1
|
Mazurová Y. New Therapeutic Approaches for the Treatment of Huntington’s Disease. ACTA MEDICA (HRADEC KRÁLOVÉ) 2019. [DOI: 10.14712/18059694.2019.97] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The use of transplantation (TR) of fetal neural tissue as a therapeutic method started much later in patients suffering from Huntington’s disease (HD) than in those with Parkinson’s disease. The clinical trial, following a wide range of animal experiments (neurotoxic models and newly also transgenic mice), includes about 30 HD patients until now. Because of limited use of the human fetal tissue by ethical and technical concerns, there is necessity to search for the alternative sources for neural grafting. The first attempt with xenotransplantation (in 12 HD patients) and with TR of encapsulated genetically modified cells (in 6 HD patients) was performed, but no appreciable improvement of status in any of those patients was noted. Since no effective pharmacological treatment of HD is available, the TR of fetal neural tissue is now the only therapeutic approach which provides a reduction of symptoms in most of grafted patients. The possibilities are enormous offered by neural stem cells, optionally by embryonic stem cells, which could be expanded in cultures, cloned or genetically modified and then grafted into the patient’s brain. On the other hand, the neural progenitor and stem cells, normally present within the subependymal layer of the lateral brain ventricles also in adulthood, might be induced to become an endogenous source of glia and neurons participating in the brain’s repair.
Collapse
|
2
|
Barker RA, Mason SL, Harrower TP, Swain RA, Ho AK, Sahakian BJ, Mathur R, Elneil S, Thornton S, Hurrelbrink C, Armstrong RJ, Tyers P, Smith E, Carpenter A, Piccini P, Tai YF, Brooks DJ, Pavese N, Watts C, Pickard JD, Rosser AE, Dunnett SB. The long-term safety and efficacy of bilateral transplantation of human fetal striatal tissue in patients with mild to moderate Huntington's disease. J Neurol Neurosurg Psychiatry 2013; 84:657-65. [PMID: 23345280 PMCID: PMC3646287 DOI: 10.1136/jnnp-2012-302441] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Huntington's disease (HD) is a fatal autosomal dominant neurodegenerative disease involving progressive motor, cognitive and behavioural decline, leading to death approximately 20 years after motor onset. The disease is characterised pathologically by an early and progressive striatal neuronal cell loss and atrophy, which has provided the rationale for first clinical trials of neural repair using fetal striatal cell transplantation. Between 2000 and 2003, the 'NEST-UK' consortium carried out bilateral striatal transplants of human fetal striatal tissue in five HD patients. This paper describes the long-term follow up over a 3-10-year postoperative period of the patients, grafted and non-grafted, recruited to this cohort using the 'Core assessment program for intracerebral transplantations-HD' assessment protocol. No significant differences were found over time between the patients, grafted and non-grafted, on any subscore of the Unified Huntington's Disease Rating Scale, nor on the Mini Mental State Examination. There was a trend towards a slowing of progression on some timed motor tasks in four of the five patients with transplants, but overall, the trial showed no significant benefit of striatal allografts in comparison with a reference cohort of patients without grafts. Importantly, no significant adverse or placebo effects were seen. Notably, the raclopride positron emission tomography (PET) signal in individuals with transplants, indicated that there was no obvious surviving striatal graft tissue. This study concludes that fetal striatal allografting in HD is safe. While no sustained functional benefit was seen, we conclude that this may relate to the small amount of tissue that was grafted in this safety study compared with other reports of more successful transplants in patients with HD.
Collapse
Affiliation(s)
- Roger A Barker
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Neural transplants in patients with Huntington's disease undergo disease-like neuronal degeneration. Proc Natl Acad Sci U S A 2009; 106:12483-8. [PMID: 19620721 DOI: 10.1073/pnas.0904239106] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The clinical evaluation of neural transplantation as a potential treatment for Huntington's disease (HD) was initiated in an attempt to replace lost neurons and improve patient outcomes. Two of 3 patients with HD reported here, who underwent neural transplantation containing striatal anlagen in the striatum a decade earlier, have demonstrated marginal and transient clinical benefits. Their brains were evaluated immunohistochemically and with electron microscopy for markers of projection neurons and interneurons, inflammatory cells, abnormal huntingtin protein, and host-derived connectivity. Surviving grafts were identified bilaterally in 2 of the subjects and displayed classic striatal projection neurons and interneurons. Genetic markers of HD were not expressed within the graft. Here we report in patients with HD that (i) graft survival is attenuated long-term; (ii) grafts undergo disease-like neuronal degeneration with a preferential loss of projection neurons in comparison to interneurons; (iii) immunologically unrelated cells degenerate more rapidly than the patient's neurons, particularly the projection neuron subtype; (iv) graft survival is attenuated in the caudate in comparison to the putamen in HD; (v) glutamatergic cortical neurons project to transplanted striatal neurons; and (vi) microglial inflammatory changes in the grafts specifically target the neuronal components of the grafts. These results, when combined, raise uncertainty about this potential therapeutic approach for the treatment of HD. However, these observations provide new opportunities to investigate the underlying mechanisms involved in HD, as well as to explore additional therapeutic paradigms.
Collapse
|
4
|
Keene CD, Chang RC, Leverenz JB, Kopyov O, Perlman S, Hevner RF, Born DE, Bird TD, Montine TJ. A patient with Huntington's disease and long-surviving fetal neural transplants that developed mass lesions. Acta Neuropathol 2009; 117:329-38. [PMID: 19057918 DOI: 10.1007/s00401-008-0465-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 11/21/2008] [Accepted: 11/22/2008] [Indexed: 12/23/2022]
Abstract
Transplantation of human fetal neural tissue into adult neostriatum is an experimental therapy for Huntington's disease (HD). Here we describe a patient with HD who received ten intrastriatal human fetal neural transplants and, at one site, an autologous sural nerve co-graft. Although initially clinically stable, she developed worsening asymmetric upper motor neuron symptoms in addition to progression of HD, and ultimately died 121 months post transplantation. Eight neural transplants, up to 2.9 cm, and three ependymal cysts, up to 2.0 cm, were identified. The autologous sural nerve co-graft was found adjacent to the largest mass lesion, which, along with the ependymal cyst, exhibited pronounced mass effect on the internal capsules bilaterally. Grafts were composed of neurons and glia embedded in disorganized neuropil; robust Y chromosome labeling was present in a subset of grafts and cysts. The graft-host border was discrete, and there was no evidence of graft rejection or HD pathologic changes within donor neurons. This report, for the first time, highlights the potential for graft overgrowth in a patient receiving fetal neural transplantation.
Collapse
Affiliation(s)
- C Dirk Keene
- Department of Pathology, Harborview Medical Center, University of Washington Medical Center, Seattle, 98104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Cell transplantation for Huntington's disease has developed over the last decade to clinical application in pilot trials in the USA, France and the UK. Although the procedures are feasible, and under appropriate conditions safe, evidence for efficacy is still limited, which has led to some calls that further development should be discontinued. We review the background of striatal cell transplantation in experimental animal models of Huntington's disease and the rationale for applying similar strategies in the human disease, and we survey the present status of the preliminary studies that have so far been undertaken in patients. When we consider the variety of parameters and principles that remain poorly defined -- such as the optimal source, age, dissection, preparation, implantation, immunoprotection and assessment protocols -- it is not surprising that clinical efficacy is still unreliable. However, since these protocols are all tractable to experimental refinement, we consider that the potential for cell transplantation in Huntington's disease is greater than has yet been realised, and remains a therapeutic strategy worthy of investigation and pursuit.
Collapse
|
6
|
Boer GJ, Widner H. Clinical neurotransplantation: core assessment protocol rather than sham surgery as control. Brain Res Bull 2002; 58:547-53. [PMID: 12372557 DOI: 10.1016/s0361-9230(02)00804-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Basic neurotransplantation research evoked clinical trials of restorative brain surgery. Parkinson's disease was the first and primary test bed for this putative new therapeutic method. Various centers performed the grafting surgery and the behavioral evaluations in different ways, and observed a varying degree of symptomatic relief. This led to a plea for double blind placebo-controlled clinical trials, which have since been performed and of which the first outcomes were recently published. In the present paper this approach of experimental neurotransplantation in brain diseases is discussed and rejected. Neural grafting in the central nervous system is irreversible and is therefore not suitable for experimental approaches originally designed for and best suited to drug studies. For Parkinson's disease in particular, the technique is far from optimized to perform large-scale studies at this stage. Moreover, previous negative results of adrenal medulla tissue implantation in the brain of patients make placebo effects rather unlikely. Moral arguments concerning the validity of the informed consent, therapeutic misconception, and the risk/benefit ratio can be added in the plea against this control surgery. Finally, a recommendation is made for study designs that apply a disease-dedicated core assessment protocol (CAP) that can evaluate the period from pre-operative to post-convalescent stages quantitatively, and therefore, unbiased. The strength of these CAPs is that they allow comparisons of different grafting techniques, of results between centers and of other types of interventions and invasive treatments such as deep brain stimulation. On ethical grounds, it is unacceptable not to use a study design that circumvents sham or imitation surgery. It is a challenge for the neuroscience community to develop CAPs for brain diseases that are eligible for neurotransplantation in the future.
Collapse
Affiliation(s)
- Gerard J Boer
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Amsterdam, The Netherlands.
| | | |
Collapse
|
7
|
Philips MF, Mattiasson G, Wieloch T, Björklund A, Johansson BB, Tomasevic G, Martínez-Serrano A, Lenzlinger PM, Sinson G, Grady MS, McIntosh TK. Neuroprotective and behavioral efficacy of nerve growth factor-transfected hippocampal progenitor cell transplants after experimental traumatic brain injury. J Neurosurg 2001; 94:765-74. [PMID: 11354408 DOI: 10.3171/jns.2001.94.5.0765] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Immortalized neural progenitor cells derived from embryonic rat hippocampus (HiB5), were transduced ex vivo with the gene for mouse nerve growth factor (NGF) to secrete NGF (NGF-HiB5) at 2 ng/hr/10(5) cells in culture. METHODS Fifty-nine male Wistar rats weighing 300 to 370 g each were anesthetized with 60 mg/kg sodium pentobarbital and subjected to lateral fluid-percussion brain injury of moderate severity (2.3-2.4 atm, 34 rats) or sham injury (25 rats). At 24 hours postinjury, 2 microl (150,000 cells/microl) of [3H]thymidine-labeled NGF-HiB5 cells were transplanted stereotactically into three individual sites in the cerebral cortex adjacent to the injury site (14 rats). Separate groups of brain-injured rats received nontransfected (naive [n])-HiB5 cells (12 animals) or cell suspension vehicle (eight animals). One week postinjury, animals underwent neurological evaluation for motor function and cognition (Morris water maze) and were killed for histological, autoradiographic, and immunocytochemical analysis. Viable HiB5 cell grafts were identified in all animals, together with reactive microglia and macrophages located throughout the periinjured parenchyma and grafts (OX-42 immunohistochemistry). Brain-injured animals transplanted with either NGF-HiB5 or n-HiB5 cells displayed significantly improved neuromotor function (p < 0.05) and spatial learning behavior (p < 0.005) compared with brain-injured animals receiving microinjections of vehicle alone. A significant reduction in hippocampal CA3 cell death was observed in brain-injured animals receiving transplants of NGF-HiB5 cells compared with those receiving n-HiB5 cells or vehicle (p < 0.025). CONCLUSIONS This study demonstrates that immortalized neural stem cells that have been retrovirally transduced to produce NGF can markedly improve cognitive and neuromotor function and rescue hippocampal CA3 neurons when transplanted into the injured brain during the acute posttraumatic period.
Collapse
Affiliation(s)
- M F Philips
- Department of Neurosurgery, University of Pennsylvania School of Medicine and Veterans Administration Medical Center, Philadelphia, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Watts C, Brasted PJ, Dunnett SB. Embryonic donor age and dissection influences striatal graft development and functional integration in a rodent model of Huntington's disease. Exp Neurol 2000; 163:85-97. [PMID: 10785447 DOI: 10.1006/exnr.1999.7341] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The method of embryonic dissection and the age of the donor material remain areas of controversy in the preparation of striatal tissue for intrastriatal implantation. This study explores the relationship between these two parameters with respect to the morphology, function, and physiological integration of the resultant grafts. Tissue derived from embryos of 14 and 16 days of gestation (CRL 10-11 and 14-15 mm, respectively) was prepared as whole, lateral, and medial ganglionic eminence suspensions (WGE, LGE, and MGE, respectively). The embryonic material was implanted into the excitotoxically lesioned striatum of host rats. Grafts derived from E14 LGE attenuated drug-induced rotational bias whereas grafts from E14 MGE ameliorated contralateral deficits in paw reaching. Six months after grafting retrograde tracing of graft projections to the globus pallidus was performed followed by electrical excitation of cortical afferent fibers. Grafts derived from E14 WGE had the largest volume of striatum-like tissue and more striatal neurons compared to LGE from the same donor age. These results suggest that MGE tissue as well as LGE plays a role in the structural and functional integration of striatal grafts.
Collapse
Affiliation(s)
- C Watts
- MRC Cambridge Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom.
| | | | | |
Collapse
|
9
|
Watts C, Dunnett SB. Towards a protocol for the preparation and delivery of striatal tissue for clinical trials of transplantation in Huntington's disease. Cell Transplant 2000; 9:223-34. [PMID: 10811395 DOI: 10.1177/096368970000900208] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
There is a growing body of scientific evidence contributing to the development of clinical transplantation programs in patients with Huntington's disease. Phase I clinical trials have already commenced in France and North America and are starting in the near future in Sweden and the UK. Protocols for patient selection, surgical implantation, and pre- and postoperative follow-up are well defined. However, considerable variability exists with respect to the harvesting, preparation, and timing of implantation of the donor material. In this article we review the scientific evidence on which a rational protocol for donor tissue preparation and delivery may be based. Strategies aimed at minimizing the variability of tissue preparation should reduce the variability of functional outcome of striatal transplantation observed in animal models of Huntington's disease.
Collapse
Affiliation(s)
- C Watts
- MRC Cambridge Centre for Brain Repair, Department of Neurosurgery, University of Cambridge, UK.
| | | |
Collapse
|
10
|
Wenning GK, Tison F, Scherfler C, Puschban Z, Waldner R, Granata R, Ghorayeb I, Poewe W. Towards neurotransplantation in multiple system atrophy: clinical rationale, pathophysiological basis, and preliminary experimental evidence. Cell Transplant 2000; 9:279-88. [PMID: 10811400 DOI: 10.1177/096368970000900213] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disorder that occurs sporadically and causes parkinsonism, cerebellar, autonomic, urinary, and pyramidal dysfunction in many combinations. Progressive L-dopa-unresponsive parkinsonism due to underlying striatonigral degeneration dominates the clinical syndrome in the majority of cases (MSA-P subtype). MSA-P is characterized pathologically by degenerative changes in somatotopically related areas of the substantia nigra pars compacta and of the putamen. Furthermore, oligodendroglial cytoplasmic inclusions (GCIs) are observed throughout the cortico-striato-pallidocortical loops and may contribute to the basal ganglia dysfunction. Neurotransplantation strategies are of potential interest in this disease, which causes marked and early disability and dramatically reduces life expectancy. A number of experimental MSA-P models have been employed to evaluate neurotransplantation approaches. Sequential nigral and striatal lesions using 6-hydroxydopamine and quinolinic acid (double toxin-double lesion approach) indicate that apomorphine-induced contralateral rotation is abolished by a secondary striatal lesion. Intrastriatal injection of mitochondrial respiratory chain toxins produces secondary excitotoxic striatal lesions combined with retrograde nigral degeneration and therefore provides an alternative single toxin-double lesion approach. Neurotransplantation in MSA-P animal models has been used to improve functional deficits by replacing lost nigral and/or striatal circuitry (neuroregenerative approach). The available data indicate that embryonic mesencephalic grafts alone or combined with striatal grafts partially reverse drug-induced rotation asymmetries without improving deficits of complex motor function. The potential neuroprotective efficacy of embryonic striatal grafts against striatal excitotoxicity is presently under investigation in the double toxin-double lesion MSA-P rat model. Anecdotal clinical evidence in one MSA-P patient misdiagnosed as Parkinson's disease indicates that embryonic mesencephalic grafts produce incomplete clinical benefit. Striatal co-grafts may increase functional improvement. Further experimental studies are required prior to the clinical application of embryonic neurotransplantation in MSA-P. Future research strategies should explore the effect of neurotransplantation in partial MSA-P rat models with less severe nigral and striatal degeneration, the feasibility of a primate model closely mimicking the human disease, and the replication of oligodendroglial dysfunction.
Collapse
Affiliation(s)
- G K Wenning
- Department of Neurology, University Hospital, Innsbruck, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Petersén A, Emgård M, Brundin P. Impact of a preceding striatal excitotoxic lesion and treatment with ciliary neurotrophic factor on striatal graft survival. Brain Res Bull 1999; 50:275-81. [PMID: 10582525 DOI: 10.1016/s0361-9230(99)00202-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The survival of grafted embryonic striatal tissue, dissected from the lateral ganglionic eminence, depends on the status of the host striatum. We found significantly larger volumes of surviving graft tissue and of striatal-like tissue (P-zone) within the graft, when the host striatum had been subjected to an excitotoxic lesion prior to transplantation surgery. Concomitantly the numbers of surviving grafted cells, assessed in both cresyl violet-stained sections and in sections stained with an immunohistochemical marker for striatal neurons, increased as compared to when graft tissue was placed in an intact unlesioned striatum. Finally, we examined the impact of treatment of the donor tissue with ciliary neurotrophic factor (CNTF) on graft survival. CNTF has previously been shown to protect striatal neurons against excitotoxic insults both in vitro and in vivo, but it did not improve striatal graft survival when added to the cell suspension prior to implantation.
Collapse
Affiliation(s)
- A Petersén
- Wallenberg Neuroscience Center, Department of Physiological Sciences, Lund University, Sweden.
| | | | | |
Collapse
|
12
|
Wenning GK, Granata R, Puschban Z, Scherfler C, Poewe W. Neural transplantation in animal models of multiple system atrophy: a review. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1999; 55:103-13. [PMID: 10335497 DOI: 10.1007/978-3-7091-6369-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Multiple system atrophy of the striatonigral degeneration (MSA-SND) type is increasingly recognized as major cause of neurodegenerative parkinsonism. Due to combined degeneration of substantia nigra pars compacta (SNC) and of striatum, antiparkinsonian therapy based on levodopa substitution eventually fails in more than 90% of patients. Animal models of MSA-SND are urgently required as test-bed for the evaluation of novel therapeutic interventions in this disorder such as neurotrophic factor delivery and neuronal transplantation. A number of well established rodent and primate models of Parkinson's (PD) and Huntington's (HD) disease replicate either nigral ("PD-like") or striatal ("HD-like") pathology and may therefore provide a useful baseline for the development of MSA-SND models. Previous attempts to mimick MSA-SND pathology in rodents have included sequential injections of 6-hydroxydopamine (6OHDA) and quinolinic acid (QA) into medial forebrain bundle and ipsilateral striatum, respectively ("double toxin-double lesion" approach). Preliminary evidence in rodents subjected to such lesions indicates that embryonic transplantation may partially reverse behavioural abnormalities. Intrastriatal injections of mitochondrial toxins such as 3-nitropropionic acid (3NP) and 1-methyl-4-phenylpyridinium (MPP+) in rodents result in (secondary) excitotoxic striatal lesions and subtotal neuronal degeneration of ipsilateral SNC, thus producing MSA-SND-like pathology by a simplified "single toxin-double lesion" approach. Comparative studies of human SND pathology and rodent striatonigral lesions are required in order to determine the rodent model(s) most closely mimicking the human disease process.
Collapse
Affiliation(s)
- G K Wenning
- Department of Neurology, University Hospital, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
13
|
Philips MF, Muir JK, Saatman KE, Raghupathi R, Lee VM, Trojanowski JQ, McIntosh TK. Survival and integration of transplanted postmitotic human neurons following experimental brain injury in immunocompetent rats. J Neurosurg 1999; 90:116-24. [PMID: 10413164 DOI: 10.3171/jns.1999.90.1.0116] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Limitations regarding cell homogeneity and survivability do not affect neuronlike hNT cells, which are derived from a human teratocarcinoma cell line (Ntera2) that differentiates into postmitotic neurons with exposure to retinoic acid. Because NT2N neurons survive longer than 1 year after transplantation into nude mice brains, the authors grafted these cells into the brains of immunocompetent rats following lateral fluid-percussion brain injury to determine the long-term survivability of NT2N cell grafts in cortices damaged by traumatic brain injury (TBI) and the therapeutic effect of NT2N neurons on cognitive and motor deficits. METHODS Seventy-two adult male Sprague-Dawley rats, each weighing between 340 and 370 g, were given an anesthetic agent and subjected to lateral fluid percussion brain injury of moderate severity (2.2-2.5 atm in 46 rats) or to surgery without TBI (shamoperation, 26 rats). Twenty-four hours postinjury, 10(5) NT2N cells (24 injured animals) or 3 microl of vehicle (22 injured and 14 control animals) was stereotactically implanted into the periinjured or control cerebral cortex. Motor function was assessed at weekly intervals and all animals were killed at 2 or 4 weeks after their posttraumatic learning ability was assessed using a Morris water maze paradigm. Viable NT2N grafts were routinely observed to extend human neural cell adhesion molecule-(MOC-1)immunoreactive processes into the periinjured cortex at 2 and 4 weeks posttransplantation, although no significant improvement in motor or cognitive function was noted. Inflammation identified around the transplant at both time points was assessed by immunohistochemical identification of macrophages (ED-1) and microglia (isolectin B4). CONCLUSIONS Long-term survival and integration of NT2N cells in the periinjured cortex of immunocompetent rats provides the researcher with an important cellular system that can be used to study maturation, regulation, and neurite outgrowth of transplanted neurons following TBI.
Collapse
Affiliation(s)
- M F Philips
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia 19104-6316, USA
| | | | | | | | | | | | | |
Collapse
|