1
|
Kongdin M, Mahong B, Lee SK, Shim SH, Jeon JS, Ketudat Cairns JR. Action of Multiple Rice β-Glucosidases on Abscisic Acid Glucose Ester. Int J Mol Sci 2021; 22:7593. [PMID: 34299210 PMCID: PMC8303963 DOI: 10.3390/ijms22147593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022] Open
Abstract
Conjugation of phytohormones with glucose is a means of modulating their activities, which can be rapidly reversed by the action of β-glucosidases. Evaluation of previously characterized recombinant rice β-glucosidases found that nearly all could hydrolyze abscisic acid glucose ester (ABA-GE). Os4BGlu12 and Os4BGlu13, which are known to act on other phytohormones, had the highest activity. We expressed Os4BGlu12, Os4BGlu13 and other members of a highly similar rice chromosome 4 gene cluster (Os4BGlu9, Os4BGlu10 and Os4BGlu11) in transgenic Arabidopsis. Extracts of transgenic lines expressing each of the five genes had higher β-glucosidase activities on ABA-GE and gibberellin A4 glucose ester (GA4-GE). The β-glucosidase expression lines exhibited longer root and shoot lengths than control plants in response to salt and drought stress. Fusions of each of these proteins with green fluorescent protein localized near the plasma membrane and in the apoplast in tobacco leaf epithelial cells. The action of these extracellular β-glucosidases on multiple phytohormones suggests they may modulate the interactions between these phytohormones.
Collapse
Affiliation(s)
- Manatchanok Kongdin
- School of Chemistry, Institute of Science, Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Bancha Mahong
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea; (B.M.); (S.-K.L.); (S.-H.S.)
| | - Sang-Kyu Lee
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea; (B.M.); (S.-K.L.); (S.-H.S.)
| | - Su-Hyeon Shim
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea; (B.M.); (S.-K.L.); (S.-H.S.)
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea; (B.M.); (S.-K.L.); (S.-H.S.)
| | - James R. Ketudat Cairns
- School of Chemistry, Institute of Science, Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| |
Collapse
|
2
|
Baiya S, Mahong B, Lee SK, Jeon JS, Ketudat Cairns JR. Demonstration of monolignol β-glucosidase activity of rice Os4BGlu14, Os4BGlu16 and Os4BGlu18 in Arabidopsis thaliana bglu45 mutant. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:223-230. [PMID: 29614441 DOI: 10.1016/j.plaphy.2018.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
The glycoside hydrolase family 1 members Os4BGlu14, Os4BGlu16, and Os4BGlu18 were proposed to be rice monolignol β-glucosidases. In vitro studies demonstrated that the Os4BGlu16 and Os4BGlu18 hydrolyze the monolignol glucosides coniferin and syringin with high efficiency compared to other substrates. The replacement of the conserved catalytic acid/base glutamate residue by a nonionizable glutamine residue in Os4BGlu14 suggested that it may be inactive as a β-glucosidase. Here, we investigated the activities of Os4BGlu14, Os4BGlu16, and Os4BGlu18 in planta by recombinant expression of their genes in the Arabidopsis bglu45-2 (monolignol β-glucosidase) mutant and analysis of monolignol glucosides by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MSMS). The bglu45-2 line exhibits elevated monolignol glucoside levels, but lower amounts of coniferin, syringin, and p-coumaryl alcohol glucoside were seen in Arabidopsis bglu45-2 rescued lines complemented by the Os4BGlu14, Os4BGlu16, and Os4BGlu18 genes. These data suggest that the bglu45-2 mutant has a broader effect on monolignols than previously reported and that the Os4BGlu14, Os4BGlu16 and Os4BGlu18 proteins act as monolignol β-glucosidases to complement the defect. An OsBGlu16-GFP fusion protein localized to the cell wall. This apoplastic localization and the effect of these enzymes on monolignol glucoside levels suggest monolignol glucosides from the vacuole may meet the monolignol β-glucosidases, despite their different localization.
Collapse
Affiliation(s)
- Supaporn Baiya
- Faculty of Science at Sriracha, Kasetsart University, Sriracha Campus, Chonburi, 20230, Thailand; Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Bancha Mahong
- Graduate School of Biotechnology, Kyung-Hee University, Yongin, 17104, South Korea
| | - Sang-Kyu Lee
- Graduate School of Biotechnology, Kyung-Hee University, Yongin, 17104, South Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology, Kyung-Hee University, Yongin, 17104, South Korea.
| | - James R Ketudat Cairns
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand; School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand; Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand.
| |
Collapse
|
3
|
Identifying Stable Reference Genes for qRT-PCR Normalisation in Gene Expression Studies of Narrow-Leafed Lupin (Lupinus angustifolius L.). PLoS One 2016; 11:e0148300. [PMID: 26872362 PMCID: PMC4752343 DOI: 10.1371/journal.pone.0148300] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/15/2016] [Indexed: 11/19/2022] Open
Abstract
Quantitative Reverse Transcription PCR (qRT-PCR) is currently one of the most popular, high-throughput and sensitive technologies available for quantifying gene expression. Its accurate application depends heavily upon normalisation of gene-of-interest data with reference genes that are uniformly expressed under experimental conditions. The aim of this study was to provide the first validation of reference genes for Lupinus angustifolius (narrow-leafed lupin, a significant grain legume crop) using a selection of seven genes previously trialed as reference genes for the model legume, Medicago truncatula. In a preliminary evaluation, the seven candidate reference genes were assessed on the basis of primer specificity for their respective targeted region, PCR amplification efficiency, and ability to discriminate between cDNA and gDNA. Following this assessment, expression of the three most promising candidates [Ubiquitin C (UBC), Helicase (HEL), and Polypyrimidine tract-binding protein (PTB)] was evaluated using the NormFinder and RefFinder statistical algorithms in two narrow-leafed lupin lines, both with and without vernalisation treatment, and across seven organ types (cotyledons, stem, leaves, shoot apical meristem, flowers, pods and roots) encompassing three developmental stages. UBC was consistently identified as the most stable candidate and has sufficiently uniform expression that it may be used as a sole reference gene under the experimental conditions tested here. However, as organ type and developmental stage were associated with greater variability in relative expression, it is recommended using UBC and HEL as a pair to achieve optimal normalisation. These results highlight the importance of rigorously assessing candidate reference genes for each species across a diverse range of organs and developmental stages. With emerging technologies, such as RNAseq, and the completion of valuable transcriptome data sets, it is possible that other potentially more suitable reference genes will be identified for this species in future.
Collapse
|
4
|
Characterization and putative post-translational regulation of α- and β-tubulin gene families in Salix arbutifolia. Sci Rep 2016; 6:19258. [PMID: 26753794 PMCID: PMC4709717 DOI: 10.1038/srep19258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/10/2015] [Indexed: 11/08/2022] Open
Abstract
Microtubules, which are composed of heterodimers of α-tubulin (TUA) and β-tubulin (TUB) proteins, are closely associated with cellulose microfibril deposition and play pivotal roles in plant secondary cell wall development. In the present study, we identified eight TUA and twenty TUB genes in willow (Salix arbutifolia). Quantitative real-time PCR analysis showed that the small number of TUA gene family members relative to that of TUBs was complemented by a higher transcript copy number for each TUA gene, which is essential to the maintenance of the tubulin 1:1 heterodimer assembly. In Salix, five of eight TUAs were determined to be unusual because these contained a C-terminal methionine acid, leucine acid, glutamic acid, and glutamine acid, instead of the more typical tyrosine residue, which in turn generated the hypothesis of post-translational modifications (PTMs) that included deleucylation, demethiolation, deglutamynation, and deaspartylation. These PTMs are responsible for the removal of additional amino acid residues from TUAs prior to detyrosination, which is the first step of C-terminal PTMs. The additional PTMs of the TUA gene family might be responsible for the formation of different tubulin heterodimers that may have diverse functions for the adaptation of the woody perennial growth for Salix.
Collapse
|
5
|
Hong SM, Bahn SC, Lyu A, Jung HS, Ahn JH. Identification and testing of superior reference genes for a starting pool of transcript normalization in Arabidopsis. PLANT & CELL PHYSIOLOGY 2010; 51:1694-706. [PMID: 20798276 DOI: 10.1093/pcp/pcq128] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Genes that are stably expressed during development or in response to environmental changes are essential for accurate normalization in qRT-PCR experiments. To prevent possible misinterpretation caused by the use of unstable housekeeping genes, such as UBQ10, ACT, TUB and EF-1α, as a reference, the use of 20 stably expressed genes identified from microarray analyses was proposed. Furthermore, it was recommended that at least four genes among them be tested to identify suitable reference genes under different experimental conditions. However, testing the 20 potential reference genes under any condition is inefficient. Furthermore, since their stability still varies, there is a need to identify a subset of genes that are more stable than others, which can be used as a starting pool for testing. Here, we validated the expression stability of the potential candidate genes together with the above-mentioned conventional reference genes under six experimental conditions commonly used in plant developmental biology. To increase fidelity, three independent validation experiments were carried out for each experimental condition. A hypothetical normalization factor, which is the geometric mean of genes that were identified as stably expressed genes in each experiment, was used to exclude unstable genes under a given condition. We identified a subset of genes showing higher expression stability under specific experimental conditions. We recommend the use of these genes as a starting pool for the identification of suitable reference genes under given experimental conditions to ensure accurate normalization in qRT-PCR analysis.
Collapse
Affiliation(s)
- Sung Myun Hong
- Creative Research Initiatives, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | |
Collapse
|
6
|
Garavaglia BS, Thomas L, Zimaro T, Gottig N, Daurelio LD, Ndimba B, Orellano EG, Ottado J, Gehring C. A plant natriuretic peptide-like molecule of the pathogen Xanthomonas axonopodis pv. citri causes rapid changes in the proteome of its citrus host. BMC PLANT BIOLOGY 2010; 10:51. [PMID: 20302677 PMCID: PMC2923525 DOI: 10.1186/1471-2229-10-51] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 03/21/2010] [Indexed: 05/05/2023]
Abstract
BACKGROUND Plant natriuretic peptides (PNPs) belong to a novel class of peptidic signaling molecules that share some structural similarity to the N-terminal domain of expansins and affect physiological processes such as water and ion homeostasis at nano-molar concentrations. The citrus pathogen Xanthomonas axonopodis pv. citri possesses a PNP-like peptide (XacPNP) uniquely present in this bacteria. Previously we observed that the expression of XacPNP is induced upon infection and that lesions produced in leaves infected with a XacPNP deletion mutant were more necrotic and lead to earlier bacterial cell death, suggesting that the plant-like bacterial PNP enables the plant pathogen to modify host responses in order to create conditions favorable to its own survival. RESULTS Here we measured chlorophyll fluorescence parameters and water potential of citrus leaves infiltrated with recombinant purified XacPNP and demonstrate that the peptide improves the physiological conditions of the tissue. Importantly, the proteomic analysis revealed that these responses are mirrored by rapid changes in the host proteome that include the up-regulation of Rubisco activase, ATP synthase CF1 alpha subunit, maturase K, and alpha- and beta-tubulin. CONCLUSIONS We demonstrate that XacPNP induces changes in host photosynthesis at the level of protein expression and in photosynthetic efficiency in particular. Our findings suggest that the biotrophic pathogen can use the plant-like hormone to modulate the host cellular environment and in particular host metabolism and that such modulations weaken host defence.
Collapse
Affiliation(s)
- Betiana S Garavaglia
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
- Consejo de Investigaciones de la Universidad Nacional de Rosario, Rosario, Argentina
| | - Ludivine Thomas
- Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Tamara Zimaro
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
| | - Natalia Gottig
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
| | - Lucas D Daurelio
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
| | - Bongani Ndimba
- Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Elena G Orellano
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
| | - Jorgelina Ottado
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
| | - Chris Gehring
- Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- CBRC, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Ogrzewalla K, Piotrowski M, Reinbothe S, Link G. The plastid transcription kinase from mustard (Sinapis alba
L.). ACTA ACUST UNITED AC 2009. [DOI: 10.1046/j.1432-1033.2002.03017_269_13.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
da Costa-Nunes JA, Bhatt AM, O'Shea S, West CE, Bray CM, Grossniklaus U, Dickinson HG. Characterization of the three Arabidopsis thaliana RAD21 cohesins reveals differential responses to ionizing radiation. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:971-83. [PMID: 16488915 DOI: 10.1093/jxb/erj083] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The RAD21/REC8 gene family has been implicated in sister chromatid cohesion and DNA repair in several organisms. Unlike most eukaryotes, Arabidopsis thaliana has three RAD21 gene homologues, and their cloning and characterization are reported here. All three genes, AtRAD21.1, AtRAD21.2, and AtRAD21.3, are expressed in tissues rich in cells undergoing cell division, and AtRAD21.3 shows the highest relative level of expression. An increase in steady-state levels of AtRAD21.1 transcript was also observed, specifically after the induction of DNA damage. Phenotypic analysis of the atrad21.1 and atrad21.3 mutants revealed that neither of the single mutants was lethal, probably due to the redundancy in function of the AtRAD21 genes. However, AtRAD21.1 plays a critical role in recovery from DNA damage during seed imbibition, prior to germination, as atrad21.1 mutant seeds are hypersensitive to radiation damage.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/physiology
- Arabidopsis/radiation effects
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Arabidopsis Proteins/physiology
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomal Proteins, Non-Histone/physiology
- Cloning, Molecular
- DNA Damage
- Flowers/anatomy & histology
- Flowers/physiology
- Flowers/radiation effects
- Gene Expression Regulation, Plant
- Genes, Plant
- Genes, Reporter
- Molecular Sequence Data
- Mutation
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Nuclear Proteins/physiology
- Phenotype
- RNA, Messenger/metabolism
- Radiation, Ionizing
- Seedlings/anatomy & histology
- Seedlings/physiology
- Seedlings/radiation effects
- Seeds/anatomy & histology
- Seeds/physiology
- Seeds/radiation effects
- Sequence Analysis, Protein
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- J A da Costa-Nunes
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | | | | | | | | | | |
Collapse
|
9
|
Jost W, Baur A, Nick P, Reski R, Gorr G. A large plant beta-tubulin family with minimal C-terminal variation but differences in expression. Gene 2004; 340:151-60. [PMID: 15556303 DOI: 10.1016/j.gene.2004.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Revised: 05/10/2004] [Accepted: 06/03/2004] [Indexed: 11/24/2022]
Abstract
Tubulins, as the major structural component of microtubules (MT), are highly conserved throughout the entire eukaryotic kingdom. They consist of alpha/beta heterodimers. Both monomers, at least in multicellular organisms, are encoded by gene families. In higher plants up to eight beta-tubulin isotypes, mostly differing in their very C-termini, have been described. These variable beta-tubulin C-termini have been discussed in the context of functional microtubule diversity. However, in plants, in contrast to vertebrates, functional isotype specificity remains yet to be demonstrated. Unlike higher plants, unicellular green algae in general do not exhibit isotypic variations. The moss Physcomitrella patens is a phylogenetic intermediate between higher plants and green algae. We isolated six beta-tubulin genes from Physcomitrella, named PpTub1 to 6. We show that the exon/intron structure, with the exception of one additional intron in PpTub6, is identical with that of higher plants, and that some members of the family are differentially expressed. Moreover, we find that all Physcomitrella isotypes are highly conserved and, most strikingly, are almost identical within their C-terminal amino acids (aa). This evolutionary ancient and large beta-tubulin gene family without significant isotypic sequence variation points to a role of differential regulation in the evolution of plant tubulin isotypes.
Collapse
Affiliation(s)
- Wolfgang Jost
- Greenovation Biotech GmbH, Bötzingerstrasse 29b, D-79111 Freiburg, Germany
| | | | | | | | | |
Collapse
|
10
|
de Almeida Engler J, Van Poucke K, Karimi M, De Groodt R, Gheysen G, Engler G, Gheysen G. Dynamic cytoskeleton rearrangements in giant cells and syncytia of nematode-infected roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:12-26. [PMID: 15053756 DOI: 10.1111/j.1365-313x.2004.02019.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Giant cells induced by root knot nematodes and syncytia caused by cyst nematodes are large multinucleated feeding cells containing a dense cytoplasm generated during a complex host-parasite association in plant roots. To find out whether cytoskeleton changes occurred during feeding cell development, transcriptional activity of actin (ACT) and tubulin genes and organization of the ACT filaments and of the microtubules (MTs) were analyzed in situ. The importance of changes in the cytoskeleton architecture for the proper initiation and development of galls and syncytia was demonstrated by perturbing the cytoskeleton with chemical inhibitors. The expression levels of cytoskeletal components, such as tubulins and ACTs, are proposed to be upregulated to allow the assembly of a new cytoskeleton in expanding feeding cells. However, MTs and ACT filaments failed to properly organize and appeared partially depolymerized throughout feeding site development. Both the actin and tubulin cytoskeletons were strongly disrupted in syncytia and mitotic figures were never observed. In contrast, in giant cells, an ACT and cortical MT cytokeleton, although disturbed, was still visible. In addition, a functional mitotic apparatus was present that contained multiple large spindles and arrested phragmoplasts, but no pre-prophase bands. Chemical stabilization of the microtubular cytoskeleton with taxol blocked feeding site development. On the other hand, when the ACT or MT cytoskeleton of feeding cells was depolymerized by cytochalasin D or oryzalin, nematodes could complete their life cycle. Our data suggest that the cytoskeleton rearrangements and depolymerization induced by parasitic nematodes may be essential for a successful feeding process.
Collapse
Affiliation(s)
- Janice de Almeida Engler
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, B-9052 Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|
11
|
Lilley CJ, Urwin PE, Johnston KA, Atkinson HJ. Preferential expression of a plant cystatin at nematode feeding sites confers resistance to Meloidogyne incognita and Globodera pallida. PLANT BIOTECHNOLOGY JOURNAL 2004; 2:3-12. [PMID: 17166138 DOI: 10.1046/j.1467-7652.2003.00037.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The expression patterns of three promoters preferentially active in the roots of Arabidopsis thaliana have been investigated in transgenic potato plants in response to plant parasitic nematode infection. Promoter regions from the three genes, TUB-1, ARSK1 and RPL16A were linked to the GUS reporter gene and histochemical staining was used to localize expression in potato roots in response to infection with both the potato cyst nematode, Globodera pallida and the root-knot nematode, Meloidogyne incognita. All three promoters directed GUS expression chiefly in root tissue and were strongly up-regulated in the galls induced by feeding M. incognita. Less activity was associated with the syncytial feeding cells of the cyst nematode, although the ARSK1 promoter was highly active in the syncytia of G. pallida infecting soil grown plants. Transgenic potato lines that expressed the cystatin OcIDeltaD86 under the control of the three promoters were evaluated for resistance against Globodera sp. in a field trial and against M. incognita in containment. Resistance to Globodera of 70 +/- 4% was achieved with the best line using the ARSK1 promoter with no associated yield penalty. The highest level of partial resistance achieved against M. incognita was 67 +/- 9% using the TUB-1 promoter. In both cases this was comparable to the level of resistance achieved using the constitutive cauliflower mosaic virus 35S (CaMV35S) promoter. The results establish the potential for limiting transgene expression in crop plants whilst maintaining efficacy of the nematode defence.
Collapse
|
12
|
Atkinson HJ, Urwin PE, McPherson MJ. Engineering plants for nematode resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2003; 41:615-39. [PMID: 12730388 DOI: 10.1146/annurev.phyto.41.052002.095737] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Biotechnology offers sustainable solutions to the problem of plant parasitic nematode control. There are several possible approaches for developing transgenic plants with improved nematode resistance; these include anti-invasion and migration strategies, feeding-cell attenuation, and antinematode feeding and development strategies. The essential elements of an effective control strategy are (a) genes that encode an antinematode effector protein, peptide or interfering RNA and (b) promoters that direct a specific pattern of expression for that effector. This review summarizes information on effectors that act directly against the nematode as well as those aimed at disrupting the nematode feeding site. We discuss patterns of promoter activity that could deliver expression of these effectors in a restricted and directed manner. Societal opposition to the technology of GM-nematode control is also discussed.
Collapse
Affiliation(s)
- Howard J Atkinson
- Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | | | | |
Collapse
|
13
|
Bao Y, Kost B, Chua NH. Reduced expression of alpha-tubulin genes in Arabidopsis thaliana specifically affects root growth and morphology, root hair development and root gravitropism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 28:145-157. [PMID: 11722758 DOI: 10.1046/j.1365-313x.2001.01142.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Different alpha-tubulin cDNA sequences fused in an antisense orientation to a CaMV 35S promoter were introduced into Arabidopsis thaliana plants. Several independent transgenic lines that showed a moderate but clear reduction of alpha-tubulin gene expression (TUA6/AS lines) were obtained and phenotypically characterized. Although no apparent abnormalities were detected in the aerial parts of TUA6/AS plants, root development was severely affected. Cells in TUA6/AS root tips were found to contain aberrant microtubular structures, to expand abnormally and to be unable to undergo regular cell division. These cellular defects caused a dramatic radial expansion of the root tip and inhibited root elongation. In addition, TUA6/AS roots displayed ectopic formation of root hairs, root hair branching and a reduced ability to respond to gravitropic challenges. Our results contribute to an improved understanding of the different roles microtubules play during root development and demonstrate that reverse genetics is a powerful tool to analyze cytoskeletal functions during plant organogenesis.
Collapse
Affiliation(s)
- Y Bao
- Laboratory of Plant Cell Biology, Institute of Molecular Agrobiology, 1 research link, National University of Singapore, 117604, Singapore
| | | | | |
Collapse
|
14
|
Aalen RB, Salehian Z, Steinum TM. Stability of barley aleurone transcripts: Dependence on protein synthesis, influence of the starchy endosperm and destabilization by GA3. PHYSIOLOGIA PLANTARUM 2001; 112:403-413. [PMID: 11473698 DOI: 10.1034/j.1399-3054.2001.1120314.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have studied the stability of Barley aleurone and embryo expressed (Balem) transcripts in aleurone layers. The Per1, Ole1 and Ole2 transcripts are abundant during desiccation and in dry resting seeds, while B12D and B22E transcripts are expressed mainly during seed maturation and germination. From 21 to 40 days post anthesis (DPA) incubation of aleurone layers resulted in a substantial, but differential reduction in the levels of these transcripts. In contrast, Balem transcript levels in aleurone layers of incubated embryoless grains were (except for B22E) similar to those of freshly dissected layers. Cycloheximide lowered transcript levels significantly. This indicates that a protein-synthesis-dependent mRNA-stabilizing mechanism is active in the aleurone cells when attached to the starchy endosperm. At the onset of seed desiccation (40 DPA), half-lives of transcripts to be stored in the dry seed were up to several days longer than the half-life of B22E, which decreases during seed maturation. While the Per1, Ole1 and Ole2 transcript levels decline rapidly in the aleurone layers of mature, germinating seeds, the genes are actively transcribed and their transcripts highly stable in the aleurone of incubated embryoless seeds. The expression of Ole1 and Ole2, as well as Per1, can be repressed 100-1 000-fold by gibberellic acid (GA3) in a dose-dependent manner. Abscisic acid can counteract the GA3 repression. Incubations with transcriptional and translational inhibitors indicate that GA3 inhibits the transcription of these genes and at the same time induces a protein-synthesis-dependent mechanism destabilizing their mRNA molecules present.
Collapse
Affiliation(s)
- R. B. Aalen
- Division of Molecular Biology, University of Oslo, P.O. Box 1031, Blindern, N-0315 Oslo, Norway; Present address: Department of Pharmacology, Microbiology and Food Hygiene, Norwegian College of Veterinary Medicine, P.O. Box 8146, N-0033 Oslo, Norway
| | | | | |
Collapse
|
15
|
Hermsmeier D, Schittko U, Baldwin IT. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. I. Large-scale changes in the accumulation of growth- and defense-related plant mRNAs. PLANT PHYSIOLOGY 2001; 125:683-700. [PMID: 11161026 PMCID: PMC64870 DOI: 10.1104/pp.125.2.683] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2000] [Revised: 07/24/2000] [Accepted: 09/20/2000] [Indexed: 05/18/2023]
Abstract
Plants respond to herbivore attack with a dramatic functional reorganization that involves the activation of direct and indirect defenses and tolerance, which in turn make large demands on primary metabolism. Here we provide the first characterization of the transcriptional reorganization that occurs after insect attack in a model plant-herbivore system: Nicotiana attenuata Torr. ex Wats.-Manduca sexta. We used mRNA differential display to characterize one-twentieth of the insect-responsive transcriptome of N. attenuata and verified differential expression for 27 cDNAs. Northern analyses were used to study the effects of folivory and exposure to airborne methyl jasmonate and for kinetic analyses throughout a 16-h- light/8-h-dark cycle. Sequence similarity searches allowed putative functions to be assigned to 15 transcripts. Genes were related to photosynthesis, electron transport, cytoskeleton, carbon and nitrogen metabolism, signaling, and a group responding to stress, wounding, or invasion of pathogens. Overall, transcripts involved in photosynthesis were strongly down-regulated, whereas those responding to stress, wounding, and pathogens and involved in shifting carbon and nitrogen to defense were strongly up-regulated. The majority of transcripts responded similarly to airborne methyl jasmonate and folivory, and had tissue- and diurnal-specific patterns of expression. Transcripts encoding Thr deaminase (TD) and a putative retrotransposon were absent in control plants, but were strongly induced after herbivory. Full-length sequences were obtained for TD and the pathogen-inducible alpha-dioxygenase, PIOX. Effects of abiotic and biotic stimuli were investigated for transcripts encoding TD, importin alpha, PIOX, and a GAL83-like kinase cofactor.
Collapse
Affiliation(s)
- D Hermsmeier
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Carl Zeiss Promenade 10, D-07745 Jena, Germany
| | | | | |
Collapse
|
16
|
Whittaker DJ, Triplett BA. Gene-specific changes in alpha-tubulin transcript accumulation in developing cotton fibers. PLANT PHYSIOLOGY 1999; 121:181-8. [PMID: 10482673 PMCID: PMC59366 DOI: 10.1104/pp.121.1.181] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The fibers of cotton (Gossypium hirsutum) are single-cell trichomes that undergo rapid and synchronous elongation. Cortical microtubules provide spatial information necessary for the alignment of cellulose microfibrils that confine and regulate cell elongation. We used gene-specific probes to investigate alpha-tubulin transcript levels in elongating cotton fibers. Two discrete patterns of transcript accumulation were observed. Whereas transcripts of alpha-tubulin genes GhTua2/3 and GhTua4 increased in abundance from 10 to 20 d post anthesis (DPA), GhTua1 and GhTua5 transcripts were abundant only through to 14 DPA, and dropped significantly at 16 DPA with the onset of secondary wall synthesis. This is the first report, to our knowledge, of gene-specific changes in tubulin transcript levels during the development of a terminally differentiated plant cell. The decrease in abundance of GhTua1 and GhTua5 transcripts was correlated with pronounced changes in cell wall structure, suggesting that alpha-tubulin isoforms may be functionally distinct in elongating fiber cells. Although total alpha-tubulin transcript levels were much higher in fiber than several other tissues, including the hypocotyl and pollen, none of the alpha-tubulins was specific to fiber cells.
Collapse
Affiliation(s)
- D J Whittaker
- Cotton Fiber Bioscience, United States Department of Agriculture-Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, Louisiana 70124, USA
| | | |
Collapse
|
17
|
Glover J, Grelon M, Craig S, Chaudhury A, Dennis E. Cloning and characterization of MS5 from Arabidopsis: a gene critical in male meiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 15:345-56. [PMID: 9750346 DOI: 10.1046/j.1365-313x.1998.00216.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In this paper, we describe the cloning of the MS5 gene, a gene essential for male fertility in Arabidopsis. We previously defined the MS5 locus by characterizing an EMS-induced allele, ms5-1. We identified a new allele of MS5 (ms5-2) that was T-DNA-generated and used the T-DNA tag to clone the gene. Sequencing of mutant and wild-type alleles together with complementation of the ms5-1 mutant phenotype with a wild-type genomic clone confirmed the identity of the gene. Differences between the phenotypes of the two mutant alleles could be attributed to differences in mutant gene structure. The semi-dominant and dominant negative phenotypes of the ms5-2 mutant probably result from production of a truncated polypeptide. An unknown locus in Landsberg erecta can counteract the dominant negative phenotype of ms5-2. Mutations in MS5 cause the formation 'polyads'--tetrads with more than four pools of chromosomes after male meiosis. Similarities between the MS5 sequence and that of a number of proteins were found; two that may be significant were with a synaptonemal complex protein and with a regulatory subunit of a cyclin-dependent kinase. The MS5 gene is a member of a small gene family highly conserved amongst plant species.
Collapse
Affiliation(s)
- J Glover
- CSIRO Division of Plant Industry, Canberra, Australia
| | | | | | | | | |
Collapse
|
18
|
Kestermann M, Neukirchen S, Kloppstech K, Link G. Sequence and expression characteristics of a nuclear-encoded chloroplast sigma factor from mustard (Sinapis alba). Nucleic Acids Res 1998; 26:2747-53. [PMID: 9592164 PMCID: PMC147615 DOI: 10.1093/nar/26.11.2747] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Plant chloroplasts contain transcription factors that functionally resemble bacterial sigma factors. We have cloned the full-length cDNA from mustard (Sinapis alba) for a 53 kDa derived polypeptide that contains similarity to regions 1.2-4.2 of sigma70-type factors. The amino acid sequence at the N-terminus has characteristics of a chloroplast transit peptide. An in vitro synthesized polypeptide containing this region was shown to be imported into the chloroplast and processed. The recombinant factor lacking the N-terminal extension was expressed in Escherichia coli and purified. It confers the ability on E.coli core RNA polymerase to bind specifically to a DNA fragment that contains the chloroplast psbA promoter. Transcription of the psbA template by E.coli core enzyme in the presence of recombinant SIG1 results in enhanced formation of transcripts of the size expected for correct initiation at the in vivo start site. Together, these data suggest that the mature protein acts as one of the chloroplast transcription factors in mustard. RNA gel blot hybridization reveals a transcript at approximately 1.8 kb, which is more abundant in light-grown than in dark-grown mustard seedlings.
Collapse
Affiliation(s)
- M Kestermann
- Plant Cell Physiology and Molecular Biology, University of Bochum, D-44780 Bochum, Germany
| | | | | | | |
Collapse
|
19
|
Chiapello H, Lisacek F, Caboche M, Hénaut A. Codon usage and gene function are related in sequences of Arabidopsis thaliana. Gene 1998; 209:GC1-GC38. [PMID: 9583944 DOI: 10.1016/s0378-1119(97)00671-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this paper, the relationship between codon usage and the physiological pattern of expression of a gene is investigated while considering a dataset of 815 nuclear genes of Arabidopsis thaliana. Factorial Correspondence Analysis, a commonly used multivariate statistical approach in codon usage analysis, was used in order to analyse codon usage bias gene by gene. The analysis reveals a single major trend in codon usage among genes in Arabidopsis. At one end of the trend lie genes with a highly G/C biased codon usage. This group contains mainly photosynthetic and housekeeping genes which are known to encode the most abundant proteins of the vegetal cell. At the other extreme lie genes with a weaker A/T-biased codon usage. This group contain genes with various functions which exhibits most of the time a strong tissue-specific pattern of expression in relation, for example, to stress conditions. These observations were confirmed by the detailed analysis of codon usage in the multigene family of tubulins and appear to be general in plant species, even as distant from Arabidopsis thaliana as a monocotyledonous plant such as maize.
Collapse
Affiliation(s)
- H Chiapello
- Laboratoire de Biologie Cellulaire, INRA, Cedex, France
| | | | | | | |
Collapse
|
20
|
Choi DW, Song JY, Kwon YM, Kim SG. Characterization of a cDNA encoding a proline-rich 14 kDa protein in developing cortical cells of the roots of bean (Phaseolus vulgaris) seedlings. PLANT MOLECULAR BIOLOGY 1996; 30:973-82. [PMID: 8639755 DOI: 10.1007/bf00020808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A cDNA clone, corresponding to mRNAs preferentially expressed in the roots of bean (Phaseolus vulgaris L.) seedlings, was isolated. This clone contains a 381 bp open reading frame encoding a polypeptide of 13.5 kDa, designated PVR5 (Phaseolus vulgaris root 5). The amino acid sequence of this clone is rich in proline (13.5%) and leucine (12.7%) and shares significant amino acid sequence homology with root-specific and proline-rich proteins from monocots (maize and rice), and proline-rich proteins from dicots (carrot, oilseed rape, and Madagascar periwinkle). The precise biological roles of these polypeptides are unknown. PVR5 mRNA accumulation is developmentally regulated within the root, with high levels at the root apex and declining levels at distances further from the root tip. In situ hybridization shows that PVR5 mRNA specifically accumulates in the cortical ground meristem in which maximal cell division occurs. Southern blot analysis suggests that genomic DNA corresponding to PVR5 cDNA is encoded by a single gene or a small gene family.
Collapse
Affiliation(s)
- D W Choi
- Department of Biology, Seoul National University, Seoul, Korea
| | | | | | | |
Collapse
|
21
|
The plant cytoskeleton. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1874-6020(96)80016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
|
22
|
Aalen RB. The transcripts encoding two oleosin isoforms are both present in the aleurone and in the embryo of barley (Hordeum vulgare L.) seeds. PLANT MOLECULAR BIOLOGY 1995; 28:583-588. [PMID: 7632926 DOI: 10.1007/bf00020404] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two transcripts (Ole-1 and Ole-2) encoding two oleosin isoforms homologous to the 18 and 16 kDa oleosins of maize, respectively, have been isolated from developing barley embryos and aleurone layers where lipid bodies are highly abundant organelles. For each of the isoforms the aleurone and embryo transcripts are identical, indicating that the same genes are expressed in both tissues. The temporal accumulation of the two transcripts during seed development is similar. At a low frequency, lipid bodies are found also in starchy endosperm cells of barley. Accordingly, a low transcript level is observed for both oleosins during starchy endosperm development.
Collapse
Affiliation(s)
- R B Aalen
- Division of General Genetics, University of Oslo, Norway
| |
Collapse
|
23
|
Brierley HL, Webster P, Long SR. The Pisum sativum TubA1 gene, a member of a small family of alpha-tubulin sequences. PLANT MOLECULAR BIOLOGY 1995; 27:715-27. [PMID: 7727749 DOI: 10.1007/bf00020225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
alpha- and beta-tubulin proteins are subunits of microtubules, which as primary elements of the plant cytoskeleton play major roles in plant cell division and cell morphogenesis. Several higher-plant alpha- and beta-tubulin gene families have been reported to have at least six to nine members each. Using genomic Southern hybridizations and polymerase chain reaction (PCR) experiments, we have found that the Pisum sativum (garden pea) genome has only four copies of alpha-tubulin sequences and a similar number of beta-tubulin sequences. We have characterized the pea alpha-tubulin gene TubA1. Its nucleotide sequence predicts a 452 amino acid product which is 89-98% identical to those predicted for other plant alpha-tubulins. By S1 nuclease analysis we have located the transcript start site at 102 bases upstream of the ATG. We have also shown that the TubA1 gene is expressed by northern hybridization with a gene-specific probe.
Collapse
Affiliation(s)
- H L Brierley
- Department of Biological Sciences, Stanford University, CA 94305-5020, USA
| | | | | |
Collapse
|
24
|
Sukanya R, Li MG, Snustad DP. Root- and shoot-specific responses of individual glutamine synthetase genes of maize to nitrate and ammonium. PLANT MOLECULAR BIOLOGY 1994; 26:1935-1946. [PMID: 7858228 DOI: 10.1007/bf00019504] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The responses of the five cytosolic-type glutamine synthetase (GS1) genes of maize to treatment of hydroponically grown seedlings with 10 mM KNO3 or 10 mM NH4Cl were analyzed. Non-coding 3' gene-specific hybridization probes and radioanalytic imaging were used to quantitate individual gene transcript levels in excised roots and shoots before treatment and at selected times after treatment. Genes GS1-1 and GS1-2 exhibited distinct organ-specific responses to treatment with either nitrogen source. The GS1-1 transcript level increased over three-fold in roots, but changed little if any in shoots. In contrast, the GS1-2 transcript level increased over two-fold in shoots, but decreased in roots after treatment. Increased transcript levels were evident at 4 h after treatment with either nitrogen source, with maximum accumulations present at 8 h after treatment with ammonium and at 10-12 h after treatment with nitrate. The GS1-3 gene transcript level showed little or no change after treatment with either nitrogen source. The GS1-4 gene transcript level remained constant in shoots of treated seedlings, whereas in roots, it exhibited relatively minor, but complex responses to these two nitrogen sources. The GS1-5 gene transcript is present in very small amounts in seedlings, making it difficult to analyze its response to metabolites in young plants. These results provide support for the possibility that different cytosolic GS genes of maize play distinct roles in nitrogen metabolism during plant growth and differentiation.
Collapse
Affiliation(s)
- R Sukanya
- Department of Genetics & Cell Biology, University of Minnesota, St. Paul 55108-1095
| | | | | |
Collapse
|
25
|
Kang MS, Choi YJ, Kim MC, Lim CO, Hwang I, Cho MJ. Isolation and characterization of two beta-tubulin cDNA clones from rice. PLANT MOLECULAR BIOLOGY 1994; 26:1975-1979. [PMID: 7858231 DOI: 10.1007/bf00019507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Two cDNA clones encoding two different beta-tubulins, RTUB-1 and RTUB-2, were isolated from a rice cDNA library and their nucleotide sequences were analyzed. The deduced amino acid sequences showed amino acid sequence identity between 92% and 97% with other plant beta-tubulins. Southern blot analysis using gene-specific and coding-region probes suggested that beta-tubulins in rice are encoded by multigene families. The two cDNA clones represent two subfamilies of rice tubulins, RTUB-1 and RTUB-2, consisting of 3 to 4 genes and a single gene, respectively. The transcript levels of RTUB-1 and RTUB-2 genes were higher in actively elongating tissues such as etiolated shoot tissues and light-grown root tissues of four-day old seedlings.
Collapse
Affiliation(s)
- M S Kang
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Chinju, Korea
| | | | | | | | | | | |
Collapse
|
26
|
Lai EY, Remillard SP, Fulton C. A beta-tubulin gene of Naegleria encodes a carboxy-terminal tyrosine. Aromatic amino acids are conserved at carboxy termini. J Mol Biol 1994; 235:377-88. [PMID: 8289261 DOI: 10.1016/s0022-2836(05)80045-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A gene that directs the programmed synthesis of flagellar beta-tubulin during the rapid differentiation of Naegleria gruberi from amoebae to flagellates has been cloned and sequenced. The intronless gene is one of 8 to 10 similar but non-identical genes that are dispersed in the genome. beta-Tubulin mRNA homologous to this gene family is expressed transiently during differentiation, and has not been detected in amoebae. The encoded beta-tubulin is strongly conserved, with features that closely resemble the beta-tubulins of diverse organisms, especially organisms that, like Naegleria, use tubulin to assemble flagellar axonemes. In most sequenced alpha-tubulins, the encoded carboxy-terminal amino acid is tyrosine, which undergoes post-translational removal and readdition, conserved processes of unknown function. In N. gruberi, unusually, the terminus of alpha-tubulin is encoded as glutamine while that of beta-tubulin is tyrosine. The presence of these divergent termini on subunits of a conserved tubulin provoked us to re-examine aromatic amino acids at the termini of alpha- and beta-tubulins. Although evolution has tinkered extensively with the carboxy-terminal domains of tubulin subunits, we find an unexpected conservation. In every organism or cell type for which both tubulin subunits have been sequenced, except the ciliate Stylonychia lemnae, at least one tubulin subunit of some or all tubulin heterodimers terminates in an aromatic amino acid, either tyrosine or phenylalanine. This remarkable conservation of carboxy-terminal aromatic amino acids suggests that these residues serve some crucial function.
Collapse
Affiliation(s)
- E Y Lai
- Department of Biology, Brandeis University, Waltham, MA 02254
| | | | | |
Collapse
|
27
|
|
28
|
Li MG, Villemur R, Hussey PJ, Silflow CD, Gantt JS, Snustad DP. Differential expression of six glutamine synthetase genes in Zea mays. PLANT MOLECULAR BIOLOGY 1993; 23:401-7. [PMID: 8106013 DOI: 10.1007/bf00029015] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The maize genome has been shown to contain six glutamine synthetase (GS) genes with at least four different expression patterns. Noncoding 3' gene-specific probes were constructed from all six GS cDNA clones and used to examine transcript levels in selected organs by RNA gel blot hybridization experiments. The transcript of the single putative chloroplastic GS2 gene was found to accumulate primarily in green tissues, whereas the transcripts of the five putative GS1 genes were shown to accumulate preferentially in roots. The specific patterns of transcript accumulation were quite distinct for the five GS1 genes, with the exception of two closely related genes.
Collapse
Affiliation(s)
- M G Li
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108-1095
| | | | | | | | | | | |
Collapse
|
29
|
McGrath JM, Jancso MM, Pichersky E. Duplicate sequences with a similarity to expressed genes in the genome of Arabidopsis thaliana. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1993; 86:880-888. [PMID: 24193885 DOI: 10.1007/bf00212616] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/1992] [Accepted: 01/04/1993] [Indexed: 06/02/2023]
Abstract
The proportion of non-tandem duplicated loci detected by DNA hybridization and the segregation of RFLPs using 90 independent randomly isolated cDNA probes was estimated by segregation analysis to be 17%. The 14 cDNA probes showing duplicate loci in progeny derived from a cross between Arabidopsis-thaliana ecotypes 'Columbia x Landsberg erecta' detected an average of 3.6 loci per probe (ranging from 2 to 6). The 50 loci detected with these 14 probes were arranged on a genetic map of 587 cM and assigned to the five A. Thaliana chromosomes. An additional duplicated locus was detected in progeny from a cross between 'Landsberg erecta x Niederzenz'. The majority of duplicated loci were on different chromosomes, and when linkage between duplicate locus pairs was detected, these loci were always separated by at least 15 cM. When partial nucleotide sequence data were compared with GENBANK databases, the identities of 2 cDNA clones which recognized duplicate unlinked sequences in the A. Thaliana genome were determined to encode a chlorophyll a/b-binding protein and a beta-tubulin. Of the 8 loci carrying beta-tubulin genes 6 were placed on the genetic map. These results imply that gene duplication has been an important factor in the evolution of the Arabidopsis genome.
Collapse
Affiliation(s)
- J M McGrath
- Department of Biology, University of Michigan, 48109-1048, Ann Arbor, MI, USA
| | | | | |
Collapse
|
30
|
Mendu N, Rines H, Silflow CD. Mapping of beta-tubulin genomic sequences in hexaploid oat (Arena sativa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1993; 86:135-140. [PMID: 24193393 DOI: 10.1007/bf00223818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/1992] [Accepted: 09/03/1992] [Indexed: 06/02/2023]
Abstract
The allohexaploid nature of Avena sativa L. (2n=6x=42) and the availability of aneuploid lines was exploited in designing a strategy for mapping beta-tubulin sequences in the oat genome. Evidence for a minimum of eight beta-tubulin genes was obtained by Southern-blot analysis. Three betatubulin sequences were localized to chromosomes using DNA from monosomic and nullisomic lines in the variety Sun II. One sequence was localized to the chromosome missing in nullisome I. Two other sequences were mapped to satellite chromosome 2, the chromosome that is missing in nullisome VIII and to which one ribosomal RNA gene cluster had previously been mapped. Restriction fragments carrying these two beta-tubulin genomic sequences and the cluster of ribosomal RNA sequences were missing in DNA from nullisomics VIII, IX and X, suggesting that all three nullisome classes are deficient for an identical chromosomal segment that includes these three loci. This study demonstrates how molecular analyses can be used to characterize aneuploid stocks and to better define their genetic constitution.
Collapse
Affiliation(s)
- N Mendu
- Department of Genetics and Cell Biology, University of Minnesota, 55108, St. Paul, MN, USA
| | | | | |
Collapse
|
31
|
Carpenter JL, Kopczak SD, Snustad DP, Silflow CD. Semi-constitutive expression of an Arabidopsis thaliana alpha-tubulin gene. PLANT MOLECULAR BIOLOGY 1993; 21:937-942. [PMID: 8467087 DOI: 10.1007/bf00027126] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In Arabidopsis tissues, the pool of tubulin protein is provided by the expression of multiple alpha-tubulin and beta-tubulin genes. Previous evidence suggested that the TUA2 alpha-tubulin gene was expressed in all organs of mature plants. We now report a more detailed analysis of TUA2 expression during plant development. Chimeric genes containing TUA2 5'-flanking DNA fused to the beta-glucuronidase (GUS) coding region were used to create transgenic Arabidopsis plants. Second-generation progeny of regenerated plants were analyzed by histochemical assay to localize GUS expression. GUS activity was seen throughout plant development and in nearly all tissues. The blue product of GUS activity accumulated to the highest levels in tissues with actively dividing and elongating cells. GUS activity was not detected in a few plant tissues, suggesting that, though widely expressed, the TUA2 promoter is not constitutively active.
Collapse
Affiliation(s)
- J L Carpenter
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108
| | | | | | | |
Collapse
|
32
|
Russo P, Juuti JT, Raudaskoski M. Cloning, sequence and expression of a beta-tubulin-encoding gene in the homobasidiomycete Schizophyllum commune. Gene X 1992; 119:175-82. [PMID: 1398097 DOI: 10.1016/0378-1119(92)90269-u] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The beta-tubulin (beta Tub)-encoding gene (tub-2) of Schizophyllum commune is the first tubulin gene isolated, cloned and sequenced from higher filamentous fungi (homobasidiomycetes). The S. commune tub-2 gene is organized into nine exons and eight introns. The introns vary from 48 to 107 nt in length, and are distributed throughout the gene. The tub-2 exons code for a protein of 445 amino acids (aa), which shows great homology with beta Tubs of filamentous ascomycetes, plants, and animals, but less homology with yeasts. The codon usage of tub-2 from S. commune is biased, as it is in most beta Tub-encoding genes of filamentous fungi. The S. commune beta Tub shows a conserved aa sequence in the C-terminal domain, which is suggested to interact with microtubule-associated proteins in animals. In contrast, the S. commune beta Tub deviates from most known beta Tubs by having a Cys165 residue, which might be significant for the insensitivity of S. commune haploid strains to the antimicrotubule drug, benomyl. In tub-2 of different haploid strains, sequence polymorphisms occur in the 5' and 3' flanking regions. The expression of tub-2 is high in young mycelium, which has a high number of extending apical cells, but decreases with the aging of the mycelium. No significant difference in the hybridization signal intensity for the tub-2 transcripts was recorded either during intercellular nuclear migration at early mating, or in mycelia with a mutation in the B mating-type gene.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P Russo
- Department of Botany, University of Helsinki, Finland
| | | | | |
Collapse
|
33
|
Joyce CM, Villemur R, Snustad DP, Silflow CD. Tubulin gene expression in maize (Zea mays L.). Change in isotype expression along the developmental axis of seedling root. J Mol Biol 1992; 227:97-107. [PMID: 1522605 DOI: 10.1016/0022-2836(92)90684-c] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two-dimensional gel/western blot analysis was used to characterize alpha- and beta-tubulin isotype expression along the developmental axis of the maize (Zea mays) seedling primary root. We identified four distinct alpha-tubulin isotypes and a minimum of six beta-tubulin isotypes. This analysis showed differences between the alpha- and beta-tubulin isotypes expressed in rapidly dividing tissue at the root tip and differentiated root tissues proximal to the tip. The alpha 1 and alpha 4 isotypes predominated in samples from immature rapidly dividing tissues such as root tips, whereas in mature tissues such as differentiated root and pollen, alpha 2, alpha 3 and alpha 4 isotypes predominated. The beta 1 and beta 2 isotypes were more abundant in protein samples from root cortex than in samples from the root tip or vascular cylinder. In contrast, the beta 4 and beta 5 isotypes appeared to be more abundant in root tip and vascular cylinder samples than in root cortex samples. Hybridization probes from the 3' non-coding region of six alpha-tubulin cDNA clones were used to quantify the levels of corresponding tubulin transcripts in selected tissues, from embryonic to mature and from largely undifferentiated to highly differentiated. The results from these hybridization experiments showed that all of the alpha-tubulin genes were expressed in all tissues examined, although each gene showed a unique pattern of differential transcript accumulation. A transcript produced from cDNA clone representing the tua5 alpha-tubulin gene was translated in vitro and produced an alpha-tubulin that comigrated with the alpha 2 isotype.
Collapse
Affiliation(s)
- C M Joyce
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108
| | | | | | | |
Collapse
|
34
|
Espelund M, Saebøe-Larssen S, Hughes DW, Galau GA, Larsen F, Jakobsen KS. Late embryogenesis-abundant genes encoding proteins with different numbers of hydrophilic repeats are regulated differentially by abscisic acid and osmotic stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1992. [PMID: 1302052 DOI: 10.1111/j.1365-313x.1992.00241.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The late embryogenesis-abundant (Lea) genes, which are suggested to act as desiccation protectants during seed desiccation and in water-stressed seedlings, can be induced by abscisic acid (ABA) and various kinds of water-related stress. Using cotton Lea cDNAs as probes it was found that several of the Lea genes are conserved at the mRNA level in dicots and monocots. By screening a barley cDNA library with a cotton Lea D19 cDNA a family of three members was isolated. The putative B19 proteins have strong similarities to the Em protein in wheat and to LEA proteins from several dicots. However, the middle part of the B19 proteins consists of a 20-amino acid motif repeated three and four times in B19.3 and B19.4, respectively, but only once in B19.1. The gene products are strongly hydrophilic, the internal 20-amino acid motif being the most hydrophilic part. This motif is found once in cotton Lea D19 but is repeated twice in cotton Lea D132, indicating that the repeats are universal among monocot and dicot B19-like genes. The B19 genes are regulated similarly during embryo development, but to very different levels. In contrast, they are differentially regulated by ABA and various types of osmotic stress. In immature embryos all three genes are responsive to ABA and mannitol. However, B19.1 is also responsive to salt. Cold stress does not induce B19 mRNAs; only a stabilization of the transcript levels is seen. These results suggest that the responses to salt stress and exogenous ABA operate through different pathways.
Collapse
Affiliation(s)
- M Espelund
- Division of General Genetics, University of Oslo, Norway
| | | | | | | | | | | |
Collapse
|
35
|
Tracheary Element Formation as a Model System of Cell Differentiation. INTERNATIONAL REVIEW OF CYTOLOGY 1992. [DOI: 10.1016/s0074-7696(08)62055-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
36
|
|
37
|
Jung MK, Wilder IB, Oakley BR. Amino acid alterations in the benA (beta-tubulin) gene of Aspergillus nidulans that confer benomyl resistance. CELL MOTILITY AND THE CYTOSKELETON 1992; 22:170-4. [PMID: 1423663 DOI: 10.1002/cm.970220304] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report the cloning and sequencing of 18 mutant alleles of the benA, beta-tubulin gene of Aspergillus nidulans that confer resistance to the benzimidazole antifungal, antimicrotubule compounds benomyl, carbendazim, nocodazole, and thiabendazole. In 12 cases, amino acid 6 was changed from histidine to tyrosine or leucine. In four cases, amino acid 198 was changed from glutamic acid to aspartic acid, glutamine, or lysine. In two cases, amino acid 200 was altered from phenylalanine to tyrosine. These data, along with previous data indicating that amino acid 165 is involved in the binding of the R2 group of these compounds [Jung and Oakley, 1990: Cell Motil. Cytoskeleton 17:87-94], suggest that regions of beta-tubulin containing amino acids 6, 165, and 198-200 interact to form the binding site of benzimidazole antimicrotubule agents. These results also suggest that the presence of phenylalanine at amino acid 200 contributes to the great sensitivity of many fungi to benzimidazole antimicrotubule agents.
Collapse
Affiliation(s)
- M K Jung
- Department of Molecular Genetics, Ohio State University, Columbus 43210
| | | | | |
Collapse
|
38
|
Soares H, Cyrne L, Barahona I, Rodrigues-Pousada C. Different patterns of expression of beta-tubulin genes in Tetrahymena pyriformis during reciliation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 197:291-9. [PMID: 1902785 DOI: 10.1111/j.1432-1033.1991.tb15910.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The ciliate Tetrahymena pyriformis contains one alpha-tubulin (alpha TT) and two beta-tubulin (beta TT1 and beta TT2) genes. The specific expression of these genes was investigated by Northern blot hybridization using oligonucleotide probes complementary to beta TT1 and beta TT2 genes and the coding region of the alpha-tubulin gene. The three genes are expressed producing 1.8-kb mRNAs but the level of beta TT1 mRNA is much higher than that of beta TT2 mRNA. During cilia regeneration, we found that the expression patterns of the alpha TT and beta TT1 genes are similar whereas that of the beta TT2 gene is different. The alpha TT and beta TT1 transcripts reached higher values between 60-120 min after the onset of reciliation than in exponentially growing cells, while beta TT2 transcripts were maintained at low levels during the whole period. The differences in the amounts of steady-state populations of the both beta-tubulin mRNAs do not correspond to the copy number per haploid genome. These differences could result from the fact that the promoter region of beta TT2 may contain highly structured sequences which would affect the binding of the respective trans-acting factor(s). The apparent transcription rate revealed a significant increase at 15 min of reciliation which could be responsible for the high levels of alpha TT and beta TT1 transcripts in the cytoplasm between 60-120 min of reciliation. This coordinated response to cilia regeneration of the alpha TT and beta TT1 tubulin genes is also a relevant aspect of our findings. Several conserved motifs found in their promoter regions led us to think that some of them may function as cis-elements in the specific binding of nuclear protein factor(s).
Collapse
Affiliation(s)
- H Soares
- Laboratorio de Genetica Molecular, Instituto Gulbenkian de Ciencia, Portugal
| | | | | | | |
Collapse
|
39
|
Han IS, Jongewaard I, Fosket DE. Limited expression of a diverged beta-tubulin gene during soybean (Glycine max [L.] Merr.) development. PLANT MOLECULAR BIOLOGY 1991; 16:225-34. [PMID: 1716497 DOI: 10.1007/bf00020554] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
We examined the developmental expression of a diverged soybean beta-tubulin gene (designated sb-1), which had been cloned and sequenced previously. A probe specific for the sb-1 gene was constructed from the 3' transcribed untranslated sequence. As a control, a more general probe for beta-tubulin genes and their transcripts was constructed from a highly conserved region of the third exon of another soybean beta-tubulin gene, sb-2. Poly(A)+ RNA, extracted from various soybean tissues and organs, was probed alternatively with the sb-1 gene-specific probe and with the generic beta-tubulin probe. Levels of beta-tubulin transcripts recognized by the generic probe differed by a factor of approximately 3 in the different tissues and organs and varied with the state of organ development. Highest levels were found in young, unexpanded leaves and they decreased as leaf maturation occurred. In contrast, transcripts of sb-1 were nearly undetectable in young leaves, and they increased as leaf maturation occurred. Levels of sb-1 transcript were low in all organs of the light-grown plant examined, except the hypocotyl, where they were approximately 10-fold higher. However, the highest levels of sb-1 transcripts were observed in elongating hypocotyls of etiolated seedlings. Exposure of six-day-old etiolated seedlings to light for 12 hours halted further hypocotyl elongation and brought about a dramatic, nearly 100-fold, decrease in the steady-state level of sb-1 transcripts.
Collapse
Affiliation(s)
- I S Han
- Department of Developmental and Cell Biology, University of California, Irvine 92717
| | | | | |
Collapse
|
40
|
Burns RG, Surridge C. Analysis of beta-tubulin sequences reveals highly conserved, coordinated amino acid substitutions. Evidence that these 'hot spots' are directly involved in the conformational change required for dynamic instability. FEBS Lett 1990; 271:1-8. [PMID: 2226794 DOI: 10.1016/0014-5793(90)80359-q] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vertebrate beta-tubulins have been classified into six classes on the basis of their C-terminal sequences [(1987) J. Cell Biol. 105, 1707-1720]. In particular, the sequences starting at residue 430 differ between isotypes of the same animal but are conserved between species. We extend this analysis and show that there are three 'hot spots', at residues 35, 55-57 and 124 which exhibit intra-species heterogeneity but inter-species conservation. There is a remarkable correlation between the identity of these residues and the C-terminal sequences, and suggests that the vertebrate beta-tubulins fall into three broad types. This correlation extends to those non-vertebrate organisms which have the Type 1 C-terminal sequence. We propose that these three 'hot spots' and the C-terminal peptide interact in the tertiary structure. We have also noted that the C-terminal peptide almost always contains a single phenylalanine or tyrosine residue, and that there is a strong correlation between this residue and the amino acids at positions 217/218, in both the vertebrate and non-vertebrate sequences. We propose that the C-terminal aromatic amino acid interacts with residues 217/218 in the tertiary structure. Analysis of conditions which stabilise microtubules and/or lower the steady state critical concentration strongly suggests that these two sets of coordinated amino acid substitutions are directly involved in effecting the conformational change associated with GTP hydrolysis which results in dynamic instability. We propose that there is an interaction between the highly acidic sequence between residue 430 and the aromatic amino acid (termed peptide A) and conserved basic amino acids located close to the 'hot spots'. We suggest that this interaction is altered in response to the assembly-dependent GTP hydrolysis, with the consequential increase in the subunit dissociation rate constant.
Collapse
Affiliation(s)
- R G Burns
- Blackett Laboratory, Imperial College of Science, Technology and Medicine, London, UK
| | | |
Collapse
|
41
|
Montoliu L, Rigau J, Puigdomènech P. A tandem of alpha-tubulin genes preferentially expressed in radicular tissues from Zea mays. PLANT MOLECULAR BIOLOGY 1990; 14:1-15. [PMID: 1713800 DOI: 10.1007/bf00015650] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The identification of a cDNA (MR19) corresponding to a maize alpha-tubulin and homologous genomic clones (MG19/6 and MG19/14) is described. The cDNA has been isolated by differential screening of a cDNA maize root library. We have found two alpha-tubulin genes in a tandem arrangement in the genomic clones, separated by approximately 1.5 kbp. One of the genes (gene I) contains an identical nucleotide sequence which corresponds to the cDNA clone. The two deduced proteins from DNA sequences are very similar (only two conservative replacements in 451 amino acids) and they share a high homology as compared with the published alpha-tubulin sequences from other systems and in particular with the Arabidopsis thaliana and Chlamydomonas reinhardtii sequences reported. The structure of both genes is also very similar; it includes two introns, of 1.7 kbp and 0.8 kbp respectively, in each gene and only one intron placed at a homologous position in relation to Arabidopsis thaliana genes. By using specific 3' probes it appears that both genes are preferentially expressed in the radicular system of the plant. The alpha-tubulin gene family of Zea mays seems to be represented by at least 3 or 4 members.
Collapse
Affiliation(s)
- L Montoliu
- Departamento de Genética Molecular, CID-CSIC, Barcelona, Spain
| | | | | |
Collapse
|
42
|
Jung MK, Oakley BR. Identification of an amino acid substitution in the benA, beta-tubulin gene of Aspergillus nidulans that confers thiabendazole resistance and benomyl supersensitivity. CELL MOTILITY AND THE CYTOSKELETON 1990; 17:87-94. [PMID: 2257633 DOI: 10.1002/cm.970170204] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We are using molecular genetic techniques to identify sites of interaction of beta-tubulin with benzimidizole anti-microtubule agents. We have developed a marker-rescue technique for cloning mutant alleles of the benA, beta-tubulin gene of Aspergillus nidulans and have used the technique to clone two mutant benA alleles, benA16 and benA19. These are the only A. nidulans alleles known to confer resistance to the benzimidazole antimicrotubule agent thiabendazole and supersensitivity to other benzimidazole antimicrotubule agents including benomyl and its active breakdown product, carbendazim. benA16 has been shown, moreover, to reduce thiabendazole binding to beta-tubulin. We have sequenced the two mutant alleles and have found that they carry different nucleotide changes that cause the same single amino acid substitution, valine for alanine at amino acid 165. Since thiabendazole and carbendazim differ at only one side chain, the R2 group, we conclude that the region around amino acid 165 is involved in the binding of the R2 group of benzimidazole antimicrotubule agents to beta-tubulin.
Collapse
Affiliation(s)
- M K Jung
- Department of Molecular Genetics, Ohio State University, Columbus 43210
| | | |
Collapse
|
43
|
Wesseling JG, Dirks R, Smits MA, Schoenmakers JG. Nucleotide sequence and expression of a beta-tubulin gene from Plasmodium falciparum, a malarial parasite of man. Gene 1989; 83:301-9. [PMID: 2479594 DOI: 10.1016/0378-1119(89)90116-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Genomic and cDNA clones, containing a Plasmodium falciparum beta-tubulin coding sequence (pf-bTub), were isolated and characterized. Comparison of the genomic sequence with the cDNA sequence showed that the malarial bTub-coding region is interrupted by two introns, the positions of which are not found in any beta-tubulin gene (btub) from other species. The gene appears to be present as a single-copy gene in the P. falciparum genome and is expressed as a 2.3-kb transcript both in the asexual blood stages and in the sexual stages (gametes/zygotes) of the parasite. The deduced polypeptide product of the pf-btub gene is a protein of 445 amino acids (aa) (Mr 49,517). Comparison of the aa sequence of pf-bTub with that of bTubs from other species revealed that the malarial protein shows a high degree of similarity to mammalian bTubs. Upon examination of the colchicine-binding sites of pf-bTub we predict that this tubulin probably has an altered sensitivity to this inhibitor.
Collapse
Affiliation(s)
- J G Wesseling
- Department of Molecular Biology, Faculty of Science, University of Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
44
|
Ludwig SR, Oppenheimer DG, Silflow CD, Snustad DP. The α1-tubulin gene of Arabidopsis thaliana: primary structure and preferential expression in flowers. PLANT MOLECULAR BIOLOGY 1988; 10:311-321. [PMID: 24277562 DOI: 10.1007/bf00029881] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/1987] [Accepted: 12/15/1987] [Indexed: 06/02/2023]
Abstract
The primary structure of the α1-tubulin gene of Arabidopsis thaliana was determined and the 5' and 3' ends of its transcript were identified by S1 nuclease mapping experiments. The information obtained was used to (i) predict the amino acid sequence of the α1-tubulin, (ii) deduce the positions of introns within the α1-tubulin gene, and (iii) construct 3' noncoding gene-specific hybridization probes with which to study the pattern of α1-tubulin transcript accumulation in different tissues and at different stages of development. The predicted amino acid sequence of the α1-tubulin has 92% identity with the predicted product of the previously characterized A. thaliana α3-tubulin gene. The coding sequence of the α1-tubulin gene is interrupted by four introns located at positions identical to those of the four introns in the α3 gene. RNA blot hybridization studies carried out with an α1-tubulin gene-specific probe showed that the α1 gene transcript accumulates primarily in flowers, with little transcript present in RNA isolated from roots or leaves. In order to investigate the pattern of α-tubulin gene expression in developing flowers, RNA was isolated from flowers at five different stages of development: flower buds, unopened flowers with pollen, open flowers, flowers with elongating carpels, and green seed pods. RNA blot hybridizations performed with 3' noncoding gene-specific probes showed that the α3 tubulin gene transcript is present in flowers at all stages of development, whereas the α1-tubulin gene transcript could only be detected in RNA from unopened flowers with pollen, open flowers, and flowers with elongating carpels.
Collapse
Affiliation(s)
- S R Ludwig
- Department of Biochemistry, Plant Molecular Genetics Institute, University of Minnesota, 55108, St. Paul, MN, USA
| | | | | | | |
Collapse
|