1
|
Hirsch MA, van Wegen EEH, Newman MA, Heyn PC. Exercise-induced increase in brain-derived neurotrophic factor in human Parkinson's disease: a systematic review and meta-analysis. Transl Neurodegener 2018; 7:7. [PMID: 29568518 PMCID: PMC5859548 DOI: 10.1186/s40035-018-0112-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/28/2018] [Indexed: 01/02/2023] Open
Abstract
Background Animal models of exercise and Parkinson’s disease (PD) have found that the physiologic use of exercise may interact with the neurodegenerative disease process, likely mediated by brain derived neurotrophic factor (BDNF). No reviews so far have assessed the methodologic quality of available intervention studies or have bundled the effect sizes of individual studies on exercise-induced effects on BDNF blood levels in human PD. Research design and methods We searched MEDLINE, EMBASE, Cochrane Library, PsycINFO and PubMed from inception to June 2017. Results Data aggregated from two randomized controlled trials and four pre-experimental studies with a total of 100 ambulatory patients with idiopathic PD (Hoehn/Yahr ≤3) found improvements in BDNF blood concentration levels in all 6 studies (two RCTs and 4 pre-experimental studies). Pooled BDNF level change scores from the 2 RCTs resulted in a significant homogeneous summary effect size (Standardized Mean Difference 2.06, 95% CI 1.36 to 2.76), and a significant heterogeneous SES for the motor part of the UPDRS-III examination (MD -5.53, 95% CI -10.42 to -0.64). Clinical improvements were noted in all studies using a variety of outcome measures. Limitations The evidence-base consists primarily of small studies with low to moderate methodological quality. Conclusions This review provides preliminary evidence for the effectiveness of physical exercise treatments for persons with PD on BDNF blood levels. Further research is needed. Electronic supplementary material The online version of this article (10.1186/s40035-018-0112-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mark A Hirsch
- 1Carolinas Medical Center, Carolinas Rehabilitation, Department of Physical Medicine and Rehabilitation, 1100 Blythe Blvd, Charlotte, NC 28203 USA
| | - Erwin E H van Wegen
- 2Department of Rehabilitation Medicine, Amsterdam Movement Sciences/Amsterdam Neurosciences, VU University Medical Center, PO Box 7057, 1007 Amsterdam, MB The Netherlands
| | - Mark A Newman
- 1Carolinas Medical Center, Carolinas Rehabilitation, Department of Physical Medicine and Rehabilitation, 1100 Blythe Blvd, Charlotte, NC 28203 USA
| | - Patricia C Heyn
- 3Department of Physical Medicine and Rehabilitation, Anschutz Medical Campus, University of Colorado, Denver, USA
| |
Collapse
|
2
|
Neurotrauma: The Crosstalk between Neurotrophins and Inflammation in the Acutely Injured Brain. Int J Mol Sci 2017; 18:ijms18051082. [PMID: 28524074 PMCID: PMC5454991 DOI: 10.3390/ijms18051082] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/25/2017] [Accepted: 05/11/2017] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity and mortality among young individuals worldwide. Understanding the pathophysiology of neurotrauma is crucial for the development of more effective therapeutic strategies. After the trauma occurs, immediate neurologic damage is produced by the traumatic forces; this primary injury triggers a secondary wave of biochemical cascades together with metabolic and cellular changes, called secondary neural injury. In the scenario of the acutely injured brain, the ongoing secondary injury results in ischemia and edema culminating in an uncontrollable increase in intracranial pressure. These areas of secondary injury progression, or areas of “traumatic penumbra”, represent crucial targets for therapeutic interventions. Neurotrophins are a class of signaling molecules that promote survival and/or maintenance of neurons. They also stimulate axonal growth, synaptic plasticity, and neurotransmitter synthesis and release. Therefore, this review focuses on the role of neurotrophins in the acute post-injury response. Here, we discuss possible endogenous neuroprotective mechanisms of neurotrophins in the prevailing environment surrounding the injured areas, and highlight the crosstalk between neurotrophins and inflammation with focus on neurovascular unit cells, particularly pericytes. The perspective is that neurotrophins may represent promising targets for research on neuroprotective and neurorestorative processes in the short-term following TBI.
Collapse
|
3
|
Barrot M, Calza L, Pozza M, Le Moal M, Piazza PV. Differential calbindin-immunoreactivity in dopamine neurons projecting to the rat striatal complex. Eur J Neurosci 2008. [DOI: 10.1111/j.1460-9568.2000.01349.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Royo NC, Conte V, Saatman KE, Shimizu S, Belfield CM, Soltesz KM, Davis JE, Fujimoto ST, McIntosh TK. Hippocampal vulnerability following traumatic brain injury: a potential role for neurotrophin-4/5 in pyramidal cell neuroprotection. Eur J Neurosci 2006; 23:1089-102. [PMID: 16553773 DOI: 10.1111/j.1460-9568.2006.04642.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Traumatic brain injury (TBI) causes selective hippocampal cell death, which is believed to be associated with cognitive impairment observed both in clinical and experimental settings. Although neurotrophin administration has been tested as a strategy to prevent cell death following TBI, the potential neuroprotective role of neurotrophin-4/5 (NT-4/5) in TBI remains unknown. We hypothesized that NT-4/5 would offer neuroprotection for selectively vulnerable hippocampal neurons following TBI. Measurements of NT-4/5 in rats subjected to lateral fluid percussion (LFP) TBI revealed two-threefold increases in the injured cortex and hippocampus in the acute period (1-3 days) following brain injury. Subsequently, the response of NT-4/5 knockout (NT-4/5(-/-)) mice to controlled-cortical impact TBI was investigated. NT-4/5(-/-) mice were more susceptible to selective pyramidal cell loss in Ahmon's corn (CA) subfields of the hippocampus following TBI, and showed impaired motor recovery when compared with their brain-injured wild-type controls (NT-4/5(wt)). Additionally, we show that acute, prolonged administration of recombinant NT-4/5 (5 microg/kg/day) prevented up to 50% of the hippocampal CA pyramidal cell death following LFP TBI in rats. These results suggest that post-traumatic increases in endogenous NT-4/5 may be part of an adaptive neuroprotective response in the injured brain, and that administration of this neurotrophic factor may be useful as a therapeutic strategy following TBI.
Collapse
Affiliation(s)
- N C Royo
- Laboratory for Traumatic Brain Injury, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Dwivedi Y, Mondal AC, Rizavi HS, Conley RR. Suicide brain is associated with decreased expression of neurotrophins. Biol Psychiatry 2005; 58:315-24. [PMID: 15939410 DOI: 10.1016/j.biopsych.2005.04.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 04/11/2005] [Accepted: 04/12/2005] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neurotrophins mediate diverse biological responses, including maintenance and growth of neurons and synaptic plasticity in adult brain. This study examined whether suicide brain is associated with changes in the expression of neurotrophins. METHODS Messenger ribonucleic acid (mRNA) levels of nerve growth factor (NGF), neurotrophin (NT)-3, NT-4/5, and of cyclophilin and neuron-specific enolase (NSE) were measured by quantitative reverse transcriptase polymerase chain reaction, whereas protein levels of neurotrophins were determined by enzyme-linked immunosorbent assay, in prefrontal cortex (PFC) and hippocampus from 28 suicide victims and 21 control subjects. RESULTS In hippocampus of suicide subjects compared with control subjects mRNA levels of NGF (p < .001), NT-3 (p < .001), and NT-4/5 (p < .001) were decreased, whether or not they were expressed as a ratio to cyclophilin or NSE. This was accompanied by a decrease in their respective protein levels (NGF [p < .001], NT-3 [p < .001], and NT-4/5 [p < .001]). In PFC, however, mRNA (p = .001) and protein (p < .001) levels of NT-4/5 and only protein level of NGF (p < .001) were decreased; NT-3 levels were unchanged. CONCLUSIONS Given the role of neurotrophins in synaptic plasticity and maintenance of adult neurons, our findings of altered expression of neurotrophins in postmortem brain of suicide victims suggest that these molecules might play a vital role in the pathophysiology of suicide.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | | | | | |
Collapse
|
6
|
Liu L, Hsu SS, Kalia SK, Lozano AM. Injury and strain-dependent dopaminergic neuronal degeneration in the substantia nigra of mice after axotomy or MPTP. Brain Res 2003; 994:243-52. [PMID: 14642650 DOI: 10.1016/j.brainres.2003.09.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We studied the effects of axotomy or neurotoxin on the survival of substantia nigra pars compacta (SNpc) neurons in two strains of mice, FVB/N or C57BL/6. Fluoro gold (FG) was injected into both striata of the mice to retrogradely label the nigrostriatal neuronal population. Ten days later, these neurons were axotomized in the medial forebrain bundle (MFB) unilaterally or N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was administered intraperitonealy for 2 days to produce bilateral degeneration. MFB transection or MPTP administration produced a progressive loss of FG-labeled and tyrosine hydroxylase immunolabeled (TH+) neurons in both strains. Relative to control, 72% of SNpc neurons died 4 weeks after axotomy in C57BL/6 mice and 50% died after axotomy in FVB/N mice. MPTP resulted in death of 80% of SNpc neurons in C57BL/6 mice but only 40% in the FVB strain 4 weeks after MPTP administration. In this more sensitive strain, MPTP cell death was associated with positive staining for terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) and nuclear condensation. In contrast, no TUNEL staining was detected in SNpc after MPTP in FVB/N mice. Further, while similar kinetics and extent of cell death accompanied axotomy, axotomy-induced cell death was TUNEL negative in both FVB/N and C57BL/6 mice. Double staining for TUNEL and microtubule associated protein 2 confirmed that the majority of the TUNEL positive cells were neurons. These data indicate that genetic factors and the type of lesion play an important role in determining death of dopaminergic neurons after injury.
Collapse
Affiliation(s)
- Li Liu
- Division of Applied and Interventional Research, Toronto Western Hospital Research Institute, University of Toronto, 399 Bathurst Street, Toronto ON, Canada, M5T 2S8
| | | | | | | |
Collapse
|
7
|
Katoh-Semba R, Ichisaka S, Hata Y, Tsumoto T, Eguchi K, Miyazaki N, Matsuda M, Takeuchi IK, Kato K. NT-4 protein is localized in neuronal cells in the brain stem as well as the dorsal root ganglion of embryonic and adult rats. J Neurochem 2003; 86:660-8. [PMID: 12859679 DOI: 10.1046/j.1471-4159.2003.01874.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have newly established a sensitive, two-site enzyme immunoassay system for neurotrophin-4 (NT-4) and investigated its tissue distribution in the rat nervous system. The minimal limit of detection of the assay is 0.3 pg/0.2 mL of assay mixture. Concentrations of NT-4 were found to be extremely low in all brain regions, irrespective of the animal age, the highest level being found in the brain stem of 40-day-old rats, at 0.12 ng/g wet weight. NT-4 levels in young adult rats were significantly lower in the thalamus and higher in the olfactory bulb, neocortex, hypothalamus and brain stem than respective levels in 1-week-old rats. NT-4 immunoreactivity was strong in large neurons of the red nucleus and pontine reticular nucleus as well as the locus coeruleus, and moderate in cells in the mesencephalic trigeminal nucleus and interstitial nucleus of the medial longitudinal fasciculus. In the rat embryo, stong staining of NT-4 was detected in cells of regions corresponding to the midbrain/pons from E11.5 through E15.5. The intensity was decreased after E13.5 when the cytoplasm of cells in the medulla oblongata, fibers of the cerebellar primordium, and both cells and fibers of the dorsal root ganglion were also stained. Concentrations of NT-4 were detected in regions including the hindbrain and the dorsal root ganglion. Immunoblotting of NT-4-immunoreactive proteins extracted from these two regions revealed a band corresponding to mature NT-4 with a molecular mass of approximately 14 kDa. Kainic acid and another glutamte agonist, (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid did not affect NT-4 levels in the hippocampus. The present results show NT-4 to be localized in very limited brain cells and fibers from the embyonic period through to the young adult, suggesting specific roles in brain functions.
Collapse
Affiliation(s)
- Ritsuko Katoh-Semba
- Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Meyer M, Matarredona ER, Seiler RW, Zimmer J, Widmer HR. Additive effect of glial cell line-derived neurotrophic factor and neurotrophin-4/5 on rat fetal nigral explant cultures. Neuroscience 2002; 108:273-84. [PMID: 11734360 DOI: 10.1016/s0306-4522(01)00418-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transplantation of embryonic dopaminergic neurons is an experimental therapy for Parkinson's disease, but limited tissue availability and suboptimal survival of grafted dopaminergic neurons impede more widespread clinical application. Glial cell line-derived neurotrophic factor (GDNF) and neurotrophin-4/5 (NT-4/5) exert neurotrophic effects on dopaminergic neurons via different receptor systems. In this study, we investigated possible additive or synergistic effects of combined GDNF and NT-4/5 treatment on rat embryonic (embryonic day 14) nigral explant cultures grown for 8 days. Contrary to cultures treated with GDNF alone, cultures exposed to NT-4/5 and GDNF+NT-4/5 were significantly larger than controls (1.6- and 2.0-fold, respectively) and contained significantly more protein (1.6-fold). Treatment with GDNF, NT-4/5 and GDNF+NT-4/5 significantly increased dopamine levels in the culture medium by 1.5-, 2.5- and 4.7-fold, respectively, compared to control levels, and the numbers of surviving tyrosine hydroxylase-immunoreactive neurons increased by 1.7-, 2.1-, and 3.4-fold, respectively. Tyrosine hydroxylase enzyme activity was moderately increased in all treatment groups compared to controls. Counts of nigral neurons containing the calcium-binding protein, calbindin-D28k, revealed a marked increase in these cells by combined GDNF and NT-4/5 treatment. Western blots for neuron-specific enolase suggested an enhanced neuronal content in cultures after combination treatment, whereas the expression of glial markers was unaffected. The release of lactate dehydrogenase into the culture medium was significantly reduced for GDNF+NT-4/5-treated cultures only. These results indicate that combined treatment with GDNF and NT4/5 may be beneficial for embryonic nigral donor tissue either prior to, or in conjunction with, intrastriatal transplantation in Parkinson's disease.
Collapse
Affiliation(s)
- M Meyer
- Department of Neurosurgery, University of Bern, Inselspital, Bern, Switzerland
| | | | | | | | | |
Collapse
|
9
|
Smith R, Musleh W, Akopian G, Buckwalter G, Walsh JP. Regional differences in the expression of corticostriatal synaptic plasticity. Neuroscience 2002; 106:95-101. [PMID: 11564420 DOI: 10.1016/s0306-4522(01)00260-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Field recordings of responses to activation of corticostriatal afferents were made in coronally sectioned rat brain slices. Each recording site was categorized according to its medial to lateral and rostral to caudal position to investigate anatomical differences in synaptic plasticity. Individual responses were highly variable exhibiting extremes of tetanus induced depression and potentiation. Consequently, averaging masked the capacity of these synapses to express long-term forms of plasticity. Block of GABA(A) inhibition and elimination of dopaminergic input with 6-hydroxydopamine lesions both acted to increase the expression of potentiation, but again considerable variability was observed. Separation of recordings into medial and lateral groups revealed clear anatomical trends which contributed to the variability observed in the total sample. Paired-pulse, post-tetanic and long-term potentiation was greater in medial than in lateral groups in normal artificial cerebral spinal fluid. Similar tendencies were seen after block of GABA(A) receptors with bicuculline. 6-Hydroxydopamine lesions in combination with bicuculline treatment reduced medial to lateral differences. Factoring in medial to lateral trends revealed block of GABA(A) receptor mediated inhibition had its greatest effect on medial corticostriatal responses and 6-hydroxydopamine lesions had their greatest effect on lateral responses. From these data we suggest anatomical variation in striatal circuitry may underlie regional differences in synaptic plasticity evoked by corticostriatal activation.
Collapse
Affiliation(s)
- R Smith
- Ethel Percy Andrus Gerontology Center, USC Program in Neuroscience, University of Southern California, Los Angeles, CA 90089-0191, USA
| | | | | | | | | |
Collapse
|
10
|
Barrot M, Calza L, Pozza M, Le Moal M, Piazza PV. Differential calbindin-immunoreactivity in dopamine neurons projecting to the rat striatal complex. Eur J Neurosci 2000. [DOI: 10.1046/j.1460-9568.2000.01349.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
DeFazio RA, Pong K, Knusel B, Walsh JP. Neurotrophin-4/5 promotes dendritic outgrowth and calcium currents in cultured mesencephalic dopamine neurons. Neuroscience 2000; 99:297-304. [PMID: 10938435 DOI: 10.1016/s0306-4522(00)00191-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ca(2+) currents and their modulation by neurotrophin-4/5 were studied in cultured mesencephalic neurons. Tyrosine hydroxylase-positive neurons consistently had larger somas than tyrosine hydroxylase-negative neurons. Neurons with larger somas were therefore targeted for recording. In both control and neurotrophin-4/5-treated cultured neurons, isolation of Ca(2+) currents in cultured mesencephalic neurons revealed prominent low- and high-voltage-activated currents. These currents were separable based upon their voltage dependence of activation, the response to replacement of Ca(2+) with Ba(2+) and the response to Ca(2+) channel blockers. Replacement of Ca(2+) with Ba(2+) resulted in a slight reduction of low-voltage-activated currents and a significant enhancement of high-voltage-activated currents. Cd(2+) blocked a larger fraction of the high-voltage-activated current than Ni(2+). The synthetic conotoxins SNX-124 and SNX-230 selectively blocked high-voltage-activated currents. Morphological analysis of mesencephalic cultures pretreated with neurotrophin-4/5 revealed an increase in soma size and dendritic length in tyrosine hydroxylase-positive neurons. In agreement with the neurotrophin-4/5 induction of growth, neurotrophin-4/5 also increased cell capacitance in whole-cell recordings. Neurotrophin-4/5 significantly enhanced both low- and high-voltage-activated currents, but normalization for changes in capacitance revealed only a significant increase in high-voltage-activated current density. This study demonstrates the existence of low-voltage-activated and multiple classes of high-voltage-activated calcium currents in cultured mesencephalic neurons. Morphological and physiological data demonstrate that the increases in calcium currents due to neurotrophin-4/5 pretreatment are associated with somatodendritic growth, but an increase in high-voltage-activated Ca(2+) channel expression also occurred.
Collapse
Affiliation(s)
- R A DeFazio
- Ethel Percy Andrus Gerontology Center, USC Program in Neuroscience, University of Southern California, Los Angeles, CA 90089-0191, USA
| | | | | | | |
Collapse
|
12
|
Widmer HR, Schaller B, Meyer M, Seiler RW. Glial cell line-derived neurotrophic factor stimulates the morphological differentiation of cultured ventral mesencephalic calbindin- and calretinin-expressing neurons. Exp Neurol 2000; 164:71-81. [PMID: 10877917 DOI: 10.1006/exnr.2000.7418] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor for mesencephalic dopaminergic neurons. Subpopulations of these neurons express the calcium-binding proteins calbindin (CB) and calretinin (CR). Understanding the specific effects of GDNF on these neurons is important for the development of an optimal cell replacement therapy for Parkinson's disease. To investigate the effects of GDNF on the morphological complexity of mesencephalic tyrosine hydroxylase (TH)-immunoreactive (-ir), CB-ir, and CR-ir neurons, dissociated cultures of embryonic (E14) rat ventral mesencephalon were prepared. Chronic administration of GDNF (10 ng/ml) for 7 days promoted the survival of TH-ir and CB-ir neurons but did not alter the density of CR-ir neurons. Total fiber length/neuron and number of branching points/neuron of CB-ir and CR-ir cells were significantly increased after GDNF treatment (2x for CB-ir cells and 1.4x and 1.7x, respectively, for CR-ir cells), which resulted in a significantly larger size of neurite field/neuron (2.9x and 1.5x for CB-ir and CR-ir neurons, respectively). The number of primary neurites/neuron of CB-ir neurons was found to be 1.5x larger, while no difference could be detected for CR-ir cells. Assessment of the effects of GDNF on TH-ir neurons unveiled a similar outcome with an increased total fiber length/neuron (1.5x), an increased number of primary neurites/neuron (1.6x), and a twofold larger size of neurite field/neuron. In conclusion, our findings recognize GDNF as a neurotrophic factor that stimulates the morphological differentiation of ventral mesencephalic CB-ir and CR-ir neurons.
Collapse
Affiliation(s)
- H R Widmer
- Department of Neurosurgery, University of Bern, Switzerland
| | | | | | | |
Collapse
|
13
|
Guan J, Krishnamurthi R, Waldvogel HJ, Faull RL, Clark R, Gluckman P. N-terminal tripeptide of IGF-1 (GPE) prevents the loss of TH positive neurons after 6-OHDA induced nigral lesion in rats. Brain Res 2000; 859:286-92. [PMID: 10719076 DOI: 10.1016/s0006-8993(00)01988-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effect of the N-terminal tripeptide of insulin-like growth factor (IGF)-1, glycine-proline-glutamate (GPE), as a neuroprotective agent for nigro-striatal dopaminergic neurons was examined in the present study using a rat model of Parkinson's disease. A unilateral nigro-striatal lesion was induced in rats by injecting 6-hydroxydopamine (6-OHDA) into the right medial forebrain bundle (MFB). GPE (3 microgram) or its vehicle was administered intracerebroventricularly (i.c.v.) 2 h after the 6-OHDA lesion. Tyrosine-hydroxylase (TH) immunohistochemistry in the substantia nigra compacta (SNc) and the striatum were examined 2 weeks after the lesion. Following 6-OHDA injection, the number of TH immunopositive neurons in the ipsilateral SNc was reduced. The density of TH immunostaining was also reduced in the ipsilateral SNc and the striatum. Treatment with a single dose of GPE (n=9) significantly prevented the loss of TH immunopositive neurons (p<0. 001) and restored the TH immunoreactivity in both the SNc and the striatum compared with the vehicle control group (n=9, p<0.001). The results suggest that GPE showed promise as a potential treatment for Parkinson's disease.
Collapse
Affiliation(s)
- J Guan
- Research Center for Developmental Medicine, School of Medicine, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | | | | | |
Collapse
|
14
|
Silva A, Montague JR, Lopez TF, Mudd LM. Growth factor effects on survival and development of calbindin immunopositive cultured septal neurons. Brain Res Bull 2000; 51:35-42. [PMID: 10654578 DOI: 10.1016/s0361-9230(99)00188-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by dementia, senile plaques, fibrillary tangles, and a reduction of cholinergic neurons in areas of the brain, including the septal nucleus. Certain growth factors may promote the long-term survival of this subpopulation of neurons at risk. This study was undertaken to characterize growth factors' long-term effects on survival and development of neurons expressing the calcium-binding protein calbindin. In order to accomplish this, embryonic day 16 rat septal neurons were grown in bilaminar culture with astrocytes and in the absence of serum. These cultures were chronically treated with estrogen (Es), insulin-like growth factors I/II (IGF-I, IGF-II), basic fibroblast growth factor (bFGF), and nerve growth factor (NGF). Insulin-like growth factor II significantly increased the number of neurons immunoreactive for calbindin by 155%, suggesting either an increase in the survival of this subpopulation or an increase in the percentage of cells expressing calbindin. Chronic treatment with NGF, IGF-II, and Es significantly increased the number of primary neuritic processes on calbindin-positive neurons, whereas NGF and Es caused significant increases in the number of secondary processes and in the total lengths of the neuritic processes. Thus, effects of IGF-II, estrogen, and NGF on survival and maintenance of this neuronal subpopulation may be dependent on alterations in neurons which are immunopositive for calbindin.
Collapse
Affiliation(s)
- A Silva
- School of Natural and Health Sciences, Barry University, Miami Shores, FL 33161, USA
| | | | | | | |
Collapse
|
15
|
Abstract
Parkinson's disease (PD) is a neurodegenerative syndrome which primarily affects dopamine-producing neurons of the substantia nigra, resulting in poverty and slowness of movement, instability of gait and posture, and tremor at rest in individuals with the disease. While symptoms of the disease can be effectively managed for several years with available drugs, the syndrome is progressive and the efficacy of standard drugs wanes with time. One experimental approach to therapy is to use natural and synthetic molecules which promote survival and growth of dopaminergic neurons, so-called 'neurotrophic factors', to stabilise the diminishing population of dopaminergic neurons and stimulate compensation and growth in these cells. In this review, we examine the available evidence on 29 molecules with neurotrophic properties for dopaminergic neurons. The properties of these molecules provide ample reasons for optimism that a neurotrophic strategy can be developed that would provide a significant treatment option for patients with PD. While the search continues for even more specific, potent and long lasting agents, the single greatest challenge is the development of techniques for targeted delivery of these molecules.
Collapse
Affiliation(s)
- T J Collier
- Department of Neurological Sciences, Rush-Presbyterian St. Luke's Medical Center, Chicago, Illinois, USA.
| | | |
Collapse
|
16
|
Bozzi Y, Borrelli E. Absence of the dopamine D2 receptor leads to a decreased expression of GDNF and NT-4 mRNAs in restricted brain areas. Eur J Neurosci 1999; 11:1275-84. [PMID: 10103122 DOI: 10.1046/j.1460-9568.1999.00541.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Neurotrophic factors (NTFs) control the metabolic and electrophysiological properties of dopaminergic neurons in the brain. At the level of the substantia nigra, NTFs have been proposed to control dopamine release by regulating the firing rate of dopaminergic cells. This function is normally controlled by presynaptic dopaminergic autoreceptors. Dopamine has also been proposed to regulate the expression of NTFs and their receptors in the nigrostriatal pathway. Thus, an interaction between the signalling cascades activated by NTFs and dopamine receptors might possibly influence the physiology of dopaminergic neurons. Among dopamine receptors, D2 receptors (D2R) are the most abundant on dopaminergic neurons, where they exert autoreceptor functions. To test for an interaction between the NTF and dopaminergic pathways we have analysed the expression of NTFs and their receptors in D2R-deficient (D2R -/-) mice. Our study shows that the mRNA levels of brain-derived neurotrophic factor (BDNF), neurotrophin-3 and their corresponding receptors are not modified in the dopaminergic system of D2R -/- adult mice compared with wild-type littermates. However, a marked reduction of glial cell line-derived neurotrophic factor (GDNF) and neurotrophin-4 (NT-4) mRNAs is observed in the striatum and parietal cortex of D2R -/- mice, respectively. These results implicate dopamine, acting through D2 receptors, in the local control of specific NTF expression. The down-regulation of GDNF and NT-4 expression might also contribute to the locomotor phenotype of D2R -/- mice.
Collapse
Affiliation(s)
- Y Bozzi
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, C.U. de Strasbourg, France
| | | |
Collapse
|
17
|
Dos Santos Villar F, Walsh JP. Modulation of long-term synaptic plasticity at excitatory striatal synapses. Neuroscience 1999; 90:1031-41. [PMID: 10218802 DOI: 10.1016/s0306-4522(98)00504-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Modulation of long-term plasticity by both the intrinsic activation of metabotropic glutamate receptors and dopamine released from the nigrostriatal pathway was investigated at excitatory striatal synapses. Intracellular recordings demonstrated that tetanic stimulation at an intensity equal to that used for synaptic sampling produced, on average, a slight long-term depression of excitatory postsynaptic potentials. The long-term response pattern was variable, however, with some cells showing potentiation and others no plasticity. Block of metabotropic glutamate receptors with 3-aminophosphonovaleric acid changed the pattern of responses, increasing the percentage of cells showing long-term potentiation. Similarly, 6-hydroxydopamine lesions to the substantia nigra changed the pattern of response to tetanic stimulation, increasing the expression of long-term potentiation. These data indicate that metabotropic glutamate receptor and dopamine receptor activation may function to regulate the expression of activity-dependent plasticity at corticostriatial synapses. Paired-pulse stimulation revealed that post-tetanic plasticity was negatively correlated with changes in paired-pulse plasticity in the control and 6-hydroxydopamine-lesioned groups, suggesting that the expression of long-term plasticity has a presynaptic component at corticostriatal synapses.
Collapse
Affiliation(s)
- F Dos Santos Villar
- Ethel Percy Andrus Gerontology Center, USC Program in Neuroscience, University of Southern California, Los Angeles 90089-0191, USA
| | | |
Collapse
|
18
|
Abstract
The documented trophic actions of the neurotrophins brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5) upon ventral mesencephalic dopamine neurons in vitro and in vivo are presumed to be mediated through interactions with their high-affinity receptors TrkB (for BDNF and NT-4/5) and TrkC (for NT-3). Although both neurotrophin receptor mRNAs have been detected within the rat ventral midbrain, their specific association with mesencephalic dopaminergic cell bodies remains to be elucidated. The present study was performed to determine the precise organization of trkB and trkC mRNAs within rat ventral midbrain and to discern whether the neurotrophin receptor mRNAs are expressed specifically by dopaminergic neurons. In situ hybridization with isotopically labeled cRNA probes showed that trkB and trkC mRNAs were expressed in all mesencephalic dopamine cell groups, including all subdivisions of the substantia nigra and ventral tegmental area, and in the retrorubral field, rostral and caudal linear raphe nuclei, interfascicular nucleus, and supramammillary region. Combined isotopic/nonisotopic double-labeling in situ hybridization demonstrated that virtually all of the tyrosine hydroxylase (the catecholamine biosynthetic enzyme) mRNA-containing neurons in the ventral midbrain also expressed trkB or trkC mRNAs. Additional perikarya within these regions expressed the neurotrophin receptor mRNAs but were not dopaminergic. The present results demonstrate that essentially all mesencephalic dopaminergic neurons synthesize the neurotrophin receptors TrkB and TrkC and thus exhibit the capacity to respond directly to BDNF and NT-3 in the adult midbrain in vivo. Moreover, because BDNF and NT-3 are produced locally by subpopulations of the dopaminergic cells, the present data support the notion that the neurotrophins can influence the dopaminergic neurons through autocrine or paracrine mechanisms.
Collapse
Affiliation(s)
- S Numan
- Department of Anatomy & Neurobiology, University of Kentucky, Lexington 40536, USA
| | | |
Collapse
|
19
|
Trophic Factors in Experimental Models of Adult Central Nervous System Injury. Cereb Cortex 1999. [DOI: 10.1007/978-1-4615-4885-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
20
|
Seifert U, Härtig W, Grosche J, Brückner G, Riedel A, Brauer K. Axonal expression sites of tyrosine hydroxylase, calretinin- and calbindin-immunoreactivity in striato-pallidal and septal nuclei of the rat brain: a double-immunolabelling study. Brain Res 1998; 795:227-46. [PMID: 9622641 DOI: 10.1016/s0006-8993(98)00298-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Besides the dopaminergic afferent projection system, calbindin (CALB)- and calretinin (CR)-immunoreactive fibres of intrinsic and extrinsic origin represent the most abundant axonal categories in the rat striatal and lateral septal areas. The question arises whether or not they may represent separate populations, or whether they form subgroups which co-express more than one of these antigens. Therefore, the present study is focused on the distribution patterns of the axons single-immunolabelled by the catecholaminergic marker tyrosine hydroxylase (TH), and on TH-immunoreactive axons displaying also CR- and/or CALB-immunoreactivity in double-immunostained sections. Striking differences were found between the patch and matrix compartments of the caudate-putamen (CP). Whereas the vast majority of TH-immunoreactive fibres in the patches and a patch-associated subcallosal layer co-expressed CR but not CALB, fibres mono-labelled by the TH-immunoreactivity were predominant in the matrix. The matrix-like regions of the core of nucleus accumbens (CACC), fundus striati (FS), the striatal cell bridges (CB) and the striatal part of olfactory tubercle (OTU) coincided in this respect with the matrix in CP. The absence of CR-immunoreactivity was also characteristic of the TH-immunoreactive fibres in the patch-like areas of the accumbal core, although a high number of separate CR-immunoreactive axons were present. In the shell of nucleus accumbens (SACC) which receives a rich catecholaminergic innervation, fibres co-expressing either one of the calcium-binding proteins were absent. The islands of Calleja (CJI) displaying a strongly TH-immunoreactive centre and a periphery of lower staining intensity, showed only a low number of TH-immunoreactive fibres co-expressing CR or CALB. The broad shell-like band of TH-immunoreactive axons between medial and lateral part of the septum was single-stained with the TH-immunoreactivity. In contrast, the TH-positive fibres forming basket-like arrangements around some neurons in the dorsal lateral septal nucleus co-expressed also CR, but not CALB. The results are discussed in view of the recent concepts of basal forebrain organization and the cytochemical characteristics of mesencephalic dopaminergic nuclei giving rise to the vast majority of the striatal and septal TH-immunoreactive fibre supply, in order to correlate the known projection patterns with the content of calcium-binding proteins in TH-immunolabelled fibres and presumed cells of origin. The TH-immunoreactive fibres in the striatal patches displaying CR- but not CALB-immunoreactivity may originate mainly from neurons in the ventral tier of pars compacta (SNC) and from the pars reticulata of substantia nigra (SNR) which show identical cytochemical properties. Axons in the matrix of CP and the accumbal core as well as in the islands of Calleja single-labelled by the TH-immunoreactivity or additionally containing CALB and CR may originate from neurons in the dorsal tier of mesencephalic nuclei like SN, pars compacta and ventral tegmental area. CR-containing TH-immunoreactive basket-like axon terminations in the dorsal lateral septal nucleus are likely to originate either from mesencephalic nuclei or from the supramammillary region.
Collapse
Affiliation(s)
- U Seifert
- Department of Neuroanatomy, Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
21
|
McMahon A, Wong BS, Iacopino AM, Ng MC, Chi S, German DC. Calbindin-D28k buffers intracellular calcium and promotes resistance to degeneration in PC12 cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 54:56-63. [PMID: 9526044 DOI: 10.1016/s0169-328x(97)00305-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The calcium-binding protein calbindin-D28k (CB) has been hypothesized to function, in part, as a neuroprotective protein. CB is localized within nerve cells that are often less vulnerable to degeneration in patients with Alzheimer's disease and Parkinson's disease, and cells containing CB can buffer intracellular calcium concentrations ([Ca2+]i). The present study was designed to directly test the hypothesis that CB can protect cells from degeneration by reducing [Ca2+]i. PC12 cells, transfected to express different levels of CB, were found to be significantly less vulnerable to degeneration caused by serum withdrawal, glutamate, and the neurotoxin 1-methyl-4-phenylpyridinium (MPP+). However, CB did not protect cells from degeneration caused by the calcium ionophore A23187. CB-transfected cells exhibited reduced elevations in [Ca2+]i following treatment with bradykinin, or ATP compared to non-CB-containing cells. These data indicate that CB can protect cells from degeneration caused by certain conditions, and it reduces elevations in [Ca2+]i caused by influx from extracellular sources.
Collapse
Affiliation(s)
- A McMahon
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas 75235-9070, USA
| | | | | | | | | | | |
Collapse
|
22
|
Hagg T. Neurotrophins prevent death and differentially affect tyrosine hydroxylase of adult rat nigrostriatal neurons in vivo. Exp Neurol 1998; 149:183-92. [PMID: 9454627 DOI: 10.1006/exnr.1997.6684] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4) promote survival of mesencephalic dopaminergic neurons in vitro and affect normal and damaged ones in vivo. Here, these neurotrophins had markedly different potencies to prevent the death of axotomized nigrostriatal dopaminergic neurons when infused close to the rostral end of the nigral nucleus of adult rats (NT-4 > BDNF > NT-3; nerve growth factor or NGF without effect). With a high dose of BDNF (30 micrograms/day) complete protection was achieved in the rostral but not caudal nigral regions, consistent with its poor diffusion characteristics in brain tissue. Measurements of tyrosine hydroxylase immunoreactivity suggest that BDNF and NT-4 (presumably through their TrkB receptor) reduce the synthesis of this rate-limiting enzyme for dopamine synthesis in rescued as well as in normal neurons. In sharp contrast, survival-promoting doses of NT-3 (presumably through its TrkC receptor) maintained normal levels of tyrosine hydroxylase immunoreactivity in the rescued nigrostriatal neurons. These results suggest that for these adult central nervous system neurons, some neurotrophic factors are predominantly involved in facilitating cell survival, whereas others are more involved in regulating neurotransmitter function.
Collapse
Affiliation(s)
- T Hagg
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
23
|
Abstract
In the mammalian brain dopamine systems play a central role in the control of movement, hormone release, emotional balance and reward. Alteration of dopaminergic neurotransmission is involved in Parkinson's disease and other movement disorders, as well as in some psychotic syndromes. This review summarises recent findings, which shed some light on signals and cellular interactions involved in the specification and maturation of the dopaminergic function during neurogenesis. In particular we will focus on three major issues: (1) the differentiation of dopaminergic neurones triggered by direct contact with the midbrain floor plate cells through the action of sonic hedgehog; (2) the neurotrophic factors acting on dopaminergic neurones; and (3) the role of target striatal cells on the survival and the axonal growth of developing or grafted dopaminergic neurones.
Collapse
Affiliation(s)
- C Perrone-Capano
- International Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, Naples, Italy
| | | |
Collapse
|