1
|
Prabhakar YK, Skariah S, Shanmugam G, Shome R. Molecular epidemiology, immunobiology, genomics and proteomics insights into bovine brucellosis. Vet Microbiol 2025; 305:110505. [PMID: 40233684 DOI: 10.1016/j.vetmic.2025.110505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 04/04/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025]
Abstract
Brucella species are intracellular Gram-negative bacteria that cause brucellosis, a global zoonosis that impacts cattle productivity and public health. Both cattle and buffaloes are susceptible to bovine brucellosis, which can lead to severe degenerative changes in uterine mucosa of non-pregnant animals, including ulcerative endometritis and fibrosis. Vasculitis, localized coagulative necrosis, and ulceration of the uterine mucosa have all been reported in pregnant animals. Male testicles get inflamed due to Brucella, which results in infertility. This review article covers the molecular epidemiology, pathophysiology, immunobiology, genomics, and proteomics of Brucella, with an emphasis on novel discoveries and more recent research, especially on bovine brucellosis. The integration of molecular pathology and sero-prevalence data provide the insights into epidemiology, transmission dynamics, and genetic diversity of bovine brucellosis. The immunobiological response studies of brucellosis have provided insights into the tactics employed by Brucella to infect host cells and elude immune responses. Proteomics was utilized to find biomarkers for both acute and chronic brucellosis, which resulted in the identification of proteins with differential expression linked to immune response, inflammation, and extracellular matrix modulation. The genetic diversity, virulence factors, and evolution of Brucella strains were mostly investigated using genomics. The genomic makeup and architecture of Brucella isolates were examined using whole-genome sequencing, which revealed genetic markers linked to pathogenicity and drug resistance. This review provides possible treatment targets, diagnostic biomarkers, and vaccine candidates, contributing to molecular understanding of bovine brucellosis.
Collapse
Affiliation(s)
- Y K Prabhakar
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru 560 064, India
| | - Somy Skariah
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru 560 064, India
| | - G Shanmugam
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru 560 064, India
| | - Rajeswari Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru 560 064, India.
| |
Collapse
|
2
|
Sancho-Sánchez E, García-Arteaga K, Granados-Chinchilla F, Artavia G, Alfaro-Alarcón A, Villalobos-Villalobos A, Bouza-Mora L, Suárez-Esquivel M, Chacón-Díaz C, Guzmán-Verri C, Moreno E, Barquero-Calvo E. Reactivation of hidden-latent Brucella infection after doxycycline and streptomycin treatment in mice. Antimicrob Agents Chemother 2025; 69:e0130224. [PMID: 39745377 PMCID: PMC11823614 DOI: 10.1128/aac.01302-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/08/2024] [Indexed: 02/14/2025] Open
Abstract
Brucellosis has therapeutic challenges due to 3%-15% relapses/therapeutic failures (R/TF) after antibiotic treatment. Therefore, determining the antibiotic concentration in tissues, the physiopathological parameters, and the R/TF after treatment is relevant. After exploring different antibiotic quantities, we found that a combined dose of 100 µg/g of doxycycline (for 45 days) and 7.5 µg/g of streptomycin (for 14 days), respectively, achieved therapeutic levels of more than fourfold minimum inhibitory concentrations (MICs) against Brucella abortus in the spleen, liver, bone marrow, and plasma of mice, causing minimal pathophysiological effects. After 30 days of infection, mice received antibiotics, and hematological, histopathological, biochemical, and immunological analyses were performed. After antibiotic therapy, the pathological, hematological, immunological, and physiological profiles paralleled those described in human brucellosis. Treatment lowered antibody titers, reduced proinflammatory cytokines, and reduced inflammation in the target organs for a protracted period. No bacteria were detected in tissues 8 weeks after treatment, suggesting complete recovery. However, despite high doxycycline and streptomycin concentrations in tissues, relapses appeared in 100% of the animals after 182 days post-infection, estimated by the bacterial counts and PCR from organs. This proportion contrasts with the 15% R/TF observed in humans after antibiotic treatments. None of the B. abortus isolated from relapses showed augmented MICs or mutations coding for antibiotic resistance in chromosomal-relevant regions. We discuss whether our findings constitute a general phenomenon or differences in the exhaustive screening method for bacteria detection related to the murine model. Along these lines, we envision likely mechanisms of bacterial persistence in tissues after antibiotic treatment.
Collapse
Affiliation(s)
- Eugenia Sancho-Sánchez
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Kimberly García-Arteaga
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Fabio Granados-Chinchilla
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- Escuela de Química, Universidad de Costa Rica, Sede Rodrigo Facio, San Pedro Montes de Oca, San José, Costa Rica
| | - Graciela Artavia
- Centro Nacional de Ciencia y Tecnología de Alimentos, Universidad de Costa Rica, San José, Costa Rica
| | - Alejandro Alfaro-Alarcón
- Departamento de Patología, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
- Berlin Institute of Health, Institute of Virology, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Laura Bouza-Mora
- Departamento de Análisis Clínicos, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Marcela Suárez-Esquivel
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Carlos Chacón-Díaz
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Caterina Guzmán-Verri
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Elías Barquero-Calvo
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| |
Collapse
|
3
|
Serpa Gonçalves M, de Oliveira MM, Andrade RS, de Oliveira LF, Guimarães ADS, Godfroid J, Lage AP, Dorneles EMS. Systematic review on the effectiveness of Brucella abortus S19 and RB51 vaccine strains in field studies. Vaccine 2025; 45:126649. [PMID: 39709806 DOI: 10.1016/j.vaccine.2024.126649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/29/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Brucella abortus S19 and RB51 are the most used vaccines to control bovine brucellosis worldwide; therefore, this study aimed to perform a systematic review on the effectiveness of these two vaccine strains in field studies. The literature review was conducted on April 3rd 2020 on six databases (CABI, Cochrane, PubMed, Scielo, Scopus and Web of Science) and included papers published between 1976 and 2016. The search strategy recovered a total of 5846 papers on databases and 6 papers were included due to specialists' suggestions. After selection, 17 papers were included, in which 33 trials were identified. Most trials [63.63 % (21/33)] used prevalence panel design (cross-sectional), while the others were cohort studies. S19 strain was used in most of the trials [75.76 % (25/33)], mainly by subcutaneous route [84.00 % (21/25)] and in adult cattle [76.00 % (19/25)]. RB51 strain was administrated only by the subcutaneous route and in both young and adult animals. For case definition, complement fixation [60.60 % (20/33)] and rivanol [30.30 % (10/33)] were the most used tests. Twenty of the 33 trials (60.61 %) showed significant effect of vaccination on brucellosis control, with lower incidence of infection in the vaccinated groups (in cohort trials) or reduced prevalence after vaccination (in prevalence panels); however, the great heterogeneity observed among the studies precluded a meta-analysis from the data extracted. In addition, most trials [57.57 % (19/33)] adopted other control measures (test-and-slaughter or isolation of positive animals from the herd) in association with vaccination, which harmed the better understand of the isolated effect of vaccination for brucellosis control in field in these studies. In conclusion, the result from this review suggests that both S19 and RB51 vaccine strains are effective in reducing brucellosis incidence in both calves and adults, as well as abortion rates, mainly when associated to other control policies.
Collapse
Affiliation(s)
- Maysa Serpa Gonçalves
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras - UFLA, Lavras, Minas Gerais, Brazil
| | - Marina Martins de Oliveira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras - UFLA, Lavras, Minas Gerais, Brazil
| | - Rafaella Silva Andrade
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras - UFLA, Lavras, Minas Gerais, Brazil
| | | | | | - Jacques Godfroid
- Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Andrey Pereira Lage
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elaine Maria Seles Dorneles
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras - UFLA, Lavras, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Ciliberti MG, Santillo A, Caroprese M, Albenzio M. Buffalo Immune Competence Under Infectious and Non-Infectious Stressors. Animals (Basel) 2025; 15:163. [PMID: 39858163 PMCID: PMC11759140 DOI: 10.3390/ani15020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Immune competence is a critical aspect of protecting animals from the negative consequences of disease. The activation of the immune response from inflammation is part of adaptive homeostasis that serves to eliminate danger, induce tissue repair, and restore tissue homeostasis. Therefore, the main goal for the organism is to control both the induction and suppression of inflammation and resist the onset of disease. In this condition, modulators of inflammatory responses are produced, including small proteins called cytokines, which exert a pro- or anti-inflammatory action in a context-dependent manner. Indeed, the cytokine profile could be considered a useful biomarker to determine the pathophysiology of certain diseases, such as mastitis, endometritis, change-induced heat stress, and zoonoses. Recently, buffalo breeding has attracted the interest of the research communities due to their high resilience; however, little is known about the immune mechanism activated under specific stressors. This review describes the complex immune competence of the buffalo in the presence of the most common infectious and non-infectious stressors. In addition, a brief description of methods for early diagnosis of disease using cytokine quantification will be introduced.
Collapse
Affiliation(s)
| | - Antonella Santillo
- Department of Agriculture, Food, Natural Resources, and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy; (M.G.C.); (M.C.); (M.A.)
| | | | | |
Collapse
|
5
|
Nellikka A, Cheruvari A, Vasu P, Mutturi S, Rajagopal K. Bifidobacterium adolescentis is resistant to pyrazinamide, isoniazid, and streptomycin. Sci Rep 2024; 14:29562. [PMID: 39609447 PMCID: PMC11605034 DOI: 10.1038/s41598-024-78095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
The current study aims to understand the resistance of Bifidobacterium adolescentis to different anti-tubercular drugs (first-line oral tuberculosis drugs). The bacteria were grown with anti-tubercular drugs such as isoniazid, pyrazinamide, and streptomycin to better understand the resistance phenomena. It was found that even at tenfold higher concentrations, growth rates remained unchanged. In addition, a small number of bacteria were found to aggregate strongly, a property that protects against the toxicity of the drug. Further FE-SEM (Field Emission Scanning Electron Microscopy) analysis revealed that some bacteria became excessively long, elongated, and protruded on the surface. Size scattering analysis confirmed the presence of bifidobacteria in the size range of 1.0-100 μm. After whole genome sequence analysis, certain mutations were found in the relevant gene. In vitro, foam formation and growth in the presence of H2O2 and HPLC (High Performance Liquid Chromatography) studies provide additional evidence for the presence of catalase. According to RAST (Rapid Annotation Using Subsystems Technology) annotation and CARD (Comprehensive Antibiotic Resistance Database analysis), there were not many components in the genome that were resistant to antibiotics. Whole genome sequence (WGS) analysis does not show the presence of bacteriocins and antibiotic resistance genes, but few hypothetical proteins were observed. 3D structure and docking studies suggest their interaction with specific ligands.
Collapse
Affiliation(s)
- Anagha Nellikka
- Department of Biochemistry, CSIR- Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Athira Cheruvari
- Department of Biochemistry, CSIR- Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prasanna Vasu
- Department of Food safety and Analytical Quality Control Laboratory, CSIR- Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sarma Mutturi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Microbiology and Fermentation Technology, Central Food Technological Research Institute (CFTRI), Karnataka, 570020, Mysuru, India
| | - Kammara Rajagopal
- Department of Biochemistry, CSIR- Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Molina RE, Osorio A, Flores-Concha M, Gómez LA, Alvarado I, Ferrari I, Oñate A. Immunoinformatic design of a multivalent vaccine against Brucella abortus and its evaluation in a murine model using a DNA prime-protein boost strategy. Front Immunol 2024; 15:1456078. [PMID: 39640259 PMCID: PMC11617539 DOI: 10.3389/fimmu.2024.1456078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction The development of effective vaccines against Brucella abortus is critical due to its significant impact on human and animal health. The objective of this study was to design and evaluate in silico and in vivo a multivalent vaccine based on the immunogenic potential of three selected open reading frames (ORFs) of Brucella. Methods The designed construct, named S22, was analyzed in silico to evaluate its physicochemical properties, antigenicity, allergenicity and toxicity. This construct was modeled and subjected to molecular dynamics analysis. Additionally, the antigenicity and protection induced by this construct was evaluated through In vivo assays immunizing BALB/c mice with protein (S22), DNA (pVS22) and combining both vaccine formats using a prime boost immunization strategy. Results All bioinformatics analyses showed safe and high quality structural features, revealing favorable interactions between S22 and the TLR4/MD2 complex. Moreover, results from in vivo assays indicated that the S22 protein induced robust levels of IgG1 and IgG2a, suggesting a balanced Th1 and Th2 immune response. The DNA construct (pVS22) elicited primarily a Th1 response, whereas the use of a prime boost strategy, which combines both formats resulted in a balanced immune response with significant induction of lymphoproliferation and elevated. Discussion Although our assays did not demonstrate the induction of a substantial protective response against B. abortus, this construct was capable of inducing immunogenicity. This study highlights the utility of in silico design for predicting and optimizing candidate vaccines and underscores the potential of using strategies such as prime boost, which incorporate antigens of different biological nature to modulate the immune response, while balancing parameters such as stability of the antigens and the cost of production.
Collapse
Affiliation(s)
- Raúl E. Molina
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | | | - Manuel Flores-Concha
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Leonardo A. Gómez
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Ilse Alvarado
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Italo Ferrari
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Angel Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| |
Collapse
|
7
|
Flores-Concha M, Gómez LA, Soto-Shara R, Molina RE, Coloma-Rivero RF, Montero DA, Ferrari Í, Oñate Á. Brucella abortus triggers the differential expression of immunomodulatory lncRNAs in infected murine macrophages. Front Immunol 2024; 15:1352306. [PMID: 38464511 PMCID: PMC10921354 DOI: 10.3389/fimmu.2024.1352306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/30/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction The lncRNAs (long non-coding RNAs) are the most diverse group of non-coding RNAs and are involved in most biological processes including the immune response. While some of them have been recognized for their influence on the regulation of inflammatory activity, little is known in the context of infection by Brucella abortus, a pathogen that presents significant challenges due to its ability to manipulate and evade the host immune system. This study focuses on characterize the expression profile of LincRNA-cox2, Lethe, lincRNA-EPS, Malat1 and Gas5 during infection of macrophages by B. abortus. Methods Using public raw RNA-seq datasets we constructed for a lncRNA expression profile in macrophages Brucella-infected. In addition, from public RNA-seq raw datasets of RAW264.7 cells infected with B. abortus we constructed a transcriptomic profile of lncRNAs in order to know the expression of the five immunomodulating lncRNAs studied here at 8 and 24 h post-infection. Finally, we performed in vitro infection assays in RAW264.7 cells and peritoneal macrophages to detect by qPCR changes in the expression of these lncRNAs at first 12 hours post infection, a key stage in the infection cycle where Brucella modulates the immune response to survive. Results Our results demonstrate that infection of macrophages with Brucella abortus, induces significant changes in the expression of LincRNA-Cox2, Lethe, LincRNA-EPS, Gas5, and Malat1. Discussion The change in the expression profile of these immunomodulatory lncRNAs in response to infection, suggest a potential involvement in the immune evasion strategy employed by Brucella to facilitate its intracellular survival.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ángel Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
8
|
Zavattieri L, Muñoz González F, Ferrero MC, Baldi PC. Immune Responses Potentially Involved in the Gestational Complications of Brucella Infection. Pathogens 2023; 12:1450. [PMID: 38133333 PMCID: PMC10747693 DOI: 10.3390/pathogens12121450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Infection by Brucella species in pregnant animals and humans is associated with an increased risk of abortion, preterm birth, and transmission of the infection to the offspring. The pathogen has a marked tropism for the placenta and the pregnant uterus and has the ability to invade and replicate within cells of the maternal-fetal unit, including trophoblasts and decidual cells. Placentitis is a common finding in infected pregnant animals. Several proinflammatory factors have been found to be increased in both the placenta of Brucella-infected animals and in trophoblasts or decidual cells infected in vitro. As normal pregnancies require an anti-inflammatory placental environment during most of the gestational period, Brucella-induced placentitis is thought to be associated with the obstetric complications of brucellosis. A few studies suggest that the blockade of proinflammatory factors may prevent abortion in these cases.
Collapse
Affiliation(s)
- Lucía Zavattieri
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (L.Z.); (F.M.G.); (M.C.F.)
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Florencia Muñoz González
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (L.Z.); (F.M.G.); (M.C.F.)
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Mariana C. Ferrero
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (L.Z.); (F.M.G.); (M.C.F.)
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Pablo C. Baldi
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (L.Z.); (F.M.G.); (M.C.F.)
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| |
Collapse
|
9
|
Blasco JM, Moreno E, Muñoz PM, Conde-Álvarez R, Moriyón I. A review of three decades of use of the cattle brucellosis rough vaccine Brucella abortus RB51: myths and facts. BMC Vet Res 2023; 19:211. [PMID: 37853407 PMCID: PMC10583465 DOI: 10.1186/s12917-023-03773-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
Cattle brucellosis is a severe zoonosis of worldwide distribution caused by Brucella abortus and B. melitensis. In some countries with appropriate infrastructure, animal tagging and movement control, eradication was possible through efficient diagnosis and vaccination with B. abortus S19, usually combined with test-and-slaughter (T/S). Although S19 elicits anti-smooth lipopolysaccharide antibodies that may interfere in the differentiation of infected and vaccinated animals (DIVA), this issue is minimized using appropriate S19 vaccination protocols and irrelevant when high-prevalence makes mass vaccination necessary or when eradication requisites are not met. However, S19 has been broadly replaced by vaccine RB51 (a rifampin-resistant rough mutant) as it is widely accepted that is DIVA, safe and as protective as S19. These RB51 properties are critically reviewed here using the evidence accumulated in the last 35 years. Controlled experiments and field evidence shows that RB51 interferes in immunosorbent assays (iELISA, cELISA and others) and in complement fixation, issues accentuated by revaccinating animals previously immunized with RB51 or S19. Moreover, contacts with virulent brucellae elicit anti-smooth lipopolysaccharide antibodies in RB51 vaccinated animals. Thus, accepting that RB51 is truly DIVA results in extended diagnostic confusions and, when combined with T/S, unnecessary over-culling. Studies supporting the safety of RB51 are flawed and, on the contrary, there is solid evidence that RB51 is excreted in milk and abortifacient in pregnant animals, thus being released in abortions and vaginal fluids. These problems are accentuated by the RB51 virulence in humans, lack diagnostic serological tests detecting these infections and RB51 rifampicin resistance. In controlled experiments, protection by RB51 compares unfavorably with S19 and lasts less than four years with no evidence that RB51-revaccination bolsters immunity, and field studies reporting its usefulness are flawed. There is no evidence that RB51 protects cattle against B. melitensis, infection common when raised together with small ruminants. Finally, data acumulated during cattle brucellosis eradication in Spain shows that S19-T/S is far more efficacious than RB51-T/S, which does not differ from T/S alone. We conclude that the assumption that RB51 is DIVA, safe, and efficaceous results from the uncritical repetition of imperfectly examined evidence, and advise against its use.
Collapse
Affiliation(s)
- J M Blasco
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Zaragoza, España
| | - E Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - P M Muñoz
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Zaragoza, España
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, España
| | - R Conde-Álvarez
- Instituto de Investigación Sanitaria de Navarra and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - I Moriyón
- Instituto de Investigación Sanitaria de Navarra and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
10
|
Ibarra M, Campos M, Hernán B, Loor-Giler A, Chamorro A, Nuñez L. Comparison of diagnostic tests for detecting bovine brucellosis in animals vaccinated with S19 and RB51 strain vaccines. Vet World 2023; 16:2080-2085. [PMID: 38023275 PMCID: PMC10668559 DOI: 10.14202/vetworld.2023.2080-2085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/31/2023] [Indexed: 12/01/2023] Open
Abstract
Background and Aim The diagnosis of bovine brucellosis in animals vaccinated with strain-19 (S19) and Rose Bengal (RB)-51 strain vaccines can be misinterpreted due to false positives. This study aimed to compare diagnostic tests for detecting bovine brucellosis in animals vaccinated with S19 and RB51 vaccine strains. Materials and Methods Two groups of 12 crossbred Holstein calves between 6 and 8 months of age were used. On day 0, blood samples were collected from the animals, and the competitive enzyme-linked immunosorbent assay was used for serological diagnosis of bovine Brucellosis. All animals tested negative. After the first blood collection, the animals were subcutaneously vaccinated: one group received the S19 vaccine and the other received the RB51 vaccine. From the 3rd month after vaccination, all animals were sampled. Sampling was repeated every 2 months until the 7th month. Serological diagnosis of bovine brucellosis was performed using RB, tube serum agglutination test (SAT), SAT with 2-mercaptoethanol (SAT-2Me), and fluorescence polarization assay (FPA). Results Animals vaccinated with S19 showed positive results with the RB, SAT, and SAT-2Me tests in all months of post-vaccination diagnosis. In animals vaccinated with S19, FPA showed positive results at months 3 and 5 and negative results at month 7, indicating that this test discriminates vaccinated animals from infected animals 7 months after vaccination. Rose Bengal, SAT, SAT-2Me, and FPA tests showed negative results in animals vaccinated with RB51 in all months of diagnosis. Conclusion Animals vaccinated with S19 may test positive for brucellosis using RB, SAT, or SAT-2Me tests 7 months later. Fluorescence polarization assay is an optimal alternative for diagnosing animals in the field, thereby preventing false positives, and consequently, unnecessary confiscations of animals. Animals vaccinated with RB51 tested negative with RB, SAT, SAT-2Me, and FPA tests in all months of diagnosis, confirming that the tests are ineffective for diagnosing brucellosis caused by rough strains.
Collapse
Affiliation(s)
- Marcelo Ibarra
- Facultad de Industrias Agropecuarias y Ciencias Ambientales, Carrera Agropecuaria, Universidad Politécnica Estatal del Carchi, Antisana S/N y Av Universitaria, Tulcán Ecuador 040102
- Facultad de Ciencias Veterinarias, Universidad Nacional de Rosario, Boulevard Ovidio Lagos y Ruta 33 Casilda-Santa Fe-Argentina
| | - Martin Campos
- Facultad de Industrias Agropecuarias y Ciencias Ambientales, Carrera Agropecuaria, Universidad Politécnica Estatal del Carchi, Antisana S/N y Av Universitaria, Tulcán Ecuador 040102
- Facultad de Ciencias Veterinarias, Universidad Nacional de Rosario, Boulevard Ovidio Lagos y Ruta 33 Casilda-Santa Fe-Argentina
| | - Benavides Hernán
- Facultad de Industrias Agropecuarias y Ciencias Ambientales, Carrera Agropecuaria, Universidad Politécnica Estatal del Carchi, Antisana S/N y Av Universitaria, Tulcán Ecuador 040102
| | - Anthony Loor-Giler
- Facultad de Ingeniería y Ciencias Aplicadas, Carrera de Ingeniería en Biotecnología, Universidad de Las Américas, Antigua Vía a Nayón S/N, Quito EC 170124 Ecuador
| | - Andrea Chamorro
- Facultad de Industrias Agropecuarias y Ciencias Ambientales, Carrera de Enfermeria, Universidad Politécnica Estatal del Carchi, Antisana S/N y Av Universitaria, Tulcán Ecuador 040102
| | - Luis Nuñez
- Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas, Antigua Vía a Nayón S/N, Quito EC 170124 Ecuador
- One Health Research Group, Universidad de Las Américas, Quito, Ecuador
| |
Collapse
|
11
|
Brangsch H, Sandalakis V, Babetsa M, Boukouvala E, Ntoula A, Makridaki E, Christidou A, Psaroulaki A, Akar K, Gürbilek SE, Jamil T, Melzer F, Neubauer H, Wareth G. Genotype diversity of brucellosis agents isolated from humans and animals in Greece based on whole-genome sequencing. BMC Infect Dis 2023; 23:529. [PMID: 37580676 PMCID: PMC10426126 DOI: 10.1186/s12879-023-08518-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 08/07/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Brucellosis is a zoonotic disease whose causative agent, Brucella spp., is endemic in many countries of the Mediterranean basin, including Greece. Although the occurrence of brucellosis must be reported to the authorities, it is believed that the disease is under-reported in Greece, and knowledge about the genomic diversity of brucellae is lacking. METHODS Thus, 44 Brucella isolates, primarily B. melitensis, collected between 1999 and 2009 from humans and small ruminants in Greece were subjected to whole genome sequencing using short-read technology. The raw reads and assembled genomes were used for in silico genotyping based on single nucleotide substitutions and alleles. Further, specific genomic regions encoding putative virulence genes were screened for characteristic nucleotide changes, which arose in different genotype lineages. RESULTS In silico genotyping revealed that the isolates belonged to three of the known sublineages of the East Mediterranean genotype. In addition, a novel subgenotype was identified that was basal to the other East Mediterranean sublineages, comprising two Greek strains. The majority of the isolates can be assumed to be of endemic origin, as they were clustered with strains from the Western Balkans or Turkey, whereas one strain of human origin could be associated with travel to another endemic region, e.g. Portugal. Further, nucleotide substitutions in the housekeeping gene rpoB and virulence-associated genes were detected, which were characteristic of the different subgenotypes. One of the isolates originating from an aborted bovine foetus was identified as B. abortus vaccine strain RB51. CONCLUSION The results demonstrate the existence of several distinct persistent Brucella sp. foci in Greece. To detect these and for tracing infection chains, extensive sampling initiatives are required.
Collapse
Affiliation(s)
- Hanka Brangsch
- Institute of Bacterial Infections and Zoonoses, Fredrich-Loeffler-Institut - Federal Research Institute for Animal Health (FLI), 07743, Jena, Germany.
| | - Vassilios Sandalakis
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Crete, 71500, Greece
| | - Maria Babetsa
- Veterinary Research Institute, ELGO-DIMITRA, Campus of Thermi, Thermi, 57001, Thessaloniki, Greece
| | - Evridiki Boukouvala
- Veterinary Research Institute, ELGO-DIMITRA, Campus of Thermi, Thermi, 57001, Thessaloniki, Greece
| | - Artemisia Ntoula
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Crete, 71500, Greece
| | - Eirini Makridaki
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Crete, 71500, Greece
| | - Athanasia Christidou
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Crete, 71500, Greece
| | - Anna Psaroulaki
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Crete, 71500, Greece
| | - Kadir Akar
- Faculty of Veterinary Medicine, Van Yuzuncu Yıl University, Van, 65090, Turkey
| | - Sevil Erdenlig Gürbilek
- Microbiology Department, Faculty of Veterinary Medicine, Harran University, Şanlıurfa, 63200, Turkey
| | - Tariq Jamil
- Institute of Bacterial Infections and Zoonoses, Fredrich-Loeffler-Institut - Federal Research Institute for Animal Health (FLI), 07743, Jena, Germany
| | - Falk Melzer
- Institute of Bacterial Infections and Zoonoses, Fredrich-Loeffler-Institut - Federal Research Institute for Animal Health (FLI), 07743, Jena, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Fredrich-Loeffler-Institut - Federal Research Institute for Animal Health (FLI), 07743, Jena, Germany
| | - Gamal Wareth
- Institute of Bacterial Infections and Zoonoses, Fredrich-Loeffler-Institut - Federal Research Institute for Animal Health (FLI), 07743, Jena, Germany
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, 07747, Jena, Germany
| |
Collapse
|
12
|
De Massis F, Sacchini F, D’Alterio N, Migliorati G, Ferri N, Rossi E, Averaimo D, Petrini A, Podaliri Vulpiani M, Perletta F, Rodomonti D, Luciani M, Befacchia G, Maggetti M, Di Febo T, Di Pancrazio C, Krasteva IM, Salini R, Vincifori G, Iannetti S, Tittarelli M. Brucella abortus Strain RB51 Administered to Prepubescent Water Buffaloes, from Vaccination to Lactation: Kinetics of Antibody Response and Vaccine Safety. Microorganisms 2023; 11:2078. [PMID: 37630638 PMCID: PMC10459664 DOI: 10.3390/microorganisms11082078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Brucella RB51 is a live modified vaccine. Its use in water buffalo has been proposed using a vaccination protocol different to that used for cattle, but knowledge of the long-term effects of RB51 vaccination in this species remains incomplete. The aim of the study was to evaluate the safety and kinetics of antibody responses in water buffaloes vaccinated according to the protocol described for the bovine species in the WOAH Manual, modified with the use of a triple dose. Water buffaloes were vaccinated with the vaccine RB51. A booster vaccination was administered at 12 months of age. When turning 23-25 months old, female animals were induced to pregnancy. RB51-specific antibodies were detected and quantified using a CFT based on the RB51 antigen. Vaccinated animals showed a positive serological reaction following each vaccine injection, but titers and the duration of the antibody differed among animals. For 36 weeks after booster vaccination, the comparison of CFT values between vaccinated and control groups remained constantly significant. Afterwards, antibody titers decreased. No relevant changes in antibody response were recorded during pregnancy or lactation. In conclusion, results indicated that the vaccination schedule applied is safe and allows for vaccinated and unvaccinated controls to be discriminated between for up to 8 months after booster vaccination.
Collapse
Affiliation(s)
| | - Flavio Sacchini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.D.M.); (N.D.); (G.M.); (N.F.); (E.R.); (D.A.); (A.P.); (M.P.V.); (F.P.); (D.R.); (M.L.); (M.M.); (T.D.F.); (C.D.P.); (I.M.K.); (R.S.); (S.I.); (M.T.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Prasolova O, Krylova E, Bogomazova A, Soltynskaya I, Sklyarov O, Gordeeva V, Timofeeva I, Motorygin A, Panin A. Russian collection of Brucella abortus vaccine strains: annotation, implementation and genomic analysis. Front Vet Sci 2023; 10:1154520. [PMID: 37415963 PMCID: PMC10322197 DOI: 10.3389/fvets.2023.1154520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/09/2023] [Indexed: 07/08/2023] Open
Abstract
Over the past 10 years, immunization of cattle in Russia has been performed using vaccines from Brucella abortus strains 82, 19 and 75/79. To prevent brucellosis in small ruminants, two vaccines have been used, from the Brucella melitensis strain REV-1 and the B. abortus strain 19; note that twice as many animals have been immunized with the former vaccine than with the latter vaccine. The disadvantage of using these preparations is the formation of prolonged post-vaccination seropositivity, which is especially pronounced in animals after immunization with vaccines from B. abortus strain 19 and B. melitensis strain REV-1. This study aims to perform the whole genome sequencing of Brucella vaccine strains from the Russian collection. A bioinformatics analysis of the genomic data proved that the vaccine strains 75/79AB, 82, R-1096, and the KV 17/100 belong to ST-2, 104 M to ST-1, KV 13/100 to ST-5. This analysis allowed us to characterize vaccine strains's phylogenetic relationships and to prove the close relation of vaccine strains 75/79AB, 82, R-1096. Also, we defined candidate mutations in genes pmm, wbdA, wbkA, wboA, and eryB, which could be responsible for the attenuated virulence of vaccine strains. The complete genomic sequences of B. abortus strains make further studies of bacterial pathogenicity determinants and virulence phenotype feasible, as well as their use in quality control of animal medicines.
Collapse
Affiliation(s)
- Olga Prasolova
- The Russian State Center for Animal Feed and Drug Standardization and Quality (VGNKI), Moscow, Russia
| | - Ekaterina Krylova
- The Russian State Center for Animal Feed and Drug Standardization and Quality (VGNKI), Moscow, Russia
| | - Alexandra Bogomazova
- The Russian State Center for Animal Feed and Drug Standardization and Quality (VGNKI), Moscow, Russia
- The Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA of Russia, Moscow, Russia
| | - Irina Soltynskaya
- The Russian State Center for Animal Feed and Drug Standardization and Quality (VGNKI), Moscow, Russia
| | - Oleg Sklyarov
- The Russian State Center for Animal Feed and Drug Standardization and Quality (VGNKI), Moscow, Russia
| | - Veronika Gordeeva
- The Russian State Center for Animal Feed and Drug Standardization and Quality (VGNKI), Moscow, Russia
- The Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA of Russia, Moscow, Russia
| | - Irina Timofeeva
- The Russian State Center for Animal Feed and Drug Standardization and Quality (VGNKI), Moscow, Russia
| | - Anton Motorygin
- The Russian State Center for Animal Feed and Drug Standardization and Quality (VGNKI), Moscow, Russia
| | - Alexander Panin
- The Russian State Center for Animal Feed and Drug Standardization and Quality (VGNKI), Moscow, Russia
| |
Collapse
|
14
|
Wang H, Clapp B, Hoffman C, Yang X, Pascual DW. A Single Nasal Dose Vaccination with a Brucella abortus Mutant Potently Protects against Pulmonary Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1576-1588. [PMID: 37036290 PMCID: PMC10159994 DOI: 10.4049/jimmunol.2300071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023]
Abstract
The Brucella abortus double-mutant (ΔznuA ΔnorD Brucella abortus-lacZ [znBAZ]) was assessed for its protective efficacy after vaccination with a single nasal dose. Superior protection was achieved in znBAZ-vaccinated mice against pulmonary, wild-type B. abortus 2308 challenge when compared with conventional livestock Brucella abortus vaccines, the smooth S19 (smooth B. abortus strain 19 vaccine) and rough RB51 (rough mutant vaccine strain of B. abortus) strains. Nasal znBAZ vaccination reduced splenic and lung colonization by wild-type brucellae by >3-4 logs. In contrast, S19 reduced lung colonization by only 32-fold, and RB51 failed to reduce colonization. One profound attribute of znBAZ vaccination was the >3-fold increase in pulmonary CD8+ T cells when compared with other vaccinated groups. S19 vaccination increased only CD4+ T cells. All vaccines induced IFN-γ and TNF-α production by CD4+ T cells, but only znBAZ vaccination enhanced the recruitment of polyfunctional CD8+ T cells, by >100-fold. IL-17 by both CD4+ and CD8+ T cells was also induced by subsequent znBAZ vaccination. These results demonstrate that, in addition to achieving protective immunity by CD4+ T cells, CD8+ T cells, specifically resident memory T cells, also confer protection against brucellosis. The protection obtained by znBAZ vaccination was attributed to IFN-γ-producing CD8+ T cells, because depletion of CD8+ T cells throughout vaccination and challenge phases abrogated protection. The stimulation of only CD4+ T cells by RB51- and S19-vaccinated mice proved insufficient in protecting against pulmonary B. abortus 2308 challenge. Thus, nasal znBAZ vaccination offers an alternative means to elicit protection against brucellosis.
Collapse
Affiliation(s)
- Hongbin Wang
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| | - Beata Clapp
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| | - Carol Hoffman
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| | - Xinghong Yang
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| | - David W. Pascual
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| |
Collapse
|
15
|
Brucella abortus induces mast cell activation through TLR-2 and TLR-4. Microb Pathog 2023; 176:106005. [PMID: 36717005 DOI: 10.1016/j.micpath.2023.106005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/29/2023]
Abstract
The Gram-negative bacteria Brucella abortus is a major cause of brucellosis in animals and humans. The host innate immune response to B. abortus is mainly associated with phagocytic cells such as dendritic cells, neutrophils, and macrophages. However, as mast cells naturally reside in the main bacterial entry sites they may be involved in bacterial recognition. At present, little is known about the role of mast cells during B. abortus infection. The role of the innate immune receptors TLR2 and TLR4 in activation of mast cells by B. abortus (strain RB51) infection was analyzed in this study. The results showed that B. abortus did not induce mast cell degranulation, but did induce the synthesis of the cytokines IL-1β, IL-6, TNF-α, CCL3, CCL4, and CCL5. Furthermore, B. abortus stimulated key cell signaling molecules involved in mast cell activation such as p38 and NF-κB. Blockade of the receptors TLR2 and TLR4 decreased TNF-α and IL-6 release by mast cells in response to B. abortus. Taken together, our results demonstrate that mast cells are activated by B. abortus and may play a role in inducing an inflammatory response during the initial phase of the infection.
Collapse
|
16
|
Wang S, Hao J, Yang J, Zhang Q, Li A. The Attenuation Mechanism and Live Vaccine Potential of a Low-Virulence Edwardsiella ictaluri Strain Obtained by Rifampicin Passaging Culture. J Microbiol Biotechnol 2023; 33:167-179. [PMID: 36734130 PMCID: PMC9998210 DOI: 10.4014/jmb.2210.10013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 02/04/2023]
Abstract
The rifampicin-resistant strain E9-302 of Edwardsiella ictaluri strain 669 (WT) was generated by continuous passage on BHI agar plates containing increasing concentrations of rifampicin. E9-302 was attenuated significantly by 119 times to zebrafish Danio rerio compared to WT in terms of the 50% lethal dose (LD50). Zebrafish vaccinated with E9-302 via intraperitoneal (IP) injection at a dose of 1 × 103 CFU/fish had relative percentage survival (RPS) rates of 85.7% when challenged with wild-type E. ictaluri via IP 14 days post-vaccination (dpv). After 14 days of primary vaccination with E9-302 via immersion (IM) at a dose of 4 × 107 CFU/ml, a booster IM vaccination with E9-302 at a dose of 2 × 107 CFU/ml exhibited 65.2% RPS against challenge with wild-type E. ictaluri via IP 7 days later. These results indicated that the rifampicin-resistant attenuated strain E9-302 had potential as a live vaccine against E. ictaluri infection. A previously unreported amino acid site change at position 142 of the RNA polymerase (RNAP) β subunit encoded by the gene rpoB associated with rifampicin resistance was identified. Analysis of the whole-genome sequencing results revealed multiple missense mutations in the virulence-related genes esrB and sspH2 in E9-302 compared with WT, and a 189 bp mismatch in one gene, whose coding product was highly homologous to glycosyltransferase family 39 protein. This study preliminarily explored the molecular mechanism underlying the virulence attenuation of rifampicin-resistant strain E9-302 and provided a new target for the subsequent study of the pathogenic mechanism of E. ictaluri.
Collapse
Affiliation(s)
- Shuyi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jingwen Hao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jicheng Yang
- Dalian Ocean University, Dalian 116023, P.R. China
| | - Qianqian Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Aihua Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
17
|
Shevtsov A, Cloeckaert A, Berdimuratova K, Shevtsova E, Shustov AV, Amirgazin A, Karibayev T, Kamalova D, Zygmunt MS, Ramanculov Y, Vergnaud G. Brucella abortus in Kazakhstan, population structure and comparison with worldwide genetic diversity. Front Microbiol 2023; 14:1106994. [PMID: 37032899 PMCID: PMC10073595 DOI: 10.3389/fmicb.2023.1106994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/01/2023] [Indexed: 04/11/2023] Open
Abstract
Brucella abortus is the main causative agent of brucellosis in cattle, leading to severe economic consequences in agriculture and affecting public health. The zoonotic nature of the infection increases the need to control the spread and dynamics of outbreaks in animals with the incorporation of high resolution genotyping techniques. Based on such methods, B. abortus is currently divided into three clades, A, B, and C. The latter includes subclades C1 and C2. This study presents the results of whole-genome sequencing of 49 B. abortus strains isolated in Kazakhstan between 1947 and 2015 and of 36 B. abortus strains of various geographic origins isolated from 1940 to 2004. In silico Multiple Locus Sequence Typing (MLST) allowed to assign strains from Kazakhstan to subclades C1 and to a much lower extend C2. Whole-genome Single-Nucleotide Polymorphism (wgSNP) analysis of the 46 strains of subclade C1 with strains of worldwide origins showed clustering with strains from neighboring countries, mostly North Caucasia, Western Russia, but also Siberia, China, and Mongolia. One of the three Kazakhstan strains assigned to subclade C2 matched the B. abortus S19 vaccine strain used in cattle, the other two were genetically close to the 104 M vaccine strain. Bayesian phylodynamic analysis dated the introduction of B. abortus subclade C1 into Kazakhstan to the 19th and early 20th centuries. We discuss this observation in view of the history of population migrations from Russia to the Kazakhstan steppes.
Collapse
Affiliation(s)
- Alexandr Shevtsov
- National Center for Biotechnology, Astana, Kazakhstan
- *Correspondence: Alexandr Shevtsov,
| | | | | | | | | | | | | | | | | | - Yerlan Ramanculov
- National Center for Biotechnology, Astana, Kazakhstan
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Gilles Vergnaud
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Gilles Vergnaud,
| |
Collapse
|
18
|
Pascual DW, Goodwin ZI, Bhagyaraj E, Hoffman C, Yang X. Activation of mucosal immunity as a novel therapeutic strategy for combating brucellosis. Front Microbiol 2022; 13:1018165. [PMID: 36620020 PMCID: PMC9814167 DOI: 10.3389/fmicb.2022.1018165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Brucellosis is a disease of livestock that is commonly asymptomatic until an abortion occurs. Disease in humans results from contact of infected livestock or consumption of contaminated milk or meat. Brucella zoonosis is primarily caused by one of three species that infect livestock, Bacillus abortus in cattle, B. melitensis in goats and sheep, and B. suis in pigs. To aid in disease prophylaxis, livestock vaccines are available, but are only 70% effective; hence, improved vaccines are needed to mitigate disease, particularly in countries where disease remains pervasive. The absence of knowing which proteins confer complete protection limits development of subunit vaccines. Instead, efforts are focused on developing new and improved live, attenuated Brucella vaccines, since these mimic attributes of wild-type Brucella, and stimulate host immune, particularly T helper 1-type responses, required for protection. In considering their development, the new mutants must address Brucella's defense mechanisms normally active to circumvent host immune detection. Vaccination approaches should also consider mode and route of delivery since disease transmission among livestock and humans is believed to occur via the naso-oropharyngeal tissues. By arming the host's mucosal immune defenses with resident memory T cells (TRMs) and by expanding the sources of IFN-γ, brucellae dissemination from the site of infection to systemic tissues can be prevented. In this review, points of discussion focus on understanding the various immune mechanisms involved in disease progression and which immune players are important in fighting disease.
Collapse
|
19
|
Goodwin ZI, Yang X, Hoffman C, Pascual DW. Live mucosal vaccination stimulates potent protection via varied CD4+ and CD8+ T cell subsets against wild-type Brucella melitensis 16M challenge. Front Immunol 2022; 13:995327. [PMID: 36263034 PMCID: PMC9574439 DOI: 10.3389/fimmu.2022.995327] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/31/2022] [Indexed: 12/01/2022] Open
Abstract
Re-emerging zoonotic pathogen Brucella spp. continues to impact developing countries and persists in expanding populations of wildlife species in the US, constantly threatening infection of our domestic herds. The development of improved animal and human vaccines remains a priority. In this study, immunity to a novel live attenuated B. melitensis strain, termed znBM-mC, was characterized. An oral prime, intranasal (IN) boost strategy conferred exquisite protection against pulmonary challenge, with wild-type (wt) B. melitensis providing nearly complete protection in the lungs and spleens from brucellae colonization. Vaccination with znBM-mC showed an IFN-γ+ CD8+ T-cell bias in the lungs as opposed to Rev 1-vaccinated mice showing IFN-γ+ CD4+ T-cell inclination. Lung CD4+ and CD8+ effector memory T cells (TEMs) increased over 200-fold; and lung CD4+ and CD8+ resident memory T cells (TRMs) increased more than 250- and 150-fold, respectively. These T cells served as the primary producers of IFN-γ in the lungs, which was essential for vaccine clearance and the predominant cytokine generated pre-and post-challenge with wt B. melitensis 16M; znBM-mC growth could not be arrested in IFN-γ−/− mice. Increases in lung TNF-α and IL-17 were also induced, with IL-17 being mostly derived from CD4+ T cells. Vaccination of CD4−/−, CD8−/−, and B6 mice with znBM-mC conferred full protection in the lungs and spleens post-pulmonary challenge with virulent B. melitensis; vaccination of IL-17−/− mice resulted in the protection of the lungs, but not the spleen. These data demonstrate the efficacy of mucosal vaccine administration for the generation of protective memory T cells against wt B. melitensis.
Collapse
|
20
|
Mena-Bueno S, Poveda-Urkixo I, Irazoki O, Palacios L, Cava F, Zabalza-Baranguá A, Grilló MJ. Brucella melitensis Wzm/Wzt System: Changes in the Bacterial Envelope Lead to Improved Rev1Δwzm Vaccine Properties. Front Microbiol 2022; 13:908495. [PMID: 35875565 PMCID: PMC9306315 DOI: 10.3389/fmicb.2022.908495] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
The lipopolysaccharide (LPS) O-polysaccharide (O-PS) is the main virulence factor in Brucella. After synthesis in the cytoplasmic membrane, O-PS is exported to the periplasm by the Wzm/Wzt system, where it is assembled into a LPS. This translocation also engages a bactoprenol carrier required for further biosynthesis pathways, such as cell wall biogenesis. Targeting O-PS export by blockage holds great potential for vaccine development, but little is known about the biological implications of each Wzm/Wzt moiety. To improve this knowledge and to elucidate its potential application as a vaccine, we constructed and studied wzm/wzt single- and double-deletion mutants, using the attenuated strain Brucella melitensis Rev1 as the parental strain. This allowed us to describe the composition of Brucella peptidoglycan for the first time. We observed that these mutants lack external O-PS yet trigger changes in genetic transcription and in phenotypic properties associated with the outer membrane and cell wall. The three mutants are highly attenuated; unexpectedly, Rev1Δwzm also excels as an immunogenic and effective vaccine against B. melitensis and Brucella ovis in mice, revealing that low persistence is not at odds with efficacy. Rev1Δwzm is attenuated in BeWo trophoblasts, does not infect mouse placentas, and is safe in pregnant ewes. Overall, these attributes and the minimal serological interference induced in sheep make Rev1Δwzm a highly promising vaccine candidate.
Collapse
Affiliation(s)
- Sara Mena-Bueno
- Animal Health Department, Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Pamplona, Spain
- Agronomy, Biotecnology and Food Department, Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Irati Poveda-Urkixo
- Animal Health Department, Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Pamplona, Spain
| | - Oihane Irazoki
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Leyre Palacios
- Animal Health Department, Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Pamplona, Spain
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Ana Zabalza-Baranguá
- Animal Health Department, Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Pamplona, Spain
| | - María Jesús Grilló
- Animal Health Department, Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Pamplona, Spain
- *Correspondence: María Jesús Grilló,
| |
Collapse
|
21
|
Averaimo D, De Massis F, Savini G, Garofolo G, Sacchini F, Abass A, Tittarelli M, Migliorati G, Petrini A. Detection of Brucella abortus Vaccine Strain RB51 in Water Buffalo (Bubalus bubalis) Milk. Pathogens 2022; 11:pathogens11070748. [PMID: 35889993 PMCID: PMC9323640 DOI: 10.3390/pathogens11070748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
The isolation of B. abortus RB51 vaccine strain from a milk sample in a water buffalo farm in southern Italy emphasizes the risk to public health of consuming contaminated milk or milk products following illegal vaccination.
Collapse
|
22
|
He CY, Yang JH, Ye YB, Zhao HL, Liu MZ, Yang QL, Liu BS, He S, Chen ZL. Proteomic and Antibody Profiles Reveal Antigenic Composition and Signatures of Bacterial Ghost Vaccine of Brucella abortus A19. Front Immunol 2022; 13:874871. [PMID: 35529865 PMCID: PMC9074784 DOI: 10.3389/fimmu.2022.874871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022] Open
Abstract
Brucellosis is an important zoonotic disease that causes great economic losses. Vaccine immunisation is the main strategy for the prevention and control of brucellosis. Although live attenuated vaccines play important roles in the prevention of this disease, they also have several limitations, such as residual virulence and difficulty in the differentiation of immunisation and infection. We developed and evaluated a new bacterial ghost vaccine of Brucella abortus A19 by a new double inactivation method. The results showed that the bacterial ghost vaccine of Brucella represents a more safe and efficient vaccine for brucellosis. We further characterised the antigenic components and signatures of the vaccine candidate A19BG. Here, we utilised a mass spectrometry-based label-free relative quantitative proteomics approach to investigate the global proteomics changes in A19BGs compared to its parental A19. The proteomic analysis identified 2014 proteins, 1116 of which were differentially expressed compared with those in A19. The common immunological proteins of OMPs (Bcsp31, Omp25, Omp10, Omp19, Omp28, and Omp2a), HSPs (DnaK, GroS, and GroL), and SodC were enriched in the proteome of A19BG. By protein micro array-based antibody profiling, significant differences were observed between A19BG and A19 immune response, and a number of signature immunogenic proteins were identified. Two of these proteins, the BMEII0032 and BMEI0892 proteins were significantly different (P < 0.01) in distinguishing between A19 and A19BG immune sera and were identified as differential diagnostic antigens for the A19BG vaccine candidate. In conclusion, using comparative proteomics and antibody profiling, protein components and signature antigens were identified for the ghost vaccine candidate A19BG, which are valuable for further developing the vaccine and its monitoring assays.
Collapse
Affiliation(s)
- Chuan-Yu He
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, China
- Technology Center, Tecon Biological Co., Ltd., Urumqi, China
| | - Jiang-Hua Yang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, China
| | - Yin-Bo Ye
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, China
| | - Hai-Long Zhao
- Technology Center, Tecon Biological Co., Ltd., Urumqi, China
| | - Meng-Zhi Liu
- Technology Center, Tecon Biological Co., Ltd., Urumqi, China
| | - Qi-Lin Yang
- Technology Center, Tecon Biological Co., Ltd., Urumqi, China
| | - Bao-Shan Liu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, China
| | - Sun He
- Technology Center, Tecon Biological Co., Ltd., Urumqi, China
| | - Ze-Liang Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, China
- Technology Center, Tecon Biological Co., Ltd., Urumqi, China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Innovative Institute of Zoonoses, Inner Mongolia Minzu University, Tongliao, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Key Laboratory of Tropical Diseases Control, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
He CY, Zhang YZ, Liu MZ, Zhao HL, Ren LS, Liu BS, He S, Chen ZL. Combined immunization with inactivated vaccine reduces the dose of live B. abortus A19 vaccine. BMC Vet Res 2022; 18:128. [PMID: 35366881 PMCID: PMC8976406 DOI: 10.1186/s12917-022-03229-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/23/2022] [Indexed: 11/18/2022] Open
Abstract
Background Brucella spp. is an important zoonotic pathogen responsible for brucellosis in humans and animals. Brucella abortus A19 strain is a widespread vaccine in China. However, it has a drawback of residual virulence in animals and humans. Methods In this study, the BALB/c mice were inoculated with either 100 μL PBS(control group, C group), 109 CFU/mL inactivated B. abortus A19 strain (I group), 105 CFU/mL (low-dose group, L group) 106 CFU/mL live B. abortus A19 strain (high-dose group, H group), or 105 CFU/mL live B. abortus A19 strain combined with 109 CFU/mL inactivated B. abortus A19 strain (LI group). Mice were challenged with B. abortus strain 2308 at 7 week post vaccination. Subsequently, the immune and protective efficacy of the vaccines were evaluated by measuring splenic bacterial burden, spleen weight, serum IgG, interferon-gamma (IFN-γ), interleukin-4 (IL-4) percentage of CD4 + and CD8 + T cells of mice via bacterial isolation, weighing, ELISA and flow cytometry, respectively. Results The splenic bacterial burden and spleen weight of the mice in group LI were mostly equivalent to the mice of group H. Moreover, Brucella-specific serum IgG, IFN-γ, IL-4, and the percentage of CD4+ and CD8+ T cells of the LI group mice were similar to those of the H group. In the subsequent challenge test, both vaccines conferred protective immunity to wild-type (WT) 2308 strain. In addition, the levels of IL-4 and IFN-γ, CD4+ and CD8+ T cells in these mice were similar to those of the mice in the H group. Conclusions Combined immunization with low dose live vaccine and inactivated vaccine allowed to reduce the live B. abortus A19 vaccine, dose with an equivalent protection of the high-dose live vaccine. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03229-0.
Collapse
|
24
|
Saidu AS, Singh M, Kumar A, Mahajan NK, Mittal D, Chhabra R, Joshi VG, Musallam II, Sadiq U. Studies on intra-ocular vaccination of adult cattle with reduced dose Brucella abortus strain-19 vaccine. Heliyon 2022; 8:e08937. [PMID: 35243062 PMCID: PMC8881662 DOI: 10.1016/j.heliyon.2022.e08937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/26/2021] [Accepted: 02/08/2022] [Indexed: 11/06/2022] Open
Abstract
Brucella abortus vaccines play a central role in bovine brucellosis control with tremendous success worldwide for decades. The study was aimed to evaluate the efficacy of reduced dose (5.0 × 10 9 cfu) of S19 vaccine in adult cattle and its shedding in the milk of vaccinated cattle using molecular techniques. The OIE recommended tests (RBPT, SAT, and iELISA) for brucellosis screening in cattle were used. Seronegative cattle (n = 90) of different age groups (young, old heifers & milking cows, n = 30 each) were selected for the vaccine trials. Antibody titers were recorded at 7th, 21st, 30th, 60th, 90th and 120th days post-vaccination (DPV) to monitor the immune responses following vaccination and at 150th, 180th, 210th and 240th DPB following booster-dose to an intraocular group. The humoral immune responses observed by RBPT and ELISA, proved that antibody titers persisted in s/c group compared to the i/o group in all categories. The IFN-γ stimulation (CMI) due to reduced dose vaccination was noticed early as 30th in all groups and declined after 90th DPV, with higher IFN-γ stimulation among the s/c group. The Bcsp31 and IS711 targeted PCR detected the presence of Brucella DNA in milk samples (n = 120) from the vaccinated cows (n = 30) and confirmed by qPCR (TaqMan assay) at 30th, 60th, 90th and 120th DPV. A Significant number, 70% (7/10) was detected in s/c by qPCR. BCSP31 sequence was deposited at NCBI GenBank (accession no. MK881173-6). PCR and qPCR techniques could provide a reliable diagnosis of brucellosis from milk. The intraocular route remains the safer route for vaccinating adult cattle than subcutaneous.
Collapse
Affiliation(s)
- A S Saidu
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Sciences, LUVAS, Hisar, 125004, Haryana, India.,Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Maiduguri, P.M.B., 1069, Maiduguri, 600230, Borno State, Nigeria
| | - Mahavir Singh
- College Central Laboratory, College of Veterinary Sciences, LUVAS, Hisar, 125004, Haryana, India
| | - Aman Kumar
- Department of Animal Biotechnology, College of Veterinary Sciences, LUVAS, Hisar, 125004, Haryana, India
| | - N K Mahajan
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Sciences, LUVAS, Hisar, 125004, Haryana, India
| | - Dinesh Mittal
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Sciences, LUVAS, Hisar, 125004, Haryana, India
| | - Rajesh Chhabra
- College Central Laboratory, College of Veterinary Sciences, LUVAS, Hisar, 125004, Haryana, India
| | - Vinay G Joshi
- Department of Animal Biotechnology, College of Veterinary Sciences, LUVAS, Hisar, 125004, Haryana, India
| | - Imadidden I Musallam
- Department of Pathobiology and Population Sciences, Veterinary Epidemiology, Economics and Public Health Group, The Royal Veterinary College, University of London, AL9 7TA, Hertfordshire, United Kingdom
| | - Usman Sadiq
- Northwick Park Hospital, Radiology Department, Watford Road, Harrow, HA1 3UJ, United Kingdom
| |
Collapse
|
25
|
Heckman TI, Shahin K, Henderson EE, Griffin MJ, Soto E. Development and efficacy of Streptococcus iniae live-attenuated vaccines in Nile tilapia, Oreochromis niloticus. FISH & SHELLFISH IMMUNOLOGY 2022; 121:152-162. [PMID: 34965443 DOI: 10.1016/j.fsi.2021.12.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Streptococcus iniae is a re-emerging bacterial pathogen in freshwater and marine aquaculture worldwide. There are no commercial vaccines available for S. iniae in the United States, and autogenous vaccines are restricted to inactivated whole-cell preparations with limited protection against heterogenous strains. Live-attenuated vaccines (LAV) represent an advantageous alternative to these bacterins, as they induce robust cellular and humoral immunity, and may provide longer lasting protection through less stressful routes of administration. We investigated whether accumulation of mutations in S. iniae by serial passage in the presence of rifampin can generate immunogenic LAV conferring protection against challenge with heterologous wild-type (WT) S. iniae strains in Nile tilapia (Oreochromis niloticus). Three lineages of rifampin-resistant S. iniae strains were generated from three genetically distinct parent strains (n = 9) by multiple passages in increments of Rifamycin SV sodium salt. Growth in liquid media, extent of capsulation, antimicrobial susceptibility, survival in Nile tilapia whole blood, and cytotoxicity in an O. mossambicus endothelial cell line were compared between the passaged and WT strains. Nile tilapia challenges were used to assess strain virulence, generation of anti-S. iniae IgM, and the protection conferred by LAV candidates against virulent S. iniae. Rifampin-resistant strains demonstrated changes in growth rate and cytotoxicity in endothelial cells, as well as significant reductions in whole blood survival (p < 0.05). Selected strains also showed attenuated virulence in the Nile tilapia challenge model, and anti-S. iniae IgM generated against these strains demonstrated cross-reactivity against heterologous bacteria. Immunization by intracoelomic injection induced protection against a virulent WT strain of S. iniae, with relative percent survival up to 95.05%.
Collapse
Affiliation(s)
- Taylor I Heckman
- Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Khalid Shahin
- Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA; Aquatic Animals Diseases Laboratory, Aquaculture Division, National Institute of Oceanography and Fisheries, P.O. Box 43511, Suez, Egypt
| | - Eileen E Henderson
- California Animal Health and Food Safety Lab, School of Veterinary Medicine, University of California, Davis, CA, 92408, USA
| | - Matt J Griffin
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Stoneville, MS, 39762, USA
| | - Esteban Soto
- Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
26
|
He C, Yang J, Zhao H, Liu M, Wu D, Liu B, He S, Chen Z. Vaccination with a Brucella ghost developed through a double inactivation strategy provides protection in Guinea pigs and cattle. Microb Pathog 2021; 162:105363. [PMID: 34919994 DOI: 10.1016/j.micpath.2021.105363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 01/19/2023]
Abstract
Vaccination can prevent and control animal brucellosis. Currently, live attenuated vaccines are extensively used to prevent Brucella infection. However, traditional vaccines such as live attenuated vaccines are associated with biological safety risks for both humans and animals. The bacterial ghost (BG) is a new form of vaccine with great prospects. However, bacterial cells cannot be completely inactivated by biological lysis, conferring a safety risk associated with the vaccine. In this study, we developed a Brucella abortus A19 bacterial ghost (A19BG) through a double inactivation strategy with sequential biological lysis and hydrogen peroxide treatment. This strategy resulted in 100% inactivation of Brucella, such that viable bacterial cells were not detected even at an ultrahigh concentration of 1010 colony-forming units/mL. Furthermore, A19BG had a typical BG morphology and good genetic stability. Moreover, it did not induce adverse reactions in guinea pigs. The levels of antibodies, interferon-γ, interleukin-4, and CD4+ T cells in guinea pigs inoculated with the A19BG vaccine were similar to those inoculated with the existing A19 vaccine. Immunization with A19BG conferred a similar level of protection with that of A19 against Brucella melitensis M28 in both guinea pigs and cattle. In conclusion, the combination of biological lysis and H2O2-mediated inactivation is a safe and effective strategy that can serve as a reference for the preparation of BG vaccines.
Collapse
Affiliation(s)
- Chuanyu He
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Liaoning Province, Shenyang, 110866, PR China; Tecon Biological Co, Ltd, Urumqi, 830011, PR China
| | - Jianghua Yang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Liaoning Province, Shenyang, 110866, PR China
| | - Hailong Zhao
- Tecon Biological Co, Ltd, Urumqi, 830011, PR China
| | - Mengzhi Liu
- Tecon Biological Co, Ltd, Urumqi, 830011, PR China
| | - Dongling Wu
- Tecon Biological Co, Ltd, Urumqi, 830011, PR China
| | - Baoshan Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Liaoning Province, Shenyang, 110866, PR China.
| | - Sun He
- Tecon Biological Co, Ltd, Urumqi, 830011, PR China.
| | - Zeliang Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Liaoning Province, Shenyang, 110866, PR China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China; Brucellosis Prevention and Treatment Engineering Technology Research Center of Inner Mongolia Autonomous Region, Inner Mongolia University for Nationalities, Tongliao, 028000, PR China; School of Public Health, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
27
|
Rodríguez-Beltrán É, López GD, Anzola JM, Rodríguez-Castillo JG, Carazzone C, Murcia MI. Heterogeneous fitness landscape cues, pknG low expression, and phthiocerol dimycocerosate low production of Mycobacterium tuberculosis ATCC25618 rpoB S450L in enriched broth. Tuberculosis (Edinb) 2021; 132:102156. [PMID: 34891037 DOI: 10.1016/j.tube.2021.102156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
Multidrug-resistant tuberculosis (isoniazid/rifampin[RIF]-resistant TB) ravages developing countries. Fitness is critical in clinical outcomes. Previous studies on RIF-resistant TB (RR-TB) showed competitive fitness gains and losses, with rpoB-S450L as the most isolated/fit mutation. This study measured virulence/resistance genes, phthiocerol dimycocerosate (PDIM) levels and their relationship with rpoB S450L ATCC25618 RR-TB strain fitness. After obtaining 10 different RR-TB GenoType MTBDRplus 2.0-genotyped isolates (with nontyped, S441, H445 and S450 positions), only one S450L isolate (R9, rpoB-S450L ATCC 25618, RR 1 μg/mL) was observed, with H445Y being the most common. A competitive fitness in vitro assay with wild-type (wt) ATCC 25618: R9 1:1 in 50 mL Middlebrook 7H9/OADC was performed, and generation time (G) in vitro and relative fitness were obtained. mRNA and PDIM were extracted on log and stationary phases. Fitness decreased in rpoB S450L and H445Y strains, with heterogeneous fitness cues in three biological replicas of rpoB-S450L: one high and two low fitness replicas. S450L strain had significant pknG increase. Compared with S450L, wt-rpoB showed increased polyketide synthase ppsA expression and high PDIM peak measured by HPLC-MS in log phase compared to S450L. This contrasts with previously increased PDIM in other RR-TB isolates.
Collapse
Affiliation(s)
- Édgar Rodríguez-Beltrán
- MicobacUN Group, Microbiology Department, The National University of Colombia (NUC) School of Medicine, AV CR 30 45-03, Bogotá, D.C, 111321, Colombia
| | - Gerson-Dirceu López
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, CR 1 18A-12, Bogotá, D.C, 111711, Colombia
| | - Juan Manuel Anzola
- Corpogen, CR 4 20-41, Bogotá, D.C, 110311, Colombia; Universidad Central, CR 5 21-38, Bogotá, D.C, 110311, Colombia
| | - Juan Germán Rodríguez-Castillo
- MicobacUN Group, Microbiology Department, The National University of Colombia (NUC) School of Medicine, AV CR 30 45-03, Bogotá, D.C, 111321, Colombia
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, CR 1 18A-12, Bogotá, D.C, 111711, Colombia
| | - Martha I Murcia
- MicobacUN Group, Microbiology Department, The National University of Colombia (NUC) School of Medicine, AV CR 30 45-03, Bogotá, D.C, 111321, Colombia.
| |
Collapse
|
28
|
Chaudhuri P, Saminathan M, Ali SA, Kaur G, Singh SV, Lalsiamthara J, Goswami TK, Singh AK, Singh SK, Malik P, Singh RK. Immunization with Brucella abortus S19Δper Conferred Protection in Water Buffaloes against Virulent Challenge with B. abortus Strain S544. Vaccines (Basel) 2021; 9:vaccines9121423. [PMID: 34960169 PMCID: PMC8708995 DOI: 10.3390/vaccines9121423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/18/2023] Open
Abstract
Vaccination of cattle and buffaloes with Brucella abortus strain 19 has been the mainstay for control of bovine brucellosis. However, vaccination with S19 suffers major drawbacks in terms of its safety and interference with serodiagnosis of clinical infection. Brucella abortus S19∆per, a perosamine synthetase wbkB gene deletion mutant, overcomes the drawbacks of the S19 vaccine strain. The present study aimed to evaluate the potential of Brucella abortus S19Δper vaccine candidate in the natural host, buffaloes. Safety of S19∆per, for animals use, was assessed in guinea pigs. Protective efficacy of vaccine was assessed in buffaloes by immunizing with normal dose (4 × 1010 colony forming units (CFU)/animal) and reduced dose (2 × 109 CFU/animal) of S19Δper and challenged with virulent strain of B. abortus S544 on 300 days post immunization. Bacterial persistency of S19∆per was assessed in buffalo calves after 42 days of inoculation. Different serological, biochemical and pathological studies were performed to evaluate the S19∆per vaccine. The S19Δper immunized animals showed significantly low levels of anti-lipopolysaccharides (LPS) antibodies. All the immunized animals were protected against challenge infection with B. abortus S544. Sera from the majority of S19Δper immunized buffalo calves showed moderate to weak agglutination to RBPT antigen and thereby, could apparently be differentiated from S19 vaccinated and clinically-infected animals. The S19Δper was more sensitive to buffalo serum complement mediated lysis than its parent strain, S19. Animals culled at 6-weeks-post vaccination showed no gross lesions in organs and there was comparatively lower burden of infection in the lymph nodes of S19Δper immunized animals. With attributes of higher safety, strong protective efficacy and potential of differentiating infected from vaccinated animals (DIVA), S19Δper would be a prospective alternate to conventional S19 vaccines for control of bovine brucellosis as proven in buffaloes.
Collapse
Affiliation(s)
- Pallab Chaudhuri
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India; (S.A.A.); (G.K.); (S.V.S.)
- Correspondence: ; Tel.: +91-9897806310
| | - Mani Saminathan
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India;
| | - Syed Atif Ali
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India; (S.A.A.); (G.K.); (S.V.S.)
| | - Gurpreet Kaur
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India; (S.A.A.); (G.K.); (S.V.S.)
| | - Shiv Varan Singh
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India; (S.A.A.); (G.K.); (S.V.S.)
| | - Jonathan Lalsiamthara
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Tapas K. Goswami
- Immunology Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India;
| | - Ashwini K. Singh
- Chaudhary Charan Singh National Institute of Animal Health, Baghpat, Uttar Pradesh 250609, India; (A.K.S.); (S.K.S.); (P.M.)
| | - Sandeep K. Singh
- Chaudhary Charan Singh National Institute of Animal Health, Baghpat, Uttar Pradesh 250609, India; (A.K.S.); (S.K.S.); (P.M.)
| | - Praveen Malik
- Chaudhary Charan Singh National Institute of Animal Health, Baghpat, Uttar Pradesh 250609, India; (A.K.S.); (S.K.S.); (P.M.)
| | - Raj K. Singh
- Division of Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India;
| |
Collapse
|
29
|
Chacón-Díaz C, Zabalza-Baranguá A, San Román B, Blasco JM, Iriarte M, Salas-Alfaro D, Hernández-Mora G, Barquero-Calvo E, Guzmán-Verri C, Chaves-Olarte E, Grilló MJ, Moreno E. Brucella abortus S19 GFP-tagged vaccine allows the serological identification of vaccinated cattle. PLoS One 2021; 16:e0260288. [PMID: 34807952 PMCID: PMC8608319 DOI: 10.1371/journal.pone.0260288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
Bovine brucellosis induces abortion in cows, produces important economic losses, and causes a widely distributed zoonosis. Its eradication was achieved in several countries after sustained vaccination with the live attenuated Brucella abortus S19 vaccine, in combination with the slaughtering of serologically positive animals. S19 induces antibodies against the smooth lipopolysaccharide (S-LPS), making difficult the differentiation of infected from vaccinated bovines. We developed an S19 strain constitutively expressing the green fluorescent protein (S19-GFP) coded in chromosome II. The S19-GFP displays similar biological characteristics and immunogenic and protective efficacies in mice to the parental S19 strain. S19-GFP can be distinguished from S19 and B. abortus field strains by fluorescence and multiplex PCR. Twenty-five heifers were vaccinated withS19-GFP (5×109 CFU) by the subcutaneous or conjunctival routes and some boosted with GFP seven weeks thereafter. Immunized animals were followed up for over three years and tested for anti-S-LPS antibodies by both the Rose Bengal test and a competitive ELISA. Anti-GFP antibodies were detected by an indirect ELISA and Western blotting. In most cases, anti-S-LPS antibodies preceded for several weeks those against GFP. The anti-GFP antibody response was higher in the GFP boosted than in the non-boosted animals. In all cases, the anti-GFP antibodies persisted longer, or at least as long, as those against S-LPS. The drawbacks and potential advantages of using the S19-GFP vaccine for identifying vaccinated animals in infected environments are discussed.
Collapse
Affiliation(s)
- Carlos Chacón-Díaz
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San Pedro, San José, Costa Rica
- * E-mail:
| | - Ana Zabalza-Baranguá
- Instituto de Agrobiotecnología, CSIC-Gobierno de Navarra, Mutilva, Navarra, Spain
| | - Beatriz San Román
- Instituto de Agrobiotecnología, CSIC-Gobierno de Navarra, Mutilva, Navarra, Spain
| | - José-María Blasco
- Unidad de Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria (CITA), Gobierno de Aragón, Aragón, Zaragoza, Spain
| | - Maite Iriarte
- Departamento de Microbiología y Parasitología, Instituto de Salud Tropical, Universidad de Navarra, Pamplona, Navarra, Spain
| | - Dariana Salas-Alfaro
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San Pedro, San José, Costa Rica
| | - Gabriela Hernández-Mora
- Servicio Nacional de Salud Animal, Ministerio de Agricultura y Ganadería, Lagunilla, Heredia, Costa Rica
| | - Elías Barquero-Calvo
- Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Lagunilla, Heredia, Costa Rica
| | - Caterina Guzmán-Verri
- Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Lagunilla, Heredia, Costa Rica
| | - Esteban Chaves-Olarte
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San Pedro, San José, Costa Rica
| | - María-Jesús Grilló
- Instituto de Agrobiotecnología, CSIC-Gobierno de Navarra, Mutilva, Navarra, Spain
| | - Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Lagunilla, Heredia, Costa Rica
| |
Collapse
|
30
|
Cai W, Arias CR. Deciphering the Molecular Basis for Attenuation of Flavobacterium columnare Strain Fc1723 Used as Modified Live Vaccine against Columnaris Disease. Vaccines (Basel) 2021; 9:vaccines9111370. [PMID: 34835301 PMCID: PMC8622145 DOI: 10.3390/vaccines9111370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Vaccines are widely employed in aquaculture to prevent bacterial infections, but their use by the U.S. catfish industry is very limited. One of the main diseases affecting catfish aquaculture is columnaris disease, caused by the bacterial pathogen Flavobacterium columnare. In 2011, a modified-live vaccine against columnaris disease was developed by selecting mutants that were resistant to rifampin. The previous study has suggested that this vaccine is stable, safe, and effective, but the mechanisms that resulted in attenuation remained uncharacterized. To understand the molecular basis for attenuation, a comparative genomic analysis was conducted to identify specific point mutations. The PacBio RS long-read sequencing platform was used to obtain draft genomes of the mutant attenuated strain (Fc1723) and the parent virulent strain (FcB27). Sequence-based genome comparison identified 16 single nucleotide polymorphisms (SNP) unique to the mutant. Genes that contained mutations were involved in rifampin resistance, gliding motility, DNA transcription, toxin secretion, and extracellular protease synthesis. The results also found that the vaccine strain formed biofilm at a significantly lower rate than the parent strain. These observations suggested that the rifampin-resistant phenotype and the associated attenuation of the vaccine strain result from the altered activity of RNA polymerase (RpoB) and possible disrupted protein secretion systems.
Collapse
Affiliation(s)
- Wenlong Cai
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Correspondence:
| | - Covadonga R. Arias
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36832, USA;
| |
Collapse
|
31
|
Zhao B, Gong QL, Feng HF, Wang Q, Shi JF, Song YH, Liu F, Shi K, Zong Y, Du R, Li JM. Brucellosis prevalence in yaks in China in 1980-2019: A systematic review and meta-analysis. Prev Vet Med 2021; 198:105532. [PMID: 34844124 DOI: 10.1016/j.prevetmed.2021.105532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/24/2022]
Abstract
In the Qinghai-Tibet Plateau of China, the yak is an animal of particular economic interest, which provides protein and income for herders in daily life. Brucellosis is a bacterial disease that can infect humans and animals, including yaks. It can damage the yak reproductive system, causing miscarriage and orchitis. At the same time, brucellosis threatens the health of herders. We performed this meta-analysis using R software to explore the combined prevalence and risk factors of brucellosis in yak in China. Variability was assessed by the I2 statistic and Cochran Q statistic. We identified 52 publications of related research from four databases (Wanfang Data, VIP Chinese Journal Database, China National Knowledge Infrastructure, and of PubMed). The pooled prevalence of yak brucellosis was 8.39 %. Prevalence was highest in Southwestern China (11.1 %). The point estimate of brucellosis in yak from 2012 to 2016 was the highest (11.47 %). The point estimate of age ≤ 12 months (1.44 %) was lower than that of age > 12 months (15.6 %). This study shows that yak brucellosis is serious, and its incidence is higher than before 2012. We recommend carrying out large-scale yak brucellosis investigations in Western China and conducting comprehensive testing planning. The detection of brucellosis in adult animals should be strengthened to reduce the economic loss caused by brucellosis to herders and to improve public health.
Collapse
Affiliation(s)
- Bo Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China; College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China
| | - Qing-Long Gong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China
| | - Hai-Feng Feng
- Animal Health Supervision Institute of Jilin Province, Changchun, Jilin Province 130061, PR China
| | - Qi Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China
| | - Jun-Feng Shi
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China
| | - Yu-Hao Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China
| | - Fei Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China
| | - Kun Shi
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China
| | - Ying Zong
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China
| | - Rui Du
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China.
| | - Jian-Ming Li
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China.
| |
Collapse
|
32
|
Sarmiento Clemente A, Amerson-Brown MH, Foster CE. An Adolescent With Neurobrucellosis Caused by Brucella abortus Cattle Vaccine Strain RB51. Pediatr Infect Dis J 2021; 40:e353-e355. [PMID: 34260490 DOI: 10.1097/inf.0000000000003200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We present the case of an 18-year-old female with a 1-month history of fever, headache, and double vision, whose examination revealed papilledema and cranial nerve VI palsy. Blood cultures grew Brucella abortus cattle vaccine strain RB51, which is inherently resistant to rifampin. We discuss the management of the first known case of neurobrucellosis by this strain.
Collapse
Affiliation(s)
- Adriana Sarmiento Clemente
- From the Section of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Megan H Amerson-Brown
- Department of Pathology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Catherine E Foster
- From the Section of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| |
Collapse
|
33
|
Stranahan LW, Arenas-Gamboa AM. When the Going Gets Rough: The Significance of Brucella Lipopolysaccharide Phenotype in Host-Pathogen Interactions. Front Microbiol 2021; 12:713157. [PMID: 34335551 PMCID: PMC8319746 DOI: 10.3389/fmicb.2021.713157] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/22/2021] [Indexed: 01/18/2023] Open
Abstract
Brucella is a facultatively intracellular bacterial pathogen and the cause of worldwide zoonotic infections, infamous for its ability to evade the immune system and persist chronically within host cells. Despite the frequent association with attenuation in other Gram-negative bacteria, a rough lipopolysaccharide phenotype is retained by Brucella canis and Brucella ovis, which remain fully virulent in their natural canine and ovine hosts, respectively. While these natural rough strains lack the O-polysaccharide they, like their smooth counterparts, are able to evade and manipulate the host immune system by exhibiting low endotoxic activity, resisting destruction by complement and antimicrobial peptides, entering and trafficking within host cells along a similar pathway, and interfering with MHC-II antigen presentation. B. canis and B. ovis appear to have compensated for their roughness by alterations to their outer membrane, especially in regards to outer membrane proteins. B. canis, in particular, also shows evidence of being less proinflammatory in vivo, suggesting that the rough phenotype may be associated with an enhanced level of stealth that could allow these pathogens to persist for longer periods of time undetected. Nevertheless, much additional work is required to understand the correlates of immune protection against the natural rough Brucella spp., a critical step toward development of much-needed vaccines. This review will highlight the significance of rough lipopolysaccharide in the context of both natural disease and host–pathogen interactions with an emphasis on natural rough Brucella spp. and the implications for vaccine development.
Collapse
Affiliation(s)
- Lauren W Stranahan
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Angela M Arenas-Gamboa
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
34
|
Ryskeldinova S, Zinina N, Kydyrbayev Z, Yespembetov B, Kozhamkulov Y, Inkarbekov D, Assanzhanova N, Mailybayeva A, Bugybayeva D, Sarmykova M, Khairullin B, Tabynov K, Bulashev A, Aitzhanov B, Abeuov K, Sansyzbay A, Yespolov T, Renukaradhya GJ, Olsen S, Oñate A, Tabynov K. Registered Influenza Viral Vector Based Brucella abortus Vaccine for Cattle in Kazakhstan: Age-Wise Safety and Efficacy Studies. Front Cell Infect Microbiol 2021; 11:669196. [PMID: 34290993 PMCID: PMC8288105 DOI: 10.3389/fcimb.2021.669196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/07/2021] [Indexed: 11/23/2022] Open
Abstract
A novel influenza viral vector based Brucella abortus vaccine (Flu-BA) was introduced for use in cattle in Kazakhstan in 2019. In this study, the safety and efficacy of the vaccine was evaluated in male and female cattle at different ages, and during pregnancy as a part of its registration process. Our data demonstrated that the Flu-BA vaccine was safe after prime or booster vaccination in calves (5–7 months old male and female), heifers (15–17 months old) and cows (6–7 years old) and was not abortogenic in pregnant animals. A mild, localized granuloma was observed at the Flu-BA injection site. Vaccinated animals did not show signs of influenza infection or reduced milk production in dairy cows, and the influenza viral vector (IVV) was not recovered from nasal swabs or milk. Vaccinated animals in all age groups demonstrated increased IgG antibody responses against Brucella Omp16 and L7/L12 proteins with calves demonstrating the greatest increase in humoral responses. Following experimental challenge with B. abortus 544, vaccinates demonstrated greater protection and no signs of clinical disease, including abortion, were observed. The vaccine effectiveness against B. abortus 544 infection was 75, 60 and 60%, respectively, in calves, heifers and adult cows. Brucella were not isolated from calves of vaccinated cattle that were experimentally challenged during pregnancy. Our data suggests that the Flu-BA vaccine is safe and efficacious in cattle, including pregnant animals; and can therefore be administered to cattle of any age.
Collapse
Affiliation(s)
- Sholpan Ryskeldinova
- Infectious Disease Prevention Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Nadezhda Zinina
- Microbiology Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Zhailaubay Kydyrbayev
- Infectious Disease Prevention Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Bolat Yespembetov
- Microbiology Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Yerken Kozhamkulov
- Infectious Disease Prevention Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Dulat Inkarbekov
- Infectious Disease Prevention Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Nurika Assanzhanova
- Infectious Disease Prevention Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Aigerim Mailybayeva
- Infectious Disease Prevention Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Dina Bugybayeva
- Infectious Disease Prevention Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan.,International Center for Vaccinology, Kazakh National Agrarian University (KazNAU), Almaty, Kazakhstan
| | - Makhpal Sarmykova
- Microbiology Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Berik Khairullin
- Infectious Disease Monitoring Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Kairat Tabynov
- International Center for Vaccinology, Kazakh National Agrarian University (KazNAU), Almaty, Kazakhstan.,Preclinical Research Laboratory With Vivarium, M. Aikimbayev National Research Center for Especially Dangerous Infections, Almaty, Kazakhstan
| | - Aitbay Bulashev
- Department of Microbiology and Biotechnology, S. Seifullin Kazakh Agrotechnical University, Nur-Sultan, Kazakhstan
| | - Batyrbek Aitzhanov
- Department of Clinical Veterinary Medicine, Kazakh National Agrarian University (KazNAU), Almaty, Kazakhstan
| | - Khairulla Abeuov
- Infectious Disease Monitoring Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Abylay Sansyzbay
- Department of Biological Safety, Kazakh National Agrarian University (KazNAU), Almaty, Kazakhstan
| | - Tlektes Yespolov
- International Center for Vaccinology, Kazakh National Agrarian University (KazNAU), Almaty, Kazakhstan
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University (OSU), Wooster, OH, United States
| | - Steven Olsen
- Independent Researcher, McCallsburg, IA, United States
| | - Angel Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Kaissar Tabynov
- International Center for Vaccinology, Kazakh National Agrarian University (KazNAU), Almaty, Kazakhstan.,Preclinical Research Laboratory With Vivarium, M. Aikimbayev National Research Center for Especially Dangerous Infections, Almaty, Kazakhstan
| |
Collapse
|
35
|
Roop RM, Barton IS, Hopersberger D, Martin DW. Uncovering the Hidden Credentials of Brucella Virulence. Microbiol Mol Biol Rev 2021; 85:e00021-19. [PMID: 33568459 PMCID: PMC8549849 DOI: 10.1128/mmbr.00021-19] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacteria in the genus Brucella are important human and veterinary pathogens. The abortion and infertility they cause in food animals produce economic hardships in areas where the disease has not been controlled, and human brucellosis is one of the world's most common zoonoses. Brucella strains have also been isolated from wildlife, but we know much less about the pathobiology and epidemiology of these infections than we do about brucellosis in domestic animals. The brucellae maintain predominantly an intracellular lifestyle in their mammalian hosts, and their ability to subvert the host immune response and survive and replicate in macrophages and placental trophoblasts underlies their success as pathogens. We are just beginning to understand how these bacteria evolved from a progenitor alphaproteobacterium with an environmental niche and diverged to become highly host-adapted and host-specific pathogens. Two important virulence determinants played critical roles in this evolution: (i) a type IV secretion system that secretes effector molecules into the host cell cytoplasm that direct the intracellular trafficking of the brucellae and modulate host immune responses and (ii) a lipopolysaccharide moiety which poorly stimulates host inflammatory responses. This review highlights what we presently know about how these and other virulence determinants contribute to Brucella pathogenesis. Gaining a better understanding of how the brucellae produce disease will provide us with information that can be used to design better strategies for preventing brucellosis in animals and for preventing and treating this disease in humans.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Ian S Barton
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Dariel Hopersberger
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Daniel W Martin
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
36
|
Waldrop SG, Smith GP, Boyle SM, Sriranganathan N. Brucella abortus RB51 Δ leuB expressing Salmonella FliC conjugated gonadotropins reduces mouse fetal numbers: A possible feral swine brucellosis immunocontraceptive vaccine. Heliyon 2021; 7:e06149. [PMID: 33644455 PMCID: PMC7889994 DOI: 10.1016/j.heliyon.2021.e06149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/15/2020] [Accepted: 01/27/2021] [Indexed: 12/03/2022] Open
Abstract
Population and health management of wildlife is a key to environmental health, domestic herd health, and ultimately public health. Many different methods including: surgical sterilization, poison baits, and sponsored hunting programs have been used in the attempt to control populations of various nuisance animal species. Particular interest has been given to immunocontraception through wildlife vaccination protocols. This study specifically looked at the potential immunocontraceptive and protective properties of a Brucella abortus RB51 ΔleuB vaccine expressing Salmonella typhimurium FliC conjugated to porcine follicle stimulating hormone beta subunit (FSHβ) or gonadotropin releasing hormone (GnRH) DNA sequences. B. abortus RB51 ΔleuB pNS4-TrcD-FliC- FSHβ (RB51LFSHβ) and B. abortus RB51 ΔleuB pNS4-TrcD-FliC-GnRH (RB51LGnRH) were tested in a pilot breeding study with BALB/c mice, and a significant reduction in fertility characteristics was observed in both male and female mice. Ultimately, this study provides support to test these vaccine candidates in feral swine, a destructive invasive species in the United States of America.
Collapse
|
37
|
Rajendhran J. Genomic insights into Brucella. INFECTION GENETICS AND EVOLUTION 2020; 87:104635. [PMID: 33189905 DOI: 10.1016/j.meegid.2020.104635] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 01/21/2023]
Abstract
Brucellosis is a zoonotic disease caused by certain species of Brucella. Each species has its preferred host animal, though it can infect other animals too. For a longer period, only six classical species were recognized in the genus Brucella. No vaccine is available for human brucellosis. Therefore, human brucellosis can be controlled only by controlling brucellosis in animals. The genus is now expanding with the newly isolated atypical strains from various animals, including marine mammals. Presently, 12 species of Brucella have been recognized. The first genome of Brucella was released in 2002, and today, we have more than 1500 genomes of Brucella spp. isolated worldwide. Multiple genome sequences are available for the major zoonotic species, B. abortus, B. melitensis, and B. suis. The Brucella genome has two chromosomes with the approximate sizes of 2.1 and 1.2 Mbp. The genome of Brucella is highly conserved across all the species at the nucleotide level. One of the unanswered questions is what makes host preference in different species of Brucella. Here, I summarize the recent advancements in the Brucella genomics research.
Collapse
Affiliation(s)
- Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India.
| |
Collapse
|
38
|
Solanki KS, Varshney R, Qureshi S, Thomas P, Singh R, Agrawal A, Chaudhuri P. Non-infectious outer membrane vesicles derived from Brucella abortus S19Δper as an alternative acellular vaccine protects mice against virulent challenge. Int Immunopharmacol 2020; 90:107148. [PMID: 33189614 DOI: 10.1016/j.intimp.2020.107148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/15/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
The prime human and animal safety issues accentuate the search of promising newer alternative vaccine candidates to resolve complications associated with the live attenuated Brucella abortus strain19 (S19) vaccine. Outer membrane vesicles (OMVs S19 Δper) extracted from Brucella abortus S19Δper (S19Δper) as an alternative subunit vaccine candidate has been explored in the present study as OMVs are endowed with immunogenic molecules, including LPS and outer membrane proteins (OMPs) and do not cause infection by virtue of being an acellular entity. The LPS defective S19Δper released a higher amount of OMVs than its parent strain S19. Under transmission electron microscopy (TEM), OMVs were seen as nano-sized outward bulge from the surface of Brucella. Dynamic light scattering analysis of OMVs revealed that OMVs S19Δper showed the less polydispersity index (PDI) than OMVs S19 pointing towards relatively more homogenous OMVs populations. Both OMVs S19Δper and OMVs S19 with or without booster dose and S19 vaccine were used for immunization of mice and subsequently challenged with 2 × 105 CFU virulent Brucella abortus strain 544 (S544) to assess protective efficacy of vaccines. The less splenic weight index and less S544 count in OMVs immunized mice in comparison to unimmunized mice after S544 challenge clearly indicated good protective efficacy of OMVs. OMVs S19 Δper induced relatively high titer of IgG than OMVs S19 but conferred nearly equal protection against brucellosis. An ELISA based determination of IgG and its isotype response, Cytometric Bead Array (CBA) based quantitation of serum cytokines and FACS based enumeration of CD4+ and CD8+ T cells revealed high titer of IgG, production of both Th1 (IgG2a) and Th2 (IgG1) related antibodies, stimulation of IL-2, TNF (Th1) and IL-4, IL-6, IL-10 (Th2) cytokines, and induced T cell response suggested that OMVs S19Δper elicited Th1 and Th2 type immune response and ensured protection against S544 challenge in murine model.
Collapse
Affiliation(s)
- Khushal Singh Solanki
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India.
| | - Rajat Varshney
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India; Department of Veterinary Microbiology, FVAS, IAS, RGSC, Banaras Hindu University, Barkachha, Mirzapur, Uttar Pradesh 231001, India.
| | - Salauddin Qureshi
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India.
| | - Prasad Thomas
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India.
| | - Rahul Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India; Department of Veterinary Pathology, Khalsa College of Veterinary & Animal Sciences, Amritsar, Punjab 143001, India.
| | - Aditya Agrawal
- Division of Animal Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India.
| | - Pallab Chaudhuri
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India.
| |
Collapse
|
39
|
Avila-Calderón ED, Medina-Chávez O, Flores-Romo L, Hernández-Hernández JM, Donis-Maturano L, López-Merino A, Arellano-Reynoso B, Aguilera-Arreola MG, Ruiz EA, Gomez-Lunar Z, Witonsky S, Contreras-Rodríguez A. Outer Membrane Vesicles From Brucella melitensis Modulate Immune Response and Induce Cytoskeleton Rearrangement in Peripheral Blood Mononuclear Cells. Front Microbiol 2020; 11:556795. [PMID: 33193138 PMCID: PMC7604303 DOI: 10.3389/fmicb.2020.556795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/17/2020] [Indexed: 02/01/2023] Open
Abstract
Similar to what has been described in other Gram-negative bacteria, Brucella melitensis releases outer membrane vesicles (OMVs). OMVs from B. melitensis 16M and the rough-mutant B. melitensis VTRM1 were able to induce a protective immune response against virulent B. melitensis in mice models. The presence of some proteins which had previously been reported to induce protection against Brucella were found in the proteome of OMVs from B. melitensis 16M. However, the proteome of OMVs from B. melitensis VTRM1 had not previously been determined. In order to be better understand the role of OMVs in host-cell interactions, the aim of this work was to compare the proteomes of OMVs from B. melitensis 16M and the derived rough-mutant B. melitensis VTRM1, as well as to characterize the immune response induced by vesicles on host cells. Additionally, the effect of SDS and proteinase K on the stability of OMVs was analyzed. OMVs from B. melitensis 16M (smooth strain) and the B. melitensis VTRM1 rough mutant (lacking the O-polysaccharide side chain) were analyzed through liquid chromatography-mass spectrometry (LC-MS/MS). OMVs were treated with proteinase K, sodium deoxycholate, and SDS, and then their protein profile was determined using SDS-PAGE. Furthermore, PBMCs were treated with OMVs in order to measure their effect on cytoskeleton, surface molecules, apoptosis, DNA damage, proliferation, and cytokine-induction. A total of 131 proteins were identified in OMVs from B. melitensis16M, and 43 in OMVs from B. melitensis VTRM1. Proteome comparison showed that 22 orthologous proteins were common in vesicles from both strains, and their core proteome contained Omp31, Omp25, GroL, and Omp16. After a subsequent detergent and enzyme treatment, OMVs from B. melitensis VTRM1 exhibited higher sensitive compared to OMVs from the B. melitensis 16M strain. Neither OMVs induced IL-17, proliferation, apoptosis or DNA damage. Nonetheless, OMVs from the smooth and rough strains induced overproduction of TNFα and IL-6, as well as actin and tubulin rearrangements in the cytoskeleton. Moreover, OMVs from both strains inhibited PD-L1 expression in T-cells. These data revealed significant differences in OMVs derived from the rough and smooth Brucella strains, among which, the presence or absence of complete LPS appeared to be crucial to protect proteins contained within vesicles and to drive the immune response.
Collapse
Affiliation(s)
- Eric Daniel Avila-Calderón
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.,Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Olín Medina-Chávez
- Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Mexico
| | - Leopoldo Flores-Romo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Mexico City, Mexico
| | - José Manuel Hernández-Hernández
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luis Donis-Maturano
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ahidé López-Merino
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Beatriz Arellano-Reynoso
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ma Guadalupe Aguilera-Arreola
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Enrico A Ruiz
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Zulema Gomez-Lunar
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Sharon Witonsky
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Araceli Contreras-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
40
|
Costa LF, Cabello AL, Batista DFA, Chaki SP, de Figueiredo P, da Paixão TA, Rice-Ficht AC, Ficht TA, Santos RL. The candidate vaccine strain Brucella ovis ∆abcBA is protective against Brucella melitensis infection in mice. Microbiol Immunol 2020; 64:730-736. [PMID: 32965738 DOI: 10.1111/1348-0421.12850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/08/2020] [Accepted: 09/18/2020] [Indexed: 01/19/2023]
Abstract
Brucellosis is a major zoonotic disease, and Brucella melitensis is the species most often associated with human infection. Vaccination is the most efficient tool for controlling animal brucellosis, with a consequent decrease of incidence of human infections. Commercially available live attenuated vaccines provide some degree of protection, but retain residual pathogenicity to human and animals. In this study, Brucella ovis ∆abcBA (Bo∆abcBA), a live attenuated candidate vaccine strain, was tested in two formulations (encapsulated with alginate and alginate plus vitelline protein B [VpB]) to immunize mice against experimental challenge with B. melitensis strain 16M. One week after infection, livers and spleens of immunized mice had reduced numbers of the challenge strain B. melitensis 16M when compared with those of nonimmunized mice, with a reduction of approximately 1-log10 of B. melitensis 16M count in the spleens from immunized mice. Moreover, splenocytes stimulated with B. melitensis antigens in vitro secreted IFN-γ when mice had been immunized with Bo∆abcBA encapsulated with alginate plus VpB, but not with alginate alone. Body and liver weights were similar among groups, although spleens from mice immunized with Bo∆abcBA encapsulated with alginate were larger than those immunized with Bo∆abcBA encapsulated with alginate plus VpB or nonimmunized mice. This study demonstrated that two vaccine formulations containing Bo∆abcBA protected mice against experimental challenge with B. melitensis.
Collapse
Affiliation(s)
- Luciana Fachini Costa
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana L Cabello
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas
| | - Diego Felipe Alves Batista
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sankar P Chaki
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas
| | - Paul de Figueiredo
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas
| | - Tatiane Alves da Paixão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Allison C Rice-Ficht
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas
| | - Thomas A Ficht
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas
| | - Renato Lima Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
41
|
Carvalho TF, Haddad JPA, Paixão TA, Santos RL. Meta-analysis of brucellosis vaccinology in natural hosts. PESQUISA VETERINARIA BRASILEIRA 2020. [DOI: 10.1590/1678-5150-pvb-6651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ABSTRACT: Brucellosis is a relevant zoonotic disease for which the most important tool for control is vaccination of susceptible animals. Assessment of vaccine efficacy in natural hosts is based on prevention of abortion and Brucella infection in organs of immunized animals. A meta-analysis of experimental vaccination of Brucella spp. natural hosts was performed, including 45 PubMed and/or Scopus-indexed publications, representing 116 individual experiments. Difference of risk was calculated as an indicator of protection, and a temporal analysis (1980-2016) demonstrated that experimental vaccines tested on natural hosts provided levels of protection that were stable over the past decades. The meta-regression model developed in this study included different vaccine categories (attenuated, inactivated, mutant, subunit, and vectored) considering the difference of risk as the dependent variable. The subcutaneous route of vaccination provided better protection when compared to the intramuscular and oral routes of vaccination. Surprisingly, inactivated vaccines provided better protection than live naturally attenuated vaccine strains (spontaneous mutations) that were considered the reference, whereas subunit vaccines provided lower levels of protection. This is the first meta-analysis of Brucella vaccinology in the natural hosts. These results are useful for the development of new vaccination protocols for controlling animal brucellosis.
Collapse
|
42
|
Abstract
Brucella spp. are Gram negative intracellular bacteria responsible for brucellosis, a worldwide distributed zoonosis. A prominent aspect of the Brucella life cycle is its ability to invade, survive and multiply within host cells. Comprehensive approaches, such as proteomics, have aided in unravelling the molecular mechanisms underlying Brucella pathogenesis. Technological and methodological advancements such as increased instrument performance and multiplexed quantification have broadened the range of proteome studies, enabling new and improved analyses, providing deeper and more accurate proteome coverage. Indeed, proteomics has demonstrated its contribution to key research questions in Brucella biology, i.e., immunodominant proteins, host-cell interaction, stress response, antibiotic targets and resistance, protein secretion. Here, we review the proteomics of Brucella with a focus on more recent works and novel findings, ranging from reconfiguration of the intracellular bacterial proteome and studies on proteomic profiles of Brucella infected tissues, to the identification of Brucella extracellular proteins with putative roles in cell signaling and pathogenesis. In conclusion, proteomics has yielded copious new candidates and hypotheses that require future verification. It is expected that proteomics will continue to be an invaluable tool for Brucella and applications will further extend to the currently ill-explored aspects including, among others, protein processing and post-translational modification.
Collapse
|
43
|
Genome Report-A Genome Sequence Analysis of the RB51 Strain of Brucella abortus in the Context of Its Vaccine Properties. G3-GENES GENOMES GENETICS 2020; 10:1175-1181. [PMID: 32111651 PMCID: PMC7144086 DOI: 10.1534/g3.119.400964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The RB51 vaccine strain of Brucella abortus, which confers safe and effective protection of cattle from B. abortus infection, was originally generated via serial passage of B. abortus 2308 to generate spontaneous, attenuating mutations. While some of these mutations have been previously characterized, such as an insertional mutation in the wboA gene that contributes to the rough phenotype of the strain, a comprehensive annotation of genetic differences between RB51 and B. abortus 2308 genomes has not yet been published. Here, the whole genome sequence of the RB51 vaccine strain is compared against two available 2308 parent sequences, with all observed single nucleotide polymorphisms, insertions, and deletions presented. Mutations of interest for future characterization in vaccine development, such as mutations in eipA and narJ genes in RB51, were identified. Additionally, protein homology modeling was utilized to provide in silico support for the hypothesis that the RB51 capD mutation is the second contributing mutation to the rough phenotype of RB51, likely explaining the inability of wboA-complemented strains of RB51 to revert to a smooth phenotype.
Collapse
|
44
|
Gupta S, Singh D, Gupta M, Bhatnagar R. A combined subunit vaccine comprising BP26, Omp25 and L7/L12 against brucellosis. Pathog Dis 2020; 77:5714751. [DOI: 10.1093/femspd/ftaa002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 01/22/2020] [Indexed: 01/27/2023] Open
Abstract
ABSTRACT
The current vaccines against brucellosis, namely Brucella abortus strains 19 and RB51, prevent infection in animals but pose potential risks like virulence and attenuation reversal. In this milieu, although subunit vaccination using a single potent immunogen of B. abortus, e.g. BP26 or Omp25 or L7/L12 etc., appears as a safer alternative, nonetheless it confers inadequate protection against the zoonosis compared to attenuated vaccines. Hence, we have investigated the prophylactic potential of a combined subunit vaccine (CSV) comprising the BP26, Omp25 and L7/L12 antigens of B. abortus, in mice model. Sera obtained from CSV immunized mice groups showed heightened IgG titers against all the three components and exhibited specificity upon immunoblotting, reiterating their authenticity. Further, the IgG1/IgG2a ratio obtained against each antigen revealed a predominant Th2 immune response in CSV immunized mice group. However, on assessing the levels of Th1-dependent (IFN-γ and TNF-α) and Th2-dependent (IL-4 and IL-10) cytokines in different formulations, prominent IFN-γ levels were elicited in CSV immunized mice. Further, upon infection with virulent B. abortus 544, the combined subunit vaccinated mice displayed superior degree of protection (Log10 reduction) than the individual vaccines; however, B. abortus S19 showed the highest protection. Altogether, this study suggests that co-immunization of three B. abortus immunogens as a CSV complements and triggers a mixed Th1/Th2 immune response leading to superior degree of protection against pathogenic B. abortus 544 infection.
Collapse
Affiliation(s)
- Sonal Gupta
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Damini Singh
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Manish Gupta
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
- Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
45
|
Araiza-Villanueva M, Avila-Calderón ED, Flores-Romo L, Calderón-Amador J, Sriranganathan N, Qublan HA, Witonsky S, Aguilera-Arreola MG, Ruiz-Palma MDS, Ruiz EA, Suárez-Güemes F, Gómez-Lunar Z, Contreras-Rodríguez A. Proteomic Analysis of Membrane Blebs of Brucella abortus 2308 and RB51 and Their Evaluation as an Acellular Vaccine. Front Microbiol 2019; 10:2714. [PMID: 31849872 PMCID: PMC6895012 DOI: 10.3389/fmicb.2019.02714] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 11/08/2019] [Indexed: 01/18/2023] Open
Abstract
Membrane blebs are released from Gram-negative bacteria, however, little is known about Brucella blebs. This work pursued two objectives, the first was to determine and identify the proteins in the membrane blebs by proteomics and in silico analysis. The second aim was to evaluate the use of membrane blebs of Brucella abortus 2308 and B. abortus RB51 as an acellular vaccine in vivo and in vitro. To achieve these aims, membrane blebs from B. abortus 2308 and RB51 were obtained and then analyzed by liquid chromatography coupled to mass spectrometry. Brucella membrane blebs were used as a "vaccine" to induce an immune response in BALB/c mice, using the strain B. abortus RB51 as a positive vaccine control. After subsequent challenge with B. abortus 2308, CFUs in spleens were determined; and immunoglobulins IgG1 and IgG2a were measured in murine serum by ELISA. Also, activation and costimulatory molecules induced by membrane blebs were analyzed in splenocytes by flow cytometry. Two hundred and twenty eight proteins were identified in 2308 membrane blebs and 171 in RB51 blebs, some of them are well-known Brucella immunogens such as SodC, Omp2b, Omp2a, Omp10, Omp16, and Omp19. Mice immunized with membrane blebs from rough or smooth B. abortus induced similar protective immune responses as well as the vaccine B. abortus RB51 after the challenge with virulent strain B. abortus 2308 (P < 0.05). The levels of IgG2a in mice vaccinated with 2308 membrane blebs were higher than those vaccinated with RB51 membrane blebs or B. abortus RB51 post-boosting. Moreover, mice immunized with 2308 blebs increased the percentage of activated B cells (CD19+CD69+) in vitro. Therefore, membrane blebs are potential candidates for the development of an acellular vaccine against brucellosis, especially those derived from the rough strains so that serological diagnostic is not affected.
Collapse
Affiliation(s)
- Minerva Araiza-Villanueva
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Eric Daniel Avila-Calderón
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, CINVESTAV-IPN, Mexico City, Mexico
| | - Leopoldo Flores-Romo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, CINVESTAV-IPN, Mexico City, Mexico
| | - Juana Calderón-Amador
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, CINVESTAV-IPN, Mexico City, Mexico
| | - Nammalwar Sriranganathan
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Hamzeh Al Qublan
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Sharon Witonsky
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Ma. Guadalupe Aguilera-Arreola
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - María del Socorro Ruiz-Palma
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- División Químico-Biológicas, Universidad Tecnológica de Tecámac, Tecámac, Mexico
| | - Enrico A. Ruiz
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Francisco Suárez-Güemes
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Zulema Gómez-Lunar
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Araceli Contreras-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
46
|
Deng Y, Liu X, Duan K, Peng Q. Research Progress on Brucellosis. Curr Med Chem 2019; 26:5598-5608. [PMID: 29745323 DOI: 10.2174/0929867325666180510125009] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 02/09/2018] [Accepted: 05/02/2018] [Indexed: 01/08/2023]
Abstract
Brucellosis is a debilitating febrile illness caused by an intracellular Brucella. The disease is distributed in humans and animals widely, especially in developing countries. Ten species are included in the genus Brucella nowadays; four species of them are pathogenic to humans, which make brucellosis a zoonosis with more than 500,000 new cases reported annually. For human brucellosis, the most pathogenic species is B. melitensis followed by B. suis, while B. abortus is the mildest type of brucellosis. The infection mechanism of Brucella is complicated and mostly relies on its virulence factors. The therapy of the disease contains vaccination and antibiotic. However, there are some defects in currently available vaccines such as the lower protective level and safety. Thus, safe and efficient vaccines for brucellosis are still awaited. The dual therapy of antibacterial is effective in the treatment of brucellosis if a rapid and exact detection method is found.
Collapse
Affiliation(s)
- Yuming Deng
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Xinyue Liu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Kaifang Duan
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Qisheng Peng
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| |
Collapse
|
47
|
Boggiatto PM, Schaut RG, Kanipe C, Kelly SM, Narasimhan B, Jones DE, Olsen SC. Sustained antigen release polyanhydride-based vaccine platform for immunization against bovine brucellosis. Heliyon 2019; 5:e02370. [PMID: 31517098 PMCID: PMC6728543 DOI: 10.1016/j.heliyon.2019.e02370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/26/2019] [Accepted: 08/22/2019] [Indexed: 11/29/2022] Open
Abstract
Brucellosis is a bacterial zoonosis and a significant source of economic loss and a major public health concern, worldwide. Bovine brucellosis, as caused primarily by Brucella abortus, is an important cause of reproductive loss in cattle. Vaccination has been the most effective way to reduce disease prevalence contributing to the success of control and eradication programs. Currently, there are no human vaccines available, and despite the success of commercial vaccines for livestock, such as B. abortus strain RB51 (RB51), there is need for development of novel and safer vaccines against brucellosis. In the current study, we report the fabrication of and immune responses to an implantable single dose polyanhydride-based, methanol-killed RB51 antigen containing delivery platform (VPEAR) in cattle. In contrast to animals vaccinated with RB51, we did not observe measurable RB51-specific IFN-γ or IgG responses in the peripheral blood, following initial vaccination with VPEAR. However, following a subsequent booster vaccination with RB51, we observed an anamnestic response in both vaccination treatments (VPEAR and live RB51). The magnitude and kinetics of CD4+ IFN-γ-mediated responses and circulating memory T cell subpopulations were comparable between the two vaccination treatments. Additionally, IgG titers were significantly increased in animals vaccinated with VPEAR as compared to live RB51- vaccinated animals. These data demonstrate that killed antigen may be utilized to generate and sustain memory, IFN-γ-mediated, CD4+ T cell and humoral responses against Brucella in a natural host. To our knowledge, this novel approach to vaccination against intracellular bacteria, such as Brucella, has not been reported before.
Collapse
Affiliation(s)
- Paola M Boggiatto
- Infectious Bacterial Diseases Research Unit, National Animal Disease Centers, United States Department of Agriculture, 1920 Dayton Avenue, Ames, IA, 50010, USA
| | - Robert G Schaut
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Centers, United States Department of Agriculture, 1920 Dayton Avenue, Ames, IA, 50010, USA
| | - Carly Kanipe
- Infectious Bacterial Diseases Research Unit, National Animal Disease Centers, United States Department of Agriculture, 1920 Dayton Avenue, Ames, IA, 50010, USA
| | - Sean M Kelly
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, IA, 50010, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, IA, 50010, USA.,Nanovaccine Institute, Iowa State University, Ames, IA, 50010, USA
| | - Douglas E Jones
- Department of Veterinary Pathology, Iowa State University, 1800 Christensen Drive, Ames, IA, 50010, USA.,Nanovaccine Institute, Iowa State University, Ames, IA, 50010, USA
| | - Steven C Olsen
- Infectious Bacterial Diseases Research Unit, National Animal Disease Centers, United States Department of Agriculture, 1920 Dayton Avenue, Ames, IA, 50010, USA
| |
Collapse
|
48
|
López-Santiago R, Sánchez-Argáez AB, De Alba-Núñez LG, Baltierra-Uribe SL, Moreno-Lafont MC. Immune Response to Mucosal Brucella Infection. Front Immunol 2019; 10:1759. [PMID: 31481953 PMCID: PMC6710357 DOI: 10.3389/fimmu.2019.01759] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/11/2019] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is one of the most prevalent bacterial zoonosis of worldwide distribution. The disease is caused by Brucella spp., facultative intracellular pathogens. Brucellosis in animals results in abortion of fetuses, while in humans, it frequently manifests flu-like symptoms and a typical undulant fever, being osteoarthritis a common complication of the chronic infection. The two most common ways to acquire the infection in humans are through the ingestion of contaminated dairy products or by inhalation of contaminated aerosols. Brucella spp. enter the body mainly through the gastrointestinal and respiratory mucosa; however, most studies of immune response to Brucella spp. are performed analyzing models of systemic immunity. It is necessary to better understand the mucosal immune response induced by Brucella infection since this is the main entry site for the bacterium. In this review, some virulence factors and the mechanisms needed for pathogen invasion and persistence are discussed. Furthermore, some aspects of local immune responses induced during Brucella infection will be reviewed. With this knowledge, better vaccines can be designed focused on inducing protective mucosal immune response.
Collapse
Affiliation(s)
- Rubén López-Santiago
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ana Beatriz Sánchez-Argáez
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Liliana Gabriela De Alba-Núñez
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Martha Cecilia Moreno-Lafont
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
49
|
Hou H, Liu X, Peng Q. The advances in brucellosis vaccines. Vaccine 2019; 37:3981-3988. [PMID: 31176541 DOI: 10.1016/j.vaccine.2019.05.084] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/04/2019] [Accepted: 05/21/2019] [Indexed: 01/18/2023]
Abstract
Brucellosis is a worldwide zoonosis affecting animal and human health. Till now, there is no effective vaccine licensed for brucellosis in humans. Although M5, H38 and 45/20 vaccines were used to prevent animal brucellosis in the early stages, the currently used animal vaccines are S19, Rev.1, S2, RB51 and SR82. However, these vaccines still have several drawbacks such as residual virulence and interfering conventional serological tests. With the development of DNA recombination technologies and the completion of the sequence of Brucella genome, much research focuses on the search for potential safer and more effective vaccines. Preliminary studies have demonstrated that new vaccines, including genetically engineered attenuated vaccines, subunit vaccines and other potential vaccines, have higher levels of protection, but there are still some problems. In this paper, we briefly review the main vaccines that have been used in controlling the brucellosis for decades and the progress in the development of new brucellosis vaccines.
Collapse
Affiliation(s)
- Huanhuan Hou
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Xiaofeng Liu
- Tumor Hospital of Jilin Province, Changchun 130021, China
| | - Qisheng Peng
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China.
| |
Collapse
|
50
|
PARTIAL PROTECTION IN BALB/C HOUSE MICE ( MUS MUSCULUS) AND ROCKY MOUNTAIN ELK ( CERVUS CANADENSIS) AFTER VACCINATION WITH A KILLED, MUCOSALLY DELIVERED BRUCELLA ABORTUS VACCINE. J Wildl Dis 2019. [PMID: 31009310 DOI: 10.7589/2018-08-190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Brucellosis, caused by Brucella abortus, has been eliminated from livestock in the US. Remaining wildlife reservoirs are the bison (Bison bison) and elk (Cervus canadensis) populations in Yellowstone National Park and the surrounding area, from which there is periodic exposure and transmission to surrounding livestock herds. Elk account for nearly all of the livestock exposure, and the infection appears to be expanding in the elk population. Currently, there are no known effective vaccines for brucellosis in elk. We conducted three experiments to evaluate the efficacy and practicality of delivering a killed B. abortus vaccine compounded with montmorillonite clay as a carrying agent to oral, nasal, and conjunctival mucosa. The first study, conducted in laboratory mice (Mus musculus), demonstrated protection against infection equal to that produced by the currently approved cattle (Bos taurus) vaccine RB51. The second experiment, conducted as a pilot study in a small sample of elk, demonstrated partial protection against B. abortus infection. Results of the third experiment showed that elk consumed the majority of a surrogate vaccine compounded with montmorillonite mixed in hay with oral, nasal, conjunctival, and gastrointestinal exposure to the vaccine. These results suggest that multiple exposures to a mucosally delivered vaccine may provide an effective method of vaccinating wildlife.
Collapse
|