1
|
Andreatta T, Armini RS, Salaroli R, Vieira GM, Tavares CVC, Sanches H, Aguiar RM, Campos FV, Schenberg LC. Role of L- and T-type voltage-dependent calcium channels in the hierarchical organization of defensive responses to electrical stimulation of the rat dorsolateral periaqueductal gray. Neuropharmacology 2024; 258:110059. [PMID: 38992791 DOI: 10.1016/j.neuropharm.2024.110059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Abstract
Stimulation of the dorsal half of the rat periaqueductal gray (DPAG) with 60-Hz pulses of increasing intensity, 30-μA pulses of increasing frequency, or increasing doses of an excitatory amino acid elicits sequential defensive responses of exophthalmia, immobility, trotting, galloping, and jumping. These responses may be controlled by voltage-gated calcium channel-specific firing patterns. Indeed, a previous study showed that microinjection of the DPAG with 15 nmol of verapamil, a putative blocker of L-type calcium channels, attenuated all defensive responses to electrical stimulation at the same site as the injection. Accordingly, here we investigated the effects of microinjection of lower doses (0.7 and 7 nmol) of both verapamil and mibefradil, a preferential blocker of T-type calcium channels, on DPAG-evoked defensive behaviors of the male rat. Behaviors were recorded either 24 h before or 10 min, 24 h, and 48 h after microinjection. Effects were analyzed by both threshold logistic analysis and repeated measures analysis of variance for treatment by session interactions. Data showed that the electrodes were all located within the dorsolateral PAG. Compared to the effects of saline, verapamil significantly attenuated exophthalmia, immobility, and trotting. Mibefradil significantly attenuated exophthalmia and marginally attenuated immobility while facilitating trotting. While galloping was not attenuated by either antagonist, jumping was unexpectedly attenuated by 0.7 nmol verapamil only. These results suggest that T-type calcium channels are involved in the low-threshold freezing responses of exophthalmia and immobility, whereas L-type calcium channels are involved in the trotting response that precedes the full-fledged escape responses of galloping and jumping.
Collapse
Affiliation(s)
- Tatiani Andreatta
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil.
| | - Rubia Souza Armini
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil.
| | - Ruam Salaroli
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil.
| | - Guilherme Machado Vieira
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil.
| | | | - Hugo Sanches
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil.
| | - Rafael Moraes Aguiar
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil; Department of Biochemistry and Immunology, Health Science Center, Federal University of Minas Gerais, Brazil.
| | - Fabiana Vasconcelos Campos
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil; Department of Morphology, Health Science Center, Federal University of Espírito Santo, Brazil.
| | - Luiz Carlos Schenberg
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil.
| |
Collapse
|
2
|
Abstract
Locomotion is a universal motor behavior that is expressed as the output of many integrated brain functions. Locomotion is organized at several levels of the nervous system, with brainstem circuits acting as the gate between brain areas regulating innate, emotional, or motivational locomotion and executive spinal circuits. Here we review recent advances on brainstem circuits involved in controlling locomotion. We describe how delineated command circuits govern the start, speed, stop, and steering of locomotion. We also discuss how these pathways interface between executive circuits in the spinal cord and diverse brain areas important for context-specific selection of locomotion. A recurrent theme is the need to establish a functional connectome to and from brainstem command circuits. Finally, we point to unresolved issues concerning the integrated function of locomotor control. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Roberto Leiras
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jared M. Cregg
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Kiehn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Opris I, Dai X, Johnson DMG, Sanchez FJ, Villamil LM, Xie S, Lee-Hauser CR, Chang S, Jordan LM, Noga BR. Activation of Brainstem Neurons During Mesencephalic Locomotor Region-Evoked Locomotion in the Cat. Front Syst Neurosci 2019; 13:69. [PMID: 31798423 PMCID: PMC6868058 DOI: 10.3389/fnsys.2019.00069] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/31/2019] [Indexed: 12/26/2022] Open
Abstract
The distribution of locomotor-activated neurons in the brainstem of the cat was studied by c-Fos immunohistochemistry in combination with antibody-based cellular phenotyping following electrical stimulation of the mesencephalic locomotor region (MLR) – the anatomical constituents of which remain debated today, primarily between the cuneiform (CnF) and the pedunculopontine tegmental nuclei (PPT). Effective MLR sites were co-extensive with the CnF nucleus. Animals subject to the locomotor task showed abundant Fos labeling in the CnF, parabrachial nuclei of the subcuneiform region, periaqueductal gray, locus ceruleus (LC)/subceruleus (SubC), Kölliker–Fuse, magnocellular and lateral tegmental fields, raphe, and the parapyramidal region. Labeled neurons were more abundant on the side of stimulation. In some animals, Fos-labeled cells were also observed in the ventral tegmental area, medial and intermediate vestibular nuclei, dorsal motor nucleus of the vagus, n. tractus solitarii, and retrofacial nucleus in the ventrolateral medulla. Many neurons in the reticular formation were innervated by serotonergic fibers. Numerous locomotor-activated neurons in the parabrachial nuclei and LC/SubC/Kölliker–Fuse were noradrenergic. Few cholinergic neurons within the PPT stained for Fos. In the medulla, serotonergic neurons within the parapyramidal region and the nucleus raphe magnus were positive for Fos. Control animals, not subject to locomotion, showed few Fos-labeled neurons in these areas. The current study provides positive evidence for a role for the CnF in the initiation of locomotion while providing little evidence for the participation of the PPT. The results also show that MLR-evoked locomotion involves the parallel activation of reticular and monoaminergic neurons in the pons/medulla, and provides the anatomical and functional basis for spinal monoamine release during evoked locomotion. Lastly, the results indicate that vestibular, cardiovascular, and respiratory centers are centrally activated during MLR-evoked locomotion. Altogether, the results show a complex pattern of neuromodulatory influences of brainstem neurons by electrical activation of the MLR.
Collapse
Affiliation(s)
- Ioan Opris
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Xiaohong Dai
- Department of Physiology, Spinal Cord Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Dawn M G Johnson
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Francisco J Sanchez
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Luz M Villamil
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Songtao Xie
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Cecelia R Lee-Hauser
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Stephano Chang
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Larry M Jordan
- Department of Physiology, Spinal Cord Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Brian R Noga
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
4
|
Expression of aggressiveness modulates mesencephalic c-fos activation during a social interaction test in Japanese quail (Coturnix japonica). Behav Brain Res 2019; 367:221-229. [PMID: 30951752 DOI: 10.1016/j.bbr.2019.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/13/2019] [Accepted: 04/01/2019] [Indexed: 01/08/2023]
Abstract
It is well known that during a social conflict, interactions are dependent on the animal's propensity to behave aggressively as well as the behavior of the opponent. However, discriminating between these two confounding factors was difficult. Recently, a Social Interaction (SI) test using photocastrated males as non-aggressive stimuli was proposed as a useful tool to evaluate aggressiveness. The avian Intercollicular- Griseum centralis complex (comparable to mammalian periaqueductal gray) has been reported as a crucial node in the descending pathways that organize behavioral and autonomic aspects of defensive responses and aggressiveness. Herein, using the SI test, we evaluated whether mesencephalic areas are activated (expressed c-fos) when photostimulated adult males are confronted with non-responsive (non-aggressive) opponents. Furthermore, we also examined whether mesencephalic activation is related to male performance during the SI test (i.e., aggressive vs. non-aggressive males) in birds reared in enriched or in standard environments. Five mesencephalic areas at two anatomic levels (intermediate and rostral) and locomotion during SI testing were studied. Aggressive males showed increased c-fos expression in all areas studied, and moved at faster speeds in comparison to their non-aggressive and control counterparts. Non-aggressive males and the test controls showed similar c-fos labeling. In general, rearing condition did not appear to influence c-fos expression nor behavior during the SI test. Findings suggest that mesencephalic activation is involved when males are actively expressing aggressive behaviors. This overall phenomenon is shown regardless of both the environmental stimuli provided during the birds´ rearing and the potentially stressful stimuli during the SI trial.
Collapse
|
5
|
Schimitel F, de Almeida G, Pitol D, Armini R, Tufik S, Schenberg L. Evidence of a suffocation alarm system within the periaqueductal gray matter of the rat. Neuroscience 2012; 200:59-73. [DOI: 10.1016/j.neuroscience.2011.10.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 10/14/2011] [Accepted: 10/17/2011] [Indexed: 10/15/2022]
|
6
|
Gomez-Gallego M, Fernandez-Villalba E, Fernandez-Barreiro A, Herrero MT. Changes in the neuronal activity in the pedunculopontine nucleus in chronic MPTP-treated primates: an in situ hybridization study of cytochrome oxidase subunit I, choline acetyl transferase and substance P mRNA expression. J Neural Transm (Vienna) 2006; 114:319-26. [PMID: 16988796 DOI: 10.1007/s00702-006-0547-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 06/23/2006] [Indexed: 10/24/2022]
Abstract
The pedunculopontine nucleus is a mesencephalic nucleus that has widespread and reciprocal connections with the basal ganglia. It has been implicated in the physiopathology of akinesia, rigidity, gait failure and sleep disorders associated with Parkinson's disease. In this study, in situ hybridization was used to examine the changes in neuronal metabolic activity (measuring cytochrome oxidase subunit I) and in the level of acetylcholine and Substance P synthesis in the pedunculopontine nucleus of monkeys chronically treated with MPTP. Significant reductions were observed in cytochrome oxidase subunit I (p = 0.001), choline acetyl transferase (p = 0.003) and substance P (p = 0.006) mRNA expression in parkinsonian animals compared with controls, indicating that pedunculopontine cholinergic neurons activity decreases with parkinsonism.
Collapse
Affiliation(s)
- M Gomez-Gallego
- Department of Neurology, Virgen de la Arrixaca University Hospital, Murcia, Spain.
| | | | | | | |
Collapse
|
7
|
Coimbra NC, De Oliveira R, Freitas RL, Ribeiro SJ, Borelli KG, Pacagnella RC, Moreira JE, da Silva LA, Melo LL, Lunardi LO, Brandão ML. Neuroanatomical approaches of the tectum-reticular pathways and immunohistochemical evidence for serotonin-positive perikarya on neuronal substrates of the superior colliculus and periaqueductal gray matter involved in the elaboration of the defensive behavior and fear-induced analgesia. Exp Neurol 2006; 197:93-112. [PMID: 16303128 DOI: 10.1016/j.expneurol.2005.08.022] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 07/15/2005] [Accepted: 08/18/2005] [Indexed: 01/17/2023]
Abstract
Deep layers of the superior colliculus, the dorsal periaqueductal gray matter and the inferior colliculus are midbrain structures involved in the generation of defensive behavior and fear-induced anti-nociception. Local injections of the GABA(A) antagonist bicuculline into these structures have been used to produce this defense reaction. Serotonin is thought to be the main neurotransmitter to modulate such defense reaction in mammals. This study is the first attempt to employ immunohistochemical techniques to locate serotonergic cells in the same midbrain sites from where defense reaction is evoked by chemical stimulation with bicuculline. The blockade of GABA(A) receptors in the neural substrates of the dorsal mesencephalon was followed by vigorous defensive reactions and increased nociceptive thresholds. Light microscopy immunocytochemistry with streptavidin method was used for the localization of the putative cells of defensive behavior with antibodies to serotonin in the rat's midbrain. Neurons positive to serotonin were found in the midbrain sites where defensive reactions were evoked by microinjection of bicuculline. Serotonin was localized to somata and projections of the neural networks of the mesencephalic tectum. Immunohistochemical studies showed that the sites in which neuronal perikarya positive to serotonin were identified in intermediate and deep layers of the superior colliculus, and in the dorsal and ventral columns of the periaqueductal gray matter are the same which were activated during the generation of defense behaviors, such as alertness, freezing, and escape reactions, induced by bicuculline. These findings support the contention that serotonin and GABAergic neurons may act in concert in the modulation of defense reaction in the midbrain tectum. Our neuroanatomical findings indicate a direct neural pathway connecting the dorsal midbrain and monoaminergic nuclei of the descending pain inhibitory system, with profuse synaptic terminals mainly in the pontine reticular formation, gigantocellularis nucleus, and nucleus raphe magnus. The midbrain tectum-gigantocellularis complex and midbrain tectum-nucleus raphe magnus neural pathways may provide an alternative output allowing the organization of the fear-induced anti-nociception by mesencephalic networks.
Collapse
Affiliation(s)
- N C Coimbra
- Laboratório de Neuroanatomia e Neuropsicobiologia, Departamento de Morfologia, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Ribeirão Preto (SP), Avenida dos Bandeirantes, 3900, 14049-900, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ahn SN, Guu JJ, Tobin AJ, Edgerton VR, Tillakaratne NJK. Use of c-fos to identify activity-dependent spinal neurons after stepping in intact adult rats. Spinal Cord 2005; 44:547-59. [PMID: 16344852 PMCID: PMC1563992 DOI: 10.1038/sj.sc.3101862] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN An investigation of c-fos activation pattern in spinal neurons of intact adult rats after acute bouts of treadmill locomotion. OBJECTIVES To map spinal neurons that are involved in quadrupedal treadmill stepping of intact adult rats by using c-fos as a marker. SETTINGS Los Angeles, CA, USA. METHODS Spinal cord sections of rats that were not stepped (n = 4) were used to map the FOS-positive (+) neurons under basal conditions. The stepped group (n = 16) was placed on a treadmill to step quadrupedally for varying durations to induce c-fos activity. Spinal cord sections of thoracic and lumbar segments of Stp and Nstp rats were processed using a c-fos antibody, choline acetyl transferase and heat shock protein 27 for identifying motoneurons. RESULTS Stepping induced a greater number of FOS+ neurons than was observed in rats that did not step on the treadmill. There was a rostrocaudal and a dorsoventral gradient of FOS labeled neurons. The number of FOS+ neurons increased with the duration of treadmill stepping. Significant increases in FOS+ neurons were in the most medial parts of laminae IV, V, and VII. FOS+ motoneurons increased with treadmill stepping, particularly in large motoneurons (> or = 700 microm2). CONCLUSION These data suggest that FOS can be used to identify activity-dependent neuronal pathways in the spinal cord that are associated with treadmill stepping, specifically in lamina VII and in alpha motoneurons. SPONSORSHIP NIH NS16333, NS40917, and the Christopher Reeve Paralysis Foundation (CRPF VEC 2002).
Collapse
Affiliation(s)
- S N Ahn
- Department of Physiological Science, UCLA, Los Angeles, CA 90095-1606, USA
| | | | | | | | | |
Collapse
|
9
|
Abizaid A, Mezei G, Thanarajasingam G, Horvath TL. Estrogen enhances light-induced activation of dorsal raphe serotonergic neurons. Eur J Neurosci 2005; 21:1536-46. [PMID: 15845081 DOI: 10.1111/j.1460-9568.2005.03964.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The serotonergic system has been implicated in the modulation of physiological processes including circadian rhythms, learning, memory, mood and food intake. In females, cessation of ovarian function produces deleterious changes in all of these processes and estrogen treatment often ameliorates these conditions. Estrogen may produce these effects by acting on the midbrain raphe, an estrogen-sensitive region that receives direct projections from sensory systems. Here we examined the ability of estradiol to modulate neuronal responses of neurons within raphe nuclei to photic stimulation. Ovariectomized rats treated with estradiol or cholesterol were killed 1 h after the normal onset of light (Zeitgeber time 0) or after a 2-h phase advance (Zeitgeber time 22). In a second study, estradiol-treated ovariectomized rats under constant dark conditions were exposed to light 2 h before the subjective onset of circadian time [(CT)22] and killed 1 h later (CT23). The brains from all animals were processed for Fos and/or serotonin (5-HT) immunocytochemistry. Comparisons showed that the phase shift increased Fos immunoreactivity in all dorsal raphe nucleus (DRN) regions. Although estradiol did not alter the overall number of Fos-positive nuclei, it significantly increased the number of Fos/5-HT double-labelled cells in the medial and lateral DRN. In contrast, neither a phase shift nor estradiol altered the number of Fos-immunoreactive cells or the proportion of Fos-positive 5-HT cells in the median raphe nucleus. Results reveal that the DRN 5-HT system responds to changes in the light : dark cycle and that these responses are modulated by estrogen.
Collapse
Affiliation(s)
- Alfonso Abizaid
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Streetm, New Haven, CT 06529, USA
| | | | | | | |
Collapse
|
10
|
Athanassiadis T, Olsson KA, Kolta A, Westberg KG. Identification of c-Fos immunoreactive brainstem neurons activated during fictive mastication in the rabbit. Exp Brain Res 2005; 165:478-89. [PMID: 15887006 DOI: 10.1007/s00221-005-2319-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Accepted: 02/16/2005] [Indexed: 10/25/2022]
Abstract
In the present study we used the expression of the c-Fos-like protein as a "functional marker" to map populations of brainstem neurons involved in the generation of mastication. Experiments were conducted on urethane-anesthetized and paralyzed rabbits. In five animals (experimental group), rhythmical bouts of fictive masticatory-like motoneuron activity (cumulative duration 60-130 min) were induced by electrical stimulation of the left cortical "masticatory area" and recorded from the right digastric motoneuron pool. A control group of five animals (non-masticatory) were treated in the same way as the experimental animals with regard to surgical procedures, anesthesia, paralysis, and survival time. To detect the c-Fos-like protein, the animals were perfused, and the brainstems were cryosectioned and processed immunocytochemically. In the experimental group, the number of c-Fos-like immunoreactive neurons increased significantly in several brainstem areas. In rostral and lateral areas, increments occurred bilaterally in the borderzones surrounding the trigeminal motor nucleus (Regio h); the rostrodorsomedial half of the trigeminal main sensory nucleus; subnucleus oralis-gamma of the spinal trigeminal tract; nuclei reticularis parvocellularis pars alpha and nucleus reticularis pontis caudalis (RPc) pars alpha. Further caudally-enhanced labeling occurred bilaterally in nucleus reticularis parvocellularis and nucleus reticularis gigantocellularis (Rgc) including its pars-alpha. Our results provide a detailed anatomical record of neuronal populations that are correlated with the generation of the masticatory motor behavior.
Collapse
Affiliation(s)
- T Athanassiadis
- Department of Integrative Medical Biology, Section for Physiology, Umeå University, 901 87, Umeå, Sweden
| | | | | | | |
Collapse
|
11
|
Lee PH, Lee JS, Lee MH, Lee JD, Huh K. Subtraction brain SPECT imaging in a patient with gait ignition failure. Mov Disord 2004; 18:1542-5. [PMID: 14673896 DOI: 10.1002/mds.10608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The precise anatomical location and pathophysiology of gait ignition failure (GIF) is poorly understood. We investigated the cerebral perfusion patterns using subtraction brain single photon emission computed tomography (SPECT) in a patient with GIF. Subtraction brain SPECT imaging revealed an increased activity in the region of right ventrolateral midbrain and ventral medulla.
Collapse
Affiliation(s)
- Phil Hyu Lee
- Department of Neurology, School of Medicine, Ajou University, Suwon, South Korea.
| | | | | | | | | |
Collapse
|
12
|
Bittencourt AS, Carobrez AP, Zamprogno LP, Tufik S, Schenberg LC. Organization of single components of defensive behaviors within distinct columns of periaqueductal gray matter of the rat: role of N-METHYL-d-aspartic acid glutamate receptors. Neuroscience 2004; 125:71-89. [PMID: 15051147 DOI: 10.1016/j.neuroscience.2004.01.026] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2004] [Indexed: 11/17/2022]
Abstract
The periaqueductal gray matter (PAG) is functionally organized in longitudinal columns arranged along the aqueduct. Stimulation of lateral and dorsal columns produces a complex set of unconditioned behaviors named the 'defense reaction.' Overt responses in rats comprise a tense immobile display, fully opened eyes (herein named exophthalmus), trotting, galloping, jumping, micturition and defecation. Besides, the PAG is rich in glutamate and respective receptors, including the N-methyl-d-aspartic acid (NMDA) type. Therefore, the present study employed regression analysis to map out electrically and NMDA-induced single components of defensive behaviors produced by stepwise increasing stimulation of PAG. Data confirmed the defensive nature of PAG-evoked responses. Neither the appetitive, nor offensive, mouse-killing or male reproductive behaviors were produced by stimulation of PAG in presence of appropriate targets. Threshold and dose-response logistic analyses largely corroborated the columnar organization of PAG-evoked responses. Thus, whereas the defecation was restricted to PAG lateral column, exophthalmus, micturition and somatic defensive responses were similarly organized in dorsolateral and lateral, but not in the ventrolateral column. Moreover, thresholds of dorsolateral and lateral repertoires were strictly hierarchical, with exophthalmus, immobility, trotting, galloping and jumping appearing in this very order. However, the defensive responses of PAG dorsolateral column required NMDA doses significantly lower than those of lateral PAG. Accordingly, NMDA receptors within the dorsolateral PAG are likely to play a major role in the initiation of PAG-evoked defensive responses. In contrast, the present data do not support the organization of unconditioned defensive behaviors in ventrolateral PAG. The neuroanatomical substrate of each response and the role of PAG and NMDA receptors are discussed in relation to the present data. Further, this is the first report on PAG columnar organization of single components of defensive behaviors.
Collapse
Affiliation(s)
- A S Bittencourt
- Departamento de Ciências Fisiológicas-Centro Biomédico (Edifício do Programa de Pós-Graduação em Ciências Fisiológicas), Universidade Federal do Espírito Santo, Av. Marechal Campos 1468 (Maruípe), 29043-125, Vitória ES, Brazil
| | | | | | | | | |
Collapse
|
13
|
Mileykovskiy BY, Kiyashchenko LI, Siegel JM. Muscle tone facilitation and inhibition after orexin-a (hypocretin-1) microinjections into the medial medulla. J Neurophysiol 2002; 87:2480-9. [PMID: 11976385 PMCID: PMC8796732 DOI: 10.1152/jn.2002.87.5.2480] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Orexins/hypocretins are synthesized in neurons of the perifornical, dorsomedial, lateral, and posterior hypothalamus. A loss of hypocretin neurons has been found in human narcolepsy, which is characterized by sudden loss of muscle tone, called cataplexy, and sleepiness. The normal functional role of these neurons, however, is unclear. The medioventral medullary region, including gigantocellular reticular nucleus, alpha (GiA) and ventral (GiV) parts, participates in the induction of locomotion and muscle tone facilitation in decerebrate animals and receives moderate orexinergic innervation. In the present study, we have examined the role of orexin-A (OX-A) in muscle tone control using microinjections (50 microM, 0.3 microl) into the GiA and GiV sites in decerebrate rats. OX-A microinjections into GiA sites, previously identified by electrical stimulation as facilitating hindlimb muscle tone bilaterally, produced a bilateral increase of muscle tone in the same muscles. Bilateral lidocaine microinjections (4%, 0.3 microl) into the dorsolateral mesopontine reticular formation decreased muscle rigidity and blocked muscle tone facilitation produced by OX-A microinjections into the GiA sites. The activity of cells related to muscle rigidity, located in the pedunculopontine tegmental nucleus and adjacent reticular formation, was correlated positively with the extent of hindlimb muscle tone facilitation after medullary OX-A microinjections. OX-A microinjections into GiV sites were less effective in muscle tone facilitation, although these sites produced a muscle tone increase during electrical stimulation. In contrast, OX-A microinjections into the gigantocellular nucleus (Gi) sites and dorsal paragigantocellular nucleus (DPGi) sites, previously identified by electrical stimulation as inhibitory points, produced bilateral hindlimb muscle atonia. We propose that the medioventral medullary region is one of the brain stem target for OX-A modulation of muscle tone. Facilitation of muscle tone after OX-A microinjections into this region is linked to activation of intrinsic reticular cells, causing excitation of midbrain and pontine neurons participating in muscle tone facilitation through an ascending pathway. Moreover, our results suggest that OX-A may also regulate the activity of medullary neurons participating in muscle tone suppression. Loss of OX function may, therefore, disturb both muscle tone facilitatory and inhibitory processes at the medullary level.
Collapse
Affiliation(s)
- Boris Y Mileykovskiy
- Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| | | | | |
Collapse
|
14
|
Distribution of Pontomesencephalic Neurons Projecting to the Medullary Reticular Areas and Spinal Cord in Relation to the Pedunculopontine Nucleus in the Monkey. ACTA ACUST UNITED AC 2002. [DOI: 10.1007/978-1-4615-0715-4_43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
15
|
Janusonis S, Fite KV. Diurnal variation of c-Fos expression in subdivisions of the dorsal raphe nucleus of the Mongolian gerbil (Meriones unguiculatus). J Comp Neurol 2001; 440:31-42. [PMID: 11745606 DOI: 10.1002/cne.1368] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent studies suggest that the dorsal raphe nucleus (DRN) of the brainstem contains several subdivisions that differ both anatomically and neurochemically. The present study examined whether variation of c-Fos expression across the 24-hour light-dark cycle may also be different in these subdivisions. Animals were kept on a 12:12 light-dark cycle, were perfused at seven different time points, and brain sections were processed by using c-Fos immunocytochemistry. At all coronal levels of the DRN, c-Fos expression reached a peak 1 hour after the light-dark transition (lights-off) and reached its lowest levels in the middle of the light period. In contrast to the light-dark transition, c-Fos levels did not change significantly after the dark-light transition (lights-on). One-way analysis of variance (ANOVA) revealed that the diurnal variation of c-Fos expression was highly significant in the caudal ventral DRN. Similar variation in c-Fos expression also was observed in the other DRN subdivisions, but this variation appeared to gradually diminish in the caudal-to-rostral and ventromedial-to-dorsomedial directions. Double-label immunocytochemistry revealed that, 1 hour after lights-off, only 11% of c-Fos-positive neurons in the caudal ventral DRN were serotonin (5-HT)-immunoreactive. These results suggest that DRN subdivisions may differ functionally with regard to the diurnal cycle, and that these differences may be reflected in the activity of nonserotonergic cells in the DRN.
Collapse
Affiliation(s)
- S Janusonis
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | |
Collapse
|
16
|
Sinnamon HM, Jassen AK, Vita LA. Brainstem regions with neuronal activity patterns correlated with priming of locomotor stepping in the anesthetized rat. Neuroscience 2000; 99:77-91. [PMID: 10924954 DOI: 10.1016/s0306-4522(00)00179-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Locomotor stimulation in the perifornical hypothalamus produces a transient facilitation of subsequent locomotion, a priming effect, such that stepping to a second train of stimulation occurs with a shorter latency of onset and increased amplitude. Neurons responsible for the initiation of this facilitated stepping presumably respond to locomotor stimulation with a similar priming effect, i.e. either a shorter latency or a larger change in activity rate. This study used anesthetized rats (urethane, 800mg/kg) to compare brainstem regions in terms of the relative rates of occurrence of single neurons that showed both specific responses to locomotor stimulation and also priming effects. Specific responses were characterized by a progressive increase in activity prior to the first step (a Type I pattern). In that they co-varied in time with the increased probability of stepping onset, Type I responses were more specific than Type II responses, which peaked early in the stimulation train several seconds before the onset of stepping. Regions with high proportions of neurons showing Type I responses and priming effects included the anterior dorsal tegmentum lateral to the central gray, the oral pontine reticular nucleus and the medial gigantocellular nucleus. Few Type I neurons showed a modulation of activity related to the step cycle. Type I primed neurons were uncommon in the cuneiform and the pedunculopontine regions, but neurons showing other patterns (decreases and antidromic responses) were relatively prevalent there. The ventral tegmental area was generally unresponsive. The results indicate that stepping elicited by perifornical stimulation in the anesthetized rat is mediated by circuits that differ at midbrain levels from the circuits implicated in other types of locomotion. Two regions, the anterior dorsal tegmentum and the oral pontine reticular nucleus, warrant further attention to determine their possible roles in the initiation of locomotion.
Collapse
Affiliation(s)
- H M Sinnamon
- Neuroscience & Behavior Program, Wesleyan University, Middletown,CT 06459-0408, USA.
| | | | | |
Collapse
|
17
|
Abstract
In the present study, we report that the cuneiform (Cun) nucleus, a brainstem structure that before now has not been implicated in sleep processes, exhibits a large number of neurons that express c-fos during carbachol-induced active sleep (AS-carbachol). Compared with control (awake) cats, during AS-carbachol, there was a 671% increase in the number of neurons that expressed c-fos in this structure. Within the Cun nucleus, three immunocytochemically distinct populations of neurons were observed. One group consisted of GABAergic neurons, which predominantly did not express c-fos during AS-carbachol. Two other different populations expressed c-fos during this state. One of the Fos-positive (Fos(+)) populations consisted of a distinct group of nitric oxide synthase (NOS)-NADPH-diaphorase (NADPH-d)-containing neurons; the neurotransmitter of the other Fos(+) population remains unknown. The Cun nucleus did not contain cholinergic, catecholaminergic, serotonergic, or glycinergic neurons. On the basis of neuronal activation during AS-carbachol, as indicated by c-fos expression, we suggest that the Cun nucleus is involved, in an as yet unknown manner, in the physiological expression of active sleep. The finding of a population of NOS-NADPH-d containing neurons, which were activated during AS-carbachol, suggests that nitrergic modulation of their target cell groups is likely to play a role in active sleep-related physiological processes.
Collapse
|
18
|
Churchill L, Kalivas PW. The involvement of the mediodorsal nucleus of the thalamus and the midbrain extrapyramidal area in locomotion elicited from the ventral pallidum. Behav Brain Res 1999; 104:63-71. [PMID: 11125743 DOI: 10.1016/s0166-4328(99)00051-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Motor activity is regulated by projections from the nucleus accumbens to the ventral pallidum, but it is unclear which efferents regulate behavioral output from the ventral pallidum. Motor activity was elicited pharmacologically by microinjecting either the mu opioid receptor agonist, Tyr-D-Ala-Gly-NmePhe-Gly-OH (DAMGO) or the glutamate receptor agonist, alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) into the ventral pallidum. The involvement of efferent projections was determined by microinjecting the local anesthetic procaine into the mediodorsal nucleus of the thalamus (MD) or the midbrain extrapyramidal area (MEA) prior to administering DAMGO or AMPA into the ventral pallidum. The motor activity induced by DAMGO was blocked by procaine microinjected into either the MD or the MEA. In contrast, procaine microinjected into the MD did not block motor activity elicited by AMPA while procaine into the MEA abolished the behavioral activation. These data indicate that the involvement of efferent projections from the ventral pallidum to either the MD or MEA in motor activation depends upon the type of receptor stimulated in the ventral pallidum.
Collapse
Affiliation(s)
- L Churchill
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman 99164-6520, USA.
| | | |
Collapse
|
19
|
Simler S, Vergnes M, Marescaux C. Spatial and temporal relationships between C-Fos expression and kindling of audiogenic seizures in Wistar rats. Exp Neurol 1999; 157:106-19. [PMID: 10222113 DOI: 10.1006/exnr.1999.7036] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In a strain of Wistar rats selected in our laboratory, audiogenic seizures (AS), characterized by a wild running phase followed by a tonic seizure, can be elicited by exposure to sound. In these animals repeated daily stimulations induce permanent changes which reflect the extension of seizure activity from the brainstem to the forebrain. C-Fos immunoreactivity was used to further characterize the sound-susceptibility of the strain and to specify the spatiotemporal relationships between c-Fos expression and development of AS kindling. AS susceptible rats appeared to be more sensitive to a subthreshold sound as compared to controls. Sound-evoked wild running induced a similar pattern of c-Fos as a full AS in naive rats, confirming the epileptic nature of this early component. AS-induced c-Fos labeling in the auditory pathways of the brainstem extended to the forebrain with repetition of AS and marked increases in c-Fos expression sequentially occurred in the amygdala and perirhinal cortex, followed by the frontoparietal cortex, the piriform cortex, and finally the hippocampus and entorhinal cortex. These results show that the kindled AS preferentially propagate from the brainstem, through the amygdala and the perirhinal cortex, to the motor cortex, with the piriform cortex and hippocampus as secondary targets. No more c-Fos expression was detected 24 h after an AS. A down-regulation of cortical c-Fos induction was observed 1 and 2 days after daily exposure to kindled AS, with full recovery of c-Fos expression after a 5-day seizure-free period. This suggests a regulatory function of c-Fos expression in development of kindling.
Collapse
Affiliation(s)
- S Simler
- Faculté de Médecine, INSERM U 398, 11 rue Humann, Strasbourg Cedex, 67085, France
| | | | | |
Collapse
|
20
|
Abstract
Several "locomotor regions" of the mammalian brain stem can be stimulated, either electrically or chemically, to induce locomotion. Active cells labeled with c-fos within the mesencephalic locomotor region (MLR) have been found in the periaqueductal gray, the cuneiform nucleus, the pedunculopontine nucleus, and the locus coeruleus. Different subsets of these nuclei appear to be activated during locomotion produced in different behavioral contexts. The locomotor nuclei can be classified into areas associated with exploratory, appetitive, and defensive locomotion, in accordance with the proposal of Sinnamon (1993, Prog. Neurobiol. 41: 323-344). The interpretation of lesion studies designed to reveal areas of the brain essential for locomotion must be based on knowledge of the nuclei which become active in the specific locomotor task being tested. An argument is put forward in favor of the continued use of the term "mesencephalic locomotor region."
Collapse
Affiliation(s)
- L M Jordan
- Department of Physiology, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
21
|
Kinnunen A, Lintunen M, Karlstedt K, Fukui H, Panula P. In situ detection of H1-receptor mRNA and absence of apoptosis in the transient histamine system of the embryonic rat brain. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980427)394:1<127::aid-cne10>3.0.co;2-l] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|