-induced neurogenesis was lower in the radiated rats we could not detect a strong effect on the final establishment of the permanent fully kindled state, which argues against a prominent role of seizure-induced neurogenesis in epileptogenesis.
Collapse
Affiliation(s)
- Robrecht Raedt
- Laboratory for Clinical and Experimental Neurophysiology, Department of Neurology, Ghent University Hospital, Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|