1
|
Comparative studies of vertebrate lipoprotein lipase: a key enzyme of very low density lipoprotein metabolism. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2011; 6:224-34. [PMID: 21561822 DOI: 10.1016/j.cbd.2011.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 04/13/2011] [Accepted: 04/18/2011] [Indexed: 11/24/2022]
Abstract
Lipoprotein lipase (LIPL or LPL; E.C.3.1.1.34) serves a dual function as a triglyceride lipase of circulating chylomicrons and very-low-density lipoproteins (VLDL) and facilitates receptor-mediated lipoprotein uptake into heart, muscle and adipose tissue. Comparative LPL amino acid sequences and protein structures and LPL gene locations were examined using data from several vertebrate genome projects. Mammalian LPL genes usually contained 9 coding exons on the positive strand. Vertebrate LPL sequences shared 58-99% identity as compared with 33-49% sequence identities with other vascular triglyceride lipases, hepatic lipase (HL) and endothelial lipase (EL). Two human LPL N-glycosylation sites were conserved among seven predicted sites for the vertebrate LPL sequences examined. Sequence alignments, key amino acid residues and conserved predicted secondary and tertiary structures were also studied. A CpG island was identified within the 5'-untranslated region of the human LPL gene which may contribute to the higher than average (×4.5 times) level of expression reported. Phylogenetic analyses examined the relationships and potential evolutionary origins of vertebrate lipase genes, LPL, LIPG (encoding EL) and LIPC (encoding HL) which suggested that these have been derived from gene duplication events of an ancestral neutral lipase gene, prior to the appearance of fish during vertebrate evolution. Comparative divergence rates for these vertebrate sequences indicated that LPL is evolving more slowly (2-3 times) than for LIPC and LIPG genes and proteins.
Collapse
|
2
|
Casanovas A, Carrascal M, Abián J, López-Tejero MD, Llobera M. Lipoprotein lipase is nitrated in vivo after lipopolysaccharide challenge. Free Radic Biol Med 2009; 47:1553-60. [PMID: 19715756 DOI: 10.1016/j.freeradbiomed.2009.08.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 07/29/2009] [Accepted: 08/20/2009] [Indexed: 01/22/2023]
Abstract
Lipopolysaccharide (LPS) administration down-regulates lipoprotein lipase (LPL) activity at the posttranscriptional level. Hypertriglyceridemia is the main metabolic consequence of this fall in LPL activity and is presumably involved in the innate immune response to infection. Nitric oxide (NO) has been implicated in LPS-induced down-regulation of LPL activity, but whether its effects are direct or indirect remains unclear. Here we examined the potential nitration of LPL in vivo in response to LPS challenge in rats. We found hypertriglyceridemia, iNOS expression, NO overproduction, and a generalized decrease in LPL activity in tissues 6 h after LPS administration. LPL sensitivity to nitration was first explored by in vitro exposure of bovine LPL to peroxynitrite, a reactive nitrogen species (RNS). Nitration was confirmed by anti-nitrotyrosine Western blot and subsequent identification of specific nitrotyrosine-containing LPL sequences by tandem mass spectrometry. Further analysis by targeted mass spectrometry revealed three in vivo-nitrated tyrosine residues in heart LPL from LPS-challenged rats. This is the first study to identify nitrated tyrosine residues in LPL, both in vitro and in vivo, and it demonstrates that LPL is a target for RNS in endotoxemia. These results indicate that LPL nitration may be a new mechanism of LPL activity regulation in vivo.
Collapse
Affiliation(s)
- Albert Casanovas
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, E-08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
3
|
Abstract
Lipoprotein lipase (LPL) is a multifunctional enzyme produced by many tissues, including adipose tissue, cardiac and skeletal muscle, islets, and macrophages. LPL is the rate-limiting enzyme for the hydrolysis of the triglyceride (TG) core of circulating TG-rich lipoproteins, chylomicrons, and very low-density lipoproteins (VLDL). LPL-catalyzed reaction products, fatty acids, and monoacylglycerol are in part taken up by the tissues locally and processed differentially; e.g., they are stored as neutral lipids in adipose tissue, oxidized, or stored in skeletal and cardiac muscle or as cholesteryl ester and TG in macrophages. LPL is regulated at transcriptional, posttranscriptional, and posttranslational levels in a tissue-specific manner. Nutrient states and hormonal levels all have divergent effects on the regulation of LPL, and a variety of proteins that interact with LPL to regulate its tissue-specific activity have also been identified. To examine this divergent regulation further, transgenic and knockout murine models of tissue-specific LPL expression have been developed. Mice with overexpression of LPL in skeletal muscle accumulate TG in muscle, develop insulin resistance, are protected from excessive weight gain, and increase their metabolic rate in the cold. Mice with LPL deletion in skeletal muscle have reduced TG accumulation and increased insulin action on glucose transport in muscle. Ultimately, this leads to increased lipid partitioning to other tissues, insulin resistance, and obesity. Mice with LPL deletion in the heart develop hypertriglyceridemia and cardiac dysfunction. The fact that the heart depends increasingly on glucose implies that free fatty acids are not a sufficient fuel for optimal cardiac function. Overall, LPL is a fascinating enzyme that contributes in a pronounced way to normal lipoprotein metabolism, tissue-specific substrate delivery and utilization, and the many aspects of obesity and other metabolic disorders that relate to energy balance, insulin action, and body weight regulation.
Collapse
Affiliation(s)
- Hong Wang
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | | |
Collapse
|
4
|
José Ibáñez A, Peinado-Onsurbe J, Sánchez E, Cerdá-Reverter JM, Prat F. Lipoprotein lipase (LPL) is highly expressed and active in the ovary of European sea bass (Dicentrarchus labrax L.), during gonadal development. Comp Biochem Physiol A Mol Integr Physiol 2008; 150:347-54. [DOI: 10.1016/j.cbpa.2008.04.598] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 04/15/2008] [Accepted: 04/15/2008] [Indexed: 10/22/2022]
|
5
|
Dietary n-3 fatty acids affect mRNA level of brown adipose tissue uncoupling protein 1, and white adipose tissue leptin and glucose transporter 4 in the rat. Br J Nutr 2007. [DOI: 10.1017/s0007114500001409] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We examined the effect of dietary fats rich in n-3 polyunsaturated fatty acids (PUFA) on mRNA levels in white and brown adipose tissues in rats. Four groups of rats were fed on a low-fat diet (20 g safflower oil/kg) or a high-fat diet (200 g/kg) containing safflower oil, which is rich in n-6 PUFA (linoleic acid), or perilla (α-linolenic acid) or fish oil (eicosapentaenoic and docosahexaenoic acids), both of which are rich in n-3 PUFA, for 21 d. Energy intake was higher in rats fed on a high-safflower-oil diet than in those fed on low-fat or high-fish-oil diet, but no other significant differences were detected among the groups. Perirenal white adipose tissue weight was higher and epididymal white adipose tissue weight tended to be higher in rats fed on a high-safflower-oil diet than in those fed on a low-fat diet. However, high-fat diets rich in n-3 PUFA, compared to a low-fat diet, did not increase the white adipose tissue mass. High-fat diets relative to a low-fat diet increased brown adipose tissue uncoupling protein 1 mRNA level. The increases were greater with fats rich in n-3 PUFA than with n-6 PUFA. A high-safflower-oil diet, compared to a low-fat diet, doubled the leptin mRNA level in white adipose tissue. However, high-fat diets rich in n-3 PUFA failed to increase it. Compared to a low-fat diet, high-fat diets down-regulated the glucose transporter 4 mRNA level in white adipose tissue. However, the decreases were attenuated with high-fat diets rich in n-3 PUFA. It is suggested that the alterations in gene expression in adipose tissue contribute to the physiological activities of n-3 PUFA in preventing body fat accumulation and in regulating glucose metabolism in rats.
Collapse
|
6
|
An D, Kewalramani G, Qi D, Pulinilkunnil T, Ghosh S, Abrahani A, Wambolt R, Allard M, Innis SM, Rodrigues B. beta-Agonist stimulation produces changes in cardiac AMPK and coronary lumen LPL only during increased workload. Am J Physiol Endocrinol Metab 2005; 288:E1120-7. [PMID: 15687106 DOI: 10.1152/ajpendo.00588.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Given the importance of lipoprotein lipase (LPL) in cardiac and vascular pathology, the objective of the present study was to investigate whether the beta-agonist isoproterenol (Iso) influences cardiac LPL. Incubation of quiescent cardiomyocytes with Iso for 60 min had no effect on basal, intracellular, or heparin-releasable (HR)-LPL activity. Similarly, Iso did not change HR-LPL in Langendorff isolated hearts that do not beat against an afterload. In the intact animal, LPL activity at the vascular lumen increased significantly in the Iso-treated group, together with a substantial increase in rate-pressure product. This LPL increase was likely via mechanisms regulated by activation of AMP-activated protein kinase (AMPK) and inactivation of acetyl-CoA carboxylase (ACC280). In glucose-perfused hearts, simply switching from Langendorff to the isolated working heart (that beats against an afterload) induced increases in AMPK and ACC280 phosphorylation and enhanced HR-LPL activity. Provision of insulin and albumin-bound palmitic acid to the working heart was able to reverse these effects. In these hearts, introduction of Iso to the buffer perfusate duplicated the effects seen when this beta-agonist was given in vivo. Our data suggest that Iso can influence HR-LPL only during conditions of increased workload, mechanical performance and excessive energy expenditure, and likely in an AMPK-dependent manner.
Collapse
Affiliation(s)
- Ding An
- Faculty of Pharmaceutical Sciences, The Univ. of British Columbia, 2146 East Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Milad-Kodsi E, Langston TB, Gergis MR, Grogan WM. Acidic residues emulate a phosphorylation switch to enhance the activity of rat hepatic neutral cytosolic cholesterol esterase. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1734:62-73. [PMID: 15866484 DOI: 10.1016/j.bbalip.2005.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 01/24/2005] [Accepted: 02/10/2005] [Indexed: 11/17/2022]
Abstract
Site-directed mutagenesis of rat hepatic neutral cytosolic cholesteryl ester hydrolase (rhncCEH) was used to substitute acidic, basic or neutral amino acid residues for Ser506, required for activation by protein kinase A. The substitution of acidic Asp506 resulted in esterase activities with cholesteryl oleate, p-nitrophenylcaprylate (PNPC) and p-nitrophenylacetate (PNPA) equivalent to those of native rhncCEH with Ser506. The substitution of 2 acidic residues (Asp505/506), emulating the 2 negative charges of phosphoserine, resulted in a 10-fold greater cholesterol esterase activity than that of native rhncCEH, similar to the activity of rhncCEH treated with protein kinase A. In contrast to mutants with Ser506, protein kinase A did not increase the specific activities of mutants with Asp505/506. The substitution of basic (Lys506) or neutral (Asn506) residues abolished activity with cholesteryl oleate but not PNPC or PNPA. The substitution of neutral Gln for basic residues Lys496/Arg503 also abolished cholesterol esterase activity but not PNPC- and PNPA-esterase activities. These structure-activity relationships are modeled by homology with a recently reported crystal structure for the homologous human triacylglycerol hydrolase. The results suggest that the cholesterol esterase activity of carboxylesterases is enhanced by interactions between one or more basic residues on helix alpha16 (residues 485-503) and acidic groups at residues 505-506 in the adjacent surface loop.
Collapse
Affiliation(s)
- E Milad-Kodsi
- Department of Biochemistry, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0614, USA
| | | | | | | |
Collapse
|
8
|
An D, Pulinilkunnil T, Qi D, Ghosh S, Abrahani A, Rodrigues B. The metabolic "switch" AMPK regulates cardiac heparin-releasable lipoprotein lipase. Am J Physiol Endocrinol Metab 2005; 288:E246-53. [PMID: 15328075 DOI: 10.1152/ajpendo.00211.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The "fuel gauge" AMP-activated protein kinase (AMPK) facilitates ATP production to meet energy demands during metabolic stress. Given the importance of lipoprotein lipase (LPL) in providing hearts with fatty acids (FA), the preferred substrate consumed by the heart, the objective of the present study was to investigate whether activation of AMPK influences LPL at its functionally relevant location, the coronary lumen. Hearts from overnight-fasted rats were first perfused with heparin to release LPL, and homogenates from these hearts were then used to measure total and phospho-AMPK-alpha by Western blotting. Manipulation of AMPK activity [with drugs like adenine 9-beta-D-arabinofuranoside (Ara-A) and insulin (that inhibit) or perhexiline and oligomycin (that stimulate)] and its influence on LPL was also determined. Fasting augmented the activity of both AMPK and luminal LPL on immediate removal of hearts, effects that still remained even after in vitro perfusion of hearts for 1 h. Inhibition of AMPK in fasted hearts using an inhibitor like Ara-A or through provision of insulin markedly lowered the enhanced luminal LPL activity. In contrast, AMPK activators, like perhexiline and oligomycin, produced a significant elevation in heparin-releasable LPL activity. Thus, with fasting or drugs that influence AMPK, a strong correlation between this metabolic switch and cardiac LPL activity was established. Our data suggest that, in addition to its direct role in promoting FA oxidation, AMPK-mediated recruitment of LPL to the coronary lumen could represent an immediate compensatory response by the heart to guarantee FA supply.
Collapse
Affiliation(s)
- Ding An
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Wallace TJ, Kodsi EM, Langston TB, Gergis MR, Grogan WM. Mutation of residues 423 (Met/Ile), 444 (Thr/Met), and 506 (Asn/Ser) confer cholesteryl esterase activity on rat lung carboxylesterase. Ser-506 is required for activation by cAMP-dependent protein kinase. J Biol Chem 2001; 276:33165-74. [PMID: 11429416 DOI: 10.1074/jbc.m105644200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Site-directed mutagenesis is used to identify amino acid residues that dictate reported differences in substrate specificity between rat hepatic neutral cytosolic cholesteryl ester hydrolase (hncCEH) and rat lung carboxylesterase (LCE), proteins differing by only 4 residues in their primary sequences. Beginning with LCE, the substitution Met(423) --> Ile(423) alone or in combination with other mutations increased activity with p-nitrophenylcaprylate (PNPC) relative to more hydrophilic p-nitrophenylacetate (PNPA), typical of hncCEH. The substitution Thr(444) --> Met(444) was necessary but not sufficient for expression of cholesteryl esterase activity in COS-7 cells. The substitution Asn(506) --> Ser(506), creating a potential phosphorylation site, uniformly increased activity with both PNPA and PNPC, was necessary but not sufficient for expression of cholesteryl esterase activity and conferred susceptibility to activation by cAMP-dependent protein kinase, a property of hncCEH. The 3 mutations in combination were necessary and sufficient for expression of cholesteryl esterase activity by the mutated LCE. The substitution Gln(186) --> Arg(186) selectively reduced esterase activity with PNPA and PNPC but was not required for cholesteryl esterase activity. Homology modeling from x-ray structures of acetylcholinesterases is used to propose three-dimensional models for hncCEH and LCE that provide insight into the effects of these mutations on substrate specificity.
Collapse
Affiliation(s)
- T J Wallace
- Department of Biochemistry and Molecular Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298-0614, USA
| | | | | | | | | |
Collapse
|
10
|
Takahashi Y, Ide T. Effect of dietary fats differing in degree of unsaturation on gene expression in rat adipose tissue. ANNALS OF NUTRITION & METABOLISM 1999; 43:86-97. [PMID: 10436307 DOI: 10.1159/000012772] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To test the possibility that the type of dietary fat affects the expression of proteins involved in adipose tissue metabolism, levels of mRNA for lipoprotein lipase, leptin, glucose transporter 4, and uncoupling protein in adipose tissues were compared among rats fed a low-fat diet (2% safflower oil), and high-fat diets containing 20% saturated fat (palm oil) or unsaturated fat rich in linoleic acid (safflower oil) for 3 weeks. High-fat diets decreased the lipoprotein lipase mRNA level in epididymal but not in perirenal white adipose tissue, but increased it in brown adipose tissue. Leptin gene expression in perirenal white adipose tissue was significantly higher in rats fed high-fat diets than in those fed a low-fat diet. High-fat diets failed, however, to alter this parameter in epididymal white adipose tissue and interscapular brown adipose tissue. mRNA levels of glucose transporter 4, both in epididymal and perirenal white adipose tissues, were lower in rats fed high-fat diets than in those fed a low-fat diet. Uncoupling protein gene expression in interscapular brown adipose tissue was 2-3 times higher in rats fed high-fat diets than in those fed a low-fat diet. The abundance of mRNAs for lipoprotein lipase, leptin, glucose transporter 4 and uncoupling protein was, however, comparable between rats fed diets high in safflower and palm oil. We concluded that the high-fat diet influences gene expression of adipose tissue in a site-specific manner. The difference in the degree of unsaturation of dietary fats is rather irrelevant in modifying the level of mRNAs for proteins related to energy metabolism and expenditure in adipose tissue.
Collapse
Affiliation(s)
- Y Takahashi
- Laboratory of Nutrition Biochemistry, National Food Research Institute, Ministry of Agriculture, Forestry and Fisheries, Ibaraki, Japan.
| | | |
Collapse
|
11
|
Chang SF, Reich B, Brunzell JD, Will H. Detailed characterization of the binding site of the lipoprotein lipase-specific monoclonal antibody 5D2. J Lipid Res 1998. [DOI: 10.1016/s0022-2275(20)33314-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
Bey L, Etienne J, Tse C, Brault D, Noé L, Raisonnier A, Arnault F, Hamilton MT, Galibert F. Cloning, sequencing and structural analysis of 976 base pairs of the promoter sequence for the rat lipoprotein lipase gene. Comparison with the mouse and human sequences. Gene X 1998; 209:31-8. [PMID: 9524212 DOI: 10.1016/s0378-1119(98)00003-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We cloned and sequenced the -976bp promoter of the rat lipoprotein lipase LPL gene. The sequence was compared with the mouse and human sequences. The homology between the rat and mouse LPL nucleotide sequences was not quite as strong in the promoter sequence as in the coding sequence. Among the 976nt promoter there were 118 divergences, i.e. 11.8%, compared to only 5.6% for the LPL coding region. However, within the 200nt immediately 5' to the transcriptional start site (proximal promoter), the divergence was only 4%. New potential cis-elements (such as CACCC, GATA, GC and GA boxes, IRS, Krox, MEF 2, E-box, CCArGG and 1/2 VDRE) were identified in the rat, mouse or human LPL gene.
Collapse
Affiliation(s)
- L Bey
- Biochimie et Biologie moléculaire, Faculté de Médecine St Antoine-Tenon, 75012, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sato T, Aoki J, Nagai Y, Dohmae N, Takio K, Doi T, Arai H, Inoue K. Serine phospholipid-specific phospholipase A that is secreted from activated platelets. A new member of the lipase family. J Biol Chem 1997; 272:2192-8. [PMID: 8999922 DOI: 10.1074/jbc.272.4.2192] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Rat platelets secrete two types of phospholipases upon stimulation; one is type II phospholipase A2 and the other is serine-phospholipid-selective phospholipase A. In the current study we purified serine-phospholipid-selective phospholipase A and cloned its cDNA. The final preparation, purified from extracellular medium of activated rat platelets, gave a 55-kDa protein band on SDS-polyacrylamide gel electrophoresis. [3H]Diisopropyl fluorophosphate, an inhibitor of the enzyme, labeled the 55-kDa protein, suggesting that this polypeptide possesses active serine residues. The cDNA for the enzyme was cloned from a rat megakaryocyte cDNA library. The predicted 456-amino acid sequence contains a putative short N-terminal signal sequence and a GXSXG sequence, which is a motif of an active serine residue of serine esterase. Amino acid sequence homology analysis revealed that the enzyme shares about 30% homology with mammalian lipases (lipoprotein lipase, hepatic lipase, and pancreatic lipase). Regions surrounding the putative active serine, histidine, and aspartic acid, which may form a "lipase triad," were highly conserved among these enzymes. The recombinant protein, which we expressed in Sf9 insect cells using the baculovirus system, hydrolyzed a fatty acyl residue at the sn-1 position of lysophosphatidylserine and phosphatidylserine, but did not appreciably hydrolyze phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidic acid, and triglyceride. The present enzyme, named phosphatidylserine-phospholipase A1, is the first phospholipase that exclusively hydrolyses the sn-1 position and has a strict head group specificity for the substrate.
Collapse
Affiliation(s)
- T Sato
- Faculty of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Bottger A, van Lith HA, Kren V, Krenová D, Bílá V, Vorlícek J, Zídek V, Musilová A, Zdobinská M, Wang JM, van Zutphen BF, Kurtz TW, Pravenec M. Quantitative trait loci influencing cholesterol and phospholipid phenotypes map to chromosomes that contain genes regulating blood pressure in the spontaneously hypertensive rat. J Clin Invest 1996; 98:856-62. [PMID: 8698878 PMCID: PMC507496 DOI: 10.1172/jci118858] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The frequent coincidence of hypertension and dyslipidemia suggests that related genetic factors might underlie these common risk factors for cardiovascular disease. To investigate whether quantitative trait loci (QTLs) regulating lipid levels map to chromosomes known to contain genes regulating blood pressure, we used a genome scanning approach to map QTLs influencing cholesterol and phospholipid phenotypes in a large set of recombinant inbred strains and in congenic strains derived from the spontaneously hypertensive rat and normotensive Brown-Norway (BN.Lx) rat fed normal and high cholesterol diets. QTLs regulating lipid phenotypes were mapped by scanning the genome with 534 genetic markers. A significant relationship (P < 0.00006) was found between basal HDL2 cholesterol levels and the D19Mit2 marker on chromosome 19. Analysis of congenic strains of spontaneously hypertensive rat indicated that QTLs regulating postdietary lipid phenotypes exist also on chromosomes 8 and 20. Previous studies in the recombinant inbred and congenic strains have demonstrated the presence of blood pressure regulatory genes in corresponding segments of chromosomes 8, 19, and 20. These findings provide support for the hypothesis that blood pressure and certain lipid subfractions can be modulated by linked genes or perhaps even the same genes.
Collapse
Affiliation(s)
- A Bottger
- Department of Laboratory Animal Science, Veterinary Faculty, Utrecht University, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Arnault F, Etienne J, Noé L, Raisonnier A, Brault D, Harney JW, Berry MJ, Tse C, Fromental-Ramain C, Hamelin J, Galibert F. Human lipoprotein lipase last exon is not translated, in contrast to lower vertebrates. J Mol Evol 1996; 43:109-15. [PMID: 8660435 DOI: 10.1007/bf02337355] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have sequenced the first fish (zebrafish, Brachydanio rerio) lipoprotein lipase (LPL) cDNA clone. Similarities were found in mammalian LPL cDNA, but the codon spanning the last two exons (which is thus split by the last intron) is AGA (Arg) as opposed to TGA in mammals. Exon 10 is thus partially translated. These results were confirmed with rainbow trout (Oncorhynchus mykiss). We also investigated whether mammal TGA coded for selenocystein (SeCys), the 21st amino acid, but found that this was not the case: TGA does not encode SeCys but is a stop codon. It thus appears that the sense codon AGA (fish) has been transformed into a stop codon TGA (human) during the course of evolution. It remains to be determined if the "loss" of the C-terminal end of mammalian LPL protein has conferred an advantage in terms of LPL activity or, on the contrary, a disadvantage (e.g., susceptibility to diabetes or atherosclerosis).
Collapse
Affiliation(s)
- F Arnault
- Laboratoire de Biochimie et Biologie Moléculaire, Faculté de Médecine St-Antoine-Tenon, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ginzinger DG, Lewis ME, Ma Y, Jones BR, Liu G, Jones SD. A mutation in the lipoprotein lipase gene is the molecular basis of chylomicronemia in a colony of domestic cats. J Clin Invest 1996; 97:1257-66. [PMID: 8636438 PMCID: PMC507179 DOI: 10.1172/jci118541] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Members of a domestic cat colony with chylomicronemia share many phenotypic features with human lipoprotein lipase (LPL) deficiency. Biochemical analysis reveals that these cats do have defective LPL catalytic activity and have a clinical phenotype very similar to human LPL deficiency. To determine the molecular basis underlying this biochemical phenotype, we have cloned the normal and affected cat LPL cDNAs and shown that the affected cat has a nucleotide change resulting in a substitution of arginine for glycine at residue 412 in exon 8. In vitro mutagenesis and expression studies, in addition to segregation analysis, have shown that this DNA change is the cause of LPL deficiency in this cat colony. Reduced body mass, growth rates, and increased stillbirth rates are observed in cats homozygous for this mutation. These findings show that this LPL deficient cat can serve as an animal model of human LPL deficiency and will be useful for in vivo investigation of the relationship between triglyceride rich lipoproteins and atherogenic risk and for the assessment of new approaches for treatment of LPL deficiency, including gene therapy.
Collapse
Affiliation(s)
- D G Ginzinger
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Lipoprotein lipase (LPL; E.C. 3.1.1.34) is a key enzyme in the metabolism of lipids. Many diseases, including obesity, coronary heart disease, chylomicronemia (pancreatitis), and atherosclerosis, appear to be directly or indirectly related to abnormalities in LPL function. Human LPL is a member of a superfamily of lipases that includes hepatic lipase and pancreatic lipase. These lipases are characterized by extensive homology, both at the level of the gene and the mature protein, suggesting that they have a common evolutionary origin. A large number of natural mutations have been discovered in the human LPL gene, which are located at different sites in the gene and affect different functions of the mature protein. There is a high prevalence of two of these mutations (207 and 188) in the Province of Québec, and one of them (207) is almost exclusive to the French-Canadian population. A study of these and other naturally occurring mutant LPL molecules, as well as those created in vitro by site-directed mutagenesis, indicate that the sequence of LPL is organized into multiple structural and functional units that act in concert in the normal enzyme. In this review, we discuss the interrelationships of LPL structure and its function, the molecular etiology of abnormal LPL in humans, and the clinical and therapeutic aspects of LPL deficiency.
Collapse
Affiliation(s)
- V Murthy
- Department of Biochemistry, Faculty of Medicine, Laval University, Ste-Foy, Québec, Canada
| | | | | |
Collapse
|
18
|
Raisonnier A, Etienne J, Arnault F, Brault D, Noé L, Chuat JC, Galibert F. Comparison of the cDNA and amino acid sequences of lipoprotein lipase in eight species. Comp Biochem Physiol B Biochem Mol Biol 1995; 111:385-98. [PMID: 7613763 DOI: 10.1016/0305-0491(95)00006-t] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
By aligning nucleotide and amino acid sequences of lipoprotein lipase in eight species (man, pig, cow, sheep, mouse, rat, guinea-pig and chicken), we found that the main domains (catalytic, N-glycosylation and putative heparin binding sites) are well conserved. The longest identical amino acid chain was encoded by a sequence between the end of exon 2 and the beginning of exon 3, emphasizing the importance of this region which encodes the beta 5-loop of the active site, among other domains. Exon 10 is entirely untranslated in the seven mammals studied here and contains species-characteristic deletions, insertions or elements rich in A or A + T. In chicken, the beginning of exon 10 is translated. These eight previously unreported alignments could be a useful tool for further studies on LPL function.
Collapse
|
19
|
Ranganathan G, Ong JM, Yukht A, Saghizadeh M, Simsolo RB, Pauer A, Kern PA. Tissue-specific expression of human lipoprotein lipase. Effect of the 3'-untranslated region on translation. J Biol Chem 1995; 270:7149-55. [PMID: 7706252 DOI: 10.1074/jbc.270.13.7149] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Lipoprotein lipase (LPL) is a central enzyme in lipoprotein metabolism and is expressed predominantly in adipose tissue and muscle. In these tissues, the regulation of LPL is complex and often opposite in response to the same physiologic stimulus. In addition, much regulation of LPL occurs post-transcriptionally. The human LPL cDNA is characterized by a long 3'-untranslated region, which has two polyadenylation signals. In this report, human adipose tissue expressed two LPL mRNA species (3.2 and 3.6 kb) due to an apparent random choice of sites for mRNA polyadenylation, whereas human skeletal and heart muscle expressed predominantly the longer 3.6-kb mRNA form. To determine whether there was any functional significance to this tissue-specific mRNA expression, poly(A)-enriched RNA from adipose tissue and muscle were translated in vitro, and the poly(A)-enriched RNA from muscle was more efficiently translated into LPL protein. The increased translatability of the 3.6-kb form was also demonstrated by cloning the full-length 3.2- and 3.6-kb LPL cDNA forms, followed by in vitro translation of in vitro prepared transcripts. To confirm that this increased efficiency of translation occurred in vivo, Chinese hamster ovary cells were transfected with the 3.2- and 3.6-kb LPL cDNAs. Cells transfected with the 3.6-kb construct demonstrated increased LPL activity and synthesis, despite no increase in levels of LPL mRNA. Thus, human muscle expresses the 3.6-kb form of LPL due to a non-random choice of polyadenylation signals, and this form is more efficiently translated than the 3.2-kb form.
Collapse
Affiliation(s)
- G Ranganathan
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Boivin A, Deshaies Y. Hypothesis: an amino acid sequence in lipoprotein lipase codes for its degradation by Ca(2+)-dependent proteases. Lipids 1995; 30:95-7. [PMID: 7760695 DOI: 10.1007/bf02537048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
21
|
Jokinen EV, Landschulz KT, Wyne KL, Ho YK, Frykman PK, Hobbs HH. Regulation of the very low density lipoprotein receptor by thyroid hormone in rat skeletal muscle. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47209-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Probst M, Beer M, Beer D, Jenö P, Meyer U, Gasser R. Human liver arylacetamide deacetylase. Molecular cloning of a novel esterase involved in the metabolic activation of arylamine carcinogens with high sequence similarity to hormone-sensitive lipase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31855-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
23
|
Soteriou A, Cryer A. Purification and characterization of lipoprotein lipase from the white adipose, skeletal muscle, cardiac muscle, mammary gland and lung tissues of the rat. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1993; 25:1483-90. [PMID: 8224360 DOI: 10.1016/0020-711x(93)90694-a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
1. Lipoprotein lipase (LPL) was isolated from five rat tissues: white adipose, skeletal muscle, cardiac muscle, mammary gland and lung. 2. Specific activity of the preparations varied from 75 U/mg for skeletal muscle and 720 U/mg for adipose. 3. The preparations were further analysed using SDS-PAGE and a single component identified. The mol. wt of 61,000 Da of this component was consistent for all five of the tissue sources. 4. Significant differences in the values of the isoelectric points of the enzyme species were revealed. The values varied from 7.23 (SEM 0.022) for cardiac and lung to 7.51 (SEM 0.037) for mammary. 5. Two-dimensional electrophoresis, using isoelectric focusing in the first dimension and SDS-PAGE in the second revealed differences in the patterns of stained material derived from the five tissue sources.
Collapse
Affiliation(s)
- A Soteriou
- Department of Biochemistry, University of Wales College of Cardiff, U.K
| | | |
Collapse
|
24
|
Enerbäck S, Gimble JM. Lipoprotein lipase gene expression: physiological regulators at the transcriptional and post-transcriptional level. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1169:107-25. [PMID: 8343535 DOI: 10.1016/0005-2760(93)90196-g] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- S Enerbäck
- Department of Molecular Biology, University of Göteborg, Sweden
| | | |
Collapse
|