1
|
Exploring temperature-mediated plasmid replication as a reversible and switchable protein expression system in genetic Escherichia coli. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
2
|
Boy C, Lesage J, Alfenore S, Guillouet SE, Gorret N. Study of plasmid-based expression level heterogeneity under plasmid-curing like conditions in Cupriavidus necator. J Biotechnol 2022; 345:17-29. [PMID: 34995560 DOI: 10.1016/j.jbiotec.2021.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 01/18/2023]
Abstract
Plasmid expression level heterogeneity in Cupriavidus necator was studied in response to stringent culture conditions, supposed to enhance plasmid instability, through plasmid curing strategies. Two plasmid curing strategies were compared based on their efficiency at generating heterogeneity in batch: rifampicin addition and temperature increase. A temperature increase from 30° to 37 °C was the most efficient plasmid curing strategy. To generate a heterogeneous population in terms of plasmid expression levels, successive batches at supra-optimal culture temperature (i.e. 37 °C) were initially conducted. Three distinct fluorescent subpopulations P0 (not fluorescent), P1 (low fluorescence intensity, median = 1 103) and P2 (high fluorescence intensity, median = 6 103) were obtained. From there, the chemostat culture was implemented to study the long-term stress response under well-controlled environment at defined dilution rates. For dilution rates comprised between 0.05 and 0.10 h-1, the subpopulation P2 (62% vs 90%) was favored compared to P1 cells (54% vs 1%), especially when growth rate increased. Our biosensor was efficient at discriminating subpopulation presenting different expression levels under stringent culture conditions. Plus, we showed that controlling growth kinetics had a stabilizing impact on plasmid expression levels, even under heterogeneous expression conditions.
Collapse
Affiliation(s)
- Catherine Boy
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Julie Lesage
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | | | | | - Nathalie Gorret
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| |
Collapse
|
3
|
Bentley WE, Mirjalili N, Andersen DC, Davis RH, Kompala DS. Plasmid-encoded protein: the principal factor in the "metabolic burden" associated with recombinant bacteria. Biotechnol Bioeng 2012; 35:668-81. [PMID: 18592563 DOI: 10.1002/bit.260350704] [Citation(s) in RCA: 360] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Experimental elucidation of the metabolic load placed on bacteria by the expression of foreign protein is presented. The host/vector system is Escherichia coli RR1/pBR329 (amp(r), cam(r), and let(r)). Plasmid content results, which indicate that the plasmid copy number monotonically increases with decreasing growth rate, are consistent with the literature on ColE1-like plasmids. More significantly, we have experimentally quantified the reduction in growth rate brought about by the expression of chloramphenicol-acetyl-transferase (CAT) and beta-lactamase. Results indicate a nearly linear decrease in growth rate with increasing foreign protein content. Also, the change in growth rate due to foreign protein expression depends on the growth rate of the cells. The observed linear relationship is media independent and, to our knowledge, previously undocumented. Furthermore, the induction of CAT, mediated by the presence of chloramphenicol, is shown to occur only at low growth rates, which further increases the metabolic load.Results are vdelineated with the aid of a structured kinetic model representing the metabolism of recombinant E. coli. In this article, several previous hypotheses and model predictions are justified and validated. This work provides an important step in the development of comprehensive, methabolically-structured, kinetic models capable of prediciting optimal conditions for maximizing product yield.
Collapse
Affiliation(s)
- W E Bentley
- Department of Chemical Engineering, UniversityofColorado, Boulder, Colorado 80309-0424, USA
| | | | | | | | | |
Collapse
|
4
|
Priyadarshi H, Alam A, Gireesh-Babu P, Das R, Kishore P, Kumar S, Chaudhari A. A GFP-based bacterial biosensor with chromosomally integrated sensing cassette for quantitative detection of Hg(II) in environment. J Environ Sci (China) 2012; 24:963-968. [PMID: 22893977 DOI: 10.1016/s1001-0742(11)60820-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A mercury biosensor was constructed by integrating biosensor genetic elements into E. coli JM109 chromosome in a single copy number, using the attP/attB recombination mechanism of lambda phage. The genetic elements used include a regulatory protein gene (merR) along with operator/promoter (O/P) derived from the mercury resistance operon from pDU1358 plasmid of Serratia marcescens. The expression of reporter gene gfp is also controlled by merR/O/P. Integration of the construct into the chromosome was done to increase the stability and precision of the biosensor. This biosensor could detect Hg(II) ions in the concentration range of 100-1700 nmol/L, and manifest the result as the expression of GFP. The GFP expression was significantly different (P < or = 0.05) for each concentration of inducing Hg(II) ions in the detection range, which reduces the chances of misinterpretation of results. A model using regression method was also derived for the quantification of the concentration of Hg(II) in water samples.
Collapse
|
5
|
Abstract
Transcription antitermination in the ribosomal operons of Escherichia coli results in the modification of RNA polymerase by specific proteins, altering its basic properties. For such alterations to occur, signal sequences in rrn operons are required as well as individual interacting proteins. In this study we tested putative rrn transcription antitermination-inducing sequences from five different bacteria for their abilities to function in E. coli. We further examined their response to the lack of one known rrn transcription antitermination protein from E. coli, NusB. We monitored antitermination activity by assessing the ability of RNA polymerase to read through a factor-dependent terminator. We found that, in general, the closer the regulatory sequence matched that of E. coli, the more likely there was to be a successful antitermination-proficient modification of the transcription complex. The rrn leader sequences from Pseudomonas aeruginosa, Bacillus subtilis, and Caulobacter crescentus all provided various levels of, but functionally significant antitermination properties to, RNA polymerase, while those of Mycobacterium tuberculosis and Thermotoga maritima did not. Possible RNA folding structures of presumed antitermination sequences and specific critical bases are discussed in light of our results. An unexpected finding was that when using the Caulobacter crescentus rrn leader sequence, there was little effect on terminator readthrough in the absence of NusB. All other hybrid antitermination system activities required this factor. Possible reasons for this finding are discussed.
Collapse
|
6
|
Prather KLJ, Edmonds MC, Herod JW. Identification and characterization of IS1 transposition in plasmid amplification mutants of E. coli clones producing DNA vaccines. Appl Microbiol Biotechnol 2006; 73:815-26. [PMID: 16941177 DOI: 10.1007/s00253-006-0532-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 05/31/2006] [Accepted: 06/01/2006] [Indexed: 10/24/2022]
Abstract
Merck Research Laboratories has developed a highly productive Escherichia coli fermentation process to produce plasmid DNA for use as vaccines. The process consists of a fed-batch fermentation in a chemically defined medium. Initiation of the feed stream precedes a growth-limited phase in which plasmid DNA is amplified. The fermentation is only maximally productive for a small fraction of E. coli transformants designated as high-producers, while the predominant low-producer population does not amplify plasmid DNA. In experiments undertaken to probe this phenomenon, transposition of the 768-bp E. coli insertion sequence IS1 into an HIV DNA vaccine vector was observed in several low-producer clones. IS1 was found to insert in or near the neomycin resistance gene in nearly a dozen unique sites from within a single population of plasmid molecules. The fraction of IS1-containing plasmids within several clones was determined by quantitative polymerase chain reaction and was found to increase with increasing cultivation time in the chemically defined medium. Because transposition into an antibiotic-resistance gene is unlikely to affect plasmid amplification, the genomes of high- and low-producers of three different HIV DNA vaccine vectors were subsequently profiled by restriction fragment length polymorphism analysis. In all three cases, IS1 insertional mutations were found in the genomes of the predominant low-producers, while the genomes of the high-producers were indistinguishable from untransformed cells. The insertions reside on similarly sized fragments for two of the low-producer clones, and the fragment size is smaller for the third clone. The third clone also produces much less plasmid DNA than a typical low-producer. The results suggest the presence of an IS1 insertional mutation that affects plasmid replication and amplification, possibly in a position-dependent manner.
Collapse
Affiliation(s)
- Kristala L Jones Prather
- Biocatalysis and Fermentation Development, Bioprocess R&D, Merck Research Laboratories, Rahway, NJ 07062, USA.
| | | | | |
Collapse
|
7
|
Torres M, Balada JM, Zellars M, Squires C, Squires CL. In vivo effect of NusB and NusG on rRNA transcription antitermination. J Bacteriol 2004; 186:1304-10. [PMID: 14973028 PMCID: PMC344418 DOI: 10.1128/jb.186.5.1304-1310.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Similarities between lambda and rRNA transcription antitermination have led to suggestions that they involve the same Nus factors. However, direct in vivo confirmation that rRNA antitermination requires all of the lambda Nus factors is lacking. We have therefore analyzed the in vivo role of NusB and NusG in rRNA transcription antitermination and have established that both are essential for it. We used a plasmid test system in which reporter gene mRNA was measured to monitor rRNA antiterminator-dependent bypass of a Rho-dependent terminator. A comparison of terminator read-through in a wild-type Escherichia coli strain and that in a nusB::IS10 mutant strain determined the requirement for NusB. In the absence of NusB, antiterminator-dependent terminator read-through was not detected, showing that NusB is necessary for rRNA transcription antitermination. The requirement for NusG was determined by comparing rRNA antiterminator-dependent terminator read-through in a strain overexpressing NusG with that in a strain depleted of NusG. In NusG-depleted cells, termination levels were unchanged in the presence or absence of the antiterminator, demonstrating that NusG, like NusB, is necessary for rRNA transcription antitermination. These results imply that NusB and NusG are likely to be part of an RNA-protein complex formed with RNA polymerase during transcription of the rRNA antiterminator sequences that is required for rRNA antiterminator-dependent terminator read-through.
Collapse
Affiliation(s)
- Martha Torres
- King Faisal Specialist Hospital and Research Centre, Radiation Biology Laboratory, Biomedical Physics Department, Riyadh 11211, Saudi Arabia
| | | | | | | | | |
Collapse
|
8
|
Prather KJ, Sagar S, Murphy J, Chartrain M. Industrial scale production of plasmid DNA for vaccine and gene therapy: plasmid design, production, and purification. Enzyme Microb Technol 2003. [DOI: 10.1016/s0141-0229(03)00205-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Abstract
Transcription antitermination in the rRNA operons of Escherichia coli requires a unique nucleic acid sequence that serves as a signal for modification of the elongating RNA polymerase, making it resistant to Rho-dependent termination. We examined the antitermination ability of RNA polymerase elongation complexes that had initiated at three different heat shock promoters, dnaK, groE, and clpB, and then transcribed the antitermination sequence to read through a Rho-dependent terminator. Terminator bypass comparable to that seen with sigma(70) promoters was obtained. Lack of or inversion of the sequence abolished terminator readthrough. We conclude that RNA polymerase that uses sigma(32) to initiate transcription can adopt a conformation similar to that of sigma(70)-containing RNA polymerase, enabling it to interact with auxiliary modifying proteins and bypass Rho-dependent terminators.
Collapse
Affiliation(s)
- Hyuk Kyu Seoh
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
10
|
Vijesurier RM, Carlock L, Blumenthal RM, Dunbar JC. Role and mechanism of action of C. PvuII, a regulatory protein conserved among restriction-modification systems. J Bacteriol 2000; 182:477-87. [PMID: 10629196 PMCID: PMC94299 DOI: 10.1128/jb.182.2.477-487.2000] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/1999] [Accepted: 10/27/1999] [Indexed: 11/20/2022] Open
Abstract
The PvuII restriction-modification system is a type II system, which means that its restriction endonuclease and modification methyltransferase are independently active proteins. The PvuII system is carried on a plasmid, and its movement into a new host cell is expected to be followed initially by expression of the methyltransferase gene alone so that the new host's DNA is protected before endonuclease activity appears. Previous studies have identified a regulatory gene (pvuIIC) between the divergently oriented genes for the restriction endonuclease (pvuIIR) and modification methyltransferase (pvuIIM), with pvuIIC in the same orientation as and partially overlapping pvuIIR. The product of pvuIIC, C. PvuII, was found to act in trans and to be required for expression of pvuIIR. In this study we demonstrate that premature expression of pvuIIC prevents establishment of the PvuII genes, consistent with the model that requiring C. PvuII for pvuIIR expression provides a timing delay essential for protection of the new host's DNA. We find that the opposing pvuIIC and pvuIIM transcripts overlap by over 60 nucleotides at their 5' ends, raising the possibility that their hybridization might play a regulatory role. We furthermore characterize the action of C. PvuII, demonstrating that it is a sequence-specific DNA-binding protein that binds to the pvuIIC promoter and stimulates transcription of both pvuIIC and pvuIIR into a polycistronic mRNA. The apparent location of C. PvuII binding, overlapping the -10 promoter hexamer and the pvuIICR transcriptional starting points, is highly unusual for transcriptional activators.
Collapse
Affiliation(s)
- R M Vijesurier
- Center for Molecular Medicine, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
11
|
Liang S, Bipatnath M, Xu Y, Chen S, Dennis P, Ehrenberg M, Bremer H. Activities of constitutive promoters in Escherichia coli. J Mol Biol 1999; 292:19-37. [PMID: 10493854 DOI: 10.1006/jmbi.1999.3056] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The in vivo activities of seven constitutive promoters in Escherichia coli have been determined as functions of growth rate in wild-type relA+ spoT+ strains with normal levels of guanosine tetraphosphate (ppGpp) and in ppGpp-deficient DeltarelADeltaspoT derivatives. The promoters include (i) the spc ribosomal protein operon promotor Pspc; (ii) the beta-lactamase gene promotor Pblaof plasmid pBR322; (iii) the PLpromoter of phage lambda; (iv) and (v) the replication control promoters PRNAIand PRNAIIof plasmid pBR322; and (vi) and (vii) the P1 and P2 promoters of the rrnB ribosomal RNA operon. Each strain carried an operon fusion consisting of one of the respective promoter regions linked to lacZ and recombined into the chromosome at the mal locus of a lac deletion strain. The amount of 5'-terminal lacZ mRNA and of beta-galactosidase activity expressed from these promoters were determined by standard hybridization or enzyme activity assays, respectively. In addition, DNA, RNA and protein measurements were used to obtain information about gene dosage, rRNA synthesis and translation rates. By combining lacZ mRNA hybridization data with gene dosage and rRNA synthesis data, the absolute activity of the different promoters, in transcripts/minute per promoter, was determined. In ppGpp-proficient (relA+ spoT+) strains, the respective activities of rrnB P1 and P2 increased 40 and fivefold with increasing growth rate between 0.7 and 3.0 doublings/hour. The activities of Pspc, PL, Pbla, and PRNAIincreased two- to threefold and reached a maximum at growth rates above 2.0 doublings/hour. In contrast, PRNAIIactivity decreased threefold over this range of growth rates. In ppGpp-deficient (DeltarelA DeltaspoT) bacterial strains, the activities of rrnB P1 and P2 promoters both increased about twofold between 1.6 and 3.0 doublings/hour, whereas the activities of Pspc, PL, Pbla, and PRNAI, and PRNAIIwere about constant. To explain these observations, we suggest that the cellular concentration of free RNA polymerase increases with increasing growth rate; for saturation the P1 and P2 rRNA promoters require a high RNA polymerase concentration that is approached only at the highest growth rates, whereas the other promoters are saturated at lower polymerase concentrations achieved at intermediate growth rates. In addition, the data indicate that the respective rrnB P1 and PRNAIIpromoters were under negative and positive control by ppGpp. This caused a reduced activity of rrnB P1 and an increased activity of PRNAIIduring slow growth in wild-type (relA+ spoT+) relative to ppGpp-deficient (DeltarelA DeltaspoT) bacterial strains.
Collapse
Affiliation(s)
- S Liang
- Program in Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083-0688, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
van der Werf MJ, Zeikus JG. 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene. Appl Environ Microbiol 1996; 62:3560-6. [PMID: 8837411 PMCID: PMC168160 DOI: 10.1128/aem.62.10.3560-3566.1996] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Rhodobacter sphaeroides hemA gene codes for 5-aminolevulinate (ALA) synthase. This enzyme catalyzes the pyridoxal phosphate-dependent condensation of succinyl coenzyme A and glycine-forming ALA. The R. sphaeroides hemA gene in the pUC18/19 vector system was transformed into Escherichia coli. The effects of both genetic and physiological factors on the expression of ALA synthase and the production of ALA were studied. ALA synthase activity levels were maximal when hemA had the same transcription direction as the lac promoter. The distance between the lac promoter and hemA affected the expression of ALA synthase on different growth substrates. The E. coli host strain used had an enormous effect on the ALA synthase activity level and on the production of ALA, with E. coli DH1 being best suited. The ALA synthase activity level was also dependent on the carbon source. Succinate, L-malate, fumarate, and L-aspartate gave the highest levels of ALA synthase activity, while the use of lactose as a carbon source resulted in a repression of ALA synthase. After growth on succinate, ALA synthase represented approximately 5% of total cellular protein. The ALA synthase activity level was also dependent on the pH of the medium, with maximal activity occurring at pH 6.5. ALA production by whole cells was limited by the availability of glycine, and the addition of 2 g of glycine per liter to the growth medium increased the production of ALA fivefold, to 2.25 mM. In recombinant E. coli extracts, up to 22 mM ALA was produced from succinate, glycine, and ATP.
Collapse
Affiliation(s)
- M J van der Werf
- Department of Biochemistry, Michigan State University, East Lansing, 48824, USA
| | | |
Collapse
|
13
|
Krohn M, Wagner R. Transcriptional pausing of RNA polymerase in the presence of guanosine tetraphosphate depends on the promoter and gene sequence. J Biol Chem 1996; 271:23884-94. [PMID: 8798619 DOI: 10.1074/jbc.271.39.23884] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have studied the response of the effector molecule guanosine 3',5'-bisdiphosphate (ppGpp) on RNA polymerase pausing during in vitro transcription elongation. Pausing was followed during single round extension of stalled ternary complexes excluding possible ppGpp effects on initiation. The ppGpp dependences of early pausing sites within different transcription systems controlled by promoters with known response to enhanced ppGpp levels in vivo were quantitatively characterized. Transcription of stable RNAs and mRNA genes were analyzed. In addition, the in vitro pausing behavior of two promoter variants directing the same sequence but differing in their in vivo ppGpp sensitivity were compared. In the presence of ppGpp we noted a slight general enhancement of specific pauses in all transcription systems. However, genes known to be under stringent or growth rate control in vivo revealed a notably stronger pausing enhancement. The sites of pausing are not changed by the presence of ppGpp but appear to be sequence-specific. The effect of ppGpp on the extent of pausing depends on the particular promoter and closely adjacent sequences that the RNA polymerase has passed during initiation. Pausing enhancement requires the presence of ppGpp during elongation but not during initiation. The results underline the importance of pausing for transcription regulation and offer a plausible explanation for inhibition of stable RNA expression under conditions of elevated concentrations of ppGpp.
Collapse
Affiliation(s)
- M Krohn
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Federal Republic of Germany
| | | |
Collapse
|
14
|
Liebig B, Wagner R. Effects of different growth conditions on the in vivo activity of the tandem Escherichia coli ribosomal RNA promoters P1 and P2. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:328-35. [PMID: 7500958 DOI: 10.1007/bf00290534] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have analyzed the relative activities of the Escherichia coli ribosomal RNA promoters P1 and P2 in vivo under different physiological conditions. Promoter efficiencies were determined by quantitative comparison of the transcript-specific primer extension products obtained from total RNA preparations. Cells were analyzed at different stages of the growth cycle, at different growth rates, and under conditions of stringent control. In addition, the rRNA gene dosage was altered by transformation with plasmids containing additional rrnD or rrnB transcription units, or rRNA operons in which one of the tandem promoters (P1) had been deleted. Under conditions of amino acid starvation (stringent control) we observed the expected strong reduction in P1-directed transcription. In contrast to the previous assumption that the P2 promoter is not regulated, we simultaneously noticed a smaller but significant repression of P2-directed transcription. In strains in which the rRNA gene dosage was increased by transformation with plasmids bearing rRNA transcription units, a similar degree of repression was observed. Repression of the P1 promoter activity was increased, however, when cells contained extra rRNA operons with P2 promoters only. As demonstrated under stringent control conditions, changes in the growth cycle also affected the activity of promoters P1 and P2. A greater proportion of P2-derived transcripts was observed when cells changed from exponential to stationary growth or if cultures were grown in minimal medium. Under steady-state, slow growth conditions (minimal medium) we obtained evidence showing that the ratio of P1/P2 transcription products is much lower for cells with extra rrnB as compared to extra rrnD operons or cells lacking extra rRNA operons, implying an operon-specific regulation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B Liebig
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | |
Collapse
|
15
|
Clementz T. The gene coding for 3-deoxy-manno-octulosonic acid transferase and the rfaQ gene are transcribed from divergently arranged promoters in Escherichia coli. J Bacteriol 1992; 174:7750-6. [PMID: 1447141 PMCID: PMC207489 DOI: 10.1128/jb.174.23.7750-7756.1992] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The gene kdtA in Escherichia coli codes for 3-deoxy-D-manno-octulosonic acid transferase, the enzyme responsible for attachment of the two 3-deoxy-D-manno-octulosonic acid residues that constitute the link between lipid A and the core oligosaccharide of the lipopolysaccharide. Cloning and subsequent sequencing of the region upstream of kdtA revealed an open reading frame identified as the first gene (rfaQ) in an rfa gene cluster. The kdtA and rfaQ transcripts were identified, and the 5' ends of the transcripts were mapped by primer extension. Two main, divergently arranged promoters were found. These promoters generated transcripts with 5' ends separated by 289 bases. That the two divergent transcripts from the identified promoters represent the kdtA and rfaQ transcripts was confirmed by fusing different parts of the intergenic region between the promoterless lacZ and phoA genes in promoter-screening plasmid pCB267.
Collapse
Affiliation(s)
- T Clementz
- Department of Microbiology, University of Lund, Sweden
| |
Collapse
|
16
|
Diederich L, Rasmussen LJ, Messer W. New cloning vectors for integration in the lambda attachment site attB of the Escherichia coli chromosome. Plasmid 1992; 28:14-24. [PMID: 1387714 DOI: 10.1016/0147-619x(92)90032-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A set of plasmid cloning vectors has been constructed, allowing the integration of any DNA fragment into the bacteriophage lambda attachment site attB of the Escherichia coli chromosome. The system is based upon two components: (i) a number of cloning vectors containing the lambda attachment site attP and (ii) a helper plasmid, bearing the lambda int gene, transcribed from the lambda PR promoter under the control of the temperature-sensitive repressor cI857. The DNA fragment of interest is cloned into the multicloning site of one of the attP-harboring plasmids. Subsequently, the origin of the plasmid, located on a cloning cassette, is cut out and the DNA becomes newly ligated, resulting in a circular DNA molecule without replication ability. The strain of choice, containing the int gene carrying helper plasmid, is transformed with this DNA molecule and incubated at 42 degrees C to induce int gene expression. Additionally, the temperature shift leads to the loss of the helper plasmid after a few cell generations, because the replication ability of its replicon is blocked at 42 degrees C. These vectors have been successfully used for integration of several promoter-lacZ fusions into the chromosome. The ratio between integration due to homologous recombination and Int protein-mediated integration has been determined.
Collapse
Affiliation(s)
- L Diederich
- Max-Planck-Institut für molekulare Genetik, Berlin, Germany
| | | | | |
Collapse
|
17
|
Liveris D, Klotsky RA, Schwartz I. Growth rate regulation of translation initiation factor IF3 biosynthesis in Escherichia coli. J Bacteriol 1991; 173:3888-93. [PMID: 2050639 PMCID: PMC208021 DOI: 10.1128/jb.173.12.3888-3893.1991] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
infC, the gene encoding translation initiation factor IF3 in Escherichia coli, can be transcribed from three promoters. Two of these promoters, PI1 and PI2, are located in the upstream thrS sequence which codes for threonyl-tRNA synthetase. Previous studies had shown that PI2 was the major promoter for infC. In the present study, the extent of transcription from PI1 and/or PI2 at a variety of steady-state growth rates was analyzed by promoter fusion studies. PI2 was the more active promoter (two- to threefold stronger than PI1) at all growth rates tested. A fusion plasmid containing both PI1 and PI2 exhibited a transcription level approximately equal to the sum of those observed with the fusion plasmids containing the individual promoters. The transcriptional activities of PI1 and PI2 did not change as the growth rate was varied from 0.3 to 1.7 doublings per h. In contrast, a fusion plasmid carrying the rrnB P1 promoter displayed the expected growth rate response. The steady-state concentrations of infC mRNA in cells grown at different rates were measured and found not to vary. These results indicate that the previously reported growth rate regulation of IF3 biosynthesis neither is accomplished by transcriptional control nor is a result of differential mRNA stability. In view of these results, the steady-state levels of IF3 in cells grown at a number of different growth rates were determined by quantitative immunoblotting. IF3 levels were found to vary with growth rate in a manner essentially identical to that observed for ribosomes. A model accounting for these results and describing a mechanism for coordinate growth rate-regulated expression of ribosomes and IF3 is presented.
Collapse
Affiliation(s)
- D Liveris
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla 10595
| | | | | |
Collapse
|
18
|
Albrechtsen B, Ross BM, Squires C, Squires CL. Transcriptional termination sequence at the end of the Escherichia coli ribosomal RNA G operon: complex terminators and antitermination. Nucleic Acids Res 1991; 19:1845-52. [PMID: 1709493 PMCID: PMC328114 DOI: 10.1093/nar/19.8.1845] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have examined the termination region sequence of the rrnG operon and have observed its properties in vivo using a fusion plasmid test system. Transcription of rrnG terminator fragments was also studied in vitro. We found that termination of rrnG transcription is a complex process controlled by a tandem Rho-independent and Rho-dependent terminator arrangement which we designate rrnG-tt'. Together, these two elements were 98% efficient at terminating transcription initiated at the rrnG-P2 promoter. When the two elements were separated, however, we found that the Rho-independent structure was only 59% efficient while the Rho-dependent fragment alone could account for total transcriptional termination of the tandem arrangement. The rrnG termination region was resistant to rrn antitermination and, therefore, possesses some means of stopping antiterminated transcription. The distal rrnG sequence contains several additional noteworthy features; the rrnGt' fragment contains a REP (repetitive extragenic palindromic) sequence and homology with a small unidentified reading frame following rrnE. This sequence is followed by witA, which is homologous to a citrate transport gene, citB. Finally, our sequence, obtained from plasmid pLC23-30, contains a Tn1000 insertion that is absent from the E. coli chromosome. This insertion lies 975 bp beyond the 5S gene and is not involved in the termination events examined in this study.
Collapse
Affiliation(s)
- B Albrechtsen
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | | | | | | |
Collapse
|
19
|
The trmA promoter has regulatory features and sequence elements in common with the rRNA P1 promoter family of Escherichia coli. J Bacteriol 1991; 173:1757-64. [PMID: 1999392 PMCID: PMC207327 DOI: 10.1128/jb.173.5.1757-1764.1991] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The tRNA(m5U54)methyltransferase, whose structural gene is designated trmA, catalyzes the formation of 5-methyluridine in position 54 of all tRNA species in Escherichia coli. The synthesis of this enzyme has previously been shown to be both growth rate dependent and stringently regulated, suggesting regulatory features similar to those of rRNA. We have determined the complete nucleotide sequence of the trmA operon in E. coli and the sequence of the trmA promoter region in Salmonella typhimurium and also analyzed the transcriptional regulation of the gene. The trmA and the btuB (encoding the vitamin B12 outer membrane receptor protein) promoters are divergent promoters separated by 102 bp between the transcriptional start sites. The trmA promoters of both E. coli and S. typhimurium share promoter elements with the rRNA P1 promoter. The sequence downstream from the -10 region of the trmA promoter is homologous to the discriminatory region found in stringently regulated promoters. Next to and upstream from the -10 region is a sequence, TCCC, in the trmA promoter that is present in all of the seven rRNA P1 promoters and in some tRNA promoters but not in any other sigma 70 promoter. However, a similar motif is also found in promoters transcribed by the heat shock sigma factor sigma 32. The trmA gene is transcribed as a monocistronic operon, and the 3' end of the transcript is shown to be located downstream from a dyad symmetry region not followed by a poly(U) stretch. Using a trmA-cat operon fusion, we show that the growth rate-dependent regulation of trmA resembles that of rRNA and operates at the level of transcription.
Collapse
|
20
|
Zacharias M, Göringer HU, Wagner R. The signal for growth rate control and stringent sensitivity in E. coli is not restricted to a particular sequence motif within the promoter region. Nucleic Acids Res 1990; 18:6271-5. [PMID: 2243774 PMCID: PMC332491 DOI: 10.1093/nar/18.21.6271] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hybrid promoter constructs were used to determine the DNA sequence requirements for stringent and growth rate control within a promoter region. The promoters were obtained by fusing complementing sequence regions located upstream and downstream from the GCGC discriminator motif of the growth rate regulated rRNA P1 promoter and a non-regulated tac promoter variant. The activities and the regulatory response of the hybrid promoters were determined in vivo using a promoter test vector system with the chloramphenicol acetyltransferase (CAT) reporter gene. Measurements were made at different growth rates and after starvation for isoleucine to induce the stringent response. Neither the upstream nor the downstream sequence of P1 relative to the GCGC discriminator motif conferred comparable regulatory features when fused to the complementing sequences of the non-regulated mutant tac promoter. A minor response to amino acid deprivation or changes in the growth rate was noted for the hybrid promoter with the rrnB P1 upstream segment and the tac downstream element, pointing to a slightly different importance of the two sequence elements for regulation. The parallel effects for stringent as well as growth rate regulation of the hybrid promoters supports the view of a common mechanism for both types of control. However, none of the promoter sequence elements on its own was able to restore the complete regulatory behaviour of their 'parent' promoters.
Collapse
Affiliation(s)
- M Zacharias
- Max-Planck-Institut für Molekulare Genetik, Abteilung Wittmann, Berlin, FRG
| | | | | |
Collapse
|
21
|
Metzer E, Halpern YS. In vivo cloning and characterization of the gabCTDP gene cluster of Escherichia coli K-12. J Bacteriol 1990; 172:3250-6. [PMID: 2188954 PMCID: PMC209132 DOI: 10.1128/jb.172.6.3250-3256.1990] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The gabCTDP gene cluster, which specifies and regulates synthesis of the gamma-aminobutyrate (GABA) transport carrier, of glutamate-succinic semialdehyde transaminase, and of succinic semialdehyde dehydrogenase, responsible for the uptake and metabolism of gamma-aminobutyric acid in Escherichia coli K-12, was cloned in vivo, using the mini-Mu replicon bacteriophage Mu dI5086 as the vector. A subclone containing a 7.8-kilobase (kb) EcoRI-HindIII fragment complemented all of our Gab- mutants. By restriction mapping, this DNA fragment was located at kb 2800.5 to 2808.5 on the physical map of the E. coli K-12 chromosome. A subclone containing a 1.8-kb EcoRI-SalI fragment complemented the gab-repressed strain CS101A (wild-type gabC) but did not complement any gab structural gene mutants. The gab genes are divergently transcribed from promoters located in the vicinity of the unique BamHI site. Transcription in both directions is under dual control of catabolite repression and nitrogen regulation. Using a procaryotic DNA-directed translation system, we observed three insert-coded polypeptide bands of 53 to 55, 45 to 48, and 40 to 43 kilodaltons (kDa). In vivo studies with subcloned fragments of the gab DNA identified the 53- to 55- and 45- to 48-kDa bands as products of the BamHI-SalI fragment and the 40- to 43-kDa band as the product of the EcoRI-SalI fragment. An additional 26- to 28-kDa band was identified as the product of the BamHI-HindIII fragment. Furthermore, the BamHI-SalI fragment was shown to specify synthesis of the two GABA enzymes, whereas synthesis of the GABA carrier was specified by the BamHI-HindIII fragment. No catalytic function in addition to its regulatory role could be attributed to the EcoRI-SalI gene product.
Collapse
Affiliation(s)
- E Metzer
- Department of Molecular Biology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
22
|
van der Woude MW, Braster M, van Verseveld HW, de Graaf FK. Control of temperature-dependent synthesis of K99 fimbriae. FEMS Microbiol Lett 1990; 56:183-8. [PMID: 1970546 DOI: 10.1111/j.1574-6968.1990.tb04146.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The influence of temperature on the production of K99 fimbriae by Escherichia coli was determined in cultures growing at constant specific growth rate in continuous cultures. In a wild type strain, in which the K99 operon is present on a low copy number plasmid, low cultivation temperature repressed the K99 production. This temperature-dependent production was not observed after introduction of multicopies of the regulatory region of the K99 operon into this strain, nor in E. coli K12 harbouring a recombinant, multicopy plasmid encoding the K99 operon. These results are in agreement with a regulation model in which a regulatory factor, most likely a repressor, inhibits expression of the K99 operon at low temperatures.
Collapse
Affiliation(s)
- M W van der Woude
- Department of Microbiology, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
23
|
Balbas P, Bolivar F. Design and construction of expression plasmid vectors in Escherichia coli. Methods Enzymol 1990; 185:14-37. [PMID: 2199776 DOI: 10.1016/0076-6879(90)85005-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Berg KL, Squires C, Squires CL. Ribosomal RNA operon anti-termination. Function of leader and spacer region box B-box A sequences and their conservation in diverse micro-organisms. J Mol Biol 1989; 209:345-58. [PMID: 2479752 DOI: 10.1016/0022-2836(89)90002-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
All Escherichia coli rrn operons show a common motif in which anti-terminator box B-box A sequences occur twice, first in the leader and again in the 16 S-23 S spacer. In this study we have analyzed several aspects of rrn anti-termination by leader and spacer anti-terminator sequences. Using DNA synthesis and a plasmid test system, we incorporated random changes into the leader anti-terminator region and examined these mutations for their ability to read through a strong terminator. We also examined anti-termination by synthetic box A and by rrn spacer region sequences. Information derived from these experiments was used to search the rrn sequences of other micro-organisms for possible anti-termination features. Our principal conclusions were that: (1) box A was sufficient for terminator readthrough; (2) we could show no positive requirement for box B in our test system; (3) many of the negative anti-terminator mutations caused a promoter up-effect in the absence of a terminator; (4) the search of rrn operons from other micro-organisms revealed that anti-terminator-like box B-box A sequences exist in leader and spacer regions of both eubacteria and archaebacteria. The frequent occurrence of this pattern suggested that the E. coli rrn anti-termination motif is widespread in nature and has been conserved in microbial evolution.
Collapse
Affiliation(s)
- K L Berg
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | | | | |
Collapse
|
25
|
Figueroa N, Bossi L. Transcription induces gyration of the DNA template in Escherichia coli. Proc Natl Acad Sci U S A 1988; 85:9416-20. [PMID: 2849103 PMCID: PMC282763 DOI: 10.1073/pnas.85.24.9416] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We show that transcription modulation of a plasmid sequence in exponentially growing Escherichia coli cells leads to a rapid change in the linking number of plasmid DNA. Activation of transcription is accompanied by an increase in the plasmid's level of negative supercoiling. The added superhelical turns, whose number is proportional to the strength of the promoter and to the length of the transcript, are promptly removed when transcription is turned off. The transcription-induced increase of template supercoiling can still be detected in the presence of an inhibitor of ATP-dependent DNA gyrase [DNA topoisomerase (ATP-hydrolyzing), EC 5.99.1.3]. Altogether, our results indicate that, in addition to being under a general control, DNA superhelicity can be modulated locally in response to the topological perturbations associated with DNA tracking processes. We discuss a model in which supercoiling changes are produced by differential swiveling activities on the opposite sides of a transcriptional flow during transcriptional modulation.
Collapse
|
26
|
Maley JA, Davidson JN. The aspartate transcarbamylase domain of a mammalian multifunctional protein expressed as an independent enzyme in Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1988; 213:278-84. [PMID: 2903435 DOI: 10.1007/bf00339592] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although aspartate transcarbamylase (ATCase) is an independent, monofunctional enzyme in Escherichia coli, mammalian ATCase is one of the globular enzymatic domains of the multifunctional CAD protein. We subcloned fragments of the hamster CAD cDNA and assayed polypeptide products expressed in E. coli for ATCase activity in order to isolate a stretch of cDNA which encodes only the ATCase domain. Three such expression constructs contain fragments of hamster CAD cDNA similar in length to the gene encoding the E. coli ATCase catalytic subunit (pyrB). These constructs yield stable proteins with ATCase activity, ascertained by both in vivo and in vitro assays; the clones also possess sequence homology with the pyrB gene at both the 5' and 3' ends. The clone producing the most active ATCase contains cDNA which is analogous to the entire pyrB gene, plus a small amount of CAD sequence upstream of this region. Because these constructs produce independently folded, active ATCase from a piece of cDNA the size of the E. coli pyrB gene, they open the door for the in-depth investigation of the isolated mammalian enzyme domain utilizing recombinant DNA technology. This approach is potentially useful for the analysis of domains of other multifunctional proteins.
Collapse
Affiliation(s)
- J A Maley
- Department of Microbiology and Immunology, Albert B. Chandler Medical Center, University of Kentucky, Lexington 40536-0084
| | | |
Collapse
|
27
|
Abstract
A plasmid, pJS133, was constructed which contains a promoterless cat gene encoding chloramphenicol (Cm) acetyltransferase (CAT) conferring Cm resistance. This improved cat cassette, derived from the cat gene in plasmid pKK232-8 [Brosius, Gene 27 (1984) 151-160], offers several advantages over currently available cat cassettes. Expression of cat from this cassette reflects only transcriptional activity because of translational stops in all three reading frames, and possesses facile insertion/excision properties employing the flanking polylinker restriction sites. In plasmid pJS133, this cassette can be obtained by a single digestion with SmaI, HindIII, SalI, BamHI or PstI restriction enzymes. Additionally, 28 different cat cassettes with unique flanking restriction sites can be created by the appropriate double digestions.
Collapse
Affiliation(s)
- A Shiau
- Department of Biochemistry and Molecular Biology, Louisiana State University School of Medicine, Shreveport 71130
| | | |
Collapse
|
28
|
Wertheimer SJ, Klotsky RA, Schwartz I. Transcriptional patterns for the thrS-infC-rplT operon of Escherichia coli. Gene 1988; 63:309-20. [PMID: 2838394 DOI: 10.1016/0378-1119(88)90534-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The genes coding for threonyl-tRNA synthetase (thrS), translation initiation factor 3 (infC) and ribosomal protein L20 (rplT) are clustered in the Escherichia coli genome. Previous studies had suggested the possibility that the expression of these genes is coupled. The transcriptional events in this operon have now been examined by S1 nuclease mapping and promoter fusion studies. The results indicate that infC-containing mRNAs are initiated from three separate promoters. Two of these are located in the protein-coding region of thrS and one, P12, is the major promoter at all growth rates tested. In addition, there is co-transcription of thrS and infC from the thrS promoter (PT). A single promoter for thrS has been mapped approx. 170 nucleotides upstream from its translation initiation site. Another promoter has been located within the infC-coding region. It is separated from the next downstream gene, rplT, by a transcription end point. However, termination at this region is only 50-70% efficient and transcripts starting at this promoter can read through into rplT. These findings demonstrate that the pattern of transcription in this operon is highly complex and the mRNA levels for each of the genes is determined by a variety of factors, including multiple promoters, co-transcription and readthrough of transcription termination signals.
Collapse
Affiliation(s)
- S J Wertheimer
- Department of Biochemistry, New York Medical College, Valhalla 10595
| | | | | |
Collapse
|