1
|
Schaible HG, König C, Ebersberger A. Spinal pain processing in arthritis: Neuron and glia (inter)actions. J Neurochem 2024; 168:3644-3662. [PMID: 36520021 DOI: 10.1111/jnc.15742] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Diseases of joints are among the most frequent causes of chronic pain. In the course of joint diseases, the peripheral and the central nociceptive system develop persistent hyperexcitability (peripheral and central sensitization). This review addresses the mechanisms of spinal sensitization evoked by arthritis. Electrophysiological recordings in anesthetized rats from spinal cord neurons with knee input in a model of acute arthritis showed that acute spinal sensitization is dependent on spinal glutamate receptors (AMPA, NMDA, and metabotropic glutamate receptors) and supported by spinal actions of neuropeptides such as neurokinins and CGRP, by prostaglandins, and by proinflammatory cytokines. In several chronic arthritis models (including immune-mediated arthritis and osteoarthritis) spinal glia activation was observed to be coincident with behavioral mechanical hyperalgesia which was attenuated or prevented by intrathecal application of minocycline, fluorocitrate, and pentoxyfylline. Some studies identified specific pathways of micro- and astroglia activation such as the purinoceptor- (P2X7-) cathepsin S/CX3CR1 pathway, the mobility group box-1 protein (HMGB1), and toll-like receptor 4 (TLR4) activation, spinal NFκB/p65 activation and others. The spinal cytokines TNF, interleukin-6, interleukin-1β, and others form a functional spinal network characterized by an interaction between neurons and glia cells which is required for spinal sensitization. Neutralization of spinal cytokines by intrathecal interventions attenuates mechanical hyperalgesia. This effect may in part result from local suppression of spinal sensitization and in part from efferent effects which attenuate the inflammatory process in the joint. In summary, arthritis evokes significant spinal hyperexcitability which is likely to contribute to the phenotype of arthritis pain in patients.
Collapse
Affiliation(s)
- Hans-Georg Schaible
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University of Jena, Jena, Germany
| | - Christian König
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University of Jena, Jena, Germany
| | - Andrea Ebersberger
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University of Jena, Jena, Germany
| |
Collapse
|
2
|
Spekker E, Bohár Z, Fejes-Szabó A, Szűcs M, Vécsei L, Párdutz Á. Estradiol Treatment Enhances Behavioral and Molecular Changes Induced by Repetitive Trigeminal Activation in a Rat Model of Migraine. Biomedicines 2022; 10:biomedicines10123175. [PMID: 36551931 PMCID: PMC9776064 DOI: 10.3390/biomedicines10123175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
A migraine is a neurological condition that can cause multiple symptoms. It is up to three times more common in women than men, thus, estrogen may play an important role in the appearance attacks. Its exact pathomechanism is still unknown; however, the activation and sensitization of the trigeminal system play an essential role. We aimed to use an animal model, which would better illustrate the process of repeated episodic migraine attacks to reveal possible new mechanisms of trigeminal pain chronification. Twenty male (M) and forty ovariectomized (OVX) female adult rats were used for our experiment. Male rats were divided into two groups (M + SIF, M + IS), while female rats were divided into four groups (OVX + SIF, OVX + IS, OVX + E2 + SIF, OVX + E2 + IS); half of the female rats received capsules filled with cholesterol (OVX + SIF, OVX + IS), while the other half received a 1:1 mixture of cholesterol and 17β-estradiol (OVX + E2 + SIF, OVX + E2 + IS). The animals received synthetic interstitial fluid (SIF) (M + SIF, OVX + SIF, OVX + E2 + SIF) or inflammatory soup (IS) (M + IS, OVX + IS, OVX + E2 + IS) treatment on the dural surface through a cannula for three consecutive days each week (12 times in total). Behavior tests and immunostainings were performed. After IS application, a significant decrease was observed in the pain threshold in the M + IS (0.001 < p < 0.5), OVX + IS (0.01 < p < 0.05), and OVX + E2 + IS (0.001 < p < 0.05) groups compared to the control groups (M + SIF; OVX + SIF, OVX + E2 + SIF). The locomotor activity of the rats was lower in the IS treated groups (M + IS, 0.01 < p < 0.05; OVX + IS, p < 0.05; OVX + E2 + IS, 0.001 < p < 0.05), and these animals spent more time in the dark room (M + IS, p < 0.05; OVX + IS, 0.01 < p < 0.05; OVX + E2 + IS, 0.001 < p < 0.01). We found a significant difference between M + IS and OVX + E2 + IS groups (p < 0.05) in the behavior tests. Furthermore, IS increased the area covered by calcitonin gene-related peptide (CGRP) immunoreactive (IR) fibers (M + IS, p < 0.01; OVX + IS, p < 0.01; OVX + E2 + IS, p < 0.001) and the number of neuronal nitric oxide synthase (nNOS) IR cells (M + IS, 0.001< p < 0.05; OVX + IS, 0.01 < p < 0.05; OVX + E2 + IS, 0.001 < p < 0.05) in the caudal trigeminal nucleus (TNC). There was no difference between M + IS and OVX + IS groups; however, the area was covered by CGRP IR fibers (0.01 < p < 0.05) and the number of nNOS IR cells was significantly higher in the OVX + E2 + IS (p < 0.05) group than the other two IS- (M + IS, OVX + IS) treated animals. Overall, repeated administration of IS triggers activation and sensitization processes and develops nociceptive behavior changes. CGRP and nNOS levels increased significantly in the TNC after IS treatments, and moreover, pain thresholds and locomotor activity decreased with the development of photophobia. In our model, stable high estradiol levels proved to be pronociceptive. Thus, repeated trigeminal activation causes marked behavioral changes, which is more prominent in rats treated with estradiol, also reflected by the expression of the sensitization markers of the trigeminal system.
Collapse
Affiliation(s)
- Eleonóra Spekker
- ELKH-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Zsuzsanna Bohár
- ELKH-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Annamária Fejes-Szabó
- ELKH-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Mónika Szűcs
- Department of Medical Physics and Informatics, University of Szeged, Korányi Fasor 9, H-6720 Szeged, Hungary
| | - László Vécsei
- ELKH-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Department of Neurology, Interdisciplinary Excellence Centre, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-351; Fax: +36-62-545-597
| | - Árpád Párdutz
- Department of Neurology, Interdisciplinary Excellence Centre, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary
| |
Collapse
|
3
|
Jiang H, Xu L, Liu W, Xiao M, Ke J, Long X. Chronic Pain Causes Peripheral and Central Responses in MIA-Induced TMJOA Rats. Cell Mol Neurobiol 2022; 42:1441-1451. [PMID: 33387118 PMCID: PMC11421747 DOI: 10.1007/s10571-020-01033-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/20/2020] [Indexed: 12/30/2022]
Abstract
Chronic pain is the predominant symptom that drives temporomandibular joint osteoarthritis (TMJOA) patients to seek medical care; however, currently used treatment modalities remain less effective. This study aimed to investigate chronic pain and the peripheral and central responses in monoiodoacetate (MIA)-induced TMJOA rats. First, the appropriate dose of MIA was determined based on pain behavior assessment in rats. Alterations of the condylar structure in TMJOA rats were evaluated by histological staining and micro-computed tomography (micro-CT). Second, the period of TMJOA chronic pain was further explored by assessing the numbers of glial fibrillary acidic protein (GFAP)-positive astrocytes and ionized calcium-binding adaptor molecule 1 (IBA-1)-positive microglia in the trigeminal spinal nucleus (TSN) and performing nonsteroidal anti-inflammatory drug (NSAID) efficacy experiments. Finally, the expression of neurofilament 200 (NF200), calcitonin gene-related peptide (CGRP), and isolectin B4 (IB4) in the trigeminal ganglion (TG) and TSN was assessed by immunofluorescence. MIA at 4 mg/kg was considered an appropriate dose. Gradual MIA-induced alterations of the condylar structure were correlated with temporomandibular joint (TMJ) pain. The numbers of GFAP- and IBA-1-positive cells were increased at 2, 3, and 4 weeks after MIA injection. NSAIDs failed to alleviate pain behavior 10 days after MIA injection. CGRP and IB4 levels in the TG and TSN were upregulated at 2 and 4 weeks. These results suggest that TMJOA-related chronic pain emerged 2 weeks after MIA injection. CGRP- and IB4-positive afferents in both the peripheral and central nervous systems may be involved in MIA-induced TMJOA-related chronic pain in rats.
Collapse
Affiliation(s)
- Henghua Jiang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei, China
| | - Liqin Xu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei, China
| | - Wen Liu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei, China
| | - Mian Xiao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei, China
| | - Jin Ke
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei, China.
| | - Xing Long
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei, China.
| |
Collapse
|
4
|
Hegazy N, Rezq S, Fahmy A. Renin-angiotensin system blockade modulates both the peripheral and central components of neuropathic pain in rats: Role of calcitonin gene-related peptide, substance P and nitric oxide. Basic Clin Pharmacol Toxicol 2020; 127:451-460. [PMID: 32542932 DOI: 10.1111/bcpt.13453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/18/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
Abstract
Nonetheless, renin-angiotensin-aldosterone system (RAAS) blockers attenuate neuropathic pain (NP), the exact molecular mechanisms of this effect are not completely understood. The study aimed to investigate the role of calcitonin gene-related peptide (CGRP), substance P (SP) and nitric oxide (NO), which are all involved in pain modulation, in the analgesic effect of different RAAS blockers in NP both on the peripheral and on the central levels. NP was induced by sciatic nerve chronic constriction injury (CCI, 14 days) in rats, that were given either centrally (telmisartan and ramipril) or peripherally (losartan and enalapril) acting angiotensin-converting enzyme inhibitors (ACE-Is) or angiotensin receptor blockers (ARBs). Behavioural assessment was performed, and CGRP, SP and NO levels were detected in the injured sciatic nerve and the brainstem at the end of experiment. CCI rats showed increased spontaneous pain response and foot deformity along with elevated CGRP, SP and NO levels. ARBs and ACE-Is treatment improved pain behaviour and reduced SP and NO levels. However, sciatic CGRP was increased with different interventions and brainstem CGRP was only elevated in the losartan group. These findings suggest an intermediary role of CGRP, SP and NO in RAAS blockers analgesic effect in NP.
Collapse
Affiliation(s)
- Nora Hegazy
- Department of Pharmacology and Toxicology, School of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Samar Rezq
- Department of Pharmacology and Toxicology, School of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ahmed Fahmy
- Department of Pharmacology and Toxicology, School of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
5
|
Diverse Physiological Roles of Calcitonin Gene-Related Peptide in Migraine Pathology: Modulation of Neuronal-Glial-Immune Cells to Promote Peripheral and Central Sensitization. Curr Pain Headache Rep 2017; 20:48. [PMID: 27334137 DOI: 10.1007/s11916-016-0578-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The neuropeptide calcitonin gene-related peptide (CGRP) is implicated in the underlying pathology of migraine by promoting the development of a sensitized state of primary and secondary nociceptive neurons. The ability of CGRP to initiate and maintain peripheral and central sensitization is mediated by modulation of neuronal, glial, and immune cells in the trigeminal nociceptive signaling pathway. There is accumulating evidence to support a key role of CGRP in promoting cross excitation within the trigeminal ganglion that may help to explain the high co-morbidity of migraine with rhinosinusitis and temporomandibular joint disorder. In addition, there is emerging evidence that CGRP facilitates and sustains a hyperresponsive neuronal state in migraineurs mediated by reported risk factors such as stress and anxiety. In this review, the significant role of CGRP as a modulator of the trigeminal system will be discussed to provide a better understanding of the underlying pathology associated with the migraine phenotype.
Collapse
|
6
|
Zhou YQ, Liu Z, Liu HQ, Liu DQ, Chen SP, Ye DW, Tian YK. Targeting glia for bone cancer pain. Expert Opin Ther Targets 2016; 20:1365-1374. [PMID: 27428617 DOI: 10.1080/14728222.2016.1214716] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Bone cancer pain (BCP) remains to be a clinical challenge with limited pharmaceutical interventions. Therefore, novel therapeutic targets for the management of BCP are in desperate need. Recently, a growing body of evidence has suggested that glial cells may play a pivotal role in the pathogenesis of BCP. Areas covered: This review summarizes the recent progress in the understanding of glia in BCP and reveals the potential therapeutic targets in glia for BCP treatment. Expert opinion: Pharmacological interventions inhibiting the activation of glial cells, suppressing glia-derived proinflammatory cytokines, cell surface receptors, and the intracellular signaling pathways may be beneficial for the pain management of advanced cancer patients. However, these pharmacological interventions should not disrupt the normal function of glia cells since they play a vital supportive and protective role in the central nervous system.
Collapse
Affiliation(s)
- Ya-Qun Zhou
- a Research Center for Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China.,b Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Zheng Liu
- c Department of Urology , Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology , Wuhan , China
| | - Hui-Quan Liu
- d Cancer Center, Tongji Hospital, Tongji Medical college , Huazhong University of Science and Technology , Wuhan , China
| | - Dai-Qiang Liu
- a Research Center for Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China.,b Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Shu-Ping Chen
- a Research Center for Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China.,b Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Da-Wei Ye
- d Cancer Center, Tongji Hospital, Tongji Medical college , Huazhong University of Science and Technology , Wuhan , China
| | - Yu-Ke Tian
- a Research Center for Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China.,b Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
7
|
Wang D, Wang P, Jiang J, Lv Q, Zeng X, Hong Y. Activation of Mas Oncogene-Related G Protein-Coupled Receptors Inhibits Neurochemical Alterations in the Spinal Dorsal Horn and Dorsal Root Ganglia Associated with Inflammatory Pain in Rats. J Pharmacol Exp Ther 2015; 354:431-9. [PMID: 26157044 DOI: 10.1124/jpet.115.225672] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/07/2015] [Indexed: 08/30/2023] Open
Abstract
Mas oncogene-related G protein-coupled receptor C (MrgC) is unequally expressed in sensory ganglia and has been shown to modulate pathologic pain. This study investigated the mechanism underlying the effect of MrgC receptors on inflammatory pain. Intrathecal administration of the selective MrgC receptor agonist bovine adrenal medulla 8-22 (BAM8-22) (30 nmol) inhibited complete Freund's adjuvant-evoked hyperalgesia. This was associated with the inhibition of protein kinase C-γ and phosphorylated extracellular signal-regulated protein kinase in the spinal cord and/or dorsal root ganglia (DRG). The complete Freund's adjuvant injection in the hindpaw induced an increase in Gq, but not Gi and Gs, protein in the spinal dorsal horn. This increase was inhibited by the intrathecal administration of BAM8-22. The exposure of DRG cultures to bradykinin (10 μM) and prostaglandin E2 (1 μM) increased the expression of calcitonin gene-related peptide (CGRP) and neuronal nitric oxide synthase in small- and medium-sized neurons as well as the levels of CGRP, aspartate, and glutamate in the cultured medium. The bradykinin/prostaglandin E2-induced alterations were absent in the presence of BAM8-22 (10 nM). These results suggest that the activation of MrgC receptors can modulate the increase in the expression of CGRP and neuronal nitric oxide synthase as well as the release of CGRP and excitatory amino acids in DRG associated with inflammatory pain. This modulation results in the inhibition of pain hypersensitivity by suppressing the expression of Gq protein and protein kinase C-γ and extracellular signal-regulated protein kinase signaling pathways in the spinal cord and/or DRG. The present study suggests that MrgC receptors may be a novel target for relieving inflammatory pain.
Collapse
Affiliation(s)
- Dongmei Wang
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University , Fuzhou, Fujian, China (D.W., P.W., J.J., Q.L., Y.H.); and Fujian Academy of Traditional Chinese Medicine, Fuzhou, Fujian, China (X.Z.)
| | - Peizhong Wang
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University , Fuzhou, Fujian, China (D.W., P.W., J.J., Q.L., Y.H.); and Fujian Academy of Traditional Chinese Medicine, Fuzhou, Fujian, China (X.Z.)
| | - Jianping Jiang
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University , Fuzhou, Fujian, China (D.W., P.W., J.J., Q.L., Y.H.); and Fujian Academy of Traditional Chinese Medicine, Fuzhou, Fujian, China (X.Z.)
| | - Qingqin Lv
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University , Fuzhou, Fujian, China (D.W., P.W., J.J., Q.L., Y.H.); and Fujian Academy of Traditional Chinese Medicine, Fuzhou, Fujian, China (X.Z.)
| | - Xueai Zeng
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University , Fuzhou, Fujian, China (D.W., P.W., J.J., Q.L., Y.H.); and Fujian Academy of Traditional Chinese Medicine, Fuzhou, Fujian, China (X.Z.)
| | - Yanguo Hong
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University , Fuzhou, Fujian, China (D.W., P.W., J.J., Q.L., Y.H.); and Fujian Academy of Traditional Chinese Medicine, Fuzhou, Fujian, China (X.Z.)
| |
Collapse
|
8
|
Zeeman ME, Kartha S, Jaumard NV, Baig HA, Stablow AM, Lee J, Guarino BB, Winkelstein BA. Whole-body Vibration at Thoracic Resonance Induces Sustained Pain and Widespread Cervical Neuroinflammation in the Rat. Clin Orthop Relat Res 2015; 473:2936-47. [PMID: 25917423 PMCID: PMC4523525 DOI: 10.1007/s11999-015-4315-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Whole-body vibration (WBV) is associated with back and neck pain in military personnel and civilians. However, the role of vibration frequency and the physiological mechanisms involved in pain symptoms are unknown. QUESTIONS/PURPOSES This study asked the following questions: (1) What is the resonance frequency of the rat spine for WBV along the spinal axis, and how does frequency of WBV alter the extent of spinal compression/extension? (2) Does a single WBV exposure at resonance induce pain that is sustained? (3) Does WBV at resonance alter the protein kinase C epsilon (PKCε) response in the dorsal root ganglia (DRG)? (4) Does WBV at resonance alter expression of calcitonin gene-related peptide (CGRP) in the spinal dorsal horn? (5) Does WBV at resonance alter the spinal neuroimmune responses that regulate pain? METHODS Resonance of the rat (410 ± 34 g, n = 9) was measured by imposing WBV at frequencies from 3 to 15 Hz. Separate groups (317 ± 20 g, n = 10/treatment) underwent WBV at resonance (8 Hz) or at a nonresonant frequency (15 Hz). Behavioral sensitivity was assessed throughout to measure pain, and PKCε in the DRG was quantified as well as spinal CGRP, glial activation, and cytokine levels at Day 14. RESULTS Accelerometer-based thoracic transmissibility peaks at 8 Hz (1.86 ± 0.19) and 9 Hz (1.95 ± 0.19, mean difference [MD] 0.290 ± 0.266, p < 0.03), whereas the video-based thoracic transmissibility peaks at 8 Hz (1.90 ± 0.27), 9 Hz (2.07 ± 0.20), and 10 Hz (1.80 ± 0.25, MD 0.359 ± 0.284, p < 0.01). WBV at 8 Hz produces more cervical extension (0.745 ± 0.582 mm, MD 0.242 ± 0.214, p < 0.03) and compression (0.870 ± 0.676 mm, MD 0.326 ± 0.261, p < 0.02) than 15 Hz (extension, 0.503 ± 0.279 mm; compression, 0.544 ± 0.400 mm). Pain is longer lasting (through Day 14) and more robust (p < 0.01) after WBV at the resonant frequency (8 Hz) compared with 15 Hz WBV. PKCε in the nociceptors of the DRG increases according to the severity of WBV with greatest increases after 8 Hz WBV (p < 0.03). However, spinal CGRP, cytokines, and glial activation are only evident after painful WBV at resonance. CONCLUSIONS WBV at resonance produces long-lasting pain and widespread activation of a host of nociceptive and neuroimmune responses as compared with WBV at a nonresonance condition. Based on this work, future investigations into the temporal and regional neuroimmune response to resonant WBV in both genders would be useful. CLINICAL RELEVANCE Although WBV is a major issue affecting the military population, there is little insight about its mechanisms of injury and pain. The neuroimmune responses produced by WBV are similar to other pain states, suggesting that pain from WBV may be mediated by similar mechanisms as other neuropathic pain conditions. This mechanistic insight suggests WBV-induced injury and pain may be tempered by antiinflammatory intervention.
Collapse
Affiliation(s)
- Martha E. Zeeman
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd Street, Philadelphia, PA 19104-6321 USA
| | - Sonia Kartha
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd Street, Philadelphia, PA 19104-6321 USA
| | - Nicolas V. Jaumard
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd Street, Philadelphia, PA 19104-6321 USA
| | - Hassam A. Baig
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd Street, Philadelphia, PA 19104-6321 USA
| | - Alec M. Stablow
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd Street, Philadelphia, PA 19104-6321 USA
| | - Jasmine Lee
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd Street, Philadelphia, PA 19104-6321 USA
| | - Benjamin B. Guarino
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd Street, Philadelphia, PA 19104-6321 USA
| | - Beth A. Winkelstein
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd Street, Philadelphia, PA 19104-6321 USA
| |
Collapse
|
9
|
Russell FA, King R, Smillie SJ, Kodji X, Brain SD. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev 2014; 94:1099-142. [PMID: 25287861 PMCID: PMC4187032 DOI: 10.1152/physrev.00034.2013] [Citation(s) in RCA: 847] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a 37-amino acid neuropeptide. Discovered 30 years ago, it is produced as a consequence of alternative RNA processing of the calcitonin gene. CGRP has two major forms (α and β). It belongs to a group of peptides that all act on an unusual receptor family. These receptors consist of calcitonin receptor-like receptor (CLR) linked to an essential receptor activity modifying protein (RAMP) that is necessary for full functionality. CGRP is a highly potent vasodilator and, partly as a consequence, possesses protective mechanisms that are important for physiological and pathological conditions involving the cardiovascular system and wound healing. CGRP is primarily released from sensory nerves and thus is implicated in pain pathways. The proven ability of CGRP antagonists to alleviate migraine has been of most interest in terms of drug development, and knowledge to date concerning this potential therapeutic area is discussed. Other areas covered, where there is less information known on CGRP, include arthritis, skin conditions, diabetes, and obesity. It is concluded that CGRP is an important peptide in mammalian biology, but it is too early at present to know if new medicines for disease treatment will emerge from our knowledge concerning this molecule.
Collapse
Affiliation(s)
- F A Russell
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - R King
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - S-J Smillie
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - X Kodji
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - S D Brain
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| |
Collapse
|
10
|
Bullock CM, Wookey P, Bennett A, Mobasheri A, Dickerson I, Kelly S. Peripheral calcitonin gene-related peptide receptor activation and mechanical sensitization of the joint in rat models of osteoarthritis pain. Arthritis Rheumatol 2014; 66:2188-200. [PMID: 24719311 PMCID: PMC4314689 DOI: 10.1002/art.38656] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 04/01/2014] [Indexed: 12/11/2022]
Abstract
Objective To investigate the role of the sensory neuropeptide calcitonin gene-related peptide (CGRP) in peripheral sensitization in experimental models of osteoarthritis (OA) pain. Methods Experimental knee OA was induced in rats by intraarticular injection of monosodium iodoacetate (MIA) or by transection of the medial meniscus (MMT). Single-unit recordings of joint-innervating nociceptors were obtained in MIA- and saline-treated rats following administration of CGRP or the CGRP receptor antagonist CGRP 8–37. Effects of CGRP 8–37 were also examined in rats that underwent MMT and sham operations. Protein and messenger RNA (mRNA) levels of CGRP receptor components in the L3–L4 dorsal root ganglion (DRG) were investigated following MIA treatment. Results In both the MIA and MMT groups, the mechanical sensitivity of joint nociceptors was enhanced compared to that in the control groups. Exogenous CGRP increased mechanical sensitivity in a greater proportion of joint nociceptors in the MIA-treated rats than in the saline-treated rats. Local blockade of endogenous CGRP by CGRP 8–37 reversed both the MIA- and MMT-induced enhancement of joint nociceptor responses. Joint afferent cell bodies coexpressed the receptor for CGRP, called the calcitonin-like receptor (CLR), and the intracellular accessory CGRP receptor component protein. MIA treatment increased the levels of mRNA for CLR in the L3–L4 DRG and the levels of CLR protein in medium and large joint afferent neurons. Conclusion Our findings provide new and compelling evidence implicating a role of CGRP in peripheral sensitization in experimental OA. Our novel finding of CGRP-mediated control of joint nociceptor mechanosensitivity suggests that the CGRP receptor system may be an important target for the modulation of pain during OA. CGRP receptor antagonists recently developed for migraine pain should be investigated for their efficacy against pain in OA.
Collapse
Affiliation(s)
- Craig M Bullock
- University of Nottingham, Nottingham, UK, and University of Nottingham, Sutton Bonington Campus, Sutton Bonington, UK
| | | | | | | | | | | |
Collapse
|
11
|
Jiang J, Wang D, Zhou X, Huo Y, Chen T, Hu F, Quirion R, Hong Y. Effect of Mas-related gene (Mrg) receptors on hyperalgesia in rats with CFA-induced inflammation via direct and indirect mechanisms. Br J Pharmacol 2014; 170:1027-40. [PMID: 23909597 DOI: 10.1111/bph.12326] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Mas oncogene-related gene (Mrg) receptors are exclusively distributed in small-sized neurons in trigeminal and dorsal root ganglia (DRG). We investigated the effects of MrgC receptor activation on inflammatory hyperalgesia and its mechanisms. EXPERIMENTAL APPROACH A selective MrgC receptor agonist, bovine adrenal medulla peptide 8-22 (BAM8-22) or melanocyte-stimulating hormone (MSH) or the μ-opioid receptor (MOR) antagonist CTAP was administered intrathecally (i.t.) in rats injected with complete Freund's adjuvant (CFA) in one hindpaw. Thermal and mechanical nociceptive responses were assessed. Neurochemicals were measured by immunocytochemistry, Western blot, ELISA and RT-PCR. KEY RESULTS CFA injection increased mRNA for MrgC receptors in lumbar DRG. BAM8-22 or MSH, given i.t., generated instant short and delayed long-lasting attenuations of CFA-induced thermal hyperalgesia, but not mechanical allodynia. These effects were associated with decreased up-regulation of neuronal NOS (nNOS), CGRP and c-Fos expression in the spinal dorsal horn and/or DRG. However, i.t. administration of CTAP blocked the induction by BAM8-22 of delayed anti-hyperalgesia and inhibition of nNOS and CGRP expression in DRG. BAM8-22 also increased mRNA for MORs and pro-opiomelanocortin, along with β-endorphin content in the lumbar spinal cord and/or DRG. MrgC receptors and nNOS were co-localized in DRG neurons. CONCLUSIONS AND IMPLICATIONS Activation of MrgC receptors suppressed up-regulation of pronociceptive mediators and consequently inhibited inflammatory pain, because of the activation of up-regulated MrgC receptors and subsequent endogenous activity at MORs. The uniquely distributed MrgC receptors could be a novel target for relieving inflammatory pain.
Collapse
Affiliation(s)
- Jianping Jiang
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Nicholson KJ, Zhang S, Gilliland TM, Winkelstein BA. Riluzole effects on behavioral sensitivity and the development of axonal damage and spinal modifications that occur after painful nerve root compression. J Neurosurg Spine 2014; 20:751-62. [DOI: 10.3171/2014.2.spine13672] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Cervical radiculopathy is often attributed to cervical nerve root injury, which induces extensive degeneration and reduced axonal flow in primary afferents. Riluzole inhibits neuro-excitotoxicity in animal models of neural injury. The authors undertook this study to evaluate the antinociceptive and neuroprotective properties of riluzole in a rat model of painful nerve root compression.
Methods
A single dose of riluzole (3 mg/kg) was administered intraperitoneally at Day 1 after a painful nerve root injury. Mechanical allodynia and thermal hyperalgesia were evaluated for 7 days after injury. At Day 7, the spinal cord at the C-7 level and the adjacent nerve roots were harvested from a subgroup of rats for immunohistochemical evaluation. Nerve roots were labeled for NF200, CGRP, and IB4 to assess the morphology of myelinated, peptidergic, and nonpeptidergic axons, respectively. Spinal cord sections were labeled for the neuropeptide CGRP and the glutamate transporter GLT-1 to evaluate their expression in the dorsal horn. In a separate group of rats, electrophysiological recordings were made in the dorsal horn. Evoked action potentials were identified by recording extracellular potentials while applying mechanical stimuli to the forepaw.
Results
Even though riluzole was administered after the onset of behavioral sensitivity at Day 1, its administration resulted in immediate resolution of mechanical allodynia and thermal hyperalgesia (p < 0.045), and these effects were maintained for the study duration. At Day 7, axons labeled for NF200, CGRP, and IB4 in the compressed roots of animals that received riluzole treatment exhibited fewer axonal swellings than those from untreated animals. Riluzole also mitigated changes in the spinal distribution of CGRP and GLT-1 expression that is induced by a painful root compression, returning the spinal expression of both to sham levels. Riluzole also reduced neuronal excitability in the dorsal horn that normally develops by Day 7. The frequency of neuronal firing significantly increased (p < 0.045) after painful root compression, but riluzole treatment maintained neuronal firing at sham levels.
Conclusions
These findings suggest that early administration of riluzole is sufficient to mitigate nerve root–mediated pain by preventing development of neuronal dysfunction in the nerve root and the spinal cord.
Collapse
Affiliation(s)
| | | | | | - Beth A. Winkelstein
- 1Departments of Bioengineering and
- 2Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Coelho A, Oliveira R, Rossetto O, Cruz C, Cruz F, Avelino A. Intrathecal administration of botulinum toxin type A improves urinary bladder function and reduces pain in rats with cystitis. Eur J Pain 2014; 18:1480-9. [DOI: 10.1002/ejp.513] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2014] [Indexed: 11/06/2022]
Affiliation(s)
- A. Coelho
- Department of Experimental Biology; Faculty of Medicine; University of Porto; Portugal
- IBMC; Instituto for Molecular and Cell Biology; University of Porto; Portugal
| | - R. Oliveira
- Department of Experimental Biology; Faculty of Medicine; University of Porto; Portugal
| | - O. Rossetto
- Department of Biomedical Sciences; University of Padova; Italy
| | - C.D. Cruz
- Department of Experimental Biology; Faculty of Medicine; University of Porto; Portugal
- IBMC; Instituto for Molecular and Cell Biology; University of Porto; Portugal
| | - F. Cruz
- IBMC; Instituto for Molecular and Cell Biology; University of Porto; Portugal
- Department of Urology; Hospital de São João; Porto Portugal
| | - A. Avelino
- Department of Experimental Biology; Faculty of Medicine; University of Porto; Portugal
- IBMC; Instituto for Molecular and Cell Biology; University of Porto; Portugal
| |
Collapse
|
14
|
Zhang S, Nicholson KJ, Smith JR, Gilliland TM, Syré PP, Winkelstein BA. The roles of mechanical compression and chemical irritation in regulating spinal neuronal signaling in painful cervical nerve root injury. STAPP CAR CRASH JOURNAL 2013; 57:219-242. [PMID: 24435733 DOI: 10.4271/2013-22-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Both traumatic and slow-onset disc herniation can directly compress and/or chemically irritate cervical nerve roots, and both types of root injury elicit pain in animal models of radiculopathy. This study investigated the relative contributions of mechanical compression and chemical irritation of the nerve root to spinal regulation of neuronal activity using several outcomes. Modifications of two proteins known to regulate neurotransmission in the spinal cord, the neuropeptide calcitonin gene-related peptide (CGRP) and glutamate transporter 1 (GLT-1), were assessed in a rat model after painful cervical nerve root injuries using a mechanical compression, chemical irritation or their combination of injury. Only injuries with compression induced sustained behavioral hypersensitivity (p≤0.05) for two weeks and significant decreases (p<0.037) in CGRP and GLT-1 immunoreactivity to nearly half that of sham levels in the superficial dorsal horn. Because modification of spinal CGRP and GLT-1 is associated with enhanced excitatory signaling in the spinal cord, a second study evaluated the electrophysiological properties of neurons in the superficial and deeper dorsal horn at day 7 after a painful root compression. The evoked firing rate was significantly increased (p=0.045) after compression and only in the deeper lamina. The painful compression also induced a significant (p=0.002) shift in the percentage of neurons in the superficial lamina classified as low- threshold mechanoreceptive (sham 38%; compression 10%) to those classified as wide dynamic range neurons (sham 43%; compression 74%). Together, these studies highlight mechanical compression as a key modulator of spinal neuronal signaling in the context of radicular injury and pain.
Collapse
Affiliation(s)
- Sijia Zhang
- Department of Bioengineering, University of Pennsylvania
| | | | - Jenell R Smith
- Department of Bioengineering, University of Pennsylvania
| | | | - Peter P Syré
- Department of Neurosurgery, University of Pennsylvania
| | - Beth A Winkelstein
- Departments of Bioengineering and Neurosurgery, University of Pennsylvania
| |
Collapse
|
15
|
Vachon P, Millecamps M, Low L, Thompsosn SJ, Pailleux F, Beaudry F, Bushnell CM, Stone LS. Alleviation of chronic neuropathic pain by environmental enrichment in mice well after the establishment of chronic pain. Behav Brain Funct 2013; 9:22. [PMID: 24025218 PMCID: PMC3679946 DOI: 10.1186/1744-9081-9-22] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/31/2013] [Indexed: 12/21/2022] Open
Abstract
Background In animal models, the impact of social and environmental manipulations on chronic pain have been investigated in short term studies where enrichment was implemented prior to or concurrently with the injury. The focus of this study was to evaluate the impact of environmental enrichment or impoverishment in mice three months after induction of chronic neuropathic pain. Methods Thirty-four CD-1 seven to eight week-old male mice were used. Mice underwent surgery on the left leg under isoflurane anesthesia to induce the spared nerve injury model of neuropathic pain or sham condition. Mice were then randomly assigned to one of four groups: nerve injury with enriched environment (n = 9), nerve injury with impoverished environment (n = 8), sham surgery with enriched environment (n = 9), or sham surgery with impoverished environment (n = 8). The effects of environmental manipulations on mechanical (von Frey filaments) heat (hot plate) and cold (acetone test) cutaneous hypersensitivities, motor impairment (Rotarod), spontaneous exploratory behavior (open field test), anxiety-like behavior (elevated plus maze) and depression-like phenotype (tail suspension test) were assessed in neuropathic and control mice 1 and 2 months post-environmental change. Finally, the effect of the environment on spinal expression of the pro-nociceptive neuropeptides substance P and CGRP form the lumbar spinal cord collected at the end of the study was evaluated by tandem liquid chromatography mass spectrometry. Results Environmental enrichment attenuated nerve injury-induced hypersensitivity to mechanical and cold stimuli. In contrast, an impoverished environment exacerbated mechanical hypersensitivity. No antidepressant effects of enrichment were observed in animals with chronic neuropathic pain. Finally, environmental enrichment resulted lower SP and CGRP concentrations in neuropathic animals compared to impoverishment. These effects were all observed in animals that had been neuropathic for several months prior to intervention. Conclusions These results suggest that environmental factors could play an important role in the rehabilitation of chronic pain patients well after the establishment of chronic pain. Enrichment is a potentially inexpensive, safe and easily implemented non-pharmacological intervention for the treatment of chronic pain.
Collapse
Affiliation(s)
- Pascal Vachon
- Department of Veterinary Biomedicine, University of Montreal, Faculty of Veterinary Medicine, St-Hyacinthe, Quebec, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Wilson SM, Schmutzler BS, Brittain JM, Dustrude ET, Ripsch MS, Pellman JJ, Yeum TS, Hurley JH, Hingtgen CM, White FA, Khanna R. Inhibition of transmitter release and attenuation of anti-retroviral-associated and tibial nerve injury-related painful peripheral neuropathy by novel synthetic Ca2+ channel peptides. J Biol Chem 2012; 287:35065-35077. [PMID: 22891239 DOI: 10.1074/jbc.m112.378695] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
N-type Ca(2+) channels (CaV2.2) are a nidus for neurotransmitter release and nociceptive transmission. However, the use of CaV2.2 blockers in pain therapeutics is limited by side effects resulting from inhibition of the physiological functions of CaV2.2 within the CNS. We identified an anti-nociceptive peptide (Brittain, J. M., Duarte, D. B., Wilson, S. M., Zhu, W., Ballard, C., Johnson, P. L., Liu, N., Xiong, W., Ripsch, M. S., Wang, Y., Fehrenbacher, J. C., Fitz, S. D., Khanna, M., Park, C. K., Schmutzler, B. S., Cheon, B. M., Due, M. R., Brustovetsky, T., Ashpole, N. M., Hudmon, A., Meroueh, S. O., Hingtgen, C. M., Brustovetsky, N., Ji, R. R., Hurley, J. H., Jin, X., Shekhar, A., Xu, X. M., Oxford, G. S., Vasko, M. R., White, F. A., and Khanna, R. (2011) Suppression of inflammatory and neuropathic pain by uncoupling CRMP2 from the presynaptic Ca(2+) channel complex. Nat. Med. 17, 822-829) derived from the axonal collapsin response mediator protein 2 (CRMP2), a protein known to bind and enhance CaV2.2 activity. Using a peptide tiling array, we identified novel peptides within the first intracellular loop (CaV2.2(388-402), "L1") and the distal C terminus (CaV1.2(2014-2028) "Ct-dis") that bound CRMP2. Microscale thermophoresis demonstrated micromolar and nanomolar binding affinities between recombinant CRMP2 and synthetic L1 and Ct-dis peptides, respectively. Co-immunoprecipitation experiments showed that CRMP2 association with CaV2.2 was inhibited by L1 and Ct-dis peptides. L1 and Ct-dis, rendered cell-penetrant by fusion with the protein transduction domain of the human immunodeficiency virus TAT protein, were tested in in vitro and in vivo experiments. Depolarization-induced calcium influx in dorsal root ganglion (DRG) neurons was inhibited by both peptides. Ct-dis, but not L1, peptide inhibited depolarization-stimulated release of the neuropeptide transmitter calcitonin gene-related peptide in mouse DRG neurons. Similar results were obtained in DRGs from mice with a heterozygous mutation of Nf1 linked to neurofibromatosis type 1. Ct-dis peptide, administered intraperitoneally, exhibited antinociception in a zalcitabine (2'-3'-dideoxycytidine) model of AIDS therapy-induced and tibial nerve injury-related peripheral neuropathy. This study suggests that CaV peptides, by perturbing interactions with the neuromodulator CRMP2, contribute to suppression of neuronal hypersensitivity and nociception.
Collapse
Affiliation(s)
- Sarah M Wilson
- Department of Program in Medical Neurosciences, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Brian S Schmutzler
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Joel M Brittain
- Department of Program in Medical Neurosciences, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Erik T Dustrude
- Department of Program in Medical Neurosciences, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Matthew S Ripsch
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Jessica J Pellman
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Tae-Sung Yeum
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Joyce H Hurley
- Department of Program in Medical Neurosciences, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Cynthia M Hingtgen
- Department of Program in Medical Neurosciences, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Fletcher A White
- Department of Program in Medical Neurosciences, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Rajesh Khanna
- Department of Program in Medical Neurosciences, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202; Sophia Therapeutics LLC, Indianapolis, Indiana 46202.
| |
Collapse
|
17
|
Ferland CE, Pailleux F, Vachon P, Beaudry F. Determination of specific neuropeptides modulation time course in a rat model of osteoarthritis pain by liquid chromatography ion trap mass spectrometry. Neuropeptides 2011; 45:423-9. [PMID: 21855139 DOI: 10.1016/j.npep.2011.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/22/2011] [Accepted: 07/20/2011] [Indexed: 12/12/2022]
Abstract
Animal models are useful to evaluate pharmacological therapies to alleviate joint pain. The present study characterized central neuropeptides modulation in the monoiodoacetate (MIA) rat model. Animals receiving a single 3mg MIA injection were euthanized at 3, 7, 14, 21 and 28 days post injection. Spinal cords were analyzed by liquid chromatography ion trap mass spectrometry. Up-regulations of the calcitonin gene-related peptide and substance P were observed starting on days 7 and 28 respectively, whereas big dynorphin(₁₋₃₂) content decreased significantly on day 14 in comparison to control animals (P<0.05). Preclinical drug evaluations using this model should be conducted between 7 and 21 days post injection when the lesions resemble most to human osteoarthritis.
Collapse
Affiliation(s)
- Catherine E Ferland
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Rue Sicotte, Saint-Hyacinthe, Québec J2S2M2, Canada
| | | | | | | |
Collapse
|
18
|
Jaken RJ, van Gorp S, Joosten EA, Losen M, Martínez-Martínez P, De Baets M, Marcus MA, Deumens R. Neuropathy-induced spinal GAP-43 expression is not a main player in the onset of mechanical pain hypersensitivity. J Neurotrauma 2011; 28:2463-73. [PMID: 21671799 DOI: 10.1089/neu.2011.1833] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Structural plasticity within the spinal nociceptive network may be fundamental to the chronic nature of neuropathic pain. In the present study, the spatiotemporal expression of growth-associated protein-43 (GAP-43), a protein which has been traditionally implicated in nerve fiber growth and sprouting, was investigated in relation to mechanical pain hypersensitivity. An L5 spinal nerve transection model was validated by the presence of mechanical pain hypersensitivity and an increase in the early neuronal activation marker cFos within the superficial spinal dorsal horn upon innocuous hindpaw stimulation. Spinal GAP-43 was found to be upregulated in the superficial L5 dorsal horn from 5 up to 10 days after injury. GAP-43 was co-localized with calcitonin-gene related peptide (CGRP), but not vesicular glutamate transporter-1 (VGLUT-1), IB4, or protein kinase-γ (PKC-γ), suggesting the regulation of GAP-43 in peptidergic nociceptive afferents. These GAP-43/CGRP fibers may be indicative of sprouting peptidergic fibers. Fiber sprouting largely depends on growth factors, which are typically associated with neuro-inflammatory processes. The putative role of neuropathy-induced GAP-43 expression in the development of mechanical pain hypersensitivity was investigated using the immune modulator propentofylline. Propentofylline treatment strongly attenuated the development of mechanical pain hypersensitivity and glial responses to nerve injury as measured by microglial and astroglial markers, but did not affect neuropathy-induced levels of spinal GAP-43 or GAP-43 regulation in CGRP fibers. We conclude that nerve injury induces structural plasticity in fibers expressing CGRP, which is regarded as a main player in central sensitization. Our data do not, however, support a major role of these structural changes in the onset of mechanical pain hypersensitivity.
Collapse
Affiliation(s)
- Robby J Jaken
- Pain Management and Research Center, Department of Anesthesiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kumar S, Ruchi R, James SR, Chidiac EJ. Gene therapy for chronic neuropathic pain: how does it work and where do we stand today? PAIN MEDICINE 2011; 12:808-22. [PMID: 21564510 DOI: 10.1111/j.1526-4637.2011.01120.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Chronic neuropathic pain has been an enigma to physicians and researchers for decades. A better understanding of its pathophysiology has given us more insight into its various mechanisms and possible treatment options. We now have an understanding of the role of various ionic channels, biologically active molecules involved in pain, and also the intricate pain pathways where possible interventions might lead to substantial pain relief. The recent research on laboratory animals using virus-based vectors for gene transfer at targeted sites is very promising and may lead to additional human clinical trials. However, one needs to be aware that this "novel" approach is still in its infancy and that many of its details need to be further elucidated. The purpose of this article is to thoroughly review the current available literature and analyze the deficiencies in our current knowledge. DESIGN Literature review. METHODS After an extensive online literature search, a total of 133 articles were selected to synthesize a comprehensive review about chronic neuropathic pain and gene therapy in order to understand the concepts and mechanisms. RESULTS Most of the studies have shown benefits of gene therapy in animal models, and recently, phase 1 human trials using herpes simplex virus vector have started for intractable cancer pain. CONCLUSION Although animal data have shown safety and efficacy, and initial human trials have been promising, additional studies in humans are required to more completely understand the actual benefits and risks of using gene therapy for the treatment of chronic neuropathic pain.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Anesthesiology, Wayne State University/Detroit Medical Center, Harper University Hospital, MI 48201, USA
| | | | | | | |
Collapse
|
20
|
Hou Q, Barr T, Gee L, Vickers J, Wymer J, Borsani E, Rodella L, Getsios S, Burdo T, Eisenberg E, Guha U, Lavker R, Kessler J, Chittur S, Fiorino D, Rice F, Albrecht P. Keratinocyte expression of calcitonin gene-related peptide β: implications for neuropathic and inflammatory pain mechanisms. Pain 2011; 152:2036-2051. [PMID: 21641113 DOI: 10.1016/j.pain.2011.04.033] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 04/03/2011] [Accepted: 04/25/2011] [Indexed: 12/12/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is a vasodilatory peptide that has been detected at high levels in the skin, blood, and cerebrospinal fluid (CSF) under a variety of inflammatory and chronic pain conditions, presumably derived from peptidergic C and Aδ innervation. Herein, CGRP immunolabeling (IL) was detected in epidermal keratinocytes at levels that were especially high and widespread in the skin of humans from locations afflicted with postherpetic neuralgia (PHN) and complex region pain syndrome type 1 (CRPS), of monkeys infected with simian immunodeficiency virus, and of rats subjected to L5/L6 spinal nerve ligation, sciatic nerve chronic constriction, and subcutaneous injection of complete Freund's adjuvant. Increased CGRP-IL was also detected in epidermal keratinocytes of transgenic mice with keratin-14 promoter driven overexpression of noggin, an antagonist to BMP-4 signaling. Transcriptome microarray, quantitative Polymerase Chain Reaction (qPCR), and Western blot analyses using laser-captured mouse epidermis from transgenics, monolayer cultures of human and mouse keratinocytes, and multilayer human keratinocyte organotypic cultures, revealed that keratinocytes express predominantly the beta isoform of CGRP. Cutaneous peptidergic innervation has been shown to express predominantly the alpha isoform of CGRP. Keratinocytes also express the cognate CGRP receptor components, Calcitonin receptor-like receptor (CRLR), Receptor activity-modifying protein 1 (RAMP1), CGRP-receptor component protein (RCP) consistent with known observations that CGRP promotes several functional changes in keratinocytes, including proliferation and cytokine production. Our results indicate that keratinocyte-derived CGRPβ may modulate epidermal homeostasis through autocrine/paracrine signaling and may contribute to chronic pain under pathological conditions.
Collapse
Affiliation(s)
- Quanzhi Hou
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY, USA Department of Neurology, Albany Medical College, Albany, NY, USA Division of Human Anatomy, Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA Department of Biology, Boston College, Chestnut Hill, MA, USA Rambam Medical Center, Faculty of Medicine, Israel Institute of Technology, Haifa, Israel Medical Oncology Branch, National Cancer Institute, Bethesda, MD, USA Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA Center for Functional Genomics, SUNY Albany, Rensselaer, NY, USA In Vivo Pharmacology, Vertex Pharmaceuticals, San Diego, CA, USA Integrated Tissue Dynamics, LLC, Rensselaer, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kim JH, Kim HY, Chung K, Chung JM. Responses of spinal dorsal horn neurons to foot movements in rats with a sprained ankle. J Neurophysiol 2011; 105:2043-9. [PMID: 21389306 DOI: 10.1152/jn.00852.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Acute ankle injuries are common problems and often lead to persistent pain. To investigate the underlying mechanism of ankle sprain pain, the response properties of spinal dorsal horn neurons were examined after ankle sprain. Acute ankle sprain was induced manually by overextending the ankle of a rat hindlimb in a direction of plantarflexion and inversion. The weight-bearing ratio (WBR) of the affected foot was used as an indicator of pain. Single unit activities of dorsal horn neurons in response to plantarflexion and inversion of the foot or ankle compression were recorded from the medial part of the deep dorsal horn, laminae IV-VI, in normal and ankle-sprained rats. One day after ankle sprain, rats showed significantly reduced WBRs on the affected foot, and this reduction was partially restored by systemic morphine. The majority of deep dorsal horn neurons responded to a single ankle stimulus modality. After ankle sprain, the mean evoked response rates were significantly increased, and afterdischarges were developed in recorded dorsal horn neurons. The ankle sprain-induced enhanced evoked responses were significantly reduced by morphine, which was reversed by naltrexone. The data indicate that movement-specific dorsal horn neuron responses were enhanced after ankle sprain in a morphine-dependent manner, thus suggesting that hyperactivity of dorsal horn neurons is an underlying mechanism of pain after ankle sprain.
Collapse
Affiliation(s)
- Jae Hyo Kim
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1069, USA
| | | | | | | |
Collapse
|
22
|
Ferreira-Gomes J, Adães S, Sarkander J, Castro-Lopes JM. Phenotypic alterations of neurons that innervate osteoarthritic joints in rats. ACTA ACUST UNITED AC 2011; 62:3677-85. [PMID: 20722015 DOI: 10.1002/art.27713] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Pain is a prominent feature of osteoarthritis (OA). To further understand the primary mechanisms of nociception in OA, we studied the expression of the phenotype markers calcitonin gene-related peptide (CGRP), isolectin B4 (IB4), and neurofilament 200 (NF200) in sensory neurons innervating the OA knee joint in rats. METHODS OA was induced in rats by intraarticular injection of 2 mg of mono-iodoacetate (MIA) into the knee. Neurons innervating the joint were identified by retrograde labeling with fluorogold in dorsal root ganglia (DRG) and colocalized with neurochemical markers by immunofluorescence. The total number of DRG cells was determined by stereologic methods in Nissl-stained sections. RESULTS A 37% decrease in the number of fluorogold-backlabeled cells was observed in rats with OA when compared with control rats, even though no decrease in the total number of cells was observed. However, an increase in the number of medium/large cell bodies and a decrease in the number of the smallest cells were observed, suggesting the occurrence of perikarya hypertrophy. The percentage of CGRP-positive cells increased significantly, predominantly in medium/large cells, suggesting the occurrence of a phenotypic switch. Colocalization of CGRP and NF200 revealed no significant changes in the percentage of double-labeled cells, but an increase in the number of medium/large double-labeled cells was observed. No differences in the expression of either IB4 or NF200 were observed in fluorogold-backlabeled cells. CONCLUSION These results indicate that MIA-induced OA causes an up-regulation of CGRP in different subpopulations of primary afferent neurons in DRG due to a phenotypic switch and/or cell hypertrophy which may be functionally relevant in terms of the onset of pain in this pathologic condition.
Collapse
|
23
|
Huang J, Fan Y, Jia Y, Hong Y. Antagonism of 5-HT(2A) receptors inhibits the expression of pronociceptive mediator and enhances endogenous opioid mechanism in carrageenan-induced inflammation in rats. Eur J Pharmacol 2010; 654:33-41. [PMID: 21185821 DOI: 10.1016/j.ejphar.2010.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Revised: 11/17/2010] [Accepted: 12/11/2010] [Indexed: 02/05/2023]
Abstract
We have recently reported that treatment with the 5-HT(2A) receptor antagonist ketanserin in the inflamed paw raises the nociceptive threshold above normal level (hypoalgesia) and this response is naloxone-reversible. The present study aimed to investigate neurochemical changes at the site of inflammation and in dorsal root ganglia (DRG) and the spinal cord following the blockade of 5-HT(2A) receptors. Intraplantar injection of ketanserin (20 μg) inhibited carrageenan-induced increase in CGRP immunoreactivity-positive neurons in DRG. On the other hand, administration of ketanserin (20 μg) and 5-HT (10 μg), but not vehicle, enhanced and inhibited recruitment of β-endorphin-expressing immune cells, respectively, in subcutaneous loci of inflamed hindpaw. Moreover, the treatment with ketanserin increased the number of endomorphine-containing cells in the inflamed paw and μ-opioid receptor-expressing neurons in DRG at L4-5 but reduced the expression of endomorphine in superficial layers of the lumbar spinal cord. The present study provided evidence at the cellular level showing that the blockade of 5-HT(2A) receptors inhibited inflammation-associated increase in pronociceptive mediator, and that the pronociceptive property of 5-HT is mediated by the suppression of inflammation-activated opioid mechanism. Therefore, targeting the 5-HT(2A) receptors in the site of inflammation may be a promising approach to inhibit inflammatory pain.
Collapse
Affiliation(s)
- Jian Huang
- College of Life Sciences, Fujian Normal University, Key Provincial Laboratory of Developmental and Neurological Biology, Fuzhou, People's Republic of China
| | | | | | | |
Collapse
|
24
|
Lee WH, Shin TJ, Kim HJ, Lee JK, Suh HW, Lee SC, Seo K. Intrathecal administration of botulinum neurotoxin type A attenuates formalin-induced nociceptive responses in mice. Anesth Analg 2010; 112:228-35. [PMID: 21081780 DOI: 10.1213/ane.0b013e3181ffa1d7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Botulinum neurotoxin type A (BoNT/A) has been used as an analgesic for myofascial pain syndromes, migraine, and other types of headaches. Although an antinociceptive effect of central or peripheral administration of BoNT/A is suggested, the effect at the spinal level is still unclear. In this study, we evaluated the antinociceptive effect of intrathecally administered BoNT/A on the ICR mice during the formalin test. METHODS BoNT/A (0.01 U/mouse) was injected intrathecally in ICR mice, and we observed formalin-induced inflammatory pain behaviors at days 1, 4, 7, 10, 14, 21, and 28 after the injection. We also examined the level of calcitonin gene-related peptide (CGRP), phosphorylated extracellullar signal-regulated kinases (p-ERK), and phosphorylated Ca(2+)/calmodulin-dependent protein kinase type 2 (p-CaMK-II) using immunoblot or immunohistochemical analyses before and after BoNT/A intrathecal injection. RESULTS Even a single intrathecal injection of BoNT/A significantly decreased the nociceptive responses in the first phase (10 and 14 days later) and in the second phase of the formalin test at 1, 4, 7, 10, and 14 days later (P < 0.05) without any locomotor changes. Interestingly, intrathecal BoNT/A attenuated the expression level of CGRP, p-ERK, and p-CaMK-II in the 4th and 5th lumbar spinal dorsal horn at 10 days after injection in comparison with control. CONCLUSIONS We showed that intrathecally administered BoNT/A may have a central analgesic effect on inflammatory pain through the modulation of central sensitization. BoNT/A, with its long-lasting antinociceptive effect, may be a useful analgesic in inflammatory pain.
Collapse
Affiliation(s)
- Won-Ho Lee
- Department of Dental Anesthesiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
25
|
Schuelert N, Zhang C, Mogg AJ, Broad LM, Hepburn DL, Nisenbaum ES, Johnson MP, McDougall JJ. Paradoxical effects of the cannabinoid CB2 receptor agonist GW405833 on rat osteoarthritic knee joint pain. Osteoarthritis Cartilage 2010; 18:1536-43. [PMID: 20863899 DOI: 10.1016/j.joca.2010.09.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 08/30/2010] [Accepted: 09/10/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The present study examined whether local administration of the cannabinoid-2 (CB(2)) receptor agonist GW405833 could modulate joint nociception in control rat knee joints and in an animal model of osteoarthritis (OA). METHOD OA was induced in male Wistar rats by intra-articular injection of sodium monoiodo-acetate with a recovery period of 14 days. Immunohistochemistry was used to evaluate the expression of CB(2) and transient receptor potential vanilloid channel-1 (TRPV1) receptors in the dorsal root ganglion (DRG) and synovial membrane of sham- and sodium mono-iodoacetate (MIA)-treated animals. Electrophysiological recordings were made from knee joint primary afferents in response to rotation of the joint both before and following close intra-arterial injection of different doses of GW405833. The effect of intra-articular GW405833 on joint pain perception was determined by hindlimb incapacitance. An in vitro neuronal release assay was used to see if GW405833 caused release of an inflammatory neuropeptide (calcitonin gene-related peptide - CGRP). RESULTS CB(2) and TRPV1 receptors were co-localized in DRG neurons and synoviocytes in both sham- and MIA-treated animals. Local application of the GW405833 significantly reduced joint afferent firing rate by up to 31% in control knees. In OA knee joints, however, GW405833 had a pronounced sensitising effect on joint mechanoreceptors. Co-administration of GW405833 with the CB(2) receptor antagonist AM630 or pre-administration of the TRPV1 ion channel antagonist SB366791 attenuated the sensitising effect of GW405833. In the pain studies, intra-articular injection of GW405833 into OA knees augmented hindlimb incapacitance, but had no effect on pain behaviour in saline-injected control joints. GW405833 evoked increased CGRP release via a TRPV1 channel-dependent mechanism. CONCLUSION These data indicate that GW405833 reduces the mechanosensitivity of afferent nerve fibres in control joints but causes nociceptive responses in OA joints. The observed pro-nociceptive effect of GW405833 appears to involve TRPV1 receptors.
Collapse
Affiliation(s)
- N Schuelert
- Department of Physiology & Pharmacology, University of Calgary, 3330 Hospital Drive NW Calgary, AB T2N 4N1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Based on preclinical and clinical studies, the neuropeptide calcitonin gene-related peptide (CGRP) is proposed to play a central role in the underlying pathology of migraine. CGRP and its receptor are widely expressed in both the peripheral and central nervous systems by multiple cell types involved in the regulation of inflammatory and nociceptive responses. Peripheral release of CGRP from trigeminal nerve fibres within the dura and from the cell body of trigeminal ganglion neurons is likely to contribute to peripheral sensitization of trigeminal nociceptors. Similarly, the release of CGRP within the trigeminal nucleus caudalis can facilitate activation of nociceptive second-order neurons and glial cells. Thus, CGRP is involved in the development and maintenance of persistent pain, central sensitization and allodynia, events characteristic of migraine pathology. In contrast, CGRP release within the brain is likely to function in an anti-nociceptive capacity. Given the role of CGRP in migraine pathology, the potential of CGRP receptor antagonists in the treatment of migraine has been investigated. Towards this end, the non-peptide CGRP receptor antagonists olcegepant and telcagepant have been shown to be effective in the acute treatment of migraine. While telcagepant is being pursued as a frontline abortive migraine drug in a phase III clinical trial, an oral formulation of a novel CGRP receptor antagonist, BI 44370, is currently in phase II clinical trials. Encouragingly, data from clinical studies on these compounds have clearly demonstrated the potential therapeutic benefit of this class of drugs and support the future development of CGRP receptor antagonists to treat migraine and possibly other types of chronic pain.
Collapse
Affiliation(s)
- Paul L Durham
- Center for Biomedical and Life Sciences, Missouri State University, 524 North Boonville Avenue, Springfield, MO 65806, USA.
| | | |
Collapse
|
27
|
Puttfarcken PS, Han P, Joshi SK, Neelands TR, Gauvin DM, Baker SJ, Lewis LGR, Bianchi BR, Mikusa JP, Koenig JR, Perner RJ, Kort ME, Honore P, Faltynek CR, Kym PR, Reilly RM. A-995662 [(R)-8-(4-methyl-5-(4-(trifluoromethyl)phenyl)oxazol-2-ylamino)-1,2,3,4-tetrahydronaphthalen-2-ol], a novel, selective TRPV1 receptor antagonist, reduces spinal release of glutamate and CGRP in a rat knee joint pain model. Pain 2010; 150:319-326. [PMID: 20621685 DOI: 10.1016/j.pain.2010.05.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 03/19/2010] [Accepted: 05/18/2010] [Indexed: 11/26/2022]
Abstract
The TRPV1 antagonist A-995662 demonstrates analgesic efficacy in monoiodoacetate-induced osteoarthritic (OA) pain in rat, and repeated dosing results in increased in vivo potency and a prolonged duration of action. To identify possible mechanism(s) underlying these observations, release of neuropeptides and the neurotransmitter glutamate from isolated spinal cord was measured. In OA rats, basal release of glutamate, bradykinin and calcitonin gene-related peptide (CGRP) was significantly elevated compared to naïve levels, whereas substance P (SP) levels were not changed. In vitro studies showed that capsaicin-evoked TRPV1-dependent CGRP release was 54.7+/-7.7% higher in OA, relative to levels measured for naïve rats, suggesting that TRPV1 activity was higher under OA conditions. The efficacy of A-995662 in OA corresponded with its ability to inhibit glutamate and CGRP release from the spinal cord. A single, fully efficacious dose of A-995662, 100 micromol/kg, reduced spinal glutamate and CGRP release, while a single sub-efficacious dose of A-995662 (25 micromol/kg) was ineffective. Multiple dosing with A-995662 increased the potency and duration of efficacy in OA rats. Changes in efficacy did not correlate with plasma concentrations of A-995662, but were accompanied with reductions in spinal glutamate release. These findings suggest that repeated dosing of TRPV1 antagonists enhances therapeutic potency and duration of action against OA pain, at least in part, by the sustained reduction in release of glutamate and CGRP from the spinal cord.
Collapse
Affiliation(s)
- Pamela S Puttfarcken
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Han JS, Adwanikar H, Li Z, Ji G, Neugebauer V. Facilitation of synaptic transmission and pain responses by CGRP in the amygdala of normal rats. Mol Pain 2010; 6:10. [PMID: 20144185 PMCID: PMC2829526 DOI: 10.1186/1744-8069-6-10] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 02/08/2010] [Indexed: 11/13/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) plays an important role in peripheral and central sensitization. CGRP also is a key molecule in the spino-parabrachial-amygdaloid pain pathway. Blockade of CGRP1 receptors in the spinal cord or in the amygdala has antinociceptive effects in different pain models. Here we studied the electrophysiological mechanisms of behavioral effects of CGRP in the amygdala in normal animals without tissue injury.Whole-cell patch-clamp recordings of neurons in the latero-capsular division of the central nucleus of the amygdala (CeLC) in rat brain slices showed that CGRP (100 nM) increased excitatory postsynaptic currents (EPSCs) at the parabrachio-amygdaloid (PB-CeLC) synapse, the exclusive source of CGRP in the amygdala. Consistent with a postsynaptic mechanism of action, CGRP increased amplitude, but not frequency, of miniature EPSCs and did not affect paired-pulse facilitation. CGRP also increased neuronal excitability. CGRP-induced synaptic facilitation was reversed by an NMDA receptor antagonist (AP5, 50 microM) or a PKA inhibitor (KT5720, 1 microM), but not by a PKC inhibitor (GF109203X, 1 microM). Stereotaxic administration of CGRP (10 microM, concentration in microdialysis probe) into the CeLC by microdialysis in awake rats increased audible and ultrasonic vocalizations and decreased hindlimb withdrawal thresholds. Behavioral effects of CGRP were largely blocked by KT5720 (100 microM) but not by GF109203X (100 microM).The results show that CGRP in the amygdala exacerbates nocifensive and affective behavioral responses in normal animals through PKA- and NMDA receptor-dependent postsynaptic facilitation. Thus, increased CGRP levels in the amygdala might trigger pain in the absence of tissue injury.
Collapse
Affiliation(s)
- Jeong S Han
- Department of Neuroscience & Cell Biology, The University of Texas Medical Branch, Galveston, Texas 77555-1069, USA
| | - Hita Adwanikar
- Department of Neuroscience & Cell Biology, The University of Texas Medical Branch, Galveston, Texas 77555-1069, USA
| | - Zhen Li
- Department of Neuroscience & Cell Biology, The University of Texas Medical Branch, Galveston, Texas 77555-1069, USA
| | - Guangchen Ji
- Department of Neuroscience & Cell Biology, The University of Texas Medical Branch, Galveston, Texas 77555-1069, USA
| | - Volker Neugebauer
- Department of Neuroscience & Cell Biology, The University of Texas Medical Branch, Galveston, Texas 77555-1069, USA
| |
Collapse
|
29
|
Upregulation of adrenomedullin in the spinal cord and dorsal root ganglia in the early phase of CFA-induced inflammation in rats. Pain 2009; 146:105-13. [DOI: 10.1016/j.pain.2009.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 07/06/2009] [Accepted: 07/13/2009] [Indexed: 02/05/2023]
|
30
|
Telleria-Diaz A, Schmidt M, Kreusch S, Neubert AK, Schache F, Vazquez E, Vanegas H, Schaible HG, Ebersberger A. Spinal antinociceptive effects of cyclooxygenase inhibition during inflammation: Involvement of prostaglandins and endocannabinoids. Pain 2009; 148:26-35. [PMID: 19879047 DOI: 10.1016/j.pain.2009.08.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 08/12/2009] [Accepted: 08/17/2009] [Indexed: 01/28/2023]
Abstract
Both cyclooxygenase-1 and -2 are expressed in the spinal cord, and the spinal COX product prostaglandin E(2) (PGE(2)) contributes to the generation of central sensitization upon peripheral inflammation. Vice versa spinal COX inhibition is considered an important mechanism of antihyperalgesic pain treatment. Recently, however, COX-2 was shown to be also involved in the metabolism of endocannabinoids. Because endocannabinoids can have analgesic actions it is conceivable that inhibition of spinal COX produces analgesia not only by inhibition of PG synthesis but also by inhibition of endocannabinoid breakdown. In the present study, we recorded from spinal cord neurons with input from the inflamed knee joint and we measured the spinal release of PGE(2) and the endocannabinoid 2-arachidonoyl glycerol (2-AG) in vivo, using the same stimulation procedures. COX inhibitors were applied spinally. Selective COX-1, selective COX-2 and non-selective COX inhibitors attenuated the generation of spinal hyperexcitability when applied before and during development of inflammation but, when inflammation and spinal hyperexcitability were established, only selective COX-2 inhibitors reversed spinal hyperexcitability. During established inflammation all COX inhibitors reduced release of spinal PGE(2) almost equally but only the COX-2 inhibitor prevented breakdown of 2-AG. The reversal of spinal hyperexcitability by COX-2 inhibitors was prevented or partially reversed by AM-251, an antagonist at the cannabinoid-1 receptor. We conclude that inhibition of spinal COX-2 not only reduces PG production but also endocannabinoid breakdown and provide evidence that reversal of inflammation-evoked spinal hyperexcitability by COX-2 inhibitors is more related to endocannabinoidergic mechanisms than to inhibition of spinal PG synthesis.
Collapse
Affiliation(s)
- Alejandro Telleria-Diaz
- Department of Physiology, University Hospital of Jena, Teichgraben 8, D-07740 Jena, Germany Department of Biochemistry, University Hospital of Jena, Nonnenplan 2, D-07740 Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Marquez de Prado B, Hammond DL, Russo AF. Genetic enhancement of calcitonin gene-related Peptide-induced central sensitization to mechanical stimuli in mice. THE JOURNAL OF PAIN 2009; 10:992-1000. [PMID: 19628434 DOI: 10.1016/j.jpain.2009.03.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 02/20/2009] [Accepted: 03/25/2009] [Indexed: 11/28/2022]
Abstract
UNLABELLED Calcitonin gene-related peptide (CGRP) is a key player in migraine. To address the role of CGRP in mechanical allodynia, which is a common feature of migraine, we used CGRP-sensitized transgenic mice. These mice have elevated nervous-system expression of the human receptor activity-modifying protein-1 (hRAMP1) subunit of the CGRP receptor. Under baseline conditions, the nestin/hRAMP1 mice and control littermates had similar hindpaw withdrawal thresholds to von Frey filaments. The effect of CGRP was tested using a filament that elicited a withdrawal response on 20% of its presentations. Following intrathecal injection of 1 nmol CGRP in the nestin/hRAMP1 mice, the response frequency was 80% within 30 minutes. The antagonist CGRP(8-37) blocked the increased response. In control littermates, a 5-fold higher dose of CGRP was required to elicit a similar response. In contrast to intrathecal injection, peripheral CGRP did not increase the mechanical responses. Intraplantar injection of capsaicin was used to test the efficacy of endogenous CGRP. Capsaicin increased mechanical responses in the nestin/hRAMP1 and control mice, although a higher dose was required in controls. In contrast to control mice, there was also a contralateral paw response in nestin/hRAMP1 mice, which is consistent with central sensitization. PERSPECTIVE In this study we show central CGRP-induced mechanical allodynia that is enhanced by overexpression of RAMP1 in nervous system. These data suggest that hypersensitivity to CGRP could be a potential mechanism underlying central sensitization in migraine and point to CGRP-receptor antagonists as a possible therapy for other pain disorders.
Collapse
|
32
|
Ikeuchi M, Kolker SJ, Sluka KA. Acid-sensing ion channel 3 expression in mouse knee joint afferents and effects of carrageenan-induced arthritis. THE JOURNAL OF PAIN 2009; 10:336-42. [PMID: 19185546 DOI: 10.1016/j.jpain.2008.10.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 10/09/2008] [Accepted: 10/15/2008] [Indexed: 01/06/2023]
Abstract
UNLABELLED Arthritis is associated with decreases in local pH. Of the acid-sensing ion channels (ASIC), ASIC3 is most sensitive to such a pH change, abundantly expressed in dorsal root ganglion (DRG), and critical for the development of secondary hyperalgesia. The purpose of this study was to investigate the upregulation of ASIC3, using an acute arthritic pain model in mice. We examined ASIC3 expression in DRG neurons innervating the knee joint with and without carrageenan-induced arthritis by means of retrograde labeling and immunohistochemistry. We also examined the difference of DRG phenotype between ASIC3+/+ and ASIC3-/- mice. ASIC3 immunoreactivity was present in 31% of knee joint afferents and dominantly in small cells. After joint inflammation, ASIC3-immunoreactive neurons significantly increased in number by 50%. Calcitonin gene-related peptide (CGRP) increased similarly in both ASIC3+/+ and ASIC3-/- mice. Soma size distribution of ASIC3-immunoreactive neurons without CGRP expression was shifted to smaller-diameter neurons. Our results suggest that ASIC3 plays an important role in acute arthritic pain. Specifically, we propose that ASIC3 upregulation along with CGRP and phenotypic change in ASIC3-immunoreactive neurons without CGRP are responsible for the development of secondary hyperalgesia after carrageenan-induced arthritis. PERSPECTIVE This article shows that ASIC3 is upregulated along with CGRP in knee joint afferents and that there is a phenotypic change in ASIC3-immunoreactive nonpeptidergic neurons in an animal model of acute arthritis. Understanding the basic neurobiology after acute arthritis could lead to future new pharmacological management of arthritis.
Collapse
Affiliation(s)
- Masahiko Ikeuchi
- Physical Therapy and Rehabilitation Science Graduate Program, Pain Research Program, University of Iowa, Iowa City, Iowa, USA.
| | | | | |
Collapse
|
33
|
Hou S, Duale H, Rabchevsky AG. Intraspinal sprouting of unmyelinated pelvic afferents after complete spinal cord injury is correlated with autonomic dysreflexia induced by visceral pain. Neuroscience 2008; 159:369-79. [PMID: 19146928 DOI: 10.1016/j.neuroscience.2008.12.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 12/05/2008] [Accepted: 12/05/2008] [Indexed: 10/21/2022]
Abstract
Autonomic dysreflexia is a potentially life-threatening hypertensive syndrome following high thoracic (T) spinal cord injury (SCI). It is commonly triggered by noxious pelvic stimuli below the injury site that correlates with increased sprouting of primary afferent C-fibers into the lumbosacral (L/S) spinal cord. We have recently demonstrated that injury-induced plasticity of (L/S) propriospinal neurons, which relay pelvic visceral sensations to thoracolumbar sympathetic preganglionic neurons, is also correlated with the development of this syndrome. To determine the phenotype of pelvic afferent fiber sprouts after SCI, cholera toxin subunit beta (CTb) was injected into the distal colon 2 weeks post-T4 transection/sham to label colonic visceral afferents. After 1 week of transport, the (L/S) spinal cords were cryosectioned and immunohistochemically stained for CTb, the nociceptive-specific marker calcitonin gene-related peptide (CGRP), and the myelinated fiber marker RT97. Quantitative analysis showed that the density of CGRP(+) afferent fibers was significantly increased in the L/S dorsal horns of T4-transected versus sham rats, whereas RT97(+) afferent fiber density showed no change. Importantly, CTb-labeled pelvic afferent fibers were co-localized with CGRP(+) fibers, but not with RT97(+) fibers. These results suggest that the sprouting of unmyelinated nociceptive pelvic afferents following high thoracic SCI, but not myelinated fibers, contributes to hypertensive autonomic dysreflexia induced by pelvic visceral pain.
Collapse
Affiliation(s)
- S Hou
- Spinal Cord and Brain Injury Research Center, Department of Physiology, B471, Biomedical and Biological Sciences Research Building, University of Kentucky, 741 South Limestone Street, Lexington, KY 40536-0509, USA
| | | | | |
Collapse
|
34
|
McDonald HA, Neelands TR, Kort M, Han P, Vos MH, Faltynek CR, Moreland RB, Puttfarcken PS. Characterization of A-425619 at native TRPV1 receptors: A comparison between dorsal root ganglia and trigeminal ganglia. Eur J Pharmacol 2008; 596:62-9. [DOI: 10.1016/j.ejphar.2008.07.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 07/18/2008] [Accepted: 07/24/2008] [Indexed: 10/21/2022]
|
35
|
Adwanikar H, Ji G, Li W, Doods H, Willis WD, Neugebauer V. Spinal CGRP1 receptors contribute to supraspinally organized pain behavior and pain-related sensitization of amygdala neurons. Pain 2007; 132:53-66. [PMID: 17335972 PMCID: PMC2066202 DOI: 10.1016/j.pain.2007.01.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 01/26/2007] [Accepted: 01/26/2007] [Indexed: 10/23/2022]
Abstract
CGRP receptor activation has been implicated in peripheral and central sensitization. The role of spinal CGRP receptors in supraspinal pain processing and higher integrated pain behavior is not known. Here we studied the effect of spinal inhibition of CGRP1 receptors on supraspinally organized vocalizations and activity of amygdala neurons. Our previous studies showed that pain-related audible and ultrasonic vocalizations are modulated by the central nucleus of the amygdala (CeA). Vocalizations in the audible and ultrasonic range and hindlimb withdrawal thresholds were measured in awake adult rats before and 5-6h after induction of arthritis by intra-articular injections of kaolin and carrageenan into one knee. Extracellular single-unit recordings were made from neurons in the latero-capsular division of the CeA (CeLC) in anesthetized rats before and after arthritis induction. CGRP1 receptor antagonists were applied to the lumbar spinal cord intrathecally (5 microl/min) 6h postinduction of arthritis. Spinal administration of peptide (CGRP8-37, 1 microM) and non-peptide (BIBN4096BS, 1 microM) CGRP1 receptor antagonists significantly inhibited the increased responses of CeLC neurons to mechanical stimulation of the arthritic knee but had no effect under normal conditions. In arthritic rats, the antagonists also inhibited the audible and ultrasonic components of vocalizations evoked by noxious stimuli and increased the threshold of hindlimb withdrawal reflexes. The antagonists had no effect on vocalizations and spinal reflexes in normal rats. These data suggest that spinal CGRP1 receptors are not only important for spinal pain mechanisms but also contribute significantly to the transmission of nociceptive information to the amygdala and to higher integrated behavior.
Collapse
Affiliation(s)
- Hita Adwanikar
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1069, USA
| | - Guangchen Ji
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1069, USA
| | - Weidong Li
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1069, USA
| | - Henri Doods
- Boehringer Ingelheim Pharma GmbH & Co. KG, D-88397 Biberach, Germany
| | - William D. Willis
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1069, USA
| | - Volker Neugebauer
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1069, USA
| |
Collapse
|
36
|
Ochiai N, Ohtori S, Sasho T, Nakagawa K, Takahashi K, Takahashi N, Murata R, Takahashi K, Moriya H, Wada Y, Saisu T. Extracorporeal shock wave therapy improves motor dysfunction and pain originating from knee osteoarthritis in rats. Osteoarthritis Cartilage 2007; 15:1093-6. [PMID: 17466542 DOI: 10.1016/j.joca.2007.03.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 03/12/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Although there have been several reports on the use of extracorporeal shock wave therapy (ESWT), the efficacy of ESWT for knee osteoarthritis (OA) has not been clarified. The aim of this study is to investigate the effect of ESWT on OA in a rat knee model. METHODS The rats were divided into three groups: (1) control, (2) OA, and (3) ESWT (knee OA+shock wave therapy). Behavioral analysis consisted of measuring the duration of walking on a treadmill. The expression of calcitonin gene-related peptide (CGRP) in dorsal root ganglion (DRG) neurons innervating the knee using immunohistochemistry was examined in the three groups at their peak time point on the treadmill. RESULTS Walking duration was significantly extended 4, 7 and 14 days after ESWT in rats with knee OA (peak time point: 4 days), again decreasing by days 21 and 28. Immunohistochemical studies revealed that the OA group had significantly higher percentages of CGRP positive neurons in the DRG than were found in the control group. In addition, ESWT reduced the ratio of CGRP positive DRG neurons in the OA model. CONCLUSION The improvement in walking ability and the reduction of CGRP positive neurons in DRG indicates that ESWT is a useful treatment for knee OA.
Collapse
Affiliation(s)
- N Ochiai
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gu XL, Yu LC. The colocalization of CGRP receptor and AMPA receptor in the spinal dorsal horn neuron of rat: A morphological and electrophysiological study. Neurosci Lett 2007; 414:237-41. [PMID: 17287081 DOI: 10.1016/j.neulet.2006.12.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 12/20/2006] [Accepted: 12/21/2006] [Indexed: 11/17/2022]
Abstract
Both the calcitonin gene-related peptide (CGRP) receptor and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor are involved in the transmission of sensory information from primary afferent to the spinal cord. The present study found that there was a colocalization of CGRP receptor and AMPA receptor in a single spinal dorsal horn neuron in rat determined by double immunofluorescence labeling image methods. Furthermore, our results showed that the evoked discharge frequency of the wide dynamic range (WDR) neuron, one type of the dorsal horn neurons, increased significantly after micro-iontophoretic delivery of CGRP or AMPA alone tested by extracellular recording, indicating a functional colocalization of CGRP receptor and AMPA receptor in a single spinal dorsal horn neuron. The results of the present study found a morphological and functional colocalization of the CGRP receptor and AMPA receptor in a single dorsal horn neuron that involved in the transmission and modulation of sensory information from primary afferent to the spinal cord in rats.
Collapse
Affiliation(s)
- Xing-Long Gu
- Neurobiology Laboratory and National Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, PR China
| | | |
Collapse
|
38
|
Abstract
Arthritis pain affects millions of people worldwide yet we still have only a limited understanding of what makes our joints ache. This review examines the sensory innervation of diarthroidal joints and discusses the neurophysiological processes that lead to the generation of painful sensation. During inflammation, joint nerves become sensitized to mechanical stimuli through the actions of neuropeptides, eicosanoids, proteinase-activated receptors and ion channel ligands. The contribution of immunocytes to arthritis pain is also reviewed. Finally, the existence of an endogenous analgesic system in joints is considered and the reasons for its inability to control pain are postulated.
Collapse
Affiliation(s)
- Jason J McDougall
- Department of Physiology & Biophysics, University of Calgary, Hospital Drive, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
39
|
Abstract
Neuropeptides and kinins are important messengers in the nervous system and--on the basis of their anatomical localisation and the effects produced when the substances themselves are administered, to animals or to human subjects-a significant number of them have been suggested to have a role in pain and inflammation. Experiments in gene deletion (knock-out or null mutant) mice and parallel experiments with pharmacological receptor antagonists in a variety of species have strengthened the evidence that a number of peptides, notably substance P and calcitonin gene-related peptide (CGRP), and the kinins have a pathophysiological role in nociception. Clinical studies with non-peptide pharmacological antagonists are now in progress to determine if blocking the action of these peptides might have utility in the treatment of pain.
Collapse
Affiliation(s)
- R G Hill
- Merck, Sharp and Dohme Research Laboratories, Terlings Park, Harlow, Essex CM20 2QR, UK.
| | | |
Collapse
|
40
|
Bird GC, Han JS, Fu Y, Adwanikar H, Willis WD, Neugebauer V. Pain-related synaptic plasticity in spinal dorsal horn neurons: role of CGRP. Mol Pain 2006; 2:31. [PMID: 17002803 PMCID: PMC1592081 DOI: 10.1186/1744-8069-2-31] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 09/26/2006] [Indexed: 01/08/2023] Open
Abstract
Background The synaptic and cellular mechanisms of pain-related central sensitization in the spinal cord are not fully understood yet. Calcitonin gene-related peptide (CGRP) has been identified as an important molecule in spinal nociceptive processing and ensuing behavioral responses, but its contribution to synaptic plasticity, cellular mechanisms and site of action in the spinal cord remain to be determined. Here we address the role of CGRP in synaptic plasticity in the spinal dorsal horn in a model of arthritic pain. Results Whole-cell current- and voltage-clamp recordings were made from substantia gelatinosa (SG) neurons in spinal cord slices from control rats and arthritic rats (> 6 h postinjection of kaolin/carrageenan into the knee). Monosynaptic excitatory postsynaptic currents (EPSCs) were evoked by electrical stimulation of afferents in the dorsal root near the dorsal root entry zone. Neurons in slices from arthritic rats showed increased synaptic transmission and excitability compared to controls. A selective CGRP1 receptor antagonist (CGRP8-37) reversed synaptic plasticity in neurons from arthritic rats but had no significant effect on normal transmission. CGRP facilitated synaptic transmission in the arthritis pain model more strongly than under normal conditions where both facilitatory and inhibitory effects were observed. CGRP also increased neuronal excitability. Miniature EPSC analysis suggested a post- rather than pre-synaptic mechanism of CGRP action. Conclusion This study is the first to show synaptic plasticity in the spinal dorsal horn in a model of arthritic pain that involves a postsynaptic action of CGRP on SG neurons.
Collapse
Affiliation(s)
- Gary C Bird
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, Texas 77555-1069, USA
| | - Jeong S Han
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, Texas 77555-1069, USA
| | - Yu Fu
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, Texas 77555-1069, USA
| | - Hita Adwanikar
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, Texas 77555-1069, USA
| | - William D Willis
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, Texas 77555-1069, USA
| | - Volker Neugebauer
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, Texas 77555-1069, USA
| |
Collapse
|
41
|
Han JS, Li W, Neugebauer V. Critical role of calcitonin gene-related peptide 1 receptors in the amygdala in synaptic plasticity and pain behavior. J Neurosci 2006; 25:10717-28. [PMID: 16291945 PMCID: PMC6725858 DOI: 10.1523/jneurosci.4112-05.2005] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The role of neuropeptides in synaptic plasticity is less well understood than that of classical transmitters such as glutamate. Here we report the importance of the G-protein-coupled calcitonin gene-related peptide (CGRP1) receptor as a critical link between amygdala plasticity and pain behavior. A key player in emotionality and affective disorders, the amygdala has been implicated in the well documented, but mechanistically unexplained, relationship between pain and affect. Our electrophysiological and pharmacological in vitro (patch-clamp recordings) and in vivo (extracellular single-unit recordings) data show that selective CGRP1 receptor antagonists (CGRP(8-37) and BIBN4096BS) in the amygdala reverse arthritis pain-related plasticity through a protein kinase A (PKA)-dependent postsynaptic mechanism that involves NMDA receptors. CGRP1 receptor antagonists inhibited synaptic plasticity in the laterocapsular division of the central nucleus of the amygdala (CeLC) in brain slices from arthritic rats compared with normal controls. The effects were accompanied by decreased neuronal excitability and reduced amplitude, but not frequency, of miniature EPSCs; paired-pulse facilitation was unaffected. The antagonist effects were occluded by a PKA inhibitor. CGRP1 receptor blockade also directly inhibited NMDA-evoked, but not AMPA-evoked, membrane currents. Together, these data suggest a postsynaptic site of action. At the systems level, the antagonists reversed the sensitization of nociceptive CeLC neurons in anesthetized rats in the arthritis pain model. Importantly, CGRP1 receptor blockade in the CeLC inhibited spinal (hindlimb withdrawal reflexes) and supraspinal pain behavior of awake arthritic rats, including affective responses such as ultrasonic vocalizations. This study provides direct evidence for the critical dependence of pain behavior on CGRP1-mediated amygdala plasticity.
Collapse
Affiliation(s)
- Jeong S Han
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, Texas 77555-1069, USA
| | | | | |
Collapse
|
42
|
|
43
|
Westlund KN. Chapter 9 The dorsal horn and hyperalgesia. HANDBOOK OF CLINICAL NEUROLOGY 2006; 81:103-25. [PMID: 18808831 DOI: 10.1016/s0072-9752(06)80013-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
44
|
Fernihough J, Gentry C, Bevan S, Winter J. Regulation of calcitonin gene-related peptide and TRPV1 in a rat model of osteoarthritis. Neurosci Lett 2005; 388:75-80. [PMID: 16039054 DOI: 10.1016/j.neulet.2005.06.044] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 06/20/2005] [Accepted: 06/21/2005] [Indexed: 11/18/2022]
Abstract
Pain in osteoarthritis (OA) remains an intractable problem in a majority of patients, with many of the commonly prescribed analgesics providing insufficient relief and considerable side effects. However, the structural or mechanistic cause of OA pain is still unknown. Animal models to address this issue have only recently been established, with much of the research to date focused on tissue pathology rather than pain. We have previously compared the surgically induced partial medial meniscectomy and chemically induced intra-articular iodoacetate injection rat models of OA in the rat, with reference to pain behaviour. This demonstrated relevant tissue pathology in both models, but greater evidence of pain related behaviour in the iodoacetate induced model. Here we further investigate the iodoacetate model using Fast Blue backlabelling from the articular joint space to identify the cell bodies of primary sensory afferents from the knee at the L4 dorsal root ganglion. Expression of calcitonin gene-related peptide (CGRP) and the vanilloid receptor TRPV1 was quantified in these backlabelled cells and was enriched in the knee afferents in all animals studied, compared to the expression in neurons across the whole dorsal root ganglia (DRG). Analysis of the backlabelled population in the osteoarthritis model and controls showed an increase in both CGRP and TRPV1 expression in the iodoacetate model compared with control animals. Therefore, there is a potential role for CGRP and TRPV1 in the manifestation of pain behaviour accompanied by OA changes in the knee in the iodoacetate induced model.
Collapse
|
45
|
Natura G, von Banchet GS, Schaible HG. Calcitonin gene-related peptide enhances TTX-resistant sodium currents in cultured dorsal root ganglion neurons from adult rats. Pain 2005; 116:194-204. [PMID: 15927395 DOI: 10.1016/j.pain.2005.04.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Revised: 03/11/2005] [Accepted: 04/04/2005] [Indexed: 10/25/2022]
Abstract
The neuropeptide calcitonin gene-related peptide (CGRP) binds to a subpopulation of dorsal root ganglion (DRG) neurons, elevates intracellular calcium, and causes inward currents in about 30% of lumbar DRG neurons. Using whole-cell patch clamp recordings, we found in the present study that application of CGRP to isolated and cultured DRG neurons from the adult rat enhances voltage-gated TTX-resistant (TTX-R) Na(+) inward currents in about 30% of small- to medium-sized DRG neurons. During CGRP, peak densities of Na(+) currents increased significantly. CGRP shifted the membrane conductance of the CGRP-responsive cells towards hyperpolarization without changing the slope of the peak conductance curve. The effect of CGRP was blocked by coadministration of CGRP8-37, an antagonist at the CGRP receptor. The effect of CGRP was also blocked after bath application of PKA14-22, a membrane-permeant blocker of protein kinase A, and PKC19-31, a PKC inhibitor, in the recording pipette. These data show pronounced facilitatory effects of CGRP on TTX-R Na(+) currents in DRG neurons which are mediated through CGRP receptors and intracellular pathways involving protein kinases A and C. Thus, in addition to prostaglandins, CGRP is another mediator that affects TTX-R Na(+) currents which are thought to occur mainly in nociceptive DRG neurons.
Collapse
Affiliation(s)
- Gabriel Natura
- Institut für Physiologie, University of Jena, Teichgraben 8, D-07740 Jena, Germany
| | | | | |
Collapse
|
46
|
Clarke RW. Synaptic mechanisms in nociception: emerging targets for centrally-acting analgesics. ACTA ACUST UNITED AC 2005. [DOI: 10.1517/14728222.4.2.173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
47
|
Sun RQ, Tu YJ, Lawand NB, Yan JY, Lin Q, Willis WD. Calcitonin gene-related peptide receptor activation produces PKA- and PKC-dependent mechanical hyperalgesia and central sensitization. J Neurophysiol 2005; 92:2859-66. [PMID: 15486424 DOI: 10.1152/jn.00339.2004] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP), acting through CGRP receptors, produces behavioral signs of mechanical hyperalgesia in rats and sensitization of wide dynamic range (WDR) neurons in the spinal cord dorsal horn. Although involvement of CGRP receptors in central sensitization has been confirmed, the second-messenger systems activated by CGRP receptor stimulation and involved in pain transmission are not clear. This study tested whether the hyperalgesia and sensitizing effects of CGRP receptor activation on WDR neurons are mediated by protein kinase A or C (PKA or PKC) signaling. Intrathecal injection of CGRP in rats produced mechanical hyperalgesia, as shown by paw withdrawal threshold tests. CGRP-induced hyperalgesia was attenuated significantly by the CGRP1 receptor antagonist, CGRP8-37. The effect was also attenuated significantly by a PKA inhibitor (H89) or a PKC inhibitor (chelerythrine chloride). Electrophysiological experiments demonstrated that superfusion of the spinal cord with CGRP-induced sensitization of spinal dorsal horn neurons. The CGRP effect could be blocked by CGRP8-37. Either a PKA or PKC inhibitor (H89 or chelerythrine) also attenuated this effect of CGRP. These results are consistent with the hypothesis that CGRP produces hyperalgesia by a direct action on CGRP1 receptors in the spinal cord dorsal horn and suggest that the effects of CGRP are mediated by both PKA and PKC second-messenger pathways.
Collapse
Affiliation(s)
- Rui-Qing Sun
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 77555-1069, USA
| | | | | | | | | | | |
Collapse
|
48
|
Anderson LE, Seybold VS. Calcitonin gene-related peptide regulates gene transcription in primary afferent neurons. J Neurochem 2005; 91:1417-29. [PMID: 15584918 DOI: 10.1111/j.1471-4159.2004.02833.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although primary afferent neurons express receptors for calcitonin gene-related peptide (CGRP), understanding of the cellular effects of these receptors is limited. We determined that CGRP receptors regulate gene transcription in primary afferent neurons through a cyclic AMP (cAMP)-dependent pathway. CGRP increased cAMP in neonatal dorsal root ganglion (DRG) neurons in a concentration-dependent manner that was blocked by the receptor antagonist CGRP(8-37). The response to CGRP also occurred in adult DRG cells. In contrast, CGRP did not alter the concentration of free intracellular calcium in neonatal or adult DRG neurons. Immunohistochemical data showed that one downstream effect of the cAMP signaling pathway was phosphorylation of cAMP response element binding (CREB) protein, suggesting that CGRP regulates gene expression. This interpretation was supported by evidence that CGRP increased CRE-dependent gene transcription in neurons transiently transfected with a CRE-luciferase DNA reporter construct. The effect of CGRP on gene transcription was inhibited by H89, myristoylated-protein kinase A inhibitor(14-22)-amide and U0126, indicating that protein kinase A and mitogen-activated protein kinase/extracellular receptor kinase kinase are enzymes that mediate effects of CGRP on gene transcription. Therefore, CGRP receptors may regulate expression of proteins by primary afferent neurons during development and in response to tissue-damaging stimuli.
Collapse
Affiliation(s)
- L E Anderson
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
49
|
Bernardini N, Neuhuber W, Reeh PW, Sauer SK. Morphological evidence for functional capsaicin receptor expression and calcitonin gene-related peptide exocytosis in isolated peripheral nerve axons of the mouse. Neuroscience 2004; 126:585-90. [PMID: 15183508 DOI: 10.1016/j.neuroscience.2004.03.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2004] [Indexed: 10/26/2022]
Abstract
Rat sciatic nerve axons express capsaicin, proton and heat sensitivity and respond to stimulation with a Ca2+-dependent and graded calcitonin gene-related peptide (CGRP) release. In this study we demonstrate that similar functions, including capsaicin-induced CGRP release, are to be found in the desheathed sciatic nerve of the mouse. We have morphologically investigated the mechanisms of this axonal release in regions away from the active zones of synapses. Capsaicin receptor 1 (TRPV1) and CGRP immunostaining was performed using electron microscopic visualization. TRPV1 was identified in the axoplasm and inside vesicles--presumably on axonal transport--as well as in considerable quantity in the axonal plasma membrane of unmyelinated nerve fibers. Most of the unmyelinated axons were immunopositive for CGRP and in unstimulated nerves CGRP-containing vesicles almost entirely filled the axoplasm. After capsaicin stimulation (10(-6) M for 5 min), the fibers appeared depleted of CGRP with only few vesicles remaining as well as some residual staining of the axoplasm. In addition a large number of vesicles were fused with the axonal membrane, forming classical exocytotic figures--the omega structures--lined with CGRP immunoreactive product. These results present morphological evidence for the distribution of TRPV1 along unmyelinated axons in peripheral nerve and also provide the first demonstration of vesicular neuropeptide exocytosis along unmyelinated axons in peripheral nerve.
Collapse
Affiliation(s)
- N Bernardini
- Institut für Physiologie und Experimentelle Pathophysiologie, Erlangen-Universität, Universitätstrasse 17, 91054 Erlangen, Germany
| | | | | | | |
Collapse
|
50
|
Zanchet EM, Longo I, Cury Y. Involvement of spinal neurokinins, excitatory amino acids, proinflammatory cytokines, nitric oxide and prostanoids in pain facilitation induced by Phoneutria nigriventer spider venom. Brain Res 2004; 1021:101-11. [PMID: 15328037 DOI: 10.1016/j.brainres.2004.06.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2004] [Indexed: 12/19/2022]
Abstract
The major local symptom of Phoneutria nigriventer envenomation is an intense pain, which can be controlled by infiltration with local anesthetics or by systemic treatment with opioid analgesics. Previous work showed that intraplantar (i.pl) injection of Phoneutria nigriventer venom in rats induces hyperalgesia, mediated peripherally by tachykinin and glutamate receptors. The present study examined the spinal mechanisms involved in pain-enhancing effect of this venom. Intraplantar injection of venom into rat hind paw induced hyperalgesia. This phenomenon was inhibited by intrathecal (i.t.) injection of tachykinin NK1 (GR 82334) or NK2 (GR 94800) receptor antagonists, a calcitonin gene-related peptide (CGRP) receptor antagonist (CGRP8-37) and N-methyl-D-aspartate (NMDA; MK 801 and AP-5), non-NMDA ionotropic (CNQX), or metabotropic (AIDA and MPEP) glutamate receptor antagonists, suggesting the involvement of spinal neurokinins and excitatory amino acids. The role of proinflammatory cytokines, nitric oxide (NO), and prostanoids in spinally mediated pain facilitation was also investigated. Pharmacological blockade of tumour necrosis factor-alpha (TNFalpha) or interleukin-1beta (IL-1beta) reduced the hyperalgesic response to venom. Intrathecal injection of L-N6-(1-iminoethyl)lysine (L-NIL), but not of 7-nitroindazole (7-NI), inhibited hyperalgesia induced by the venom, indicating that NO, generated by the activity of the inducible form of nitric oxide synthase, also mediates this phenomenon. Furthermore, indomethacin, an inhibitor of cyclooxigenases (COX), or celecoxib, a selective inhibitor of COX-2, abolished venom-induced hyperalgesia, suggesting the involvement of spinal prostanoids in this effect. These data indicate that the spinal mechanisms of pain facilitation induced by Phoneutria nigriventer venom involves a plethora of mediators that may cooperate in the genesis of venom-induced central sensitization.
Collapse
Affiliation(s)
- Eliane Maria Zanchet
- Laboratório de Fisiopatologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | | | | |
Collapse
|