1
|
Madrigal MP, Jurado S. Specification of oxytocinergic and vasopressinergic circuits in the developing mouse brain. Commun Biol 2021; 4:586. [PMID: 33990685 PMCID: PMC8121848 DOI: 10.1038/s42003-021-02110-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Oxytocin (OXT) and arginine vasopressin (AVP) support a broad range of behaviors and homeostatic functions including sex-specific and context-appropriate social behaviors. Although the alterations of these systems have been linked with social-related disorders such as autism spectrum disorder, their formation and developmental dynamics remain largely unknown. Using novel brain clearing techniques and 3D imaging, we have reconstructed the specification of oxytocinergic and vasopressinergic circuits in the developing mouse brain with unprecedented cellular resolution. A systematic quantification indicates that OXT and AVP neurons in the hypothalamus display distinctive developmental dynamics and high cellular plasticity from embryonic to early postnatal stages. Our findings reveal new insights into the specification and consolidation of neuropeptidergic systems in the developing CNS.
Collapse
Affiliation(s)
- María Pilar Madrigal
- grid.466805.90000 0004 1759 6875Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Alicante, Spain
| | - Sandra Jurado
- grid.466805.90000 0004 1759 6875Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Alicante, Spain
| |
Collapse
|
2
|
Godefroy D, Dominici C, Hardin-Pouzet H, Anouar Y, Melik-Parsadaniantz S, Rostène W, Reaux-Le Goazigo A. Three-dimensional distribution of tyrosine hydroxylase, vasopressin and oxytocin neurones in the transparent postnatal mouse brain. J Neuroendocrinol 2017; 29. [PMID: 29044774 DOI: 10.1111/jne.12551] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 01/19/2023]
Abstract
Over the years, advances in immunohistochemistry techniques have been a critical step in detecting and mapping neuromodulatory substances in the central nervous system. The better quality and specificity of primary antibodies, new staining procedures and the spectacular development of imaging technologies have allowed such progress. Very recently, new methods permitting tissue transparency have been successfully used on brain tissues. In the present study, we combined whole-mount immunostaining for tyrosine hydroxylase (TH), oxytocin (OXT) and arginine vasopressin (AVP), with the iDISCO+ clearing method, light-sheet microscopy and semi-automated counting of three-dimensionally-labelled neurones to obtain a (3D) distribution of these neuronal populations in a 5-day postnatal (P5) mouse brain. Segmentation procedure and 3D reconstruction allowed us, with high resolution, to map TH staining of the various catecholaminergic cell groups and their ascending and descending fibre pathways. We show that TH pathways are present in the whole P5 mouse brain, similar to that observed in the adult rat brain. We also provide new information on the postnatal distribution of OXT and AVP immunoreactive cells in the mouse hypothalamus, and show that, compared to AVP neurones, OXT neurones in the supraoptic (SON) and paraventricular (PVN) nuclei are not yet mature in the early postnatal period. 3D semi-automatic quantitative analysis of the PVN reveals that OXT cell bodies are more numerous than AVP neurones, although their immunoreactive soma have a volume half smaller. More AVP nerve fibres compared to OXT were observed in the PVN and the retrochiasmatic area. In conclusion, the results of the present study demonstrate the utility and the potency of imaging large brain tissues with clearing procedures coupled to novel 3D imaging technologies to study, localise and quantify neurotransmitter substances involved in brain and neuroendocrine functions.
Collapse
Affiliation(s)
- D Godefroy
- Institut de la Vision, Sorbonne Universités, INSERM CNRS UMRS 968, UPMC Univ Paris 06, Paris, France
- Normandie Université, INSERM, U1239, DC2N, IRIB, UNIROUEN, Mont-Saint-Aignan, France
| | - C Dominici
- Institut de la Vision, Sorbonne Universités, INSERM CNRS UMRS 968, UPMC Univ Paris 06, Paris, France
| | - H Hardin-Pouzet
- Neuroscience Paris - Seine Institut de Biologie Paris Seine, Sorbonne Universités, INSERM CNRS, UPMC Univ Paris 06, Paris, France
| | - Y Anouar
- Normandie Université, INSERM, U1239, DC2N, IRIB, UNIROUEN, Mont-Saint-Aignan, France
| | - S Melik-Parsadaniantz
- Institut de la Vision, Sorbonne Universités, INSERM CNRS UMRS 968, UPMC Univ Paris 06, Paris, France
| | - W Rostène
- Institut de la Vision, Sorbonne Universités, INSERM CNRS UMRS 968, UPMC Univ Paris 06, Paris, France
| | - A Reaux-Le Goazigo
- Institut de la Vision, Sorbonne Universités, INSERM CNRS UMRS 968, UPMC Univ Paris 06, Paris, France
| |
Collapse
|
3
|
Grinevich V, Desarménien MG, Chini B, Tauber M, Muscatelli F. Ontogenesis of oxytocin pathways in the mammalian brain: late maturation and psychosocial disorders. Front Neuroanat 2015; 8:164. [PMID: 25767437 PMCID: PMC4341354 DOI: 10.3389/fnana.2014.00164] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/17/2014] [Indexed: 01/02/2023] Open
Abstract
Oxytocin (OT), the main neuropeptide of sociality, is expressed in neurons exclusively localized in the hypothalamus. During the last decade, a plethora of neuroendocrine, metabolic, autonomic and behavioral effects of OT has been reported. In the urgency to find treatments to syndromes as invalidating as autism, many clinical trials have been launched in which OT is administered to patients, including adolescents and children. However, the impact of OT on the developing brain and in particular on the embryonic and early postnatal maturation of OT neurons, has been only poorly investigated. In the present review we summarize available (although limited) literature on general features of ontogenetic transformation of the OT system, including determination, migration and differentiation of OT neurons. Next, we discuss trajectories of OT receptors (OTR) in the perinatal period. Furthermore, we provide evidence that early alterations, from birth, in the central OT system lead to severe neurodevelopmental diseases such as feeding deficit in infancy and severe defects in social behavior in adulthood, as described in Prader-Willi syndrome (PWS). Our review intends to propose a hypothesis about developmental dynamics of central OT pathways, which are essential for survival right after birth and for the acquisition of social skills later on. A better understanding of the embryonic and early postnatal maturation of the OT system may lead to better OT-based treatments in PWS or autism.
Collapse
Affiliation(s)
- Valery Grinevich
- Schaller Research Group on Neuropeptides, German Cancer Research Center and CellNetwork Cluster of Excellence of the University of Heidelberg Heidelberg, Germany
| | - Michel G Desarménien
- Institute of Functional Genomics, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Montpellier 1, Université Montpellier 2 Montpellier, France
| | - Bice Chini
- Consiglio Nazionale delle Ricerche Institute of Neuroscience Milan, Italy
| | - Maithé Tauber
- Reference Centre for Prader-Willi Syndrome - Department of Pediatric Endocrinology, Hôpital des Enfants Centre Hospitalier Universitaire de Toulouse 330 Toulouse, France ; Institut National de la Santé et de la Recherche Médicale Unité Mixe de Recherche 1043, Paul Sabatier University Toulouse III Toulouse, France
| | - Françoise Muscatelli
- Institut de Neurobiologie de la Méditerranée Unité Mixe de Recherche U901, Institut National de la Santé et de la Recherche Médicale, Parc Scientifique de Luminy Marseille, France ; Aix-Marseille Université, Institut de Neurobiologie de la Méditerranée Unité Mixe de Recherche 901 Marseille, France
| |
Collapse
|
4
|
Vargas-Martínez F, Uvnäs-Moberg K, Petersson M, Olausson HA, Jiménez-Estrada I. Neuropeptides as neuroprotective agents: Oxytocin a forefront developmental player in the mammalian brain. Prog Neurobiol 2014; 123:37-78. [DOI: 10.1016/j.pneurobio.2014.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
|
5
|
Abramova MA, Calas A, Ugrumov M. Vasopressinergic neurons of the supraoptic nucleus in perinatal rats: reaction to osmotic stimulation and its regulation. Brain Struct Funct 2010; 215:195-207. [DOI: 10.1007/s00429-010-0290-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 11/01/2010] [Indexed: 11/29/2022]
|
6
|
Developing Brain as an Endocrine Organ: A Paradoxical Reality. Neurochem Res 2010; 35:837-50. [DOI: 10.1007/s11064-010-0127-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2010] [Indexed: 01/09/2023]
|
7
|
|
8
|
The influence of catecholamine on the migration of gonadotropin-releasing hormone-producing neurons in the rat foetuses. Brain Struct Funct 2008; 213:289-300. [PMID: 18841392 DOI: 10.1007/s00429-008-0197-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 09/16/2008] [Indexed: 10/21/2022]
Abstract
Catecholamines (CA) play an important role in the regulation of GnRH neurons in adults, and it is probable that they control GnRH-neuron development. Migration of GnRH neurons was evaluated in male and female rats at the 17th embryonic day (E17) and E21, following the daily treatment of their pregnant mothers from the 11th to the 16th and 20th day of gestation with alpha-methyl-para-tyrosine (alphaMPT), an inhibitor of catecholamine synthesis. High-performance liquid chromatography with electrochemical detection (HPLC-ED) was used to specify the alphaMPT-induced CA depletion. There was a 50-70% decrease in dopamine and noradrenaline content in the nose and in the brain of alphaMPT-treated foetuses, proving the efficacy of this pharmacological model. Immunohistochemistry was used to evaluate the percentage (%) of GnRH neurons along their migration pathway from the vomeronasal organ (VNO) in the nose to the septo-preoptic area in the forebrain which is considered as an index of neuron migration. Special attention was paid to the topographic relationships of GnRH neurons with catecholaminergic fibres. These were observed in apposition with GnRH neurons in the entrance to the forebrain. In CA-deficient foetuses, the percentage of GnRH neurons located in the rostral regions extending from the VNO to the septum was greater than in controls. However, no statistically significant difference was found in the forebrain which extended from the septum to the retrochiasmatic area. In conclusion, these data suggest that endogenous catecholamines stimulate the GnRH neuron migration in ontogenesis.
Collapse
|
9
|
Abramova MA, Ugryumov MV, Kalas A. Vasopressinergic neurons in rats in ontogenesis: responses to salt loading and their modulation by noradrenergic afferents. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2008; 38:605-11. [PMID: 18607738 DOI: 10.1007/s11055-008-9020-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 01/31/2007] [Indexed: 10/21/2022]
Abstract
Salt loading in adult mammals leads to increased vasopressin secretion by vasopressinergic neurons in the supraoptic nucleus, which is mediated by the actions of a number of hormones and neurotransmitters, including noradrenaline. The present study addressed identification of the stage of ontogenesis at which vasopressinergic neurons start to respond to salt loading and when the noradrenalinergic regulation of this process begins. Studies were performed on rats at embryonic day 21 (E21), postnatal day 3 (P3), and postnatal day 13 (P13) using immunocytochemical and in situ hybridization. Animals were subjected to salt loading, in some cases on the background of the alpha1-adrenoceptor inhibitor prazosin. Salt loading in rats of all age groups induced increases in the synthesis of vasopressin mRNA, probably accompanied by increased synthesis of vasopressin peptide. At E21 and P3, intraneuronal vasopressin levels were increased; there was no change at P13. In salt loading on the background of prazosin administration, vasopressin mRNA and vasopressin contents at E21 showed no change, while at P3 they were increased, which is evidence of the inhibitory effect of noradrenaline on vasopressin expression in the early postnatal period. Thus, vasopressinergic neurons start to respond to salt loading at the end of the prenatal period with increases in vasopressin expression; noradrenergic afferents have inhibitory influences on vasopressin expression in the early postnatal period.
Collapse
Affiliation(s)
- M A Abramova
- Hormonal Regulation Laboratory, N. K. Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow, Russia
| | | | | |
Collapse
|
10
|
Chernigovskaya EV, Taranukhin AG, Yamova LA, Komissarov AB, Glazova MV. Participation of neuronal NO-synthase in regulation of hypothalamus vasopressinergic neurons of rat pups at early stages of postnatal ontogeny. J EVOL BIOCHEM PHYS+ 2006. [DOI: 10.1134/s0022093006010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Ugrumov MV. Developing Brain as a Giant Multipotent Endocrine Gland. NEUROPHYSIOLOGY+ 2005. [DOI: 10.1007/s11062-005-0069-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Jankowski M, Danalache B, Wang D, Bhat P, Hajjar F, Marcinkiewicz M, Paquin J, McCann SM, Gutkowska J. Oxytocin in cardiac ontogeny. Proc Natl Acad Sci U S A 2004; 101:13074-9. [PMID: 15316117 PMCID: PMC516519 DOI: 10.1073/pnas.0405324101] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Previous studies demonstrated the presence of oxytocin (OT) and oxytocin receptors (OTRs) in the heart. The present work provides results supporting a potential role of OT in cardiomyogenesis. Here, we show a maximal OT and OTR protein level in the developing rat heart at day 21 of gestation and postnatal days 1-4, when cardiac myocytes are at a stage of intense hyperplasia. Between postnatal days 1 and 66, OT decreased linearly in all heart chambers (4.1- to 6.6-fold). Correspondingly, immunocytochemistry demonstrated that OTRs, which were eminent in postnatal cardiomyocytes, declined with age to low levels in adults. Interestingly, in coronary vasculature, OTRs developed in endothelial cells at postnatal days 12 and 22 and achieved a plateau in adult rats. These findings suggest that OT can be involved in developmental formation of the coronary vessels. In vivo, the OT/OTR system in the fetal heart was sensitive to the actions of retinoic acid (RA), recognized as a major cardiac morphogen. RA treatment produced a significant increase (2- to 3-fold) both in the OT concentration and in the OT mRNA levels. Ex vivo, an OT antagonist inhibited RA-mediated cardiomyocyte differentiation of P19 embryonic stem cells. The decline of cardiac OT expression from infancy to adulthood of the rat and changes in cell types expressing OTR indicate a dynamic regulation of the OT system in the heart rather than constitutive expression. The results support the hypothesis that RA induces cardiomyogenesis by activation of the cardiac OT system.
Collapse
Affiliation(s)
- Marek Jankowski
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Hôtel-Dieu, 3840 Rue Saint-Urbain, Montréal, QC, Canada H2W 1T8
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Vacher CM, Calas A, Maltonti F, Hardin-Pouzet H. Postnatal regulation by monoamines of vasopressin expression in the neuroendocrine hypothalamus of MAO-A-deficient mice. Eur J Neurosci 2004; 19:1110-4. [PMID: 15009159 DOI: 10.1111/j.1460-9568.2004.03201.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We studied the influence of noradrenaline (NA) and serotonin (5-HT) on arginine-vasopressin (AVP) expression in the mouse neuroendocrine hypothalamus during the postnatal period. We used 11-day-old transgenic Tg8 mice knock-out for the monoamine oxidase A gene, which are characterized by increased amounts of NA (two-fold) and 5-HT (nine-fold) in the brain compared with wild-type littermates. AVP expression, determined by enzyme immunoassay and in situ hybridization, was increased in the suprachiasmatic nucleus (SCN), decreased in the supraoptic nucleus (SON), and unchanged in the paraventricular nucleus of Tg8 mice compared with wild-types. Inhibiting NA synthesis by injecting alpha-methylparatyrosine to Tg8 mice, AVP levels were decreased in the SCN but increased in the SON. Moreover, the administration of parachlorophenylalanine, a 5-HT synthesis inhibitor, was associated with increased AVP contents in the SCN only. Together, these data show a marked region-specific sensitivity of AVP expression to NA and 5-HT during the postnatal period in the mouse hypothalamus.
Collapse
Affiliation(s)
- Claire-Marie Vacher
- Laboratoire de Neurobiologie des Signaux Intercellulaires, UMR CNRS 7101, Université Pierre et Marie Curie, 75252 Paris cedex 05, France.
| | | | | | | |
Collapse
|
14
|
Cheng G, Marotte LR, Mai JK, Ashwell KWS. Early development of the hypothalamus of a wallaby (Macropus eugenii). J Comp Neurol 2002; 453:199-215. [PMID: 12373784 DOI: 10.1002/cne.10395] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have studied the development of the hypothalamus of an Australian marsupial, the tammar wallaby (Macropus eugenii), to provide an initial anatomic framework for future research on the developing hypothalamus of diprotodontid metatheria. Cytoarchitectural (hematoxylin and eosin), immunohistochemical (CD 15 and growth associated protein, GAP-43), tritiated thymidine autoradiography, and carbocyanine dye tracing techniques were applied. Until 12 days after birth (P12), the developing hypothalamus consisted of mainly a ventricular germinal zone with a thin marginal layer, but by P25, most hypothalamic nuclei were well differentiated, indicating that the bulk of hypothalamic cytoarchitectural development occurs between P12 and P25. Strong CD 15 immunoreactivity was found in radial glial fibers in the rostral hypothalamus during early developmental ages, separating individual hypothalamic compartments. Immunoreactivity for GAP-43 was used to reveal developing fiber bundles. The medial forebrain bundle was apparent by P0, and the fornix appeared at P12. Tritiated thymidine autoradiography revealed lateral-to-medial and dorsal-to-ventral neurogenetic gradients similar to those seen in rodents. Dye tracing showed that projections to the posterior pituitary arose from the supraoptic nucleus at P5 and from the paraventricular nucleus at P10. Projections to the medulla were first found from the lateral hypothalamic area at P0 and paraventricular nucleus at P10. In conclusion, the pattern of development of the wallaby hypothalamus is broadly similar to that found in eutheria, with comparable neurogenetic compartments to those identified in rodents. Because most hypothalamic maturation takes place after birth, wallabies provide a useful model for experimentally manipulating the developing mammalian hypothalamus.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Anatomy, School of Medical Sciences, The University of New South Wales, 2052 New South Wales, Australia.
| | | | | | | |
Collapse
|
15
|
Ugrumov MV. Magnocellular vasopressin system in ontogenesis: development and regulation. Microsc Res Tech 2002; 56:164-71. [PMID: 11810719 DOI: 10.1002/jemt.10021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review is devoted to the development, functional activity, and regulation of the magnocellular vasopressin (VP) system in ontogenesis. Magnocellular VP neurons originate in embryos from the neuroepithelium of the third ventricle and migrate first to the supraoptic nucleus and then to the paraventricular nucleus and accessory nuclei. The preproVP gene and synthesis are expressed simultaneously in the newly formed neurons either during migration or just after arrival in magnocellular nuclei. Still, a number of VP-immunoreactive neurons increase in immature mammals to prepuberty, which is explained by VP expression in the initially "silent" neurons, or by an increase of VP synthesis that makes a cell distinguishable by immunocytochemistry. An enzymatic processing of preproVP is slightly delayed compared to the onset of preproVP synthesis. Axons of magnocellular neurons reach the pituitary posterior lobe before or just after the neuron arrival in magnocellular nuclei. The mechanisms of VP release from the axon terminals are developed in immature animals over the perinatal period. The VP neurons begin to react to functional (osmotic) stimulation by increased synthesis of VP mRNA and VP in immature animals from the end of fetal life. A functional maturation of the VP system is under control by neural afferents, neuropeptides, and some hormones of endocrine glands. Namely, glucocorticoids, VP, catecholamines, glutamate, and opioids provide short-term or long-lasting effects on differentiating VP neurons. Most of the intercellular signals inhibit the specific phenotype expression of differentiating VP neurons: VP gene and synthesis in normal conditions, as well as TH gene and synthesis under functional stimulation.
Collapse
Affiliation(s)
- Michael V Ugrumov
- Institute of Developmental Biology RAS and Institute of Normal Physiology RAMS, Moscow, Russia.
| |
Collapse
|
16
|
Makarenko IG, Ugrumov MV, Derer P, Calas A. Projections from the hypothalamus to the posterior lobe in rats during ontogenesis: 1,1'-dioctadecyl-3,3,3', 3'-tetramethylindocarbocyanine perchlorate tracing study. J Comp Neurol 2000; 422:327-37. [PMID: 10861510 DOI: 10.1002/1096-9861(20000703)422:3<327::aid-cne1>3.0.co;2-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The objective of this study was to determine the schedule of the arrival of the axons from the hypothalamus to the posterior lobe of the pituitary (PL) in rats during ontogenesis by using the fluorescent lipophilic carbocyanine dye 1,1'-dioctadecyl-3,3,3', 3'-tetramethylindocarbocyanine perchlorate (DiI) as a retrograde tracer. After preliminary fixation of the brain, DiI crystals were implanted in the PL on embryonic day 15 (E15), E16, E17, and E19 as well as on postnatal day 2 (P2) and P9. This was followed by a DiI retrograde diffusion along the plasma membrane and subsequent staining of hypothalamic neuronal cell bodies. The supraoptic nucleus (SO) contained an accumulation of fluorescent cells that extended toward the diamond-like swelling of the third ventricle as early as E15. These data suggest that the magnocellular neurons of the SO send their axons to the PL at the very beginning of differentiation, perhaps even before reaching their final position. The initial axons of the neurons of the paraventricular nucleus proper (PV) appeared to reach the PL significantly later, at E17. In addition to the SO and the PV, accessory magnocellular nuclei contributed to the innervation of the PL in perinatal rats. The neurons of the retrochiasmatic accessory nucleus first sent their axons to the PL on E16-E17. Axons that originated from other accessory hypothalamic nuclei reached the PL after birth, suggesting a delay in their involvement in the regulation of visceral functions compared with other magnocellular nuclei. Thus, the axons of magnocellular neurons reach the PL unexpectedly early in embryogenesis, raising the possibility of the functional significance of vasopressin and oxytocin as fetal neurohormones.
Collapse
Affiliation(s)
- I G Makarenko
- Laboratory of Hormonal Regulations, Institute of Developmental Biology, Russian Academy of Sciences, Moscow 117808, Russia
| | | | | | | |
Collapse
|
17
|
Matthews SG. Hypothalamic oxytocin in the developing ovine fetus: interaction with pituitary-adrenocortical function. Brain Res 1999; 820:92-100. [PMID: 10023035 DOI: 10.1016/s0006-8993(99)01056-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Oxytocin (OT) stimulates corticotroph function in adult sheep, however, there is little information on OT synthesis and its potential involvement in hypothalamo-pituitary-adrenal (HPA) function in the fetus. The objectives of this study were to examine developmental changes in hypothalamic OT synthesis and to investigate the actions of OT on fetal corticotroph function. Hypothalami were removed at various stages of pre- and post-natal development. OT mRNA levels were measured using in situ hybridization. For in vitro studies, fetal pituitaries were removed on days 129 and 138 of gestation. Anterior pituitary cells were dispersed and cells were treated with different concentrations and combinations of OT, corticotrophin-releasing hormone (CRH), vasopressin (AVP) and cortisol. OT mRNA was present in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) by day 60 of gestation, and levels significantly increased at term. OT mRNA was present in parvocellular and magnocellular fields of the PVN. In vitro, OT stimulated adrenocorticotropin (ACTH) output in a dose-dependent fashion, but had no effect on cellular pro-opiomelanocortin (POMC) mRNA levels. There was no significant difference in corticotroph responsiveness to secretagogues between cells harvested at gestation day 129 or gestation day 138. Simultaneous exposure to CRH and OT stimulated increases in ACTH output that were significantly greater than for OT or CRH alone. However, no similar synergistic interaction existed between OT and AVP. Cortisol attenuated OT-stimulated ACTH output. In conclusion, hypothalamic OT mRNA increases at term and OT can stimulate ACTH output from fetal corticotrophs. Together, these data indicate that OT may be involved in the regulation of ACTH secretion in fetal sheep in late gestation.
Collapse
Affiliation(s)
- S G Matthews
- Departments of Physiology and Obstetrics and Gynecology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
18
|
Beltramo M, Calas A, Chernigovskaya E, Thibault J, Ugrumov M. Long-lasting effect of catecholamine deficiency on differentiating vasopressin and oxytocin neurons in the rat supraoptic nucleus. Neuroscience 1997; 79:555-61. [PMID: 9200738 DOI: 10.1016/s0306-4522(96)00694-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
According to our earlier study, the catecholamine depletion in neonatal rats resulted in stimulation of the vasopressin and oxytocin gene expression in the neurons of the supraoptic nucleus. The present study extends this line, evaluating whether the catecholamine deficiency provides a long-lasting effect on the differentiating vasopressin and oxytocin neurons of the supraoptic nucleus. Catecholamines were depleted by daily injections of an inhibitor of the catecholamine synthesis, alpha-methyl-p-tyrosine, first, to pregnant rats from the 9th to the 21st day of gestation and, then, to their pups from the 2nd to the 10th postnatal day. The animals, injected with saline instead of drugs, served as controls. The pharmacologically-treated and control rats were kept for four months under normal laboratory conditions until processing the materials for semi-quantitative in situ hybridization and immunocytochemistry of vasopressin and oxytocin messenger RNAs and peptides, respectively. There were no differences in the vasopressin and oxytocin messenger RNA concentrations in the supraoptic nucleus in rats following preliminary catecholamine depletion compared to controls. Conversely, the catecholamine deficiency resulted in an increased content of the vasopressin-immunoreactive material in cell bodies and processes. This was also the case for the oxytocin-immunoreactive cell bodies but only in females, suggesting an interference of catecholamines with sexual steroids in their action. The number and size of vasopressin and oxytocin neurons did not change in pharmacologically-treated rats compared to the controls. Thus, the catecholamine deficiency in the course of the neuron differentiation resulted in a long-lasting augmentation of the intracellular content of vasopressin and oxytocin but did not influence the vasopressin and oxytocin gene expression. This might be explained rather by the reduced level of peptide release than by an increased level of the peptide production.
Collapse
Affiliation(s)
- M Beltramo
- Département de Neurobiologie des Signaux Intercellulaires, Institut des Neurosciences, CNRS URA 1488, Université P. et M. Curie, Paris, France
| | | | | | | | | |
Collapse
|
19
|
Bernabe J, Proshlyakova E, Sapronova A, Trembleau A, Calas A, Ugrumov M. Pharmacological model of catecholamine depletion in the hypothalamus of fetal and neonatal rats and its application. Cell Mol Neurobiol 1996; 16:617-24. [PMID: 9013026 PMCID: PMC11563078 DOI: 10.1007/bf02151900] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/1995] [Accepted: 04/10/1995] [Indexed: 02/03/2023]
Abstract
1. The present study aimed to develop a pharmacological model of catecholamine (CA) depletion in the hypothalamus during the period of its morphofunctional development, i.e. in fetal and neonatal rats of both sexes. 2. In the first series of experiments, pregnant females and, hence, fetuses were systemically treated daily from the embryonic day (E) 13 to E20 with the inhibitor of the CA synthesis alpha-methyl-m-tyrosine. The CA concentrations were subsequently measured in the fetal hypothalamus at E21 by high performance liquid chromatography with electrochemical detection (HPLC-ED). In the second series of experiments, neonatal rats were injected with neurotoxin, 6-hydroxydopamine and/or alpha-methyl-m-tyrosine daily from the 2nd postnatal day (P2) to P10. 3. The HPLC-ED assay of hypothalamic catecholamines (CA's) at E21 and P11 showed that both in fetuses and neonates, alpha-methyl-m-tyrosine caused more than 50% depletion of hypothalamic noradrenaline and adrenaline, while the dopamine (DA) level remained unchanged. The combined treatment of neonatal rats with alpha-methyl-m-tyrosine and 6-hydroxydopamine resulted additionally in a 25% decreased level of DA. 4. The influence of CA deficiency on the developing hypothalamic CA system was further evaluated by measuring [3H]DA uptake by nervous tissue in vitro. 5. The CA deficiency caused a 50% drop of [3H]DA uptake by the hypothalamic tissue in treated fetuses suggesting a stimulating effect of CA's on the early development of the CA system. In pharmacologically treated neonatal rats [3H]DA uptake remained at the control level showing no influence of the CA deficiency on the developing CA system after birth. 6. The usefulness of the proposed pharmacological model for studying of CA influence on differentiating hypothalamic target neurons is discussed.
Collapse
Affiliation(s)
- J Bernabe
- Laboratory of Physiology of Reproduction, Institute of Neurosciences CNRS URA 1488, University P. and M. Curie, Paris, France
| | | | | | | | | | | |
Collapse
|