1
|
Hellmer CB, Hall LM, Bohl JM, Sharpe ZJ, Smith RG, Ichinose T. Cholinergic feedback to bipolar cells contributes to motion detection in the mouse retina. Cell Rep 2021; 37:110106. [PMID: 34910920 PMCID: PMC8793255 DOI: 10.1016/j.celrep.2021.110106] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 08/11/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022] Open
Abstract
Retinal bipolar cells are second-order neurons that transmit basic features of the visual scene to postsynaptic partners. However, their contribution to motion detection has not been fully appreciated. Here, we demonstrate that cholinergic feedback from starburst amacrine cells (SACs) to certain presynaptic bipolar cells via alpha-7 nicotinic acetylcholine receptors (α7-nAChRs) promotes direction-selective signaling. Patch clamp recordings reveal that distinct bipolar cell types making synapses at proximal SAC dendrites also express α7-nAChRs, producing directionally skewed excitatory inputs. Asymmetric SAC excitation contributes to motion detection in On-Off direction-selective ganglion cells (On-Off DSGCs), predicted by computational modeling of SAC dendrites and supported by patch clamp recordings from On-Off DSGCs when bipolar cell α7-nAChRs is eliminated pharmacologically or by conditional knockout. Altogether, these results show that cholinergic feedback to bipolar cells enhances direction-selective signaling in postsynaptic SACs and DSGCs, illustrating how bipolar cells provide a scaffold for postsynaptic microcircuits to cooperatively enhance retinal motion detection.
Collapse
Affiliation(s)
- Chase B Hellmer
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA; Present address: Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Leo M Hall
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA; Present address: Department of Internal Medicine, St. Mary Mercy Livonia Hospital, Livonia, MI 48154, USA
| | - Jeremy M Bohl
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zachary J Sharpe
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Robert G Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tomomi Ichinose
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
2
|
The effect of the cwf14 gene of fission yeast on cell wall integrity is associated with rho1. J Microbiol 2016; 54:98-105. [DOI: 10.1007/s12275-016-5569-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/14/2016] [Accepted: 01/21/2016] [Indexed: 11/30/2022]
|
3
|
Shimamoto T, Ahmed AM, Shimamoto T. A novel retron of Vibrio parahaemolyticus is closely related to retron-Vc95 of Vibrio cholerae. J Microbiol 2013; 51:323-8. [PMID: 23812812 DOI: 10.1007/s12275-013-2715-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 02/17/2013] [Indexed: 11/27/2022]
Abstract
Some bacteria produce a satellite RNA-DNA complex termed msDNA, multicopy single-stranded DNA. In this report, msDNA from Vibrio parahaemolyticus, a cause of acute gastroenteritis, was identified and named msDNA-Vp96. The retron element containing the ret gene, encoding the reverse transcriptase (RT) that is responsible for msDNA production, was cloned and characterized. Comparison of msDNA-Vp96 and msDNA-Vc95, from Vibrio cholerae, showed a high level of sequence similarity. We exchanged the two ret genes to examine whether msDNA was produced by the RT from different sources. We found that RT-Vp96 of V. parahaemolyticus was able to synthesize msDNA-Vc95 of V. cholerae and vice versa. To the best of our knowledge, this is the first report that RT from different bacterial species can synthesize msDNA.
Collapse
Affiliation(s)
- Toshi Shimamoto
- Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | | | | |
Collapse
|
4
|
Patel SR, Saide JD. Stretchin-klp, a novel Drosophila indirect flight muscle protein, has both myosin dependent and independent isoforms. J Muscle Res Cell Motil 2005; 26:213-24. [PMID: 16270160 DOI: 10.1007/s10974-005-9012-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 09/21/2005] [Indexed: 10/25/2022]
Abstract
Stretchin-klp is a newly described protein in Drosophila indirect flight muscles (IFM) that migrates on SDS gels as two distinct components of approximately 225 and 231 kD. Although the larger isoform is IFM specific, the smaller stretchin-klp isoform is expressed not only in IFM, but also in wild-type tissues of the adult head, abdomen and thorax from which the IFM has been removed. It is not detected, however, in jump or leg muscles. Probes derived from a cDNA encoding part of stretchin-klp hybridize with a 6.7 kb mRNA. Stretchin-klp is one of several putative products of the Stretchin-Myosin light chain kinase gene and is predicted to have multiple immunoglobulin domains arranged in tandem pairs separated by variable length spacers. Polyclonal antibodies directed against the expressed peptide of the stretchin-klp cDNA label the IFM myofibril A-band, though not its central and lateral regions. Analyses of IFM mutants indicate that the larger stretchin-klp isoform is myosin dependent. Although the normal adult myosin filament or the 'headless' myosin rod is sufficient for accumulation of both the large and small stretchin-klp isoforms, loss of myosin, or substitution of the adult rod with an embryonic one in IFM prevents the larger isoform from being formed or stabilized. During development stretchin-klp is first detected at pupal stage p8, when myofibrils are being constructed. These studies suggest that this newly identified protein is a major component of the Drosophila IFM thick filament.
Collapse
Affiliation(s)
- Sunita R Patel
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA.
| | | |
Collapse
|
5
|
Galloni M. Bonsaï, a ribosomal protein S15 homolog, involved in gut mitochondrial activity and systemic growth. Dev Biol 2004; 264:482-94. [PMID: 14651932 DOI: 10.1016/j.ydbio.2003.08.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The regulation of cellular growth is crucial in the control of cell proliferation. While most of the metabolic energy necessary to sustain growth is produced in mitochondria, the regulation of mitochondrial activity and its implications for growth have remained unexplored. Here, a gene named bonsaï is described, which is essential for normal growth in Drosophila. The Bonsaï protein bears strong homology to prokaryotic ribosomal protein S15 and localizes to mitochondria, suggesting a role in mitochondrial protein translation. Accordingly, bonsaï mutants have defective mitochondrial activity, but surprisingly, only the gut appears affected. Consistent with these observations, bonsaï is predominantly expressed in the gut. These results show that bonsaï plays a preponderant role in gut mitochondria. Although gut mitochondrial respiration is altered in bonsaï mutants, the digestive process appears normal, suggesting that a gut function other than digestion is impaired in the mutants. Cytochrome c oxidase, a respiratory chain enzyme partly encoded by the mitochondrial genome, is found to be active in bonsaï mutants. This suggests that mitochondrial translation is not abolished in the mutants. Altogether, these observations suggest that mitochondrial activity is regulated at the tissue-specific level and that this regulation has profound implications for growth and development.
Collapse
Affiliation(s)
- Mireille Galloni
- INSERM-UM2 E343, Université Montpellier 2, C.C. 103, Place Eugène Bataillon, 34095 Montpellier, France.
| |
Collapse
|
6
|
Dauwalder B, Tsujimoto S, Moss J, Mattox W. The Drosophila takeout gene is regulated by the somatic sex-determination pathway and affects male courtship behavior. Genes Dev 2002; 16:2879-92. [PMID: 12435630 PMCID: PMC187483 DOI: 10.1101/gad.1010302] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Drosophila somatic sex-determination regulatory pathway has been well studied, but little is known about the target genes that it ultimately controls. In a differential screen for sex-specific transcripts expressed in fly heads, we identified a highly male-enriched transcript encoding Takeout, a protein related to a superfamily of factors that bind small lipophilic molecules. We show that sex-specific takeout transcripts derive from fat body tissue closely associated with the adult brain and are dependent on the sex determination genes doublesex (dsx) and fruitless (fru). The male-specific Doublesex and Fruitless proteins together activate Takeout expression, whereas the female-specific Doublesex protein represses takeout independently of Fru. When cells that normally express takeout are feminized by expression of the Transformer-F protein, male courtship behavior is dramatically reduced, suggesting that male identity in these cells is necessary for behavior. A loss-of-function mutation in the takeout gene reduces male courtship and synergizes with fruitless mutations, suggesting that takeout plays a redundant role with other fru-dependent factors involved in male mating behavior. Comparison of Takeout sequences to the Drosophila genome reveals a family of 20 related secreted factors. Expression analysis of a subset of these genes suggests that the takeout gene family encodes multiple factors with sex-specific functions.
Collapse
Affiliation(s)
- Brigitte Dauwalder
- Department of Molecular Genetics, University of Texas, M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
7
|
Abstract
The transcription factors Dorsal and Twist regulate dorsoventral axis formation during Drosophila embryogenesis. Dorsal and Twist bind to closely linked DNA elements in a number of promoters and synergistically activate transcription. We have identified a novel protein named Dorsal-interacting protein 3 (Dip3) that may play a role in this synergy. Dip3 functions as a coactivator to stimulate synergistic activation by Dorsal and Twist, but does not stimulate simple activation of promoters containing only Dorsal or only Twist binding sites. In addition, Dip3 is able to bind DNA in a sequence specific manner and activate transcription directly. Dip3 possesses an N-terminal MADF domain and a C-terminal BESS domain, an architecture that is conserved in at least 14 Drosophila proteins, including Adf-1 and Stonewall. The MADF domain directs sequence specific DNA binding to a site consisting of multiple trinucleotide repeats, while the BESS domain directs a variety of protein-protein interactions, including interactions with itself, with Dorsal, and with a TBP-associated factor. We assess the possibility that the MADF and BESS domains are related to the SANT domain, a well-characterized motif found in many transcriptional regulators and coregulators.
Collapse
Affiliation(s)
- Vinay Bhaskar
- Department of Chemistry and Biochemistry, University of California-Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA
| | | |
Collapse
|
8
|
Prapunpoj P, Richardson SJ, Schreiber G. Crocodile transthyretin: structure, function, and evolution. Am J Physiol Regul Integr Comp Physiol 2002; 283:R885-96. [PMID: 12228058 DOI: 10.1152/ajpregu.00042.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Structure and function were studied for Crocodylus porosus transthyretin (crocTTR), an important intermediate in TTR evolution. The cDNA for crocTTR mRNA was cloned and sequenced and the amino acid sequence of crocTTR was deduced. In contrast to mammalian TTRs, but similar to avian and lizard TTRs, the subunit of crocTTR had a long and hydrophobic NH(2)-terminal region. Different from the situation in mammals, triiodothyronine (T(3)) was bound by crocTTR with higher affinity than thyroxine (T(4)). Recombinant crocTTR and a chimeric construct, with the NH(2)-terminal region of crocTTR being replaced by that of Xenopus laevis TTR, were synthesized in the yeast Pichia pastoris. Analysis of the affinity of the chimeric TTRs showed that the NH(2)-terminal region modulates T(4) and T(3) binding characteristics of TTR. The structural differences of the NH(2)-terminal regions of reptilian and amphibian TTRs were caused by a shift in splice sites at the 5' end of exon 2. The comparison of crocodile and other vertebrate TTRs shows that TTR evolution is an example for positive Darwinian evolution and identifies its molecular mechanism.
Collapse
Affiliation(s)
- Porntip Prapunpoj
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand.
| | | | | |
Collapse
|
9
|
Couderc JL, Godt D, Zollman S, Chen J, Li M, Tiong S, Cramton SE, Sahut-Barnola I, Laski FA. Thebric à braclocus consists of two paralogous genes encoding BTB/POZ domain proteins and acts as a homeotic and morphogenetic regulator of imaginal development inDrosophila. Development 2002; 129:2419-33. [PMID: 11973274 DOI: 10.1242/dev.129.10.2419] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The bric à brac (bab) locus acts as a homeotic and morphogenetic regulator in the development of ovaries, appendages and the abdomen. It consists of two structurally and functionally related genes, bab1 and bab2, each of which encodes a single nuclear protein. Bab1 and Bab2 have two conserved domains in common, a BTB/POZ domain and a Psq domain, a motif that characterizes a subfamily of BTB/POZ domain proteins in Drosophila. The tissue distribution of Bab1 and Bab2 overlaps, with Bab1 being expressed in a subpattern of Bab2. Analysis of a series of mutations indicates that the two bab genes have synergistic, distinct and redundant functions during imaginal development. Interestingly, several reproduction-related traits that are sexually dimorphic or show diversity among Drosophila species are highly sensitive to changes in the bab gene dose, suggesting that alterations in bab activity may contribute to evolutionary modification of sex-related morphology.
Collapse
Affiliation(s)
- Jean-Louis Couderc
- INSERM UMR 384, Laboratoire de Biochimie, 28 place Henri Dunant, 63001 Clermont-Ferrand, Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Suh GSB, Poeck B, Chouard T, Oron E, Segal D, Chamovitz DA, Zipursky SL. Drosophila JAB1/CSN5 acts in photoreceptor cells to induce glial cells. Neuron 2002; 33:35-46. [PMID: 11779478 DOI: 10.1016/s0896-6273(01)00576-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Different classes of photoreceptor neurons (R cells) in the Drosophila compound eye form connections in different optic ganglia. The R1-R6 subclass connects to the first optic ganglion, the lamina, and relies upon glial cells as intermediate targets. Conversely, R cells promote glial cell development including migration of glial cells into the target region. Here, we show that the JAB1/CSN5 subunit of the COP9 signalosome complex is expressed in R cells, accumulates in the developing optic lobe neuropil, and through the analysis of a unique set of missense mutations, is required in R cells to induce lamina glial cell migration. In these CSN5 alleles, R1-R6 targeting is disrupted. Genetic analysis of protein null alleles further revealed that the COP9 signalosome is required at an earlier stage of development for R cell differentiation.
Collapse
Affiliation(s)
- Greg S B Suh
- Department of Biological Chemistry, Howard Hughes Medical Institute, The School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Carninci P, Shibata Y, Hayatsu N, Itoh M, Shiraki T, Hirozane T, Watahiki A, Shibata K, Konno H, Muramatsu M, Hayashizaki Y. Balanced-size and long-size cloning of full-length, cap-trapped cDNAs into vectors of the novel lambda-FLC family allows enhanced gene discovery rate and functional analysis. Genomics 2001; 77:79-90. [PMID: 11543636 DOI: 10.1006/geno.2001.6601] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed a new class of cloning vectors: lambda-full-length cDNA (lambda-FLC) cloning vectors. These vectors can be bulk-excised for preparing full-length cDNA libraries in which a high proportion of the plasmids carry large inserts that can be transferred into other (for example, functional) vectors. Unlike other cloning vectors, lambda-FLC vectors accommodate a broad range of sizes of eukaryotic cDNA inserts because they contain "size balancers." Further, the main protocol we use for direct bulk excision of plasmids is mediated by a Cre-lox system and is apparently free of size bias. The average size of the inserts from excised plasmid cDNA libraries was 2.9 kb for standard and 6.9 kb for size-selected cDNA. The average insert size of the full-length cDNA libraries was correlated to the rate of new gene discovery, suggesting that effectively cloning rarely expressed mRNAs requires vectors that can accommodate large inserts from a variety of sources. Part of the vectors are also suitable for bulk transfer of inserts into various functional vectors.
Collapse
Affiliation(s)
- P Carninci
- Genome Exploration Research Group, RIKEN Genomic Sciences Center, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Prokopenko SN, He Y, Lu Y, Bellen HJ. Mutations affecting the development of the peripheral nervous system in Drosophila: a molecular screen for novel proteins. Genetics 2000; 156:1691-715. [PMID: 11102367 PMCID: PMC1461357 DOI: 10.1093/genetics/156.4.1691] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In our quest for novel genes required for the development of the embryonic peripheral nervous system (PNS), we have performed three genetic screens using MAb 22C10 as a marker of terminally differentiated neurons. A total of 66 essential genes required for normal PNS development were identified, including 49 novel genes. To obtain information about the molecular nature of these genes, we decided to complement our genetic screens with a molecular screen. From transposon-tagged mutations identified on the basis of their phenotype in the PNS we selected 31 P-element strains representing 26 complementation groups on the second and third chromosomes to clone and sequence the corresponding genes. We used plasmid rescue to isolate and sequence 51 genomic fragments flanking the sites of these P-element insertions. Database searches using sequences derived from the ends of plasmid rescues allowed us to assign genes to one of four classes: (1) previously characterized genes (11), (2) first mutations in cloned genes (1), (3) P-element insertions in genes that were identified, but not characterized molecularly (1), and (4) novel genes (13). Here, we report the cloning, sequence, Northern analysis, and the embryonic expression pattern of candidate cDNAs for 10 genes: astray, chrowded, dalmatian, gluon, hoi-polloi, melted, pebble, skittles, sticky ch1, and vegetable. This study allows us to draw conclusions about the identity of proteins required for the development of the nervous system in Drosophila and provides an example of a molecular approach to characterize en masse transposon-tagged mutations identified in genetic screens.
Collapse
Affiliation(s)
- S N Prokopenko
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
13
|
So WV, Sarov-Blat L, Kotarski CK, McDonald MJ, Allada R, Rosbash M. takeout, a novel Drosophila gene under circadian clock transcriptional regulation. Mol Cell Biol 2000; 20:6935-44. [PMID: 10958689 PMCID: PMC88769 DOI: 10.1128/mcb.20.18.6935-6944.2000] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the identification and characterization of a new Drosophila clock-regulated gene, takeout (to). to is a member of a novel gene family and is implicated in circadian control of feeding behavior. Its gene expression is down-regulated in all of the clock mutants tested. In wild-type flies, to mRNA exhibits daily cycling expression but with a novel phase, delayed relative to those of the better-characterized clock mRNAs, period and timeless. The E-box-containing sequence in the to promoter shows impressive similarities with those of period and timeless. However, our results suggest that the E box is not involved in the amplitude and phase of the transcriptional cycling of to. The circadian delayed transcriptional phase is therefore most likely the result of indirect regulation through unknown transcription factors.
Collapse
Affiliation(s)
- W V So
- Howard Hughes Medical Institute, NSF Center for Biological Timing, Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | | | | | |
Collapse
|
14
|
Prapunpoj P, Richardson SJ, Fumagalli L, Schreiber G. The evolution of the thyroid hormone distributor protein transthyretin in the order insectivora, class mammalia. Mol Biol Evol 2000; 17:1199-209. [PMID: 10908640 DOI: 10.1093/oxfordjournals.molbev.a026403] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Thyroid hormones are involved in the regulation of growth and metabolism in all vertebrates. Transthyretin is one of the extracellular proteins with high affinity for thyroid hormones which determine the partitioning of these hormones between extracellular compartments and intracellular lipids. During vertebrate evolution, both the tissue pattern of expression and the structure of the gene for transthyretin underwent characteristic changes. The purpose of this study was to characterize the position of Insectivora in the evolution of transthyretin in eutherians, a subclass of Mammalia. Transthyretin was identified by thyroxine binding and Western analysis in the blood of adult shrews, hedgehogs, and moles. Transthyretin is synthesized in the liver and secreted into the bloodstream, similar to the situation for other adult eutherians, birds, and diprotodont marsupials, but different from that for adult fish, amphibians, reptiles, monotremes, and Australian polyprotodont marsupials. For the characterization of the structure of the gene and the processing of mRNA for transthyretin, cDNA libraries were prepared from RNA from hedgehog and shrew livers, and full-length cDNA clones were isolated and sequenced. Sections of genomic DNA in the regions coding for the splice sites between exons 1 and 2 were synthesized by polymerase chain reaction and sequenced. The location of splicing was deduced from comparison of genomic with cDNA nucleotide sequences. Changes in the nucleotide sequence of the transthyretin gene during evolution are most pronounced in the region coding for the N-terminal region of the protein. Both the derived overall amino sequences and the N-terminal regions of the transthyretins in Insectivora were found to be very similar to those in other eutherians but differed from those found in marsupials, birds, reptiles, amphibians, and fish. Also, the pattern of transthyretin precursor mRNA splicing in Insectivora was more similar to that in other eutherians than to that in marsupials, reptiles, and birds. Thus, in contrast to the marsupials, with a different pattern of transthyretin gene expression in the evolutionarily "older" polyprotodonts compared with the evolutionarily "younger" diprotodonts, no separate lineages of transthyretin evolution could be identified in eutherians. We conclude that transthyretin gene expression in the liver of adult eutherians probably appeared before the branching of the lineages leading to modern eutherian species.
Collapse
Affiliation(s)
- P Prapunpoj
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
15
|
Abstract
Dynamin and dynamin-like proteins are required for endocytosis, synaptic vesicle recycling and membrane trafficking. From the shibire locus in Drosophila melanogaster, six different isoforms of dynamin are generated by alternative splicing. However, the roles of the individual isoforms in cellular processes are unknown. To investigate functional differences among the dynamin isoforms, transgenic lines were generated that individually expressed each of 3 different isoforms under UASGAL4 control. The expression of the isoforms was controlled by neural promoter (elav)-driven GAL4, or by a shibire-promoter driven GAL4 transgene. Reporter gene expression indicated that the shi promoter is active during embryogenesis, and in larvae, pupae, and adults in a pattern consistent with normal dynamin expression. To assay for the ability of dynamin isoforms to function in vivo, the isoforms expressed via these GAL4 drivers were tested for the ability to rescue shibire phenotypes. When expressed at very high levels all individual isoforms tested rescued the temperature-sensitive paralytic phenotype of shi(ts2) flies; however, this rescue was partial, suggesting that no single tested isoform is sufficient for synaptic vesicle recycling in vivo. When tested for ability to rescue lethality induced by heat-pulsing larvae during development, shi- promoter driven expression of individual isoforms conferred significant resistance to heat treatment during larval development. However, all 3 isoforms were unable to rescue the lethality of shi12-12B mutants which are severely hypomorphic (or null) for shibire function. Taken together, these observations suggest that individual shibire isoforms have specific molecular activities in vivo.
Collapse
Affiliation(s)
- R R Staples
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721, USA
| | | |
Collapse
|
16
|
Kremer BH, Bijlsma JJ, Kusters JG, de Graaff J, van Steenbergen TJ. Cloning of fibA, encoding an immunogenic subunit of the fibril-like surface structure of Peptostreptococcus micros. J Bacteriol 1999; 181:2485-91. [PMID: 10198013 PMCID: PMC93675 DOI: 10.1128/jb.181.8.2485-2491.1999] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although we are currently unaware of its biological function, the fibril-like surface structure is a prominent characteristic of the rough (Rg) genotype of the gram-positive periodontal pathogen Peptostreptococcus micros. The smooth (Sm) type of this species as well as the smooth variant of the Rg type (RgSm) lack these structures on their surface. A fibril-specific serum, as determined by immunogold electron microscopy, was obtained through adsorption of a rabbit anti-Rg type serum with excess bacteria of the RgSm type. This serum recognized a 42-kDa protein, which was subjected to N-terminal sequencing. Both clones of a lambdaTriplEx expression library that were selected by immunoscreening with the fibril-specific serum contained an open reading frame, designated fibA, encoding a 393-amino-acid protein (FibA). The 15-residue N-terminal amino acid sequence of the 42-kDa antigen was present at positions 39 to 53 in FibA; from this we conclude that the mature FibA protein contains 355 amino acids, resulting in a predicted molecular mass of 41,368 Da. The putative 38-residue signal sequence of FibA strongly resembles other gram-positive secretion signal sequences. The C termini of FibA and two open reading frames directly upstream and downstream of fibA exhibited significant sequence homology to the C termini of a group of secreted and surface-located proteins of other gram-positive cocci that are all presumably involved in anchoring of the protein to carbohydrate structures. We conclude that FibA is a secreted and surface-located protein and as such is part of the fibril-like structures.
Collapse
Affiliation(s)
- B H Kremer
- Department of Oral Microbiology, Academic Centre for Dentistry Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
17
|
Zahra DG, Vancov T, Dunn JM, Hawkins NJ, Ward RL. Selectable in-vivo recombination to increase antibody library size--an improved phage display vector system. Gene X 1999; 227:49-54. [PMID: 9931430 DOI: 10.1016/s0378-1119(98)00593-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Phage display technology permits the display of libraries of random combinations of light (LC) and heavy chain (HC) antibody genes. Maximizing the size of these libraries would enable the isolation of antibodies with high affinity and specificity. In this study, the loxP/Cre system of in-vivo recombination has been employed to construct an improved vector system for the display of antibodies. In this system, the chloramphenicol acetyl transferase (CAT) gene is linked to a HC library in a donor plasmid, pUX. This CAT gene is 'silent' before recombination but active after recombination. A second acceptor phagemid, pMOX, is used for cloning the LC repertoire. Following infection with a Cre producing phage, pMOX accepts the CAT/HC library from pUX via site-specific recombination at the loxP sites. Recombinants can then be selected via chloramphenicol resistance. Using this vector system, we have generated libraries of 4x109 recombinants. Restriction analysis and Fab expression confirmed that 100% of the colonies in the library were recombinants. This system provides a stable selectable mechanism for the generation of large libraries and avoids the isolation of non-recombinants encountered with earlier in-vivo recombination systems.
Collapse
Affiliation(s)
- D G Zahra
- Department of Medical Oncology, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | | | | | | | | |
Collapse
|
18
|
Schmidt A, Palumbo G, Bozzetti MP, Tritto P, Pimpinelli S, Schäfer U. Genetic and molecular characterization of sting, a gene involved in crystal formation and meiotic drive in the male germ line of Drosophila melanogaster. Genetics 1999; 151:749-60. [PMID: 9927466 PMCID: PMC1460476 DOI: 10.1093/genetics/151.2.749] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The sting mutation, caused by a P element inserted into polytene region 32D, was isolated by a screen for male sterile insertions in Drosophila melanogaster. This sterility is correlated with the presence of crystals in spermatocytes and spermatids that are structurally indistinguishable from those produced in males carrying a deficiency of the Y-linked crystal (cry) locus. In addition, their morphology is needle-like in Ste+ flies and star-shaped in Ste flies, once again as observed in cry- males. The sti mutation leads to meiotic drive of the sex chromosomes, and the strength of the phenomenon is correlated with the copy number of the repetitive Ste locus. The same correlation is also true for the penetrance of the male sterile mutation. A presumptive sti null allele results in male sterility and lethal maternal effect. The gene was cloned and shown to code for a putative protein that is 866 amino acids long. A C-terminal domain of 82 amino acids is identified that is well conserved in proteins from different organisms. The gene is expressed only in the germline of both sexes. The interaction of sting with the Ste locus can also be demonstrated at the molecular level. While an unprocessed 8-kb Ste primary transcript is expressed in wild-type males, in X/Y homozygous sti males, as in X/Y cry- males, a 0.7-kb mRNA is produced.
Collapse
Affiliation(s)
- A Schmidt
- Institut für Genetik, Heinrich-Heine-Universität, D-40225 D usseldorf, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Meijer AH, Ouwerkerk PB, Hoge JH. Vectors for transcription factor cloning and target site identification by means of genetic selection in yeast. Yeast 1998; 14:1407-15. [PMID: 9848232 DOI: 10.1002/(sici)1097-0061(199811)14:15<1407::aid-yea325>3.0.co;2-m] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We describe the construction of a number of vectors that can be used in yeast genetic selection systems for cloning of transcription factors or other DNA-binding proteins and for identification of the target sites recognized by transcription factors. For transcription factor cloning we have designed an integration vector with two HIS3 reporter gene cassettes to stably integrate reporter gene constructs at the non-essential yeast PDC6 locus. This set of plasmids was tested in a one-hybrid assay with the rice transcription factor Oshox1, a member of the class of homeodomain leucine zipper proteins. A hybrid protein of Oshox1 and the Gal4 transcriptional activation domain was shown to specifically activate a reporter gene construct with upstream Oshox1 binding sites, which had been integrated at the PDC6 locus using the described vector system. Target site identification by genetic selection in yeast employs a transcriptional activator construct and a library of genomic or random DNA fragments upstream of a reporter gene. We have constructed two variants of a bacteriophage lambda vector which facilitates the construction of the required reporter gene library because of high cloning efficiency and easy conversion into a yeast/Escherichia coli shuttle vector library by Cre-loxP-mediated automatic subcloning. Tests with Oxhox1 as transcriptional activator demonstrated the usefulness of the deprived reporter gene vector.
Collapse
Affiliation(s)
- A H Meijer
- Institute of Molecular Plant Sciences, Leiden University, Clusius Laboratory, The Netherlands.
| | | | | |
Collapse
|
20
|
Cheng Y, Gvakharia B, Hardin PE. Two alternatively spliced transcripts from the Drosophila period gene rescue rhythms having different molecular and behavioral characteristics. Mol Cell Biol 1998; 18:6505-14. [PMID: 9774666 PMCID: PMC109236 DOI: 10.1128/mcb.18.11.6505] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The period (per) and timeless (tim) genes encode key components of the circadian oscillator in Drosophila melanogaster. The per gene is thought to encode three transcripts via differential splicing (types A, B, and C) that give rise to three proteins. Since the three per mRNA types were based on the analysis of cDNA clones, we tested whether these mRNA types were present in vivo by RNase protection assays and reverse transcriptase-mediated PCR. The results show that per generates two transcript types that differ only by the presence (type A) or absence (type B') of an alternative intron in the 3' untranslated region. Transgenic flies containing transgenes that produce only type B' transcripts (perB'), type A transcripts (perA), or both transcripts (perG) rescue locomotor activity rhythms with average periods of 24.7, 25.4, and 24.4 h, respectively. Although no appreciable differences in type A and type B' mRNA cycling were observed, a slower accumulation of PER in flies making only type A transcripts suggests that the intron affects the translation of per mRNA.
Collapse
Affiliation(s)
- Y Cheng
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | | | | |
Collapse
|
21
|
Baset HA, Ford-Hutchinson AW, O'Neill GP. Molecular cloning and functional expression of a Caenorhabditis elegans aminopeptidase structurally related to mammalian leukotriene A4 hydrolases. J Biol Chem 1998; 273:27978-87. [PMID: 9774412 DOI: 10.1074/jbc.273.43.27978] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a search of the Caenorhabditis elegans DNA data base, an expressed sequence tag of 327 base pairs (termed cm01c7) with strong homology to the human leukotriene A4 (LTA4) hydrolase was found. The use of cm01c7 as a probe, together with conventional hybridization screening and anchored polymerase chain reaction techniques resulted in the cloning of the full-length 2.1 kilobase pair C. elegans LTA4 hydrolase-like homologue, termed aminopeptidase-1 (AP-1). The AP-1 cDNA was expressed transiently as an epitope-tagged recombinant protein in COS-7 mammalian cells, purified using an anti-epitope antibody affinity resin, and tested for LTA4 hydrolase and aminopeptidase activities. Despite the strong homology between the human LTA4 hydrolase and C. elegans AP-1(63% similarity and 45% identity at the amino acid level), reverse-phase high pressure liquid chromatography and radioimmunoassay for LTB4 production revealed the inability of the C. elegans AP-1 to use LTA4 as a substrate. In contrast, the C. elegans AP-1 was an efficient aminopeptidase, as demonstrated by its ability to hydrolyze a variety of amino acid p-nitroanilide derivatives. The aminopeptidase activity of C. elegans AP-1 resembled that of the human LTA4 hydrolase/aminopeptidase enzyme with a preference for arginyl-p-nitroanilide as a substrate. Hydrolysis of the amide bond of arginyl-p-nitroanilide was inhibited by bestatin with an IC50 of 2.6 +/- 1.2 microM. The bifunctionality of the mammalian LTA4 hydrolase is still poorly understood, as the physiological substrate for its aminopeptidase activity is yet to be discovered. Our results support the idea that the enzyme originally functioned as an aminopeptidase in lower metazoa and then developed LTA4 hydrolase activity in more evolved organisms.
Collapse
Affiliation(s)
- H A Baset
- Department of Pharmacology and Experimental Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | |
Collapse
|
22
|
Duggan A, Ma C, Chalfie M. Regulation of touch receptor differentiation by the Caenorhabditis elegans mec-3 and unc-86 genes. Development 1998; 125:4107-19. [PMID: 9735371 DOI: 10.1242/dev.125.20.4107] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The nematode Caenorhabditis elegans possesses six morphologically similar neurons that are responsible for sensing gentle touch to the body. Previous genetic studies identified genes that are necessary for the production and differentiation of these touch cells. In particular, unc-86 encodes a POU-type homeodomain protein needed for the production of the touch cells, while mec-3 encodes a LIM-type homeodomain protein needed for the differentiation of the touch cells. Molecular studies showed that MEC-3 and UNC-86 bind cooperatively to sites in the mec-3 promoter and can synergistically activate transcription from it in vitro. Here we show that UNC-86::MEC-3 hetero-oligomer-binding sites are also found in the promoters of two presumed targets of mec-3, the mec-4 and mec-7 genes, that are necessary for the function of the touch cells. These sites, which are well-conserved in the related nematode C. briggsae, are required for promoter activity. When one of the binding sites is cloned into a heterologous promoter, expression is found in the touch cells and two to four other cells that express mec-3 and unc-86. These data support a model in which touch-cell differentiation is specified, in part, by the UNC-86::MEC-3 hetero-oligomer and not by MEC-3 alone. Ectopic expression of mec-3, driven by a heat-shock promoter, also supports this hypothesis: the acquisition of touch-cell characteristics by several additional cells under these conditions required unc-86. Since the touch-cell lineages express UNC-86 before MEC-3, MEC-3 appears to modify the activity of UNC-86, leading to touch-cell-specific gene expression. Because both UNC-86 and MEC-3 have activation domains, the formation of the hetero-oligomer may create a strong activator. In the modification of UNC-86 function by MEC-3 in the touch cells, these studies provide an example of how the sequential activation of transcription factors can determine cell fate within particular cell lineages.
Collapse
MESH Headings
- Animals
- Caenorhabditis/genetics
- Caenorhabditis elegans/cytology
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/metabolism
- Caenorhabditis elegans Proteins
- Cell Differentiation
- Cells, Cultured
- Cloning, Molecular
- DNA Footprinting
- Gene Expression Regulation, Developmental
- Genes, Helminth
- Genes, Reporter
- Heat-Shock Proteins/genetics
- Helminth Proteins/genetics
- Helminth Proteins/metabolism
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Ion Channels/genetics
- LIM-Homeodomain Proteins
- Mechanoreceptors/cytology
- Mechanoreceptors/metabolism
- Membrane Proteins
- Mutagenesis, Site-Directed
- Neurons, Afferent/cytology
- Neurons, Afferent/metabolism
- POU Domain Factors
- Promoter Regions, Genetic/genetics
- RNA, Messenger/analysis
- Sensory Receptor Cells
- Sequence Deletion
- Stem Cells
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tubulin/genetics
Collapse
Affiliation(s)
- A Duggan
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | |
Collapse
|
23
|
Lekven AC, Tepass U, Keshmeshian M, Hartenstein V. faint sausage encodes a novel extracellular protein of the immunoglobulin superfamily required for cell migration and the establishment of normal axonal pathways in the Drosophila nervous system. Development 1998; 125:2747-58. [PMID: 9636088 DOI: 10.1242/dev.125.14.2747] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined the structure of the nervous system in Drosophila embryos homozygous for a null mutation in the faint sausage (fas) gene. In the peripheral nervous system (PNS) of fas mutants, neurons fail to delaminate from the ectodermal epithelium; in the central nervous system (CNS), the positions of neuronal cell bodies and glial cells are abnormal and normal axonal pathways do not form. Sequence analysis of fas cDNAs revealed that the fas protein product has characteristics of an extracellular protein and that it is a novel member of the immunoglobulin (Ig) superfamily. In situ hybridization demonstrated that fas transcripts are expressed throughout the embryo but they are in relatively high concentrations in the lateral ectoderm, from which the peripheral nervous system delaminates and in the CNS. Antiserum directed against Fas protein was found to stain neurons but not glia in the CNS. We conclude that fas encodes a protein that, in the developing nervous system, is present on the surface of neurons and is essential for nerve cell migration and the establishment of axonal pathways.
Collapse
Affiliation(s)
- A C Lekven
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095-1606 USA
| | | | | | | |
Collapse
|
24
|
Kloss B, Price JL, Saez L, Blau J, Rothenfluh A, Wesley CS, Young MW. The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iepsilon. Cell 1998; 94:97-107. [PMID: 9674431 DOI: 10.1016/s0092-8674(00)81225-8] [Citation(s) in RCA: 543] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cloning of double-time (dbt) is reported. DOUBLETIME protein (DBT) is most closely related to human casein kinase Iepsilon. dbtS and dbtL mutations, which alter period length of Drosophila circadian rhythms, produce single amino acid changes in conserved regions of the predicted kinase. dbtP mutants, which eliminate rhythms of per and tim expression and constitutively overproduce hypophosphorylated PER proteins, abolish most dbt expression. dbt mRNA appears to be expressed in the same cell types as are per and tim and shows no evident oscillation in wild-type heads. DBT is capable of binding to PER in vitro and in Drosophila cells, suggesting that a physical association of PER and DBT regulates PER phosphorylation and accumulation in vivo.
Collapse
Affiliation(s)
- B Kloss
- Laboratory of Genetics and National Science Foundation Science and Technology Center for Biological Timing, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Lai C, McMahon R, Young C, Mackay TF, Langley CH. quemao, a Drosophila bristle locus, encodes geranylgeranyl pyrophosphate synthase. Genetics 1998; 149:1051-61. [PMID: 9611212 PMCID: PMC1460199 DOI: 10.1093/genetics/149.2.1051] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The quemao (qm) locus of Drosophila melanogaster is characterized by a P-element-associated mutant lacking most of the large bristles on the thorax and by several EMS-induced recessive lethals. quemao was cloned using a transposon tagging strategy. P-element-mediated transformation demonstrated that the cloned qm DNA sequence (from the 65F cytological region) rescues the mutant phenotype. A 2.3-kb qm transcript was identified by Northern blot analysis by sequencing of the isolated qm cDNA clones and by 5' rapid amplification cDNA end (RACE). The predicted amino acid sequence (338 residues) of the coding region of the qm transcript shares 42, 31, 13, 20, and 12% identical amino acid sequences with the geranylgeranyl pyrophosphate synthase (GGPPS) of fungi, yeast, plants, archaebacteria, and eubacteria, respectively. It also contains five highly conserved domains common among all known isoprenyl pyrophosphate synthases. The P element associated with the original qm mutant is inserted in the 5' untranslated region of the transcript. An EMS-induced qm nonsense mutation at the 12th codon leads to recessive lethality at the first larval instar, indicating the essential role of qm in the isoprenoid biosynthesis of insects.
Collapse
Affiliation(s)
- C Lai
- Center for Population Biology, University of California, Davis, California 95616, USA.
| | | | | | | | | |
Collapse
|
26
|
Allada R, White NE, So WV, Hall JC, Rosbash M. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell 1998; 93:791-804. [PMID: 9630223 DOI: 10.1016/s0092-8674(00)81440-3] [Citation(s) in RCA: 554] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report the identification, characterization, and cloning of a novel Drosophila circadian rhythm gene, dClock. The mutant, initially called Jrk, manifests dominant effects: heterozygous flies have a period alteration and half are arrhythmic, while homozygous flies are uniformly arrhythmic. Furthermore, these flies express low levels of the two clock proteins, PERIOD (PER) and TIMELESS (TIM), due to low per and tim transcription. Mapping and cloning of the Jrk gene indicates that it encodes the Drosophila homolog of mouse Clock. The mutant phenotype results from a premature stop codon that eliminates much of the putative activation domain of this bHLH-PAS transcription factor, thus explaining the dominant features of Jrk. The remarkable sequence conservation strongly supports common clock components present in the common ancestor of Drosophila and mammals.
Collapse
Affiliation(s)
- R Allada
- NSF, Center for Biological Timing, and Department of Biology, Brandeis University, Waltham, Massachusetts 02254, USA
| | | | | | | | | |
Collapse
|
27
|
Takemori H, Zolotaryov FN, Ting L, Urbain T, Komatsubara T, Hatano O, Okamoto M, Tojo H. Identification of functional domains of rat intestinal phospholipase B/lipase. Its cDNA cloning, expression, and tissue distribution. J Biol Chem 1998; 273:2222-31. [PMID: 9442065 DOI: 10.1074/jbc.273.4.2222] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A cDNA encoding a rat intestinal Ca(2+)-independent phospholipase B/lipase (PLB/LIP) was cloned from an ileac mucosa cDNA library using a probe amplified by polymerase chain reaction based on the purified enzyme's sequence. PLB/LIP consists of an NH2-terminal signal peptide, four tandem repeats of about 350 amino acids each, and a hydrophobic domain near the COOH terminus. The enzyme purified previously was found to be derived from the second repeat part. To examine the function of each domain, the full-length PLB/LIP, individual repeats, and a protein lacking the COOH-terminal hydrophobic stretch were expressed in COS-7 cells. The results showed that the second repeat, but not the other repeats, had all the activities (phospholipase A2, lysophospholipase, and lipase) found in the purified natural and expressed full-length enzymes, suggesting repeat 2 is a catalytic domain. The full-length enzyme was mainly present in membrane fractions and efficiently solubilized by treatment with 1% Triton X-100, but not with phosphatidylinositol-specific phospholipase C. Deletion of the COOH-terminal hydrophobic stretch caused the secretion of > 90% of synthesized PLB/LIP into culture media. These results suggest the hydrophobic domain is not replaced by a glycosylphosphatidylinositol anchor but serves as a membrane anchor directly. A message of the full-length PLB/LIP was abundantly expressed in the ileum and also, in a smaller, but significant amount, in the esophagus and testis. Immunohistochemistry showed that PLB/LIP is localized in brush border membranes of the absorptive cells, Paneth cells, and acrosomes of spermatid, suggesting its roles related and unrelated to intestinal digestion.
Collapse
Affiliation(s)
- H Takemori
- Department of Molecular Physiological Chemistry, Osaka University Medical School, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Danilov V, Blum M, Schweickert A, Campione M, Steinbeisser H. Negative autoregulation of the organizer-specific homeobox gene goosecoid. J Biol Chem 1998; 273:627-35. [PMID: 9417125 DOI: 10.1074/jbc.273.1.627] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The homeobox gene goosecoid has been implicated to play a central role in the Spemann organizer tissue of the vertebrate embryo. Misexpression of goosecoid on the ventral side of a Xenopus laevis gastrula embryo was shown to result in a partial duplication of the primary body axis, reminiscent of the Spemann organizer graft. Normal embryonic development thus requires tight temporal and spatial control of genes instrumental for organizer function. In the present study we investigated the transcriptional control of goosecoid gene expression. Sequence analysis of the mouse and human promoter region revealed the presence of two palindromic binding elements for homeobox genes of the prd type to which goosecoid belongs. We show that Goosecoid protein can bind to these sites in vitro. By using reporter gene constructs of the human and mouse promoter, we demonstrate that Goosecoid can act as a repressor of its own promoter activity in transient co-transfection experiments in mouse P19 cells and in Xenopus embryos. Autorepression depends on the presence of the homeodomain and is mediated through the prd element more proximal to the transcriptional start site. Our results suggest a role for goosecoid in restricting organizer activity in the vertebrate gastrula embryo.
Collapse
Affiliation(s)
- V Danilov
- Forschungszentrum Karlsruhe, Institute of Genetics, P.O. Box 3640, D-76021 Karlsruhe,Federal Republic of Germany
| | | | | | | | | |
Collapse
|
29
|
Segada LM, Lesse AJ. Creation of an isogenic P1-deficient mutant of Haemophilus influenzae biogroup aegyptius. Gene X 1997; 204:185-94. [PMID: 9434183 DOI: 10.1016/s0378-1119(97)00545-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Haemophilus influenzae biogroup aegyptius, the causative agent of Brazilian purpuric fever (BPF), expresses a heat-modifiable 48 kDa outer membrane protein, P1, which is conserved in most Brazilian case-clone isolates. To study the role of P1 in pathogenesis of BPF we constructed via homologous recombination an isogenic P1-deficient mutant of H. influenzae biogroup aegyptius. The procedure involved a modification of Hererot's method for development of competence. Modifications included variations in the growth conditions, use of cAMP, specific characteristics of the donor DNA, and antibiotic selection. P1-deficient mutants were confirmed by SDS-PAGE, loss of reactivity with a specific monoclonal antibody on Western blot, restriction analysis and Southern blot. Our results establish the first successful transformation of homologous DNA into H. influenzae biogroup aegyptius.
Collapse
Affiliation(s)
- L M Segada
- Department of Microbiology, State University of New York at Buffalo, New York, USA
| | | |
Collapse
|
30
|
Albert S, Twardzik T, Heisenberg M, Schneuwly S. Isolation and characterization of the droPIK57 gene encoding a new regulatory subunit of phosphatidylinositol 3-kinase from Drosophila melanogaster. Gene 1997; 198:181-9. [PMID: 9370280 DOI: 10.1016/s0378-1119(97)00313-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mammalian phosphatidylinositol 3-kinase (PI 3-kinase) plays an important role in the regulation of various cellular, receptor tyrosine kinase-mediated processes, such as mitogenesis and transformation. PI 3-kinase is composed of a 110-kDa catalytic subunit and a regulatory subunit of 85 kDa or 55 kDa. We have cloned a gene for a regulatory subunit from Drosophila melanogaster, named droPIK57, from head-specific cDNA libraries. The droPIK57 gene encodes a protein containing two SH2 domains with significant sequence homology to those in p85 and p55. Like the p55 subunits, DroPIK57 is missing the SH3 domain and the bcr homology region of the p85 subunit. The short N-terminus as well as the C-terminus of the DroPIK57 protein show no identity to the known PI 3-kinase subunits, suggesting that it is a new member in the family of regulatory subunits. In-situ hybridization and Northern blot analysis indicate a widespread function of this gene during embryogenesis and in the CNS.
Collapse
Affiliation(s)
- S Albert
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Genetik, Universität Würzburg, Germany
| | | | | | | |
Collapse
|
31
|
White MW, Radke JR. Methods to prepare RNA and to isolate developmentally regulated genes from Eimeria. Methods 1997; 13:158-70. [PMID: 9405199 DOI: 10.1006/meth.1997.0508] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Coccidians represent a large class of important intracellular parasites that traverse multiple developmental stages that are distinct and required to complete the life cycle. The biochemical details underlying the regulation of transformation from one developmental form to the next are limited and the study of such details presents unique obstacles. However, the genetic program is critical and may provide a basis for understanding the biology of these organisms in addition to the opportunity to suppress development and infection. We provide a basic overview of several strategies, including previously unpublished results, used by this laboratory to isolate stage-specific genes from Eimeria bovis. Additionally, we have included detailed discussions that summarize the associated advantages and disadvantages of each as applied to coccidia and potentially to other parasites in the phylum Apicomplexa. Given that the purification of sufficient quantities of high-quality RNA is vital, we have included detailed protocols for the isolation of RNA from various parasite stages. Also included is a detailed protocol to apply mRNA differential display to investigate stage-specific developmental regulation.
Collapse
Affiliation(s)
- M W White
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, 59717-0360, USA.
| | | |
Collapse
|
32
|
Gordon DF, Lewis SR, Haugen BR, James RA, McDermott MT, Wood WM, Ridgway EC. Pit-1 and GATA-2 interact and functionally cooperate to activate the thyrotropin beta-subunit promoter. J Biol Chem 1997; 272:24339-47. [PMID: 9305891 DOI: 10.1074/jbc.272.39.24339] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The molecular determinants governing cell-specific expression of the thyrotropin (TSH) beta-subunit gene in pituitary thyrotropes are not well understood. The P1 region of the mouse TSHbeta promoter (-133 to -88) region interacts with Pit-1 and an additional 50-kDa factor at an adjacent site that resembles a consensus GATA binding site. Northern and Western blot assays demonstrated the presence of GATA-2 transcripts and protein in TtT-97 thyrotropic tumors. In electrophoretic mobility shift assays, a comigrating complex was observed with both TtT-97 nuclear extracts and GATA-2 expressed in COS cells. The complex demonstrated binding specificity to the P1 region DNA probe and could be disrupted by a GATA-2 antibody. When both Pit-1 and GATA-2 were combined, a slower migrating complex, indicative of a ternary protein-DNA interaction was observed. Cotransfection of both Pit-1 and GATA-2 into CV-1 cells synergistically stimulated mouse TSHbeta promoter activity 8.5-fold, while each factor alone had a minimal effect. Mutations that abrogated this functional stimulatory effect mapped to the P1 region. Finally, we show that GATA-2 directly interacts with Pit-1 in solution. In summary, these data demonstrate functional synergy and physical interaction between homeobox and zinc finger factors and provide insights into the transcriptional mechanisms of thyrotrope-specific gene expression.
Collapse
Affiliation(s)
- D F Gordon
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Soehnge H, Huang X, Becker M, Conover D, Stern M. Cloning and sequencing of ribosomal protein L27a and a gene similar to human GS1 in Drosophila. Gene 1997; 185:257-63. [PMID: 9055824 DOI: 10.1016/s0378-1119(96)00656-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Two closely linked genes were identified and characterized in the 24F region on the left arm of chromosome 2 in Drosophila. One cDNA predicts a protein of 231 amino acids, with a molecular mass of 25.7 kDa. The predicted amino-acid sequence of this protein is 47.2% identical to that of the previously reported human GS1 protein, which is encoded by a gene that is of interest because it is one of the few X-linked genes that escapes X-inactivation. We have accordingly named our gene GS1like (GS1l). The second cDNA begins 383 bp proximal to the first. This cDNA encodes a protein of a predicted 149 amino acids and a molecular mass of 17.0 kDa. This protein represents a homolog of ribosomal protein L27a; thus, we have named the gene RpL27a. This gene might be responsible for the Minute mutation located at 24F. An rpL27a gene was previously localized to 87F/88A; thus, this gene might be present in two locations in Drosophila.
Collapse
Affiliation(s)
- H Soehnge
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77252, USA
| | | | | | | | | |
Collapse
|
34
|
Dong X, Zavitz KH, Thomas BJ, Lin M, Campbell S, Zipursky SL. Control of G1 in the developing Drosophila eye: rca1 regulates Cyclin A. Genes Dev 1997; 11:94-105. [PMID: 9000053 DOI: 10.1101/gad.11.1.94] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the developing eye of Drosophila melanogaster, cells become synchronized in the G1 phase of the cell cycle just prior to the onset of cellular differentiation and morphogenesis. In roughex (rux) mutants, cells enter S phase precociously because of ectopic activation of a Cyclin A/Cdk complex in early G1. This leads to defects in cell fate and pattern formation, and results in abnormalities in the morphology of the adult eye. A screen for dominant suppressors of the rux eye phenotype led to the identification of mutations in cyclin A, string (cdc25), and new cell cycle genes. One of these genes, regulator of cyclin A (rca1), encodes a novel protein required for both mitotic and meiotic cell cycle progression. rca1 mutants arrest in G2 of embryonic cell cycle 16 with a phenotype very similar to cyclin A loss of function mutants. Expression of rca1 transgenes in G1 or in postmitotic neurons promotes Cyclin A protein accumulation and drives cells into S phase in a Cyclin A-dependent fashion.
Collapse
Affiliation(s)
- X Dong
- Department of Biological Chemistry, Molecular Biology Institute, University of California, Los Angeles 90095, USA
| | | | | | | | | | | |
Collapse
|
35
|
Podbilewicz B. ADM-1, a protein with metalloprotease- and disintegrin-like domains, is expressed in syncytial organs, sperm, and sheath cells of sensory organs in Caenorhabditis elegans. Mol Biol Cell 1996; 7:1877-93. [PMID: 8970152 PMCID: PMC276037 DOI: 10.1091/mbc.7.12.1877] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A search was carried out for homologues of possible fusogenic proteins to study their function in a genetically tractable animal. The isolation, molecular, and cellular characterization of the Caenorhabditis elegans adm-1 gene (a disintegrin and metalloprotease domain) are described. A glycoprotein analogous to viral fusion proteins has been identified on the surface of guinea pig sperm (PH-30/fertilin) and is implicated in sperm-egg fusion. adm-1 is the first reported invertebrate gene related to PH-30 and a family of proteins containing snake venom disintegrin- and metalloprotease-like domains. ADM-1 shows a domain organization identical to PH-30. It contains prepro, metalloprotease, disintegrin, cysteine rich with putative fusion peptide, epidermal growth factor-like repeat, transmembrane, and cytoplasmic domains. Antibodies which recognize ADM-1 protein in immunoblots were generated. Using immunofluorescence and in situ hybridization, the products of adm-1 have been detected in specific cells during different stages of development. The localization of ADM-1 to the plasma membrane of embryonic cells and to the sheath cells of sensory organs suggests a function in cell adhesion. ADM-1 expression in the hypodermis, pharynx, vulva, and mature sperm is consistent with a putative role in somatic and gamete cell fusions.
Collapse
Affiliation(s)
- B Podbilewicz
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
36
|
Soehnge H, Huang X, Becker M, Whitley P, Conover D, Stern M. A neurotransmitter transporter encoded by the Drosophila inebriated gene. Proc Natl Acad Sci U S A 1996; 93:13262-7. [PMID: 8917579 PMCID: PMC24081 DOI: 10.1073/pnas.93.23.13262] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Behavioral and electrophysiological studies on mutants defective in the Drosophila inebriated (ine) gene demonstrated increased excitability of the motor neuron. In this paper, we describe the cloning and sequence analysis of ine. Mutations in ine were localized on cloned DNA by restriction mapping and restriction fragment length polymorphism (RFLP) mapping of ine mutants. DNA from the ine region was then used to isolate an ine cDNA. In situ hybridization of ine transcripts to developing embryos revealed expression of this gene in several cell types, including the posterior hindgut, Malpighian tubules, anal plate, garland cells, and a subset of cells in the central nervous system. The ine cDNA contains an open reading frame of 658 amino acids with a high degree of sequence similarity to members of the Na+/Cl(-)-dependent neurotransmitter transporter family. Members of this family catalyze the rapid reuptake of neurotransmitters released into the synapse and thereby play key roles in controlling neuronal function. We conclude that ine mutations cause increased excitability of the Drosophila motor neuron by causing the defective reuptake of the substrate neurotransmitter of the ine transporter and thus overstimulation of the motor neuron by this neurotransmitter. From this observation comes a unique opportunity to perform a genetic dissection of the regulation of excitability of the Drosophila motor neuron.
Collapse
Affiliation(s)
- H Soehnge
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA
| | | | | | | | | | | |
Collapse
|
37
|
Gordon DF, Wagner J, Atkinson BL, Chiono M, Berry R, Sikela J, Gutierrez-Hartmann A. Human Cart-1: structural organization, chromosomal localization, and functional analysis of a cartilage-specific homeodomain cDNA. DNA Cell Biol 1996; 15:531-41. [PMID: 8756334 DOI: 10.1089/dna.1996.15.531] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Homeoproteins control cell fates during development, specifying pattern formation and the ontogeny of specific tissues and organs in embryogenesis. Cart-1 cDNA was recently cloned from a rat chondrosarcoma tumor and it encodes a protein containing a paired-like homeodomain that is selectively expressed in cartilage during early chondrocyte differentiation. Here we report the molecular cloning of the human Cart-1 cDNA from a HeLa cervical carcinoma cDNA library. The human Cart-1 cDNA sequence is 88% identical and the deduced amino acid sequence is 95% identical to the rat sequence, indicating that Cart-1 structure is highly conserved. Northern and reverse transcriptase polymerase chain reaction (RT-PCR) analysis revealed Cart-1 mRNA expression in HeLa cervical carcinoma cells and human cervical tissue, but Cart-1 mRNA was not detected in GH3 rat pituitary cells and murine 10T1/2 one-half fibroblast cells. The Cart-1 gene was localized to human chromosome 12 and regionally mapped to the 12q21.3-q22 by PCR analysis of rodent-X-human somatic cell hybrid DNA and the CEPH megabase-insert YAC DNA pools, respectively. The Holt-Oram syndrome, characterized by upper limb and atrial septal dysplasias, also maps to the 12q21.3-q22 region. Cotransfection studies show that Cart-1 inhibits the rat prolactin promoter and that this repression is mediated by footprint II, an AT-rich element that functions as an inhibitory site of prolactin gene expression in nonpituitary cells and which was used to clone Cart-1. Taken together, these data indicate that Cart-1 may also influence cervix development, identify a putative DNA binding site for Cart-1, and, begin to define its functional role as modulator of gene expression.
Collapse
Affiliation(s)
- D F Gordon
- Department of Medicine, University of Colorado, Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Garrity PA, Rao Y, Salecker I, McGlade J, Pawson T, Zipursky SL. Drosophila photoreceptor axon guidance and targeting requires the dreadlocks SH2/SH3 adapter protein. Cell 1996; 85:639-50. [PMID: 8646773 DOI: 10.1016/s0092-8674(00)81231-3] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
SUMMARY Mutations in the Drosophila gene dreadlocks (dock) disrupt photoreceptor cell (R cell) axon guidance and targeting. Genetic mosaic analysis and cell-type-specific expression of dock transgenes demonstrate dock is required in R cells for proper innervation. Dock protein contains one SH2 and three SH3 domains, implicating it in tyrosine kinase signaling, and is highly related to the human proto-oncogene Nck. Dock expression is detected in R cell growth cones in the target region. We propose Dock transmits signals in the growth cone in response to guidance and targeting cues. These findings provide an important step for dissection of signaling pathways regulating growth cone motility.
Collapse
Affiliation(s)
- P A Garrity
- Department of Biological Chemistry, Molecular Biology Institute, Howard Hughes Medical Institute, The School of Medicine, University of California, Los Angeles, California 90024, USA
| | | | | | | | | | | |
Collapse
|
39
|
Kimmerly W, Stultz K, Lewis S, Lewis K, Lustre V, Romero R, Benke J, Sun D, Shirley G, Martin C, Palazzolo M. A P1-based physical map of the Drosophila euchromatic genome. Genome Res 1996; 6:414-30. [PMID: 8743991 DOI: 10.1101/gr.6.5.414] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A PCR-based sequence-tagged site (STS) content mapping strategy has been used to generate a physical map with 90% coverage of the 120-Mb euchromatic portion of the Drosophila genome. To facilitate map completion, the bulk of the STS markers was chosen in a nonrandom fashion. To ensure that all contigs were localized in relation to each other and the genome, these contig-building procedures were performed in conjunction with a large-scale in situ hybridization analysis of randomly selected clones from a Drosophila genomic library that had been generated in a P1 cloning vector. To date, the map consists of 649 contigs with an STS localized on average every 50 kb. This is the first whole genome that has been mapped based on a library constructed with large inserts in a vector that is maintained in Escherichia coli as a single-copy plasmid.
Collapse
Affiliation(s)
- W Kimmerly
- Drosophila Genome Center, University of California, Berkeley 94720, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sala-Newby GB, Thomson CM, Campbell AK. Sequence and biochemical similarities between the luciferases of the glow-worm Lampyris noctiluca and the firefly Photinus pyralis. Biochem J 1996; 313 ( Pt 3):761-7. [PMID: 8611152 PMCID: PMC1216975 DOI: 10.1042/bj3130761] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A full-length clone encoding Lampyris noctiluca (British glow-worm) luciferase was isolated from a complementary DNA (cDNA) expression library constructed with MRNA extracted from light organs. The luciferase was a 547-residue protein, as deduced from the nucleotide sequence. The protein was closely related to those of other lampyrid beetles, the similarity to Photinus pyralis luciferase being 84% and to Luciola 67%. In contrast, Lampyris luciferase had less sequence similarity to the luciferases of the click beetle Pyrophorus, at 48%. Engineering Lampyris luciferase in vitro showed that the C-terminal peptide containing 12 amino acids in Photinus and 9 amino acids in Lampyris was essential for bioluminescence. The pH optimum and the Km values for ATP and luciferin were similar for both Photinus and Lampyris luciferases, although the light emitted by the latter shifted towards the blue and was less stable at 37 degrees C. It was concluded that the molecular and biochemical properties were not sufficient to explain the glowing or flashing of the two beetles Lampyris and Photinus.
Collapse
Affiliation(s)
- G B Sala-Newby
- Department of Medical Biochemistry, University of Wales College of Medicine, Heath Park, Cardiff, U.K
| | | | | |
Collapse
|
41
|
Van Gelder RN, Bae H, Palazzolo MJ, Krasnow MA. Extent and character of circadian gene expression in Drosophila melanogaster: identification of twenty oscillating mRNAs in the fly head. Curr Biol 1995; 5:1424-36. [PMID: 8749395 DOI: 10.1016/s0960-9822(95)00280-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Although mRNAs expressed with a circadian rhythm have been isolated from many species, the extent and character of circadianly regulated gene expression is unknown for any animal. In Drosophila melanogaster, only the period (per) gene, an essential component of the circadian pacemaker, is known to show rhythmic mRNA expression. Recent work suggests that the encoded Per protein controls its own transcription by an autoregulatory feedback loop. Per might also control the rhythmic expression of other genes to generate circadian behavior and physiology. The goals of this work were to evaluate the extent and character of circadian control of gene expression in Drosophila, and to identify genes dependent on per for circadian expression. RESULTS A large collection of anonymous, independent cDNA clones was used to screen for transcripts that are rhythmically expressed in the fly head. 20 of the 261 clones tested detected mRNAs with a greater than two-fold daily change in abundance. Three mRNAs were maximally expressed in the morning, whereas 17 mRNAs were most abundant in the evening--when per mRNA is also maximally expressed (but when the flies are inactive). Further analysis of the three 'morning' cDNAs showed that each has a unique dependence on the presence of a light-dark cycle, on timed feeding, and on the function of the per gene for its oscillation. These dependencies were different from those determined for per and for a novel 'evening' gene. Sequence analysis indicated that all but one of the 20 cDNAs identified previously uncloned genes. CONCLUSIONS Diurnal control of gene expression is a significant but limited phenomenon in the fly head, which involves many uncharacterized genes. Diurnal control is mediated by multiple endogenous and exogenous mechanisms, even at the level of individual genes. A subset of circadianly expressed genes are predominantly or exclusively dependent on per for their rhythmic expression. The per gene can therefore influence the expression of genes other than itself, but for many rhythmically expressed genes, per functions in conjunction with external inputs to control their daily expression patterns.
Collapse
Affiliation(s)
- R N Van Gelder
- Department of Biochemistry, Stanford University School of Medicine, California 94305, USA
| | | | | | | |
Collapse
|
42
|
Chow KL, Hall DH, Emmons SW. The mab-21 gene of Caenorhabditis elegans encodes a novel protein required for choice of alternate cell fates. Development 1995; 121:3615-26. [PMID: 8582275 DOI: 10.1242/dev.121.11.3615] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gene mab-21, which encodes a novel protein of 386 amino acids, is required for the choice of alternate cell fates by several cells in the C. elegans male tail. Three cells descended from the ray 6 precursor cell adopt fates of anterior homologs, and a fourth, lineally unrelated hypodermal cell is transformed into a neuroblast. The affected cells lie together in the lateral tail epidermis, suggesting that mab-21 acts as part of a short-range pattern-formation mechanism. Each of the changes in cell fate brought about by mab-21 mutants can be interpreted as a posterior-to-anterior homeotic transformation. mab-21 mutant males and hermaphrodites have additional pleiotropic phenotypes affecting movement, body shape and fecundity, indicating that mab-21 has functions outside the tail region of males. We show that the three known alleles of mab-21 are hypomorphs of a new gene. Mosaic analysis revealed that mab-21 acts cell autonomously to specify the properties of the sensory ray, but non-autonomously in the hypodermal versus neuroblast cell fate choice. Presence of cell signalling in the choice of the neuroblast fate was confirmed by cell ablation experiments. Mutations in mab-21 were shown previously to be genetic modifiers of the effects of HOM-C/Hox gene mutations on ray identity specification. The results presented here support the conclusion that mab-21 acts as part of a mechanism required for correct cell fate choice, possibly involving the function of HOM-C/Hox genes in several body regions.
Collapse
Affiliation(s)
- K L Chow
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
43
|
Zhang Y, Emmons SW. Specification of sense-organ identity by a Caenorhabditis elegans Pax-6 homologue. Nature 1995; 377:55-9. [PMID: 7659160 DOI: 10.1038/377055a0] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Pax-6 transcription-factor gene, containing a paired domain and a paired-type homeodomain, is conserved in structure and ubiquitously present among Metazoa. It is required for development of the central nervous system, and is mutated in human aniridia, mouse and rat small eye and Drosophila eyeless. We identified the Pax-6 gene of the nematode Caenorhabditis elegans in genetic studies of male tail morphology. C. elegans Pax-6 encodes at least two independent genetic functions. One, like other Pax-6 genes, contains paired and homeodomains; this constitutes the genetic locus vab-3. The other, described here, is expressed from an internal promoter and contains only the homeodomain portion; this constitutes the genetic locus mab-18. The mab-18 form of the gene is expressed in a peripheral sense organ and is necessary for specification of sense-organ identity. Its function in this context could be to regulate the expression of cell recognition and adhesion proteins required for sense-organ assembly.
Collapse
Affiliation(s)
- Y Zhang
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
44
|
Chen HI, Sudol M. The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Proc Natl Acad Sci U S A 1995; 92:7819-23. [PMID: 7644498 PMCID: PMC41237 DOI: 10.1073/pnas.92.17.7819] [Citation(s) in RCA: 459] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The WW domain has previously been described as a motif of 38 semiconserved residues found in seemingly unrelated proteins, such as dystrophin, Yes-associated protein (YAP), and two transcriptional regulators, Rsp-5 and FE65. The molecular function of the WW domain has been unknown until this time. Using a functional screen of a cDNA expression library, we have identified two putative ligands of the WW domain of YAP, which we named WBP-1 and WBP-2. Peptide sequence comparison between the two partial clones revealed a homologous region consisting of a proline-rich domain followed by a tyrosine residue (with the shared sequence PPPPY), which we shall call the PY motif. Binding assays and site-specific mutagenesis have shown that the PY motif binds with relatively high affinity and specificity to the WW domain of YAP, with the preliminary consensus XPPXY being critical for binding. Herein, we have implicated the WW domain with a role in mediating protein-protein interactions, as a variant of the paradigm set by Src homology 3 domains and their proline-rich ligands.
Collapse
Affiliation(s)
- H I Chen
- Laboratory of Molecular Oncology, Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
45
|
Glasner JD, Kocher TD, Collins JJ. Caenorhabditis elegans contains genes encoding two new members of the Zn-containing alcohol dehydrogenase family. J Mol Evol 1995; 41:46-53. [PMID: 7608988 DOI: 10.1007/bf00174040] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have characterized two cDNA clones from the nematode Caenorhabditis elegans that display similarity to the alcohol dehydrogenase (ADH) gene family. The nucleotide sequences of these cDNAs predict that they encode Zn-containing long-chain ADH enzymes. Phylogenetic analysis suggests that one is most similar to dimeric class III ADHs found in diverse taxa; the other is most similar to the tetrameric forms of ADH previously described only in fungi.
Collapse
Affiliation(s)
- J D Glasner
- Program in Genetics, University of New Hampshire, Durham 03824, USA
| | | | | |
Collapse
|
46
|
Sudol M, Bork P, Einbond A, Kastury K, Druck T, Negrini M, Huebner K, Lehman D. Characterization of the mammalian YAP (Yes-associated protein) gene and its role in defining a novel protein module, the WW domain. J Biol Chem 1995; 270:14733-41. [PMID: 7782338 DOI: 10.1074/jbc.270.24.14733] [Citation(s) in RCA: 273] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We report cDNA cloning and characterization of the human and mouse orthologs of the chicken YAP (Yes-associated protein) gene which encodes a novel protein that binds to the SH3 (Src homology 3) domain of the Yes proto-oncogene product. Sequence comparison between mouse, human, and chicken YAP proteins showed an inserted sequence in the mouse YAP that represented an imperfect repeat of an upstream sequence. Further analysis of this sequence revealed a putative protein module that is found in various structural, regulatory, and signaling molecules in yeast, nematode, and mammals including human dystrophin. Because one of the prominent features of this sequence motif is two tryptophans (W), we named it the WW domain (Bork, P., and Sudol, M. (1994) Trends Biochem. Sci. 19, 531-533). Since its delineation, more proteins have been shown to contain this domain, and we report here on the widespread distribution of the WW module and present a discussion of its possible function. We have also shown that the human YAP gene is well conserved among higher eukaryotes, but it may not be conserved in yeast. Its expression at the RNA level in adult human tissues is nearly ubiquitous, being relatively high in placenta, prostate, ovary, and testis, but is not detectable in peripheral blood leukocytes. Using fluorescence in situ hybridization on human metaphase chromosomes and by analyzing rodent-human hybrids by Southern blot hybridization and polymerase chain reaction amplification, we mapped the human YAP gene to chromosome band 11q13, a region to which the multiple endocrine neoplasia type 1 gene has been mapped.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adult
- Amino Acid Sequence
- Animals
- Base Sequence
- Biological Evolution
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Cell Cycle Proteins
- Chickens
- Chromosome Mapping
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 6
- Cloning, Molecular
- DNA, Complementary
- Humans
- In Situ Hybridization, Fluorescence
- Molecular Sequence Data
- Phosphoproteins/chemistry
- Phosphoproteins/genetics
- Proto-Oncogene Mas
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Homology, Amino Acid
- Transcription Factors
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- M Sudol
- Laboratory of Molecular Oncology, Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Boyd AC, Sherratt DJ. The pCLIP plasmids: versatile cloning vectors based on the bacteriophage lambda origin of replication. Gene X 1995; 153:57-62. [PMID: 7883185 DOI: 10.1016/0378-1119(94)00788-t] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A series of general-purpose plasmid vectors based on the phage lambda origin of replication (ori) has been constructed. Each vector consists of a backbone plasmid encoding chloramphenicol resistance (CmR) and containing a unique HaeII site into which the lacZ alpha-complementing multiple cloning site (MCS) region of an established vector was inserted. To increase the cloning potential of the inserted MCS, superfluous restriction sites in the backbone were removed by a variety of techniques. The vectors, designated pCLIP (for CmR lambda ori integration proficient) plasmids, are of medium copy number and are compatible with most other vectors in common use. A total of 17 unique restriction sites in pCLIP8, pCLIP9, pCLIP18, pCLIP19 and pCLIP23 are available for cloning. As well as possessing the usual properties of vectors, the pCLIP plasmids are able to integrate reversibly into lambda prophage by homologous recombination. Thus, cloned DNA can be maintained in single or multiple copy at will. By integrating recombinant plasmids into appropriate deletion prophages followed by induction, phage::plasmid hybrids are produced which can be manipulated as phage. These properties are demonstrated using a test recombinant plasmid, pCLIPLEU2. The pCLIP vectors are therefore useful for routine plasmid cloning, complementation analysis and applications where the ability to manipulate recombinants in plasmid, phage or prophage forms is advantageous.
Collapse
Affiliation(s)
- A C Boyd
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, UK
| | | |
Collapse
|
48
|
Woods CM, Zhu J, Coleman T, Bloom SE, Lazarides E. Novel centrosomal protein reveals the presence of multiple centrosomes in turkey (Meleagris gallopavo) bnbn binucleated erythrocytes. J Cell Sci 1995; 108 ( Pt 2):699-710. [PMID: 7769012 DOI: 10.1242/jcs.108.2.699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phenotype of the bnbn hemolytic anemia mutation in the domestic turkey is manifested as binucleation specifically in the definitive erythrocyte lineage, most likely as the consequence of anomolous centrosomal activity (Bloom et al., 1970; Searle and Bloom, 1979). Here we have identified in turkey two variants of the novel, centrosomally-associated erythroid-specific protein p23. One variant is Ca(2+)-sensitive and is highly homologous to its chick counterpart (Zhu et al., 1995, accompanying paper). The other, p21 is a truncated form resulting from a 62 amino acid deletion from the 3′ end and a 40 amino acid insertion at the 5′ end, and appears to lack Ca(2+)-sensitivity. These proteins are localized at the marginal band, centrosomes and nuclear membrane of differentiated erythrocytes. Anti-p23/p21 immunofluorescence revealed the presence of multiple centrosomes in bnbn erythrocytes. We therefore undertook a detailed genetic analysis to determine whether the p21 variant represented the bn mutation. Initial tests of normal BnBn and mutant bnbn individuals suggested that the p23/p21 proteins might be encoded by the Bn/bn genes. However, further genetic tests demonstrated independent segregation for these two genetic loci. Thus, these proteins are encoded by the heretofore undescribed genes, p23/p21, mapping to an autosomal locus in the turkey genome.
Collapse
Affiliation(s)
- C M Woods
- Department of Pharmacology, Merck Research Laboratories, West Point, PA 19486, USA
| | | | | | | | | |
Collapse
|
49
|
Takayama S, Sato T, Krajewski S, Kochel K, Irie S, Millan JA, Reed JC. Cloning and functional analysis of BAG-1: a novel Bcl-2-binding protein with anti-cell death activity. Cell 1995; 80:279-84. [PMID: 7834747 DOI: 10.1016/0092-8674(95)90410-7] [Citation(s) in RCA: 641] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Using a protein interaction cloning technique, we identified cDNAs that encode a novel Bcl-2-binding protein, termed BAG-1. The BAG-1 protein shares no significant homology with Bcl-2 or other Bcl-2 family proteins, which can form homo- and heterodimers. In gene transfer experiments using a human lymphoid cell line, Jurkat, coexpression of BAG-1 and Bcl-2 provided markedly increased protection from cell death induced by several stimuli, including staurosporine, anti-Fas antibody, and cytolytic T cells, relative to cells that contained gene transfer-mediated elevations in either BAG-1 or Bcl-2 protein alone. BAG-transfected 3T3 fibroblasts also exhibited prolonged cell survival in response to an apoptotic stimulus. The findings indicate that bag-1 represents a new type of anti-cell death gene and suggest that some routes of apoptosis induction previously ascribed to Bcl-2-independent pathways may instead reflect a need for the combination of Bcl-2 and BAG-1.
Collapse
Affiliation(s)
- S Takayama
- La Jolla Cancer Research Foundation, California 92037
| | | | | | | | | | | | | |
Collapse
|
50
|
Zhao C, Emmons SW. A transcription factor controlling development of peripheral sense organs in C. elegans. Nature 1995; 373:74-8. [PMID: 7800042 DOI: 10.1038/373074a0] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The basic-helix-loop-helix (bHLH) proteins constitute a class of transcription factors thought to be important in the control of cell-type determination. These transcription factors are believed to activate the expression of cell-type-specific genes to generate stable differentiated cell types. The expression of bHLH proteins, in turn, is regulated by spatial cues, so that switches in cell type occur in a reproducible pattern. We report here that the lin-32 gene of Caenorhabditis elegans, which encodes a bHLH protein of the Drosophila achaete-scute family of transcription factors, is necessary and in some cells sufficient for specification of the neuroblast cell fate. Similarity in the function and structure of the lin-32 protein (LIN-32) to transcription factors of the achaete-scute gene family in Drosophila and vertebrates implies that this class of transcription factors functioned in a primitive ancestral form to specify neuronal cell fate, supporting the proposition that certain basic mechanisms of cell-type determination have been conserved through metazoan evolution.
Collapse
Affiliation(s)
- C Zhao
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | | |
Collapse
|