1
|
Mol M, de Maayer P. Elucidating the biotechnological potential of the genera Parageobacillus and Saccharococcus through comparative genomic and pan-genome analysis. BMC Genomics 2024; 25:723. [PMID: 39054411 PMCID: PMC11270796 DOI: 10.1186/s12864-024-10635-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND The genus Geobacillus and its associated taxa have been the focal point of numerous thermophilic biotechnological investigations, both at the whole cell and enzyme level. By contrast, comparatively little research has been done on its recently delineated sister genus, Parageobacillus. Here we performed pan-genomic analyses on a subset of publicly available Parageobacillus and Saccharococcus genomes to elucidate their biotechnological potential. RESULTS Phylogenomic analysis delineated the compared taxa into two distinct genera, Parageobacillus and Saccharococcus, with P. caldoxylosilyticus isolates clustering with S. thermophilus in the latter genus. Both genera present open pan-genomes, with the species P. toebii being characterized with the highest novel gene accrual. Diversification of the two genera is driven through the variable presence of plasmids, bacteriophages and transposable elements. Both genera present a range of potentially biotechnologically relevant features, including a source of novel antimicrobials, thermostable enzymes including DNA-active enzymes, carbohydrate active enzymes, proteases, lipases and carboxylesterases. Furthermore, they present a number of metabolic pathways pertinent to degradation of complex hydrocarbons and xenobiotics and for green energy production. CONCLUSIONS Comparative genomic analyses of Parageobacillus and Saccharococcus suggest that taxa in both of these genera can serve as a rich source of biotechnologically and industrially relevant secondary metabolites, thermostable enzymes and metabolic pathways that warrant further investigation.
Collapse
Affiliation(s)
- Michael Mol
- School of Molecular & Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg, 2000, South Africa
| | - Pieter de Maayer
- School of Molecular & Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg, 2000, South Africa.
| |
Collapse
|
2
|
Li A, Sheng Y, Cui H, Wang M, Wu L, Song Y, Yang R, Li X, Huang H. Discovery and mechanism-guided engineering of BHET hydrolases for improved PET recycling and upcycling. Nat Commun 2023; 14:4169. [PMID: 37443360 PMCID: PMC10344914 DOI: 10.1038/s41467-023-39929-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Although considerable research achievements have been made to address the plastic crisis using enzymes, their applications are limited due to incomplete degradation and low efficiency. Herein, we report the identification and subsequent engineering of BHETases, which have the potential to improve the efficiency of PET recycling and upcycling. Two BHETases (ChryBHETase and BsEst) are identified from the environment via enzyme mining. Subsequently, mechanism-guided barrier engineering is employed to yield two robust and thermostable ΔBHETases with up to 3.5-fold enhanced kcat/KM than wild-type, followed by atomic resolution understanding. Coupling ΔBHETase into a two-enzyme system overcomes the challenge of heterogeneous product formation and results in up to 7.0-fold improved TPA production than seven state-of-the-art PET hydrolases, under the conditions used here. Finally, we employ a ΔBHETase-joined tandem chemical-enzymatic approach to valorize 21 commercial post-consumed plastics into virgin PET and an example chemical (p-phthaloyl chloride) for achieving the closed-loop PET recycling and open-loop PET upcycling.
Collapse
Affiliation(s)
- Anni Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Yijie Sheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Haiyang Cui
- RWTH Aachen University, Templergraben 55, Aachen, 52062, Germany
- University of Illinois at Urbana-Champaign, Carl R. Woese Institute for Genomic Biology, 1206 West Gregory Drive, Urbana, IL, 61801, USA
| | - Minghui Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Luxuan Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Yibo Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Rongrong Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Xiujuan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
3
|
Lusty Beech J, Clare R, Kincannon WM, Erickson E, McGeehan JE, Beckham GT, DuBois JL. A flexible kinetic assay efficiently sorts prospective biocatalysts for PET plastic subunit hydrolysis. RSC Adv 2022; 12:8119-8130. [PMID: 35424733 PMCID: PMC8982334 DOI: 10.1039/d2ra00612j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/25/2022] [Indexed: 11/21/2022] Open
Abstract
Esterase enzymes catalyze diverse hydrolysis reactions with important biological, commercial, and biotechnological applications. For the improvement of these biocatalysts, there is a need for widely accessible, inexpensive, and adaptable activity screening assays that identify enzymes with particular substrate specificities. Natural systems for biopolymer bioconversion, and likely those designed to mimic them, depend on cocktails of enzymes, each of which specifically targets the intact material as well as water-soluble subunits of varying size. In this work, we have adapted a UV/visible assay using pH-sensitive sulfonphthalein dyes for the real-time quantification of ester hydrolysis of bis-(2-hydroxyethyl) terephthalate (BHET), a subunit of polyethylene terephthalate (PET) plastic. We applied this method to a diverse set of known PET hydrolases and commercial esterases in a microplate format. The approach identified four PET hydrolases and one commercial esterase with high levels of specificity for BHET hydrolysis. Five additional PET hydrolases and three commercial esterases, including a thermophilic enzyme, effectively hydrolyzed both BHET and its monoester product MHET (mono-(2-hydroxyethyl) terephthalate). Specific activities were discernible within one hour and reactions reached an unequivocal endpoint well within 24 hours. The results from the UV/visible method correlated well with conventional HPLC analysis of the reaction products. We examined the suitability of the method toward variable pH, temperature, enzyme preparation method, mono- and multi-ester substrate type, and level of sensitivity versus stringency, finding the assay to be easily adaptable to diverse screening conditions and kinetic measurements. This method offers an accurate, easily accessible, and cost-effective route towards high-throughput library screening to support the discovery, directed evolution, and protein engineering of these critical biocatalysts.
Collapse
Affiliation(s)
- Jessica Lusty Beech
- Department of Chemistry and Biochemistry, Montana State University Bozeman MT 59717 USA
- BOTTLE Consortium Golden CO 80401 USA
| | - Rita Clare
- Department of Chemistry and Biochemistry, Montana State University Bozeman MT 59717 USA
- BOTTLE Consortium Golden CO 80401 USA
| | - William M Kincannon
- Department of Chemistry and Biochemistry, Montana State University Bozeman MT 59717 USA
- BOTTLE Consortium Golden CO 80401 USA
| | - Erika Erickson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory Golden CO 80401 USA
- BOTTLE Consortium Golden CO 80401 USA
| | - John E McGeehan
- Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth Portsmouth PO1 2DY UK
- BOTTLE Consortium Golden CO 80401 USA
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory Golden CO 80401 USA
- BOTTLE Consortium Golden CO 80401 USA
| | - Jennifer L DuBois
- Department of Chemistry and Biochemistry, Montana State University Bozeman MT 59717 USA
- BOTTLE Consortium Golden CO 80401 USA
| |
Collapse
|
4
|
Takemura M, Kubo A, Watanabe A, Sakuno H, Minobe Y, Sahara T, Murata M, Araki M, Harada H, Terada Y, Yaoi K, Ohdan K, Misawa N. Pathway engineering for high-yield production of lutein in Escherichia coli. Synth Biol (Oxf) 2021; 6:ysab012. [PMID: 34712837 PMCID: PMC8546607 DOI: 10.1093/synbio/ysab012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/06/2021] [Accepted: 05/15/2021] [Indexed: 11/15/2022] Open
Abstract
Lutein is an industrially important carotenoid pigment, which is essential for photoprotection and photosynthesis in plants. Lutein is crucial for maintaining human health due to its protective ability from ocular diseases. However, its pathway engineering research has scarcely been performed for microbial production using heterologous hosts, such as Escherichia coli, since the engineering of multiple genes is required. These genes, which include tricky key carotenoid biosynthesis genes typically derived from plants, encode two sorts of cyclases (lycopene ε- and β-cyclase) and cytochrome P450 CYP97C. In this study, upstream genes effective for the increase in carotenoid amounts, such as isopentenyl diphosphate isomerase (IDI) gene, were integrated into the E. coli JM101 (DE3) genome. The most efficient set of the key genes (MpLCYe, MpLCYb and MpCYP97C) was selected from among the corresponding genes derived from various plant (or bacterial) species using E. coli that had accumulated carotenoid substrates. Furthermore, to optimize the production of lutein in E. coli, we introduced several sorts of plasmids that contained some of the multiple genes into the genome-inserted strain and compared lutein productivity. Finally, we achieved 11 mg/l as lutein yield using a mini jar. Here, the high-yield production of lutein was successfully performed using E. coli through approaches of pathway engineering. The findings obtained here should be a base reference for substantial lutein production with microorganisms in the future.
Collapse
Affiliation(s)
- Miho Takemura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Akiko Kubo
- Applied Research Laboratory, Ezaki Glico Co., Ltd., Osaka, Japan
| | - Asuka Watanabe
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Hanayo Sakuno
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Yuka Minobe
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Takehiko Sahara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | | | | | - Hisashi Harada
- Faculty of Engineering, Tottori University, Tottori, Japan
| | - Yoshinobu Terada
- Mechanism-Based Research Laboratory, Ezaki Glico Co., Ltd., Osaka, Japan
| | - Katsuro Yaoi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Kohji Ohdan
- Applied Research Laboratory, Ezaki Glico Co., Ltd., Osaka, Japan
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| |
Collapse
|
5
|
Harada H, Senda D, Shima T, Nakane C. Carboxylesterases for the hydrolysis of acetoacetate esters and their applications in terpenoid production using Escherichia coli. Appl Microbiol Biotechnol 2021; 105:5821-5832. [PMID: 34324009 DOI: 10.1007/s00253-021-11447-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/14/2021] [Accepted: 07/03/2021] [Indexed: 10/20/2022]
Abstract
Pathway engineering is a useful technology for producing desired compounds on a large scale by modifying the biosynthetic pathways of host organisms using genetic engineering. We focused on acetoacetate esters as novel low-cost substrates and established an efficient terpenoid production system using pathway-engineered recombinant Escherichia coli. Functional analysis using recombinant E. coli proteins of 18 carboxylesterases identified from the microbial esterases and lipases database showed that the p-nitrobenzyl esterase (PnbA) from Bacillus subtilis specifically hydrolyzed two acetoacetate esters: methyl acetoacetate (MAA) and ethyl acetoacetate (EAA). We generated a plasmid (pAC-Mev/Scidi/Aacl/PnbA) co-expressing PnbA and six enzymes of the mevalonate pathway gene cluster from Streptomyces, isopentenyl diphosphate isomerase type I from Saccharomyces cerevisiae, and acetoacetyl-coenzyme A ligase from Rattus norvegicus. The plasmid pAC-Mev/Scidi/Aacl/PnbA was introduced into E. coli along with plasmid expressing carotenoid (lycopene) or sesquiterpene (β-bisabolene) biosynthesis genes, and the terpenoid production was evaluated following the addition of acetoacetate esters as substrates. These recombinant E. coli strains used MAA and EAA as substrates for the biosynthesis of terpenoids and produced almost equivalent concentrations of target compounds compared with the previous production system that used mevalonolactone and lithium acetoacetate. The findings of this study will enable the production of useful terpenoids from low-cost substrates, which may facilitate their commercial production on an industrial scale in the future. KEY POINTS: • PnbA from Bacillus subtilis exhibits acetoacetate hydrolysis activity. • A plasmid enabling terpenoid synthesis from acetoacetate esters was constructed. • Acetoacetate esters as substrates enable a low-cost production of terpenoids.
Collapse
Affiliation(s)
- Hisashi Harada
- Department of Chemistry & Biotechnology, Faculty of Engineering, Tottori University, 4-101 Koyamacho-Minami, Tottori, 680-8552, Japan.
| | - Daiki Senda
- Department of Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyamacho-Minami, Tottori, 680-8552, Japan
| | - Takanori Shima
- Department of Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyamacho-Minami, Tottori, 680-8552, Japan
| | - Chika Nakane
- Department of Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyamacho-Minami, Tottori, 680-8552, Japan
| |
Collapse
|
6
|
Aresti-Sanz J, Schwalbe M, Pereira RR, Permentier H, El Aidy S. Stability of Methylphenidate under Various pH Conditions in the Presence or Absence of Gut Microbiota. Pharmaceuticals (Basel) 2021; 14:ph14080733. [PMID: 34451830 PMCID: PMC8398889 DOI: 10.3390/ph14080733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 01/06/2023] Open
Abstract
Methylphenidate is one of the most widely used oral treatments for attention-deficit/hyperactivity disorder (ADHD). The drug is mainly absorbed in the small intestine and has low bioavailability. Accordingly, a high interindividual variability in terms of response to the treatment is known among ADHD patients treated with methylphenidate. Nonetheless, very little is known about the factors that influence the drug's absorption and bioavailability. Gut microbiota has been shown to reduce the bioavailability of a wide variety of orally administered drugs. Here, we tested the ability of small intestinal bacteria to metabolize methylphenidate. In silico analysis identified several small intestinal bacteria to harbor homologues of the human carboxylesterase 1 enzyme responsible for the hydrolysis of methylphenidate in the liver into the inactive form, ritalinic acid. Despite our initial results hinting towards possible bacterial hydrolysis of the drug, up to 60% of methylphenidate is spontaneously hydrolyzed in the absence of bacteria and this hydrolysis is pH-dependent. Overall, our results indicate that the stability of methylphenidate is compromised under certain pH conditions in the presence or absence of gut microbiota.
Collapse
Affiliation(s)
- Julia Aresti-Sanz
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9747 AG Groningen, The Netherlands; (J.A.-S.); (M.S.)
| | - Markus Schwalbe
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9747 AG Groningen, The Netherlands; (J.A.-S.); (M.S.)
| | | | - Hjalmar Permentier
- Interfaculty Mass Spectrometry Center, Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy (GRIP), 9713 AV Groningen, The Netherlands;
| | - Sahar El Aidy
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9747 AG Groningen, The Netherlands; (J.A.-S.); (M.S.)
- Correspondence: ; Tel.: +31-(0)503-632201
| |
Collapse
|
7
|
Hetrick KJ, Aguilar Ramos MA, Raines RT. Endogenous Enzymes Enable Antimicrobial Activity. ACS Chem Biol 2021; 16:800-805. [PMID: 33877811 DOI: 10.1021/acschembio.0c00894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In light of the continued threat of antimicrobial-resistant bacteria, new strategies to expand the repertoire of antimicrobial compounds are necessary. Prodrugs are an underexploited strategy in this effort. Here, we report on the enhanced antimicrobial activity of a prodrug toward bacteria having an enzyme capable of its activation. A screen led us to the sulfurol ester of the antibiotic trans-3-(4-chlorobenzoyl)acrylic acid. An endogenous esterase makes Mycolycibacterium smegmatis sensitive to this prodrug. Candidate esterases were identified, and their heterologous production made Escherichia coli sensitive to the ester prodrug. Taken together, these data suggest a new approach to the development of antimicrobial compounds that takes advantage of endogenous enzymatic activities to target specific bacteria.
Collapse
Affiliation(s)
- Kenton J. Hetrick
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Miguel A. Aguilar Ramos
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
8
|
Detoxification Esterase StrH Initiates Strobilurin Fungicide Degradation in Hyphomicrobium sp. Strain DY-1. Appl Environ Microbiol 2021; 87:AEM.00103-21. [PMID: 33741617 DOI: 10.1128/aem.00103-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/09/2021] [Indexed: 11/20/2022] Open
Abstract
Strobilurin fungicides are widely used in agricultural production due to their broad-spectrum and fungal mitochondrial inhibitory activities. However, their massive application has restrained the growth of eukaryotic algae and increased collateral damage in freshwater systems, notably harmful cyanobacterial blooms (HCBs). In this study, a strobilurin fungicide-degrading strain, Hyphomicrobium sp. strain DY-1, was isolated and characterized successfully. Moreover, a novel esterase gene, strH, responsible for the de-esterification of strobilurin fungicides, was cloned, and the enzymatic properties of StrH were studied. For trifloxystrobin, StrH displayed maximum activity at 50°C and pH 7.0. The catalytic efficiencies (k cat/Km ) of StrH for different strobilurin fungicides were 196.32 ± 2.30 μM-1 · s-1 (trifloxystrobin), 4.64 ± 0.05 μM-1 · s-1 (picoxystrobin), 2.94 ± 0.02 μM-1 · s-1 (pyraclostrobin), and (2.41 ± 0.19)×10-2 μM-1 · s-1 (azoxystrobin). StrH catalyzed the de-esterification of a variety of strobilurin fungicides, generating the corresponding parent acid to achieve the detoxification of strobilurin fungicides and relieve strobilurin fungicide growth inhibition of Chlorella This research will provide insight into the microbial remediation of strobilurin fungicide-contaminated environments.IMPORTANCE Strobilurin fungicides have been widely acknowledged as an essential group of pesticides worldwide. So far, their residues and toxic effects on aquatic organisms have been reported in different parts of the world. Microbial degradation can eliminate xenobiotics from the environment. Therefore, the degradation of strobilurin fungicides by microorganisms has also been reported. However, little is known about the involvement of enzymes or genes in strobilurin fungicide degradation. In this study, a novel esterase gene responsible for the detoxification of strobilurin fungicides, strH, was cloned in the newly isolated strain Hyphomicrobium sp. DY-1. This degradation process detoxifies the strobilurin fungicides and relieves their growth inhibition of Chlorella.
Collapse
|
9
|
Kawabata H, Miyake R, Asada K, Dekishima Y, Miyaike M, Kato R. Asymmetric synthesis of intermediate for (1R,2S)-ethyl 1-amino-2-vinylcyclopropanecarboxylate by desymmetrization using engineered esterase from Bacillus subtilis. J Biosci Bioeng 2021; 131:599-604. [PMID: 33744099 DOI: 10.1016/j.jbiosc.2021.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 01/04/2023]
Abstract
(1R,2S)-Ethyl 1-amino-2-vinylcyclopropanecarboxylate (VCPA), is a key intermediate for anti-hepatitis C virus drugs. In this study, we developed an efficient manufacturing method of intermediate for (1R,2S)-VCPA by enzymatic desymmetrization of a malonate diester derivative. In synthesis scheme of VCPA (1S,2S)-1-(ethoxycarbonyl)-2-vinylcyclopropanecarboxylic acid (VCPME) is the monoester intermediate, which is converted from 2-vinylcyclopropane-1,1-dicarboxylate diethyl ester (VCPDE). As a result of esterase screening for producing (1S,2S)-VCPME from VCPDE by enzymatic desymmetrization, p-nitrobenzyl esterase from Bacillus subtilis NBRC3027 (PNBE3027) showed high enantioselectivity (more than 90% e.e.). Based on the homology model of PNBE3027, a library of mutants with the substitution of L70, L270, L273, and L313 in substrate-binding pocket was created for improvement in enantioselectivity. (1S,2S)-VCPME produced by the best variant harboring L70D, L270Q, L273R, and L313M showed 98.9% e.e. of enanthiopurity. Furthermore, preparative scale production of (1S,2S)-VCPME using the quadruple mutant was achieved. Our investigations present a new efficient process for (1R,2S)-VCPA using esterase and diverse to be applied for the industrial scale production.
Collapse
Affiliation(s)
- Hiroshi Kawabata
- Mitsubishi Chemical Corporation, Yokohama R&D Center, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan; API Corporation, 13-4 Uchikanda 1-chome, Chiyoda-ku, Tokyo 101-0047, Japan
| | - Ryoma Miyake
- Mitsubishi Chemical Corporation, Yokohama R&D Center, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan.
| | - Kuniko Asada
- Mitsubishi Chemical Corporation, Yokohama R&D Center, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan
| | - Yasumasa Dekishima
- Mitsubishi Chemical Corporation, Yokohama R&D Center, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan
| | - Mitsuko Miyaike
- Mitsubishi Chemical Corporation, Yokohama R&D Center, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan
| | - Ryohei Kato
- Mitsubishi Chemical Corporation, Yokohama R&D Center, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan
| |
Collapse
|
10
|
Xue J, Wang P, Kuang J, Zhu Y. Computational design of new enzymes for hydrolysis and synthesis of third-generation cephalosporin antibiotics. Enzyme Microb Technol 2020; 140:109649. [PMID: 32912699 DOI: 10.1016/j.enzmictec.2020.109649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 10/23/2022]
Abstract
Engineering active sites in inert scaffolds to catalyze chemical transformations with unnatural substrates is still a great challenge for enzyme catalysis. In this research, a p-nitrobenzyl esterase from Bacillus subtilis was identified from the structural database, and a double mutant E115A/E188A was designed to afford catalytic activities toward the hydrolysis of ceftizoxime. A quadruple mutant E115A/E188A/L362S/I270A with enhanced catalytic efficiency was created to catalyze the condensation reaction of ethyl-2-methoxy-amino-2-(2-aminothiazole-4-yl) acetate with 7-amino-3-nor-cephalosporanic acid to produce ceftizoxime in a fully aqueous medium. The catalytic efficiencies of the computationally designed mutants E115A/E188A/L362S/I270A and E115A/Y118 K/E188 V/I270A/L362S can be taken as starting points to further improve their properties towards the practical application in designing more ecology-friendly production of third-generation cephalosporins.
Collapse
Affiliation(s)
- Jing Xue
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Pengyu Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jianyong Kuang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yushan Zhu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China; MOE Key Lab of Industrial Biocatalysis, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
11
|
Zhou W, Spoto M, Hardy R, Guan C, Fleming E, Larson PJ, Brown JS, Oh J. Host-Specific Evolutionary and Transmission Dynamics Shape the Functional Diversification of Staphylococcus epidermidis in Human Skin. Cell 2020; 180:454-470.e18. [PMID: 32004459 PMCID: PMC7192218 DOI: 10.1016/j.cell.2020.01.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/06/2019] [Accepted: 01/06/2020] [Indexed: 12/22/2022]
Abstract
Metagenomic inferences of bacterial strain diversity and infectious disease transmission studies largely assume a dominant, within-individual haplotype. We hypothesize that within-individual bacterial population diversity is critical for homeostasis of a healthy microbiome and infection risk. We characterized the evolutionary trajectory and functional distribution of Staphylococcus epidermidis-a keystone skin microbe and opportunistic pathogen. Analyzing 1,482 S. epidermidis genomes from 5 healthy individuals, we found that skin S. epidermidis isolates coalesce into multiple founder lineages rather than a single colonizer. Transmission events, natural selection, and pervasive horizontal gene transfer result in population admixture within skin sites and dissemination of antibiotic resistance genes within-individual. We provide experimental evidence for how admixture can modulate virulence and metabolism. Leveraging data on the contextual microbiome, we assess how interspecies interactions can shape genetic diversity and mobile gene elements. Our study provides insights into how within-individual evolution of human skin microbes shapes their functional diversification.
Collapse
Affiliation(s)
- Wei Zhou
- The Jackson Laboratory, Farmington, CT, USA
| | | | | | | | | | | | | | - Julia Oh
- The Jackson Laboratory, Farmington, CT, USA.
| |
Collapse
|
12
|
Tian J, Zhu L, Wang W, Zhang L, Li Z, Zhao Q, Xing K, Feng Z, Peng X. Genomic Analysis of Microbulbifer sp. Strain A4B-17 and the Characterization of Its Metabolic Pathways for 4-Hydroxybenzoic Acid Synthesis. Front Microbiol 2019; 9:3115. [PMID: 30619190 PMCID: PMC6305291 DOI: 10.3389/fmicb.2018.03115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/03/2018] [Indexed: 11/21/2022] Open
Abstract
The marine bacterium Microbulbifer sp. A4B-17 produces secondary metabolites such as 4-hydroxybenzoic acid (4HBA) and esters of 4HBA (parabens). 4HBA is a useful material in the synthesis of the liquid crystal. Parabens are man-made compounds that have been extensively used since the 1920s in the cosmetic, pharmaceutical, and food industries for their effective antimicrobial activity. In this study, we completed the sequencing and annotation of the A4B-17 strain genome and found all genes for glucose utilization and 4HBA biosynthesis. Strain A4B-17 uses the Embden-Meyerhof-Parnas (EMP), hexose monophosphate (HMP), and Entner-Doudoroff (ED) pathways to utilize glucose. Other sugars such as fructose, sucrose, xylose, arabinose, galactose, mannitol, and glycerol supported cell growth and 4HBA synthesis. Reverse transcriptional analysis confirmed that the key genes involved in the glucose metabolism were functional. Paraben concentrations were proportionally increased by adding alcohols to the culture medium, indicating that strain A4B-17 synthesizes the 4HBA and the alcohols separately and an esterification reaction between them is responsible for the paraben synthesis. A gene that codes for a carboxylesterase was proposed to catalyze this reaction. The temperature and NaCl concentration for optimal growth were determined to be 35°C and 22.8 g/L.
Collapse
Affiliation(s)
- Jun Tian
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Li Zhu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Wenjun Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Liping Zhang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Zhi Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Qingyu Zhao
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Ke Xing
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Zhaozhong Feng
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xue Peng
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
13
|
Mustafa SA. The Development of Bacterial Carboxylesterase Biological Recognition Elements for Cocaine Detection. Mol Biotechnol 2018; 60:601-607. [PMID: 29951737 DOI: 10.1007/s12033-018-0098-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enzyme recognition element-based biosensors are very attractive for biosensor application due to a variety of measurable reaction products arising from a catalytic process. In this study, biosensor recognition elements have been developed via engineer bacterial enzymes (carboxylesterases (CEs)) which will used for narcotic detection because of their role in narcotics metabolism. The modification (insertion of cys-tag) allows the enzyme to bind into a transducer surface of a biosensor which will translate the reaction product into the detection system. The results demonstrate the successful isolation, cloning, expression, and purification of recombinant (pnbA1 and pnbA2), and engineered (pnbA1-cys and pnbA2-cys) bacterial carboxylesterases. Enzyme capability to hydrolyse cocaine into benzoylecgonine and methanol was quantified using HPLC. Both enzymes showed broad maximal activity between pH (8.0, 8.5, and 9.0), PnbA1 temperature stability ranging between (25 and 45 °C); however, PnbA2 stability range was (25-40 °C). Insertion of cys-tag at the N-terminal of the enzyme did not limit entrance to the active site which is located at the base of a cavity with dimensions 20 by 13 by 18 Å, and did not prevent substrate hydrolysis. Bacterial carboxylesterases pnbA1 and pnbA2 mimic hCE1 and not hCE2 in its reaction pathways hydrolysing cocaine into benzoylecgonine and methanol rather than ecgonine methyl ester and benzoic acid. These results are the first experimental evidence confirming the capability of bacterial carboxylesterase to hydrolyse cocaine into its main metabolites, therefore opening up the possibility to use these enzymes in numerous biotechnological applications in addition to a cocaine biosensor.
Collapse
Affiliation(s)
- Suhad A Mustafa
- Scientific Research Center, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq.
| |
Collapse
|
14
|
Cloning, expression and characterization of the esterase estUT1 from Ureibacillus thermosphaericus which belongs to a new lipase family XVIII. Extremophiles 2018; 22:271-285. [PMID: 29330648 DOI: 10.1007/s00792-018-0996-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/23/2017] [Indexed: 10/18/2022]
Abstract
A new esterase gene from thermophilic bacteria Ureibacillus thermosphaericus was cloned into the pET32b vector and expressed in Escherichia coli BL21(DE3). Alignment of the estUT1 amino acid sequence revealed the presence of a novel canonical pentapeptide (GVSLG) and 41-47% identity to the closest family of the bacterial lipases XIII. Thus the esterase estUT1 from U. thermosphaericus was assigned as a member of the novel family XVIII. It also showed a strong activity toward short-chain esters (C2-C8), with the highest activity for C2. When p-nitrophenyl butyrate is used as a substrate, the temperature and pH optimum of the enzyme were 70-80 °C and 8.0, respectively. EstUT1 showed high thermostability and 68.9 ± 2.5% residual activity after incubation at 70 °C for 6 h. Homology modeling of the enzyme structure showed the presence of a putative catalytic triad Ser93, Asp192, and His222. The activity of estUT1 was inhibited by PMSF, suggesting that the serine residue is involved in the catalytic activity of the enzyme. The purified enzyme exhibited high stability in organic solvents. EstUT1 retained 85.8 ± 2.4% residual activity in 30% methanol at 50 °C for 6 h. Stability at high temperature and tolerance to organic solvents make estUT1 a promising enzyme for biotechnology application.
Collapse
|
15
|
Bacillus sp. JR3 esterase LipJ: A new mesophilic enzyme showing traces of a thermophilic past. PLoS One 2017; 12:e0181029. [PMID: 28742841 PMCID: PMC5526573 DOI: 10.1371/journal.pone.0181029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 06/25/2017] [Indexed: 11/19/2022] Open
Abstract
A search for extremophile enzymes from ancient volcanic soils in El Hierro Island (Canary Islands, Spain) allowed isolation of a microbial sporulated strain collection from which several enzymatic activities were tested. Isolates were obtained after sample cultivation under several conditions of nutrient contents and temperature. Among the bacterial isolates, supernatants from the strain designated JR3 displayed high esterase activity at temperatures ranging from 30 to 100°C, suggesting the presence of at least a hyper-thermophilic extracellular lipase. Sequence alignment of known thermophilic lipases allowed design of degenerated consensus primers for amplification and cloning of the corresponding lipase, named LipJ. However, the cloned enzyme displayed maximum activity at 30°C and pH 7, showing a different profile from that observed in supernatants of the parental strain. Sequence analysis of the cloned protein showed a pentapeptide motif -GHSMG- distinct from that of thermophilic lipases, and much closer to that of esterases. Nevertheless, the 3D structural model of LipJ displayed the same folding as that of thermophilic lipases, suggesting a common evolutionary origin. A phylogenetic study confirmed this possibility, positioning LipJ as a new member of the thermophilic family of bacterial lipases I.5. However, LipJ clusters in a clade close but separated from that of Geobacillus sp. thermophilic lipases. Comprehensive analysis of the cloned enzyme suggests a common origin of LipJ and other bacterial thermophilic lipases, and highlights the most probable divergent evolutionary pathway followed by LipJ, which during the harsh past times would have probably been a thermophilic enzyme, having lost these properties when the environment changed to more benign conditions.
Collapse
|
16
|
Ramnath L, Sithole B, Govinden R. Classification of lipolytic enzymes and their biotechnological applications in the pulping industry. Can J Microbiol 2017; 63:179-192. [DOI: 10.1139/cjm-2016-0447] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the pulp and paper industry, during the manufacturing process, the agglomeration of pitch particles (composed of triglycerides, fatty acids, and esters) leads to the formation of black pitch deposits in the pulp and on machinery, which impacts on the process and pulp quality. Traditional methods of pitch prevention and treatment are no longer feasible due to environmental impact and cost. Consequently, there is a need for more efficient and environmentally friendly approaches. The application of lipolytic enzymes, such as lipases and esterases, could be the sustainable solution to this problem. Therefore, an understanding of their structure, mechanism, and sources are essential. In this report, we review the microbial sources for the different groups of lipolytic enzymes, the differences between lipases and esterases, and their potential applications in the pulping industry.
Collapse
Affiliation(s)
- L. Ramnath
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, P/Bag X54001, Durban 4000, South Africa
| | - B. Sithole
- Forestry and Forest Products Research Centre, Council for Scientific and Industrial Research, Durban 4000, South Africa
- Discipline of Chemical Engineering, University of KwaZulu-Natal, Durban 4000, South Africa
| | - R. Govinden
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, P/Bag X54001, Durban 4000, South Africa
| |
Collapse
|
17
|
Sekhon SS, Park JM, Ahn JY, Park TS, Kwon SD, Kim YC, Min J, Kim YH. Immobilization of para-nitrobenzyl esterase-CLEA on electrospun polymer nanofibers for potential use in the synthesis of cephalosporin-derived antibiotics. Mol Cell Toxicol 2014. [DOI: 10.1007/s13273-014-0023-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Stepwise and combinatorial optimization of enantioselectivity for the asymmetric hydrolysis of 1-(3’,4’-methylenedioxyphenyl)ethyl acetate under use of a cold-adapted Bacillus amyloliquefaciens esterase. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0559-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Unusual carboxylesterase bearing a GGG(A)X-type oxyanion hole discovered in Paenibacillus barcinonensis BP-23. Biochimie 2014; 104:108-16. [PMID: 24929101 DOI: 10.1016/j.biochi.2014.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/04/2014] [Indexed: 11/23/2022]
Abstract
Strain Paenibacillus barcinonensis BP-23, previously isolated from Ebro's river delta (Spain), bears a complex hydrolytic system showing the presence of at least two enzymes with activity on lipidic substrates. EstA, a cell-bound B-type carboxylesterase from the strain was previously isolated and characterized. The gene coding for a second putative lipase, located upstream cellulase Cel5A, was obtained using a genome walking strategy and cloned in Escherichia coli for further characterization. The recombinant clone obtained displayed high activity on medium/short-chain fatty acid-derivative substrates. The enzyme, named Est23, was purified and characterized, showing maximum activity on pNP-caprylate (C8:0) or MUF-heptanoate (C7:0) under conditions of moderate temperature and pH. Although Est23 displays a GGG(A)X-type oxyanion hole, described as an important motif for tertiary alcohol ester resolution, neither conversion nor enantiomeric resolution of tertiary alcohols could be detected. Amino acid sequence alignment of Est23 with those of known bacterial lipase families and with closely related proteins suggests that the cloned enzyme does not belong to any of the described bacterial lipase families. A phylogenetic tree including Est23 and similar amino acid sequences showed that the enzyme belongs to a differentiated sequence cluster which probably constitutes a new family of bacterial lipolytic enzymes.
Collapse
|
20
|
Fillat A, Romea P, Urpí F, Pastor FIJ, Diaz P. Improving enantioselectivity towards tertiary alcohols using mutants of Bacillus sp. BP-7 esterase EstBP7 holding a rare GGG(X)-oxyanion hole. Appl Microbiol Biotechnol 2014; 98:4479-90. [DOI: 10.1007/s00253-013-5458-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 11/29/2013] [Accepted: 12/05/2013] [Indexed: 11/29/2022]
|
21
|
Rashamuse K, Sanyika W, Ronneburg T, Brady D. A feruloyl esterase derived from a leachate metagenome library. BMB Rep 2012; 45:14-9. [DOI: 10.5483/bmbrep.2012.45.1.14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
22
|
A novel factor controlling bistability in Bacillus subtilis: the YmdB protein affects flagellin expression and biofilm formation. J Bacteriol 2011; 193:5997-6007. [PMID: 21856853 DOI: 10.1128/jb.05360-11] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cells of Bacillus subtilis can either be motile or sessile, depending on the expression of mutually exclusive sets of genes that are required for flagellum or biofilm formation, respectively. Both activities are coordinated by the master regulator SinR. We have analyzed the role of the previously uncharacterized ymdB gene for bistable gene expression in B. subtilis. We observed a strong overexpression of the hag gene encoding flagellin and of other genes of the σ(D)-dependent motility regulon in the ymdB mutant, whereas the two major operons for biofilm formation, tapA-sipW-tasA and epsA-O, were not expressed. As a result, the ymdB mutant is unable to form biofilms. An analysis of the individual cells of a population revealed that the ymdB mutant no longer exhibited bistable behavior; instead, all cells are short and motile. The inability of the ymdB mutant to form biofilms is suppressed by the deletion of the sinR gene encoding the master regulator of biofilm formation, indicating that SinR-dependent repression of biofilm genes cannot be relieved in a ymdB mutant. Our studies demonstrate that lack of expression of SlrR, an antagonist of SinR, is responsible for the observed phenotypes. Overexpression of SlrR suppresses the effects of a ymdB mutation.
Collapse
|
23
|
Falord M, Mäder U, Hiron A, Débarbouillé M, Msadek T. Investigation of the Staphylococcus aureus GraSR regulon reveals novel links to virulence, stress response and cell wall signal transduction pathways. PLoS One 2011; 6:e21323. [PMID: 21765893 PMCID: PMC3128592 DOI: 10.1371/journal.pone.0021323] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 05/25/2011] [Indexed: 12/21/2022] Open
Abstract
The GraS/GraR two-component system has been shown to control cationic antimicrobial peptide (CAMP) resistance in the major human pathogen Staphylococcus aureus. We demonstrated that graX, also involved in CAMP resistance and cotranscribed with graRS, encodes a regulatory cofactor of the GraSR signaling pathway, effectively constituting a three-component system. We identified a highly conserved ten base pair palindromic sequence (5' ACAAA TTTGT 3') located upstream from GraR-regulated genes (mprF and the dlt and vraFG operons), which we show to be essential for transcriptional regulation by GraR and induction in response to CAMPs, suggesting it is the likely GraR binding site. Genome-based predictions and transcriptome analysis revealed several novel GraR target genes. We also found that the GraSR TCS is required for growth of S. aureus at high temperatures and resistance to oxidative stress. The GraSR system has previously been shown to play a role in S. aureus pathogenesis and we have uncovered previously unsuspected links with the AgrCA peptide quorum-sensing system controlling virulence gene expression. We also show that the GraSR TCS controls stress reponse and cell wall metabolism signal transduction pathways, sharing an extensive overlap with the WalKR regulon. This is the first report showing a role for the GraSR TCS in high temperature and oxidative stress survival and linking this system to stress response, cell wall and pathogenesis control pathways.
Collapse
Affiliation(s)
- Mélanie Falord
- Institut Pasteur, Biology of Gram-Positive Pathogens, Department of Microbiology, Paris, France
- CNRS, URA 2172, Paris, France
| | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, Department for Functional Genomics, Ernst Moritz Arndt University, Greifswald, Germany
| | - Aurélia Hiron
- Institut Pasteur, Biology of Gram-Positive Pathogens, Department of Microbiology, Paris, France
- CNRS, URA 2172, Paris, France
| | - Michel Débarbouillé
- Institut Pasteur, Biology of Gram-Positive Pathogens, Department of Microbiology, Paris, France
- CNRS, URA 2172, Paris, France
| | - Tarek Msadek
- Institut Pasteur, Biology of Gram-Positive Pathogens, Department of Microbiology, Paris, France
- CNRS, URA 2172, Paris, France
- * E-mail:
| |
Collapse
|
24
|
Ribitsch D, Heumann S, Trotscha E, Herrero Acero E, Greimel K, Leber R, Birner-Gruenberger R, Deller S, Eiteljoerg I, Remler P, Weber T, Siegert P, Maurer KH, Donelli I, Freddi G, Schwab H, Guebitz GM. Hydrolysis of polyethyleneterephthalate by p-nitrobenzylesterase from Bacillus subtilis. Biotechnol Prog 2011; 27:951-60. [DOI: 10.1002/btpr.610] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 01/19/2011] [Indexed: 11/08/2022]
|
25
|
Isolation and characterization of a family VII esterase derived from alluvial soil metagenomic library. J Microbiol 2011; 49:178-85. [PMID: 21538236 DOI: 10.1007/s12275-011-1102-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 04/06/2011] [Indexed: 10/18/2022]
Abstract
A novel esterase gene, estDL30, was isolated from an alluvial metagenomic library using function-driven screening. estDL30 consisted of 1,524 nucleotides and encoded a 507-amino acid protein. Sequence analysis revealed that EstDL30 is similar to many type B carboxylesterases, containing a G-E-S-A-G pentapeptide with a catalytic Ser residue. Phylogenetic analysis suggested that EstDL30 belongs to the family VII lipases, together with esterases from Bacillus subtilis (P37967), Streptomyces coelicolor A3(2) (CAA22794), and Arthrobacter oxydans (Q01470). Purified EstDL30 showed its highest catalytic efficiency toward p-nitrophenyl butyrate, with a k (cat) of 2293 s(-1) and k (cat)/K (m) of 176.4 s(-1)mM(-1); however, little activity was detected when the acyl chain length exceeded C(8). Biochemical characterization of EstDL30 revealed that it is an alkaline esterase that possesses maximal activity at pH 8 and 40° C. The effects of denaturants and divalent cations were also investigated. EstDL30 tolerated well the presence of methanol and Tween 20. Its activity was strongly inhibited by 1 mM Cu(2+) and Zn(2+), but stimulated by Fe(2+). The unique properties of EstDL30, its high activity under alkaline conditions and stability in the presence of organic solvents, may render it applicable to organic synthesis.
Collapse
|
26
|
Purification and characterization of organic solvent and detergent tolerant lipase from thermotolerant Bacillus sp. RN2. Int J Mol Sci 2010; 11:3783-92. [PMID: 21152301 PMCID: PMC2996779 DOI: 10.3390/ijms11103783] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 09/17/2010] [Accepted: 09/18/2010] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to characterize the organic solvent and detergent tolerant properties of recombinant lipase isolated from thermotolerant Bacillus sp. RN2 (Lip-SBRN2). The isolation of the lipase-coding gene was achieved by the use of inverse and direct PCR. The complete DNA sequencing of the gene revealed that the lip-SBRN2 gene contains 576 nucleotides which corresponded to 192 deduced amino acids. The purified enzyme was homogeneous with the estimated molecular mass of 19 kDa as determined by SDS-PAGE and gel filtration. The Lip-SBRN2 was stable in a pH range of 9-11 and temperature range of 45-60 °C. The enzyme was a non metallo-monomeric protein and was active against pNP-caprylate (C8) and pNP-laurate (C12) and coconut oil. The Lip-SBRN2 exhibited a high level of activity in the presence of 108% benzene, 102.4% diethylether and 112% SDS. It is anticipated that the organic solvent and detergent tolerant enzyme secreted by Bacillus sp. RN2 will be applicable as catalysts for reaction in the presence of organic solvents and detergents.
Collapse
|
27
|
Park JM, Kim M, Park JY, Lee DH, Lee KH, Min J, Kim YH. Immobilization of the cross-linked para-nitrobenzyl esterase of Bacillus subtilis aggregates onto magnetic beads. Process Biochem 2010. [DOI: 10.1016/j.procbio.2009.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota. Appl Environ Microbiol 2009; 75:4175-84. [PMID: 19411417 DOI: 10.1128/aem.00380-09] [Citation(s) in RCA: 345] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mammalian gastrointestinal microbiota exerts a strong influence on host lipid and cholesterol metabolism. In this study, we have characterized the interplay among diet, gut microbial ecology, and cholesterol metabolism in a hamster model of hypercholesterolemia. Previous work in this model had shown that grain sorghum lipid extract (GSL) included in the diet significantly improved the high-density lipoprotein (HDL)/non-HDL cholesterol equilibrium (T. P. Carr, C. L. Weller, V. L. Schlegel, S. L. Cuppett, D. M. Guderian, Jr., and K. R. Johnson, J. Nutr. 135:2236-2240, 2005). Molecular analysis of the hamsters' fecal bacterial populations by pyrosequencing of 16S rRNA tags, PCR-denaturing gradient gel electrophoresis, and Bifidobacterium-specific quantitative real-time PCR revealed that the improvements in cholesterol homeostasis induced through feeding the hamsters GSL were strongly associated with alterations of the gut microbiota. Bifidobacteria, which significantly increased in abundance in hamsters fed GSL, showed a strong positive association with HDL plasma cholesterol levels (r = 0.75; P = 0.001). The proportion of members of the family Coriobacteriaceae decreased when the hamsters were fed GSL and showed a high positive association with non-HDL plasma cholesterol levels (r = 0.84; P = 0.0002). These correlations were more significant than those between daily GSL intake and animal metabolic markers, implying that the dietary effects on host cholesterol metabolism are conferred, at least in part, through an effect on the gut microbiota. This study provides evidence that modulation of the gut microbiota-host metabolic interrelationship by dietary intervention has the potential to improve mammalian cholesterol homeostasis, which has relevance for cardiovascular health.
Collapse
|
29
|
Fahmy AS, Abo-Zeid AZ, Mohamed TM, Ghanem HM, Borai IH, Mohamed SA. Characterization of esterases from Cucurbita pepo cv. "Eskandrani". BIORESOURCE TECHNOLOGY 2008; 99:437-43. [PMID: 17321740 DOI: 10.1016/j.biortech.2006.11.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2004] [Revised: 11/21/2006] [Accepted: 11/22/2006] [Indexed: 05/14/2023]
Abstract
Two of the six esterases identified in Cucurbita pepo cv. "Eskandrani" were purified to homogeneity using two chromatography steps: anion exchange and gel filtration. The molecular weights of C. pepo esterases EIc and EII were 50,000 +/- 1500 and 68,000 +/- 1900 Da from gel filtration and 47,000 and 66,000 Da from SDS/PAGE, respectively, suggesting a monomeric structure for both enzymes. Esterases EIc and EII had K(m) values of 1.22 and 1.56 mM and pH optima at 9.0 and 8.0, respectively. The substrate specificity of C. pepo esterases EIc and EII were determined for a number of p-nitrophenyl esters, where their affinity toward these substrates were decreased as carbon atom number increased. Esterases EIc and EII had the same temperature optima, 40 degrees C. Thermal stability studies of esterases EIc and EII indicated that half maximal activities of EIc and EII esterases were reached at 55 degrees C and 50 degrees C, while they lost 45%, 51% and 70%, 77% of their activities after 30 and 90 min of incubation at 40 degrees C, respectively. The effect of different metal cations and inhibitors were examined. The inhibition studies revealed that the active sites of the two esterases contain serine and cysteine residues. The characteristics of C. pepo esterases are closely similar to those of microbial esterases used in food processing and food industry.
Collapse
Affiliation(s)
- Afaf S Fahmy
- Molecular Biology Department, National Research Centre, Cairo, Egypt
| | | | | | | | | | | |
Collapse
|
30
|
Dräger G, Kiss C, Kunz U, Kirschning A. Enzyme-purification and catalytic transformations in a microstructured PASSflow reactor using a new tyrosine-based Ni-NTA linker system attached to a polyvinylpyrrolidinone-based matrix. Org Biomol Chem 2007; 5:3657-64. [PMID: 17971995 DOI: 10.1039/b712804e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of a Ni-nitrilotriacetic acid (Ni-NTA) attached via a new tyrosine-based linker matrix on monolithic crosslinked poly(vinyl benzyl chloride)/poly(vinylpyrrolidinone) is described. This matrix is incorporated inside a microstructured PASSflow reactor which was used for automatic purification and immobilisation of His(6)-tagged proteins. These could be used as stable and highly active biocatalysts for the synthesis of (R)-benzoin (6), (R)-2-hydroxy-1-phenylpropan-1-one (7) and 6-O-acetyl-D-glucal (17) in a flow-through mode.
Collapse
Affiliation(s)
- Gerald Dräger
- Institut für Organische Chemie and Zentrum für Biomolekulare Wirkstoffchemie (BMWZ), Leibniz Universität Hannover, Schneiderberg 1b, Hannover, Germany.
| | | | | | | |
Collapse
|
31
|
Fotakopoulou I, Barbayianni E, Constantinou-Kokotou V, Bornscheuer UT, Kokotos G. Enzymatic removal of carboxyl protecting groups. III. Fast removal of allyl and chloroethyl esters by Bacillus subtilis esterase (BS2). J Org Chem 2007; 72:782-6. [PMID: 17253795 DOI: 10.1021/jo061871f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An esterase from Bacillus subtilis (BS2) allows the fast and selective removal of allyl, 2-chloroethyl, and 2,2,2-chloroethyl esters under mild conditions in high yields. In addition, BS2 easily hydrolyzes phenacyl esters, while the hydrolysis of sterically hindered diphenylmethyl esters is slow, requiring longer reaction time and higher enzyme/substrate ratio.
Collapse
Affiliation(s)
- Irene Fotakopoulou
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece
| | | | | | | | | |
Collapse
|
32
|
Schmidt M, Henke E, Heinze B, Kourist R, Hidalgo A, Bornscheuer UT. A versatile esterase fromBacillus subtilis: Cloning, expression, characterization, and its application in biocatalysis. Biotechnol J 2007; 2:249-53. [PMID: 17136743 DOI: 10.1002/biot.200600174] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An esterase from Bacillus subtilis DSM402 (BS2) was cloned and functionally expressed in E. coli. The enzyme is active up to 50 degrees C, and the V(max) (1449 mM/min) and K(M) values (119 mM) were determined using p-nitrophenyl acetate as substrate. BS2 belongs to the few hydrolases that can act on tertiary alcohols and was therefore used to resolve racemic acetates of selected tertiary alcohols, but also to selectively remove the tert-butyl ester protecting group from peptides. In addition, the enzyme shows promiscuous amidase activity.
Collapse
Affiliation(s)
- Marlen Schmidt
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, Greifswald University, Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Kolkenbrock S, Parschat K, Beermann B, Hinz HJ, Fetzner S. N-acetylanthranilate amidase from Arthrobacter nitroguajacolicus Rü61a, an alpha/beta-hydrolase-fold protein active towards aryl-acylamides and -esters, and properties of its cysteine-deficient variant. J Bacteriol 2006; 188:8430-40. [PMID: 17041061 PMCID: PMC1698245 DOI: 10.1128/jb.01085-06] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N-acetylanthranilate amidase (Amq), a 32.8-kDa monomeric amide hydrolase, is involved in quinaldine degradation by Arthrobacter nitroguajacolicus Rü61a. Sequence analysis and secondary structure predictions indicated that Amq is related to carboxylesterases and belongs to the alpha/beta-hydrolase-fold superfamily of enzymes; inactivation of (His(6)-tagged) Amq by phenylmethanesulfonyl fluoride and diethyl pyrocarbonate and replacement of conserved residues suggested a catalytic triad consisting of S155, E235, and H266. Amq is most active towards aryl-acetylamides and aryl-acetylesters. Remarkably, its preference for ring-substituted analogues was different for amides and esters. Among the esters tested, phenylacetate was hydrolyzed with highest catalytic efficiency (k(cat)/K(m) = 208 mM(-1) s(-1)), while among the aryl-acetylamides, o-carboxy- or o-nitro-substituted analogues were preferred over p-substituted or unsubstituted compounds. Hydrolysis by His(6)Amq of primary amides, lactams, N-acetylated amino acids, azocoll, tributyrin, and the acylanilide and urethane pesticides propachlor, propham, carbaryl, and isocarb was not observed; propanil was hydrolyzed with 1% N-acetylanthranilate amidase activity. The catalytic properties of the cysteine-deficient variant His(6)AmqC22A/C63A markedly differed from those of His(6)Amq. The replacements effected some changes in K(m)s of the enzyme and increased k(cat)s for most aryl-acetylesters and some aryl-acetylamides by factors of about three to eight while decreasing k(cat) for the formyl analogue N-formylanthranilate by several orders of magnitude. Circular dichroism studies indicated that the cysteine-to-alanine replacements resulted in significant change of the overall fold, especially an increase in alpha-helicity of the cysteine-deficient protein. The conformational changes may also affect the active site and may account for the observed changes in kinetic properties.
Collapse
Affiliation(s)
- Stephan Kolkenbrock
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
34
|
Maqbool QUA, Johri S, Rasool S, Riyaz-ul-Hassan S, Verma V, Nargotra A, Koul S, Qazi GN. Molecular cloning of carboxylesterase gene and biochemical characterization of encoded protein from Bacillus subtilis (RRL BB1). J Biotechnol 2006; 125:1-10. [PMID: 16621096 DOI: 10.1016/j.jbiotec.2006.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 02/03/2006] [Accepted: 02/17/2006] [Indexed: 10/24/2022]
Abstract
An isolated strain of Bacillus subtilis identified by 16S rDNA sequence analysis produces an enantioselective ester hydrolase. Whole cells of B. subtilis (RRL BB1) and enzyme derived from it was capable of enantioselective hydrolysis of several racemates including drug intermediates with moderate to high enantioselectivity as already reported by us. In this communication, we describe cloning of the gene encoding the enantioselective esterase designated as estBB1. The primary structure of the enzyme determined from the nucleotide sequence indicated that esterase estBB1 has Mw approximately 52kDa and pI approximately 5.2 and belongs to the family of type B carboxylesterases with 50-60% similarity at amino acid level. Alignment studies of sequences of the estBB1 and Pnb esterase 56C8 from B. subtilis showed that estBB1 has an alpha/beta hydrolase fold with catalytic triad formed by Ser190, Glu305 and His394 at active site and Ser190 is located in the conserved motif -G-X-S-X-G-.
Collapse
Affiliation(s)
- Qurrat-ul-Ain Maqbool
- Biotechnology Division, Regional Research Laboratory, Canal Road, Jammu Tawi-180001, India
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Dröge MJ, Bos R, Boersma YL, Quax WJ. Comparison and functional characterisation of three homologous intracellular carboxylesterases of Bacillus subtilis. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.molcatb.2004.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Ruiz C, Falcocchio S, Xoxi E, Pastor FIJ, Diaz P, Saso L. Activation and inhibition of Candida rugosa and Bacillus-related lipases by saturated fatty acids, evaluated by a new colorimetric microassay. Biochim Biophys Acta Gen Subj 2004; 1672:184-91. [PMID: 15182938 DOI: 10.1016/j.bbagen.2004.03.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 03/23/2004] [Accepted: 03/31/2004] [Indexed: 01/03/2023]
Abstract
Research on lipase inhibitors could help in the therapy of diseases caused by lipase-producing microorganisms and in the design of novel lipase substrate specificities for biotechnology. Here we report a fast and sensitive colorimetric microassay that is low-cost and suitable for high-throughput experiments for the evaluation of lipase activity and inhibition. Comparison of Candida rugosa activity and inhibition with previous HPLC results validated the method, and revealed the importance of the reaction mixture composition. The assay was used to evaluate the effect of saturated fatty acids on Bacillus-related lipases. Cell-bound esterases were strongly inhibited by fatty acids, suggesting a negative feedback regulation by product, and a role of these enzymes in cell membrane turnover. Bacillus subtilis LipA was moderately activated by low concentrations of fatty acids and was inhibited at greater concentrations. LipB-like esterases were highly activated by myristic and lauric acids and were only slightly inhibited by high capric acid concentrations. Such an activation, reported here for the first time in bacterial lipases, seems to be part of a regulatory system evolved to ensure a high use of carbon sources, and could be related to the successful adaptation of Bacillus strains to nutrient-rich environments with strong microbial competition.
Collapse
Affiliation(s)
- Cristian Ruiz
- Department of Pharmacology of Natural Substances and General Physiology, University of Rome La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Kim HK, Na HS, Park MS, Oh TK, Lee TS. Occurrence of ofloxacin ester-hydrolyzing esterase from Bacillus niacini EM001. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.molcatb.2003.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Ewis HE, Abdelal AT, Lu CD. Molecular cloning and characterization of two thermostable carboxyl esterases from Geobacillus stearothermophilus. Gene 2004; 329:187-95. [PMID: 15033540 DOI: 10.1016/j.gene.2003.12.029] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Revised: 12/12/2003] [Accepted: 12/30/2003] [Indexed: 11/23/2022]
Abstract
Screening of the genomic libraries of Geobacillus stearothermophilus ATCC12980 and ATCC7954 for esterase/lipase activity led to the isolation of two positive clones. The results of subclonings and sequence analyses identified two genes, est30 and est55, encoding two different carboxylesterases, and genetic rearrangement in the est55 locus was revealed from genomic comparison. The est30 gene encodes a polypeptide of 248 amino acids with a calculated molecular mass of 28338 Da, and the est55 gene encodes a polypeptide of 499 amino acids with a calculated molecular mass of 54867 Da. Both enzymes were purified to near homogeneity from recombinant strains of Escherichia coli. The results of enzyme characterization showed that while both enzymes possess optimal activities with short chain acyl derivatives, Est55 has a broader pH tolerance (pH 8-9) and optimal temperature range (30-60 degrees C) than Est30. The activation energy of Est55 (35.7 kJ/mol) was found to be significantly lower than that of Est30 (101.9 kJ/mol). Both enzymes were stable at 60 degrees C for more than 2 h; at 70 degrees C, the half-life for thermal inactivation was 40 and 180 min for Est55 and Est30, respectively. With p-nitrophenyl caproate as the substrate and assayed at 60 degrees C, Est55 had K(m) and k(cat) values of 0.5 microM and 39758 s(-1) while Est30 exhibited values of 2.16 microM and 38 s(-1). Inhibition studies indicated that both Est30 and Est55 were strongly inhibited by phenylmethanesulfonyl fluoride, p-hydroxymercuribenzoate, and tosyl-l-phenylalanine, consistent with the proposed presence of Ser-His-Glu catalytic triad of the alpha/beta hydrolase family. The enzymatic properties of Est30 and Est55 reported here warrant the potential applications of these enzymes in biotechnological industries.
Collapse
Affiliation(s)
- Hosam E Ewis
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue, Atlanta, GA 30303, USA
| | | | | |
Collapse
|
39
|
Wierdl M, Morton CL, Nguyen NK, Redinbo MR, Potter PM. Molecular Modeling of CPT-11 Metabolism by Carboxylesterases (CEs): Use of pnb CE as a Model. Biochemistry 2004; 43:1874-82. [PMID: 14967028 DOI: 10.1021/bi035586r] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CPT-11 is a prodrug that is converted in vivo to the topoisomerase I poison SN-38 by carboxylesterases (CEs). Among the CEs studied thus far, a rabbit liver CE (rCE) converts CPT-11 to SN-38 most efficiently. Despite extensive sequence homology, however, the human homologues of this protein, hCE1 and hiCE, metabolize CPT-11 with significantly lower efficiencies. To understand these differences in drug metabolism, we wanted to generate mutations at individual amino acid residues to assess the effects of these mutations on CPT-11 conversion. We identified a Bacillus subtilis protein (pnb CE) that could be used as a model for the mammalian CEs. We demonstrated that pnb CE, when expressed in Escherichia coli, metabolizes both the small esterase substrate o-NPA and the bulky prodrug CPT-11. Furthermore, we found that the pnb CE and rCE crystal structures show an only 2.4 A rmsd variation over 400 residues of the alpha-carbon trace. Using the pnb CE model, we demonstrated that the "side-door" residues, S218 and L362, and the corresponding residues in rCE, L252 and L424, were important in CPT-11 metabolism. Furthermore, we found that at position 218 or 252 the size of the residue, and at position 362 or 424 the hydrophobicity and charge of the residue, were the predominant factors in influencing drug activation. The most significant change in CPT-11 metabolism was observed with the L424R variant rCE that converted 10-fold less CPT-11 than the wild-type protein. As a result, COS-7 cells expressing this mutant were 3-fold less sensitive to CPT-11 than COS-7 cells expressing the wild-type protein.
Collapse
Affiliation(s)
- Monika Wierdl
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, 332 North Lauderdale, Memphis, Tennessee 38105, USA
| | | | | | | | | |
Collapse
|
40
|
Ruiz C, Javier Pastor FI, Diaz P. Isolation and characterization of Bacillus sp. BP-6 LipA, a ubiquitous lipase among mesophilic Bacillus species. Lett Appl Microbiol 2003; 37:354-9. [PMID: 12969503 DOI: 10.1046/j.1472-765x.2003.01413.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS The aim of this study was to perform the isolation, cloning and characterization of a lipase from Bacillus sp. BP-6 bearing the features of a biotechnologically important group of enzymes. METHODS AND RESULTS Strain Bacillus sp. BP-6, showing activity on tributyrin plates, was used for isolation of lipase-coding gene lipA by means of inverse and direct PCR. The complete 633 nucleotide ORF isolated was cloned in Escherichia coli for further characterization. The amino acid sequence of the cloned protein was 98% identical to B. subtilis and B. megaterium lipases, the enzyme also showing similar molecular and biochemical features. CONCLUSIONS The gene coding for Bacillus sp. BP-6 LipA was found in all mesophilic Bacillus species assayed, indicating its ubiquity in the genus. The cloned enzyme displayed the same properties as those of homologous lipases. SIGNIFICANCE AND IMPACT OF THE STUDY The overall profile of Bacillus sp. BP-6 LipA was found to be that of a ubiquitous and highly conserved subfamily I.4 bacterial lipase. Previously described lipases within this family have shown to be well suited for biotechnological applications, suggesting that the cloned enzyme could be used accordingly.
Collapse
Affiliation(s)
- C Ruiz
- Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| | | | | |
Collapse
|
41
|
Jung YJ, Lee JK, Sung CG, Oh TK, Kim HK. Nonionic detergent-induced activation of an esterase from Bacillus megaterium 20-1. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/j.molcatb.2003.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Abstract
A lipolytic enzyme designated Vst, was cloned from Vibrio harveyi strain AP6. The vst gene was 1650 bp and was predicted to encode a 549 amino acid precursor with a molecular mass of about 61 kDa. The predicted polypeptide shared about 30% sequence identity with Bacillus esterases. Sequence alignment of Vst and related esterases revealed the presence of an active site serine located in the middle of the GESAG motif, at positions 212-216. This motif resembled the GXSXG consensus motif characteristic of lipolytic enzymes. Vst was expressed as a carboxy-terminal 6 x His tagged recombinant enzyme from E. coli TOP10 cells. SDS-PAGE and Western blot analysis using anti-His antibodies confirmed that the size of the mature protein was about 61 kDa. Substrate specificity of Vst was investigated using p -nitrophenyl (p NP) esters with varying carbon chain lengths, from C2 to C18. Vst showed the highest activity with the long chain p -nitrophenyl ester p NPC12 but was able to hydrolyze longer chain esters (p NPC14-p NPC16) as well as short and medium chain esters (p NPC4 and p NPC8).
Collapse
Affiliation(s)
- Jeanette W P Teo
- Programme in Environmental Microbiology, Department of Microbiology, Faculty of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117 597, Singapore
| | | | | |
Collapse
|
43
|
Henke E, Bornscheuer UT, Schmid RD, Pleiss J. A molecular mechanism of enantiorecognition of tertiary alcohols by carboxylesterases. Chembiochem 2003; 4:485-93. [PMID: 12794858 DOI: 10.1002/cbic.200200518] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Carboxylesterases containing the sequence motif GGGX catalyze the hydrolysis of esters of chiral tertiary alcohols, albeit with only low to moderate enantioselectivity, for three model substrates (linalyl acetate, methyl-1-pentin-1-yl acetate, 2-phenyl-3-butin-2-yl acetate). In order to understand the molecular mechanism of enantiorecognition and to improve enantioselectivity for this interesting substrate class, the interaction of both enantiomers with the substrate binding sites of acetylcholinesterases and p-nitrobenzyl esterase from Bacillus subtilis was modeled and correlated to experimental enantioselectivity. For all substrate-enzyme pairs, enantiopreference and ranking by enantioselectivity could be predicted by the model. In p-nitrobenzyl esterase, one of the key residues in determining enantioselectivity was G105: exchange of this amino acid for an alanine residue led to a sixfold increase of enantioselectivity (E = 19) towards 2-phenyl-3-butin-2-yl acetate. However, the effect of this mutation is specific: the same mutant had the opposite enantiopreference towards the substrate linalyl acetate. Thus, depending on the substrate structure, the same mutant has either increased enantioselectivity or opposite enantiopreference compared to the wild-type enzyme.
Collapse
Affiliation(s)
- Erik Henke
- Institute of Technical Biochemistry University of Stuttgart Allmandring 31 70569 Stuttgart, Germany
| | | | | | | |
Collapse
|
44
|
Videira PA, Fialho AM, Marques AR, Coutinho PM, Sá-Correia I. Cloning and sequence analysis of the ces10 gene encoding a Sphingomonas paucimobilis esterase. Appl Microbiol Biotechnol 2003; 61:517-22. [PMID: 12764567 DOI: 10.1007/s00253-003-1226-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2002] [Revised: 12/23/2002] [Accepted: 12/27/2002] [Indexed: 11/25/2022]
Abstract
The ces10 gene of the gellan gum-producing strain Sphingomonas paucimobilis ATCC 31461 was cloned and sequenced. Multi-sequence alignment of the deduced protein indicated that Ces10 belongs to the serine hydrolase family with a potential catalytic triad comprising Ser(153) (within the G-X-S-X-G consensus sequence), His(75) and Asp(125). The mixed block results obtained following pattern search and the low identities detected in a BLAST analysis indicate that Ces10 is significantly different from other characterised bacterial esterases/lipases. Nevertheless, the Ces10 amino acid sequence showed 45% similarity with Rhodococcus sp. heroin esterase and 48% with Bacillus subtilis p-nitrobenzyl esterase. Ces10, with a predicted molecular mass of 30,641 Da, was overproduced in Escherichia coli and purified to homogeneity in a histidine-tagged form. Enzyme assays using p-nitrophenyl-esters (p-NP-esters) with different acyl chain-lengths as the substrate confirmed the anticipated esterase activity. Ces10 exhibited a marked preference for short-chain fatty acids, yielding the highest activity with p-NP-propionate (optimal pH 7.4, optimal temperature 37 degrees C).
Collapse
Affiliation(s)
- P A Videira
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | | | | | | | | |
Collapse
|
45
|
Ruiz C, Blanco A, Pastor FIJ, Diaz P. Analysis of Bacillus megaterium lipolytic system and cloning of LipA, a novel subfamily I.4 bacterial lipase. FEMS Microbiol Lett 2002; 217:263-7. [PMID: 12480114 DOI: 10.1111/j.1574-6968.2002.tb11485.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The lipolytic system of Bacillus megaterium 370 was investigated, showing the existence of at least two secreted lipases and a cell-bound esterase. A gene coding for an extracellular lipase was isolated and cloned in Escherichia coli. The cloned enzyme displayed high activity on short to medium chain length (C(4)-C(8)) substrates, and poor activity on C(18) substrates. On the basis of amino acid sequence homology, the cloned lipase was classified into subfamily I.4 of bacterial lipases.
Collapse
Affiliation(s)
- Cristian Ruiz
- Department of Microbiology, Faculty of Biology, University of Barcelona, Av Diagonal 645, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
46
|
Suzuki T, Nakayama T, Kurihara T, Nishino T, Esaki N. Primary structure and catalytic properties of a cold-active esterase from a psychrotroph, Acinetobacter sp. strain No. 6. isolated from Siberian soil. Biosci Biotechnol Biochem 2002; 66:1682-90. [PMID: 12353628 DOI: 10.1271/bbb.66.1682] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We cloned a gene coding for a cold-active esterase from a genomic library of Acinetobacter sp. strain No. 6, a psychrotroph isolated from Siberian soil. The gene, aest, encoded a protein of 301 amino acid residues, the deduced sequence of which had less than 17% identity to sequences of known esterases and lipases. However, the esterase seemed to belong to the alpha/beta hydrolase superfamily, because it contained a sequence, Gly-Xaa-Ser-Xaa-Gly (with Xaa an arbitrary amino acid residue), found in most serine hydrolases of this superfamily. Sequence comparison earlier suggested a weak phylogenetic relationship of gene product AEST to the EST group of the esterase-lipase family, which has been found only in eukaryotes. The aest gene was expressed in Escherichia coli BL21(DE3) cells under the control of the T7 promoter, and the expression product was purified to homogeneity and characterized. It catalyzed the hydrolysis of esters with short-chain acyl groups and had lower activation energy and lower thermostability than do mesophilic enzymes, as expected from the cold-adapted nature of this enzyme.
Collapse
Affiliation(s)
- Takeshi Suzuki
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | | | | | | | | |
Collapse
|
47
|
Mayer KM, Arnold FH. A colorimetric assay to quantify dehydrogenase activity in crude cell lysates. JOURNAL OF BIOMOLECULAR SCREENING 2002; 7:135-40. [PMID: 12006112 DOI: 10.1177/108705710200700206] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nitroblue tetrazolium (NBT) in the presence of phenazine methosulfate (PMS) reacts with the NADPH produced by dehydrogenases to produce an insoluble blue-purple formazan. Endpoint assays taking advantage of this reaction have been successfully used to detect the activity of several dehydrogenases. Here we present a version of this assay suitable for determining the kinetics of 6-phosphogluconate dehydrogenase catalysis in crude lysates of bacterial cells prepared in 96-well plates. Using the assay to screen a small library of variant 6-phosphogluconate dehydrogenases generated by error-prone polymerase chain reaction, we were able to identify three variants with improved activity and thermostability over the parent enzyme. These enzymes were partially purified and shown to be expressed at higher levels than the parent (leading to the increase in activity), and all three variants were indeed more thermostable than the parent (temperature midpoints 4-7 degrees C higher) after purification. Thus the NBT-PMS assay appears suitable for screening libraries of variant dehydrogenases.
Collapse
Affiliation(s)
- Kimberly M Mayer
- California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
48
|
Bornscheuer UT. Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev 2002; 26:73-81. [PMID: 12007643 DOI: 10.1111/j.1574-6976.2002.tb00599.x] [Citation(s) in RCA: 640] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Esterases (EC 3.1.1.x) represent a diverse group of hydrolases catalyzing the cleavage and formation of ester bonds and are widely distributed in animals, plants and microorganisms. Beside lipases, a considerable number of microbial carboxyl esterases have also been discovered and overexpressed. This review summarizes their properties and classification. Special emphasis is given on their application in organic synthesis for the resolution of racemates and prostereogenic compounds. In addition, recent results for altering their properties by directed evolution are presented.
Collapse
Affiliation(s)
- Uwe T Bornscheuer
- Institute for Chemistry and Biochemistry, Department of Technical Chemistry and Biotechnology, Greifswald University, Soldmannstr. 16, Greifswald, Germany.
| |
Collapse
|
49
|
Affiliation(s)
- D Kadereit
- Institut für Organische Chemie, Universität Karlsruhe, Richard-Willstätter-Allee 2, D-76128 Karlsruhe, Germany
| | | |
Collapse
|
50
|
Dröge MJ, Bos R, Quax WJ. Paralogous gene analysis reveals a highly enantioselective 1,2-O-isopropylideneglycerol caprylate esterase of Bacillus subtilis. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3332-8. [PMID: 11389736 DOI: 10.1046/j.1432-1327.2001.02238.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Carboxylesterase NP of Bacillus subtilis Thai I-8, characterized in 1992 as a very enantioselective (S)-naproxen esterase, was found to show no enantiopreference towards (S)-1,2-O-isopropylideneglycerol (IPG) esters. The ybfK gene was identified by the B. subtilis genome project as an unknown gene with homology to carboxylesterase NP. The purpose of the present study was to characterize the ybfK gene product in order to determine whether this paralogue of carboxylesterase NP had an altered or enhanced stereospecificity. The ybfK gene was cloned and expressed in B. subtilis using a combination of two strong promoters in a multicopy vector. The enzyme was purified from the cytoplasm of B. subtilis by means of anion exchange and hydrophobic interaction chromatography. The purified YbfK is an enzyme of 296 amino acids and shows an apparent molecular mass of 32 kDa (SDS/PAGE). Comparison of the activities of YbfK and carboxylesterase NP towards caprylate esters of IPG revealed that YbfK produces (S)-IPG with 99.9% enantioselectivity. Therefore, we conclude that we have isolated a paralogue of carboxylesterase NP that can be used for the enantioselective production of (S)-IPG.
Collapse
Affiliation(s)
- M J Dröge
- Pharmaceutical Biology, University Centre for Pharmacy, Groningen, the Netherlands
| | | | | |
Collapse
|