1
|
Tokatly Latzer I, Bertoldi M, Blau N, DiBacco ML, Elsea SH, García-Cazorla À, Gibson KM, Gropman AL, Hanson E, Hoffman C, Jeltsch K, Juliá-Palacios N, Knerr I, Lee HHC, Malaspina P, McConnell A, Opladen T, Oppebøen M, Rotenberg A, Walterfang M, Wang-Tso L, Wevers RA, Roullet JB, Pearl PL. Consensus guidelines for the diagnosis and management of succinic semialdehyde dehydrogenase deficiency. Mol Genet Metab 2024; 142:108363. [PMID: 38452608 PMCID: PMC11073920 DOI: 10.1016/j.ymgme.2024.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Succinic semialdehyde dehydrogenase deficiency (SSADHD) (OMIM #271980) is a rare autosomal recessive metabolic disorder caused by pathogenic variants of ALDH5A1. Deficiency of SSADH results in accumulation of γ-aminobutyric acid (GABA) and other GABA-related metabolites. The clinical phenotype of SSADHD includes a broad spectrum of non-pathognomonic symptoms such as cognitive disabilities, communication and language deficits, movement disorders, epilepsy, sleep disturbances, attention problems, anxiety, and obsessive-compulsive traits. Current treatment options for SSADHD remain supportive, but there are ongoing attempts to develop targeted genetic therapies. This study aimed to create consensus guidelines for the diagnosis and management of SSADHD. Thirty relevant statements were initially addressed by a systematic literature review, resulting in different evidence levels of strength according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) criteria. The highest level of evidence (level A), based on randomized controlled trials, was unavailable for any of the statements. Based on cohort studies, Level B evidence was available for 12 (40%) of the statements. Thereupon, through a process following the Delphi Method and directed by the Appraisal of Guidelines for Research and Evaluation (AGREE II) criteria, expert opinion was sought, and members of an SSADHD Consensus Group evaluated all the statements. The group consisted of neurologists, epileptologists, neuropsychologists, neurophysiologists, metabolic disease specialists, clinical and biochemical geneticists, and laboratory scientists affiliated with 19 institutions from 11 countries who have clinical experience with SSADHD patients and have studied the disorder. Representatives from parent groups were also included in the Consensus Group. An analysis of the survey's results yielded 25 (83%) strong and 5 (17%) weak agreement strengths. These first-of-their-kind consensus guidelines intend to consolidate and unify the optimal care that can be provided to individuals with SSADHD.
Collapse
Affiliation(s)
- Itay Tokatly Latzer
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; School of Medicine, Faculty of Medicine and Health Sciences, Tel-Aviv University, Tel Aviv, Israel.
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy.
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital, Zürich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Switzerland.
| | - Melissa L DiBacco
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Àngels García-Cazorla
- Neurometabolic Unit, Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain.
| | - K Michael Gibson
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA.
| | - Andrea L Gropman
- Division of Neurogenetics and Neurodevelopmental Disabilities, Children's National Hospital, Washington, D.C, USA.
| | - Ellen Hanson
- Human Neurobehavioral Core, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, MA 02115, USA.
| | | | - Kathrin Jeltsch
- Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany.
| | - Natalia Juliá-Palacios
- Neurometabolic Unit, Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain.
| | - Ina Knerr
- National Centre for Inherited Metabolic Disorders, Children's Health Ireland, Temple Street, Dublin, Ireland.
| | - Henry H C Lee
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Patrizia Malaspina
- Department of Biology, Tor Vergata University, Via della Ricerca Scientifica s.n.c., Rome 00133, Italy.
| | | | - Thomas Opladen
- Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany.
| | | | - Alexander Rotenberg
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Mark Walterfang
- Neuropsychiatry, Royal Melbourne Hospital, Melbourne, Australia; Department of Psychiatry, University of Melbourne, Melbourne, Australia; Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Department of Health and Medical Sciences, Edith Cowan University, Perth, Australia.
| | - Lee Wang-Tso
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Ron A Wevers
- Translational Metabolic Laboratory, Department Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands.
| | - Jean-Baptiste Roullet
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA.
| | - Phillip L Pearl
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Tokatly Latzer I, Roullet JB, Afshar-Saber W, Lee HHC, Bertoldi M, McGinty GE, DiBacco ML, Arning E, Tsuboyama M, Rotenberg A, Opladen T, Jeltsch K, García-Cazorla À, Juliá-Palacios N, Gibson KM, Sahin M, Pearl PL. Clinical and molecular outcomes from the 5-Year natural history study of SSADH Deficiency, a model metabolic neurodevelopmental disorder. J Neurodev Disord 2024; 16:21. [PMID: 38658850 PMCID: PMC11044349 DOI: 10.1186/s11689-024-09538-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Succinic semialdehyde dehydrogenase deficiency (SSADHD) represents a model neurometabolic disease at the fulcrum of translational research within the Boston Children's Hospital Intellectual and Developmental Disabilities Research Centers (IDDRC), including the NIH-sponsored natural history study of clinical, neurophysiological, neuroimaging, and molecular markers, patient-derived induced pluripotent stem cells (iPSC) characterization, and development of a murine model for tightly regulated, cell-specific gene therapy. METHODS SSADHD subjects underwent clinical evaluations, neuropsychological assessments, biochemical quantification of γ-aminobutyrate (GABA) and related metabolites, electroencephalography (standard and high density), magnetoencephalography, transcranial magnetic stimulation, magnetic resonance imaging and spectroscopy, and genetic tests. This was parallel to laboratory molecular investigations of in vitro GABAergic neurons derived from induced human pluripotent stem cells (hiPSCs) of SSADHD subjects and biochemical analyses performed on a versatile murine model that uses an inducible and reversible rescue strategy allowing on-demand and cell-specific gene therapy. RESULTS The 62 SSADHD subjects [53% females, median (IQR) age of 9.6 (5.4-14.5) years] included in the study had a reported symptom onset at ∼ 6 months and were diagnosed at a median age of 4 years. Language developmental delays were more prominent than motor. Autism, epilepsy, movement disorders, sleep disturbances, and various psychiatric behaviors constituted the core of the disorder's clinical phenotype. Lower clinical severity scores, indicating worst severity, coincided with older age (R= -0.302, p = 0.03), as well as age-adjusted lower values of plasma γ-aminobutyrate (GABA) (R = 0.337, p = 0.02) and γ-hydroxybutyrate (GHB) (R = 0.360, p = 0.05). While epilepsy and psychiatric behaviors increase in severity with age, communication abilities and motor function tend to improve. iPSCs, which were differentiated into GABAergic neurons, represent the first in vitro neuronal model of SSADHD and express the neuronal marker microtubule-associated protein 2 (MAP2), as well as GABA. GABA-metabolism in induced GABAergic neurons could be reversed using CRISPR correction of the pathogenic variants or mRNA transfection and SSADHD iPSCs were associated with excessive glutamatergic activity and related synaptic excitation. CONCLUSIONS Findings from the SSADHD Natural History Study converge with iPSC and animal model work focused on a common disorder within our IDDRC, deepening our knowledge of the pathophysiology and longitudinal clinical course of a complex neurodevelopmental disorder. This further enables the identification of biomarkers and changes throughout development that will be essential for upcoming targeted trials of enzyme replacement and gene therapy.
Collapse
Affiliation(s)
- Itay Tokatly Latzer
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
- School of Medicine, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Jean-Baptiste Roullet
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Wardiya Afshar-Saber
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Henry H C Lee
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Gabrielle E McGinty
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Melissa L DiBacco
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Erland Arning
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Melissa Tsuboyama
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Alexander Rotenberg
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Thomas Opladen
- Division of Neuropediatrics & Metabolic Medicine, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Kathrin Jeltsch
- Division of Neuropediatrics & Metabolic Medicine, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Àngels García-Cazorla
- Neurometabolic Unit, Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Natalia Juliá-Palacios
- Neurometabolic Unit, Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain
| | - K Michael Gibson
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Phillip L Pearl
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Rodríguez-Zavala JS, Calleja LF, Moreno-Sánchez R, Yoval-Sánchez B. Role of Aldehyde Dehydrogenases in Physiopathological Processes. Chem Res Toxicol 2019; 32:405-420. [PMID: 30628442 DOI: 10.1021/acs.chemrestox.8b00256] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Many different diseases are associated with oxidative stress. One of the main consequences of oxidative stress at the cellular level is lipid peroxidation, from which toxic aldehydes may be generated. Below their toxicity thresholds, some aldehydes are involved in signaling processes, while others are intermediaries in the metabolism of lipids, amino acids, neurotransmitters, and carbohydrates. Some aldehydes ubiquitously distributed in the environment, such as acrolein or formaldehyde, are extremely toxic to the cell. On the other hand, aldehyde dehydrogenases (ALDHs) are able to detoxify a wide variety of aldehydes to their corresponding carboxylic acids, thus helping to protect from oxidative stress. ALDHs are located in different subcellular compartments such as cytosol, mitochondria, nucleus, and endoplasmic reticulum. The aim of this review is to analyze, and highlight, the role of different ALDH isoforms in the detoxification of aldehydes generated in processes that involve high levels of oxidative stress. The ALDH physiological relevance becomes evident by the observation that their expression and activity are enhanced in different pathologies that involve oxidative stress such as neurodegenerative disorders, cardiopathies, atherosclerosis, and cancer as well as inflammatory processes. Furthermore, ALDH mutations bring about several disorders in the cell. Thus, understanding the mechanisms by which these enzymes participate in diverse cellular processes may lead to better contend with the damage caused by toxic aldehydes in different pathologies by designing modulators and/or protocols to modify their activity or expression.
Collapse
Affiliation(s)
| | | | - Rafael Moreno-Sánchez
- Departamento de Bioquímica , Instituto Nacional de Cardiología , México 14080 , México
| | - Belem Yoval-Sánchez
- Departamento de Bioquímica , Instituto Nacional de Cardiología , México 14080 , México
| |
Collapse
|
4
|
Zeiger WA, Sun LR, Bosemani T, Pearl PL, Stafstrom CE. Acute Infantile Encephalopathy as Presentation of Succinic Semialdehyde Dehydrogenase Deficiency. Pediatr Neurol 2016; 58:113-5. [PMID: 27268762 DOI: 10.1016/j.pediatrneurol.2015.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 10/21/2015] [Accepted: 10/21/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Succinic semialdehyde dehydrogenase deficiency is a rare neurological disorder resulting from impaired gamma-aminobutyric acid metabolism. The syndrome typically presents as a static encephalopathy with developmental delays, hypotonia, and seizures. METHODS A six-month-old previously healthy girl developed acute choreoathetosis and severe hypotonia in the setting of influenza A infection. In our database of 112 patients with succinic semialdehyde dehydrogenase deficiency, one additional patient was identified who presented with an acute illness (encephalopathy associated with bronchiolitis at age five months). RESULTS Urine organic acid and cerebrospinal fluid analyses confirmed elevated 4-hydroxybutyric acid in both cases, verified by enzymatic quantification in lymphocytes in the second patient. Brain magnetic resonance imaging scans in both cases showed bilateral symmetric T2 hyperintensities of globus pallidi. The lesions demonstrated restricted diffusion, consistent with acute symptom onset. CONCLUSIONS In contrast to most organic acidopathies, succinic semialdehyde dehydrogenase deficiency typically presents with nonprogressive global developmental delays. Here we report that succinic semialdehyde dehydrogenase deficiency can present fulminantly during a febrile illness as well as in the more common static fashion, thereby broadening the spectrum of onset patterns in this disorder.
Collapse
Affiliation(s)
- William A Zeiger
- Department of Neurology, Johns Hopkins Hospital, Baltimore, Maryland
| | - Lisa R Sun
- Division of Pediatric Neurology, Johns Hopkins Hospital, Baltimore, Maryland
| | | | - Phillip L Pearl
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Carl E Stafstrom
- Division of Pediatric Neurology, Johns Hopkins Hospital, Baltimore, Maryland.
| |
Collapse
|
5
|
Succinic semialdehyde dehydrogenase deficiency of four Chinese patients and prenatal diagnosis for three fetuses. Gene 2015. [DOI: 10.1016/j.gene.2015.07.078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
6
|
Gamma hydroxybutyrate (GHB), gamma butyrolactone (GBL) and 1,4-butanediol (1,4-BD; BDO): A literature review with a focus on UK fatalities related to non-medical use. Neurosci Biobehav Rev 2015; 53:52-78. [PMID: 25843781 DOI: 10.1016/j.neubiorev.2015.03.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 03/08/2015] [Accepted: 03/25/2015] [Indexed: 11/22/2022]
|
7
|
Vogel KR, Pearl PL, Theodore WH, McCarter RC, Jakobs C, Gibson KM. Thirty years beyond discovery--clinical trials in succinic semialdehyde dehydrogenase deficiency, a disorder of GABA metabolism. J Inherit Metab Dis 2013; 36:401-10. [PMID: 22739941 PMCID: PMC4349389 DOI: 10.1007/s10545-012-9499-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 05/09/2012] [Accepted: 05/14/2012] [Indexed: 10/28/2022]
Abstract
This review summarizes a presentation made at the retirement Symposium of Prof. Dr. Cornelis Jakobs in November of 2011, highlighting the progress toward clinical trials in succinic semialdehyde dehydrogenase (SSADH) deficiency, a disorder first recognized in 1981. Active and potential clinical interventions, including vigabatrin, L-cycloserine, the GHB receptor antagonist NCS-382, and the ketogenic diet, are discussed. Several biomarkers to gauge clinical efficacy have been identified, including cerebrospinal fluid metabolites, neuropsychiatric testing, MRI, EEG, and measures of GABAergic function including (11 C)flumazenil positron emission tomography (PET) and transcranial magnetic stimulation (TMS). Thirty years after its discovery, encompassing extensive studies in both patients and the corresponding murine model, we are now running an open-label trial of taurine intervention, and are poised to undertake a phase II trial of the GABAB receptor antagonist SGS742.
Collapse
Affiliation(s)
- Kara R Vogel
- Section of Clinical Pharmacology, College of Pharmacy, Washington State University, Spokane, WA 99202-2131, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Yamakawa Y, Nakazawa T, Ishida A, Saito N, Komatsu M, Matsubara T, Obinata K, Hirose S, Okumura A, Shimizu T. A boy with a severe phenotype of succinic semialdehyde dehydrogenase deficiency. Brain Dev 2012; 34:107-12. [PMID: 21612881 DOI: 10.1016/j.braindev.2011.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 05/04/2011] [Accepted: 05/06/2011] [Indexed: 11/29/2022]
Abstract
Succinic semialdehyde dehydrogenase (SSADH) deficiency is a rare autosomal recessive disorder affecting γ-aminobutyric acid degradation. We describe here a boy with a severe phenotype of SSADH deficiency. He was referred because of a developmental delay at 4 months of age. At the age of 8 months, severe seizures developed. The diagnosis of SSADH deficiency was confirmed by an increase in 4-hydroxybutyric acid and heteroallelic mutation in the ALDH5A1 gene. His seizures were successfully treated with high-dose phenobarbital, and the electroencephalogram (EEG) abnormalities were ameliorated. However, the patient showed a degenerative clinical course with severe neurological deficits. A magnetic resonance imaging (MRI) scan revealed abnormal high intensities in the putamina and caudate nuclei on T2-weighted images, followed by marked atrophic changes. The clinical manifestation of our patient indicates the wide variety of SSADH deficiency phenotypes.
Collapse
Affiliation(s)
- Yoko Yamakawa
- Department of Pediatrics, Juntendo University, Urayasu Hospital, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Latini A, Scussiato K, Leipnitz G, Gibson KM, Wajner M. Evidence for oxidative stress in tissues derived from succinate semialdehyde dehydrogenase-deficient mice. J Inherit Metab Dis 2007; 30:800-10. [PMID: 17885820 DOI: 10.1007/s10545-007-0599-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 04/19/2007] [Accepted: 06/08/2007] [Indexed: 02/06/2023]
Abstract
Animal models of inborn errors of metabolism are useful for investigating the pathogenesis associated with the corresponding human disease. Since the mechanisms involved in the pathophysiology of succinate semialdehyde dehydrogenase (SSADH) deficiency (Aldh5a1; OMIM 271980) are still not established, in the present study we evaluated the tissue antioxidant defences and lipid peroxidation in various cerebral structures (cortex, cerebellum, thalamus and hippocampus) and in the liver of SSADH-deficient mice. The parameters analysed were total radical-trapping antioxidant potential (TRAP) and glutathione (GSH) levels, the activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), as well as thiobarbituric acid-reactive substances (TBARS). We first observed that the tissue nonenzymatic antioxidant defences were significantly reduced in the SSADH-deficient animals, particularly in the liver (decreased TRAP and GSH) and in the cerebral cortex (decreased GSH), as compared to the wild-type mice. Furthermore, SOD activity was significantly increased in the liver and cerebellum, whereas the activity of CAT was significantly higher in the thalamus. In contrast, GPx activity was significantly diminished in the hippocampus. Finally, we observed that lipid peroxidation (TBARS levels) was markedly increased in the liver and cerebral cortex, reflecting a high lipid oxidative damage in these tissues. Our data showing an imbalance between tissue antioxidant defences and oxidative attack strongly indicate that oxidative stress is involved in the pathophysiology of SSADH deficiency in mice, and likely the corresponding human disorder.
Collapse
Affiliation(s)
- A Latini
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | | | | | |
Collapse
|
10
|
Wakusawa K, Haginoya K, Kitamura T, Togashi N, Ishitobi M, Yokoyama H, Higano S, Onuma A, Nara T, Iinuma K. Effective Treatment with Levodopa and Carbidopa for Hypomyelination with Atrophy of the Basal Ganglia and Cerebellum. TOHOKU J EXP MED 2006; 209:163-7. [PMID: 16707859 DOI: 10.1620/tjem.209.163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC) is a rare leukoencephalopathy presenting in the infantile period and characterized by diffuse cerebral hypomyelination, and atrophy of the basal ganglia and cerebellum. As patients with H-ABC lack remarkable laboratory findings, the diagnosis is based on brain magnetic resonance imaging findings alone. Only eight cases have been reported in the literature, and thus the natural course and treatment of this disease are not fully understood. We report a 35-month-old boy with H-ABC who had hemidystonia, hypomyelination, and cerebellar ataxia. We diagnosed H-ABC after considering a thorough differential diagnosis, excluding other diseases involving hemidystonia, hypomyelination, and cerebellar ataxia. Furthermore, technetium-99m ethyl cysteinate dimmer-single-photon emission computerized tomography (Tc-ECD-SPECT) and positron emission tomography with fluorodeoxyglucose (18)F (FDG-PET) revealed decreased blood flow and glucose metabolism in the bilateral lenticular nucleus, thalamus, and cerebellum. A peroral levodopa preparation containing carbidopa (levodopa-carbidopa) was effective at ameliorating and stopping the progression of the patient's dystonia (final effective doses: levodopa, 200 mg/day and carbidopa, 20 mg/day). This is the first case report of a Japanese patient with H-ABC and treatment for this disease. Levodopa-carbidopa may be an effective treatment for H-ABC.
Collapse
Affiliation(s)
- Keisuke Wakusawa
- Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryomachi, Sendai 980-8574, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The recreational use of gamma hydroxy butyrate (GHB) has gained popularity over the last decade. GHB was initially sold as a safe body building and fat burning compound. It is now also widely abused by body builders and young ravers. GHB attracts young people due the euphoria that it initially produces, and the claimed increase in sociability and sexual function (it is also known as liquid Ecstasy). Over the last few years, there has been an increase in the number of cases of GHB intoxication, dependence and severe withdrawal, as reported in medical literature. The situation is complicated by the use of GHB analogues, other toxic chemicals that are easily converted into GHB. GHB has recently been classified as a class 'C' drug in the UK, but no provisions were made in relation to GHB analogues. GHB has been increasingly used in rape cases due to its capacity to produce intoxication and amnesia. The management of patients dependent on GHB is rather complicated due to the high doses of medication that they require to control withdrawal symptoms.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW There has been increased recognition of the pediatric neurotransmitter disorders. This review focuses on the clinical disorders of GABA metabolism. RECENT FINDINGS The known clinical disorders of GABA metabolism are pyridoxine dependent epilepsy, GABA-transaminase deficiency, SSADH deficiency, and homocarnosinosis. Pyridoxine dependent epilepsy is diagnosed clinically but potentially more common presentations, with later and atypical features, widen the spectrum. No gene locus has been confirmed; the pathophysiology may involve alterations in PLP transport, binding to GAD, or other PLP-dependent pathways. SSADH deficiency is associated with developmental delay, prominent language deficits, hypotonia, ataxia, hyporeflexia, and seizures. Increased detection is reported when specific ion monitoring is used for GHB on urine organic acids. The most consistent MRI abnormality is increased signal in the globus pallidus. MR spectroscopy has demonstrated the first example of increased endogenous GABA in human brain parenchyma in this disorder. GABA-transaminase deficiency and homocarnosinosis appear to be very rare but require CSF for detection, thus allowing for the possibility that these entities, as in the other pediatric neurotransmitter disorders, are underrecognized. SUMMARY The disorders of GABA metabolism require an increased index of clinical suspicion. Pyridoxine dependent epilepsy is a treatable condition with a potentially widening clinical spectrum, but with a prognosis dependent on early intervention. SSADH deficiency has a heterogeneous spectrum and requires careful urine organic acid testing for screening, followed by enzymatic confirmation allowing appropriate prognostic and genetic counseling.
Collapse
Affiliation(s)
- Phillip L Pearl
- Department of Neurology, Children's National Medical Center, George Washington University School of Medicine, Washington, DC, USA.
| | | |
Collapse
|
13
|
Pearl PL, Novotny EJ, Acosta MT, Jakobs C, Gibson KM. Succinic semialdehyde dehydrogenase deficiency in children and adults. Ann Neurol 2003; 54 Suppl 6:S73-80. [PMID: 12891657 DOI: 10.1002/ana.10629] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Succinic semialdehyde dehydrogenase deficiency is a rare disorder of the degradation pathway of gamma-aminobutyric acid. The disorder is detected when 4-hydroxybutyric aciduria is present on urine organic acid analysis, and is subsequently confirmed by enzyme measurement on leucocytes. The disorder has been identified in approximately 350 individuals worldwide. We review the clinical features in 60 patients. The most common characteristics are developmental delay maximally involving expressive language, hypotonia, mental retardation, ataxia, and behavioral problems. Seizures occur in approximately half of patients, and include tonic-clonic, absence, and myoclonic seizures, including status epilepticus. Electroencephalographic findings are background slowing and generalized and focal epileptiform discharges. Magnetic resonance imaging typically reveals increased T2-weighted signal of the globus pallidus bilaterally, with variable involvement of white matter and the cerebellar dentate nucleus. Preliminary human cerebrospinal fluid measurements are consistent with neurometabolic aberrations documented in the murine animal model, with elevations in gamma-aminobutyric acid, gamma-hydroxybutyrate, and homocarnosine, and low glutamine. Succinic semialdehyde dehydrogenase deficiency may be an underrecognized neurometabolic disorder with a nonspecific and wide phenotypic spectrum, and carries implications for a comprehensive fundamental understanding of interrelations between multiple neurotransmitter systems.
Collapse
Affiliation(s)
- Phillip L Pearl
- Department of Neurology, Children's National Medical Center, The George Washington University School of Medicine, Washington, DC 20010-2970, USA.
| | | | | | | | | |
Collapse
|
14
|
Elliott SP. Gamma hydroxybutyric acid (GHB) concentrations in humans and factors affecting endogenous production. Forensic Sci Int 2003; 133:9-16. [PMID: 12742683 DOI: 10.1016/s0379-0738(03)00043-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The endogenous nature of the drug of abuse gamma hydroxybutyric acid (GHB) has caused various interpretative problems for toxicologists. In order to obtain data for the presence of endogenous GHB in humans and to investigate any factors that may affect this, a volunteer study was undertaken. The GHB concentrations in 119 urine specimens from GHB-free subjects and 25 urine specimens submitted for toxicological analysis showed maximal urinary GHB concentrations of 3mg/l. Analysis of 15 plasma specimens submitted for toxicological analysis detected no measurable GHB (less than 2.5mg/l). Studies in a male and female volunteer in which different dietary food groups were ingested at weekly intervals, showed significant creatinine-independent intra-individual fluctuation with overall urine GHB concentrations between 0 and 2.55, and 0 and 2.74mg/l, respectively. Urinary concentrations did not appear to be affected by the particular dietary groups studied. The concentrations measured by gas chromatography with flame ionisation detection (GC-FID) and gas chromatography with mass spectrometry (GC-MS) lend further support to the proposed urinary and plasma interpretative cut-offs of 10 and 4mg/l, respectively, where below this it is not possible to determine whether any GHB detected is endogenous or exogenous in nature.
Collapse
Affiliation(s)
- Simon P Elliott
- Regional Laboratory for Toxicology, City Hospital N.H.S. Trust, Dudley Road, Birmingham B18 7QH, UK.
| |
Collapse
|
15
|
Shinka T, Inoue Y, Ohse M, Ito A, Ohfu M, Hirose S, Kuhara T. Rapid and sensitive detection of urinary 4-hydroxybutyric acid and its related compounds by gas chromatography-mass spectrometry in a patient with succinic semialdehyde dehydrogenase deficiency. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 776:57-63. [PMID: 12127325 DOI: 10.1016/s1570-0232(02)00126-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We describe the rapid and sensitive detection of 4-hydroxybutyric acid, which is a marker compound for succinic semialdehyde dehydrogenase (SSADH) deficiency. Urinary 4-hydroxybutyric acid and 3,4-dihydroxybutyric acid were targeted, quantified by gas chromatography-mass spectrometry after simplified urease digestion in which lactone formation from gamma-hydroxy acids is minimized. The recovery of 4-hydroxybutyric acid using this method was over 93%. 2,2-Dimethylsuccinic acid was used as an internal standard. The detection limit of this method was 1 nmol ml(-1) for both 4-hydroxybutyric acid and 3,4-dihydroxybutyric acid. The urinary concentrations of 4-hydroxybutyric acid and of 3,4-dihydroxybutyric acid from the patient with an SSADH deficiency were 880-3628 mmol mol(-1) creatinine (control; 3.3+/-3.3 mmol mol(-1) creatinine) and 810-1366 mmol mol(-1) creatinine (control; 67.4+/-56.2 mmol mol(-1) creatinine), respectively. The simplified urease digestion of urine is very useful for quantifying 4-hydroxybutyric acid and its related compounds in patients with 4-hydroxybutyric aciduria.
Collapse
Affiliation(s)
- Toshihiro Shinka
- Division of Human Genetics, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Ishikawa 920-0293, Japan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Al-Essa MA, Bakheet SM, Patay ZJ, Powe JE, Ozand PT. Clinical, fluorine-18 labeled 2-fluoro-2-deoxyglucose positron emission tomography (FDG PET), MRI of the brain and biochemical observations in a patient with 4-hydroxybutyric aciduria; a progressive neurometabolic disease. Brain Dev 2000; 22:127-31. [PMID: 10722966 DOI: 10.1016/s0387-7604(99)00121-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a five-year-old boy with 4-hydroxybutyric aciduria. The child presented with global developmental delay, severe hypotonia and myoclonic seizures. The urine 4-hydroxybutyric acid was 1038 times that of normal, and other organic acids related to its further metabolism were also increased. Electroencephalography showed findings indicative of cerebral dysfunction. However, other neurophysiological studies were normal. Clinical improvement was observed after the administration of vigabatrin and dextromethorphan. Magnetic resonance imaging of the brain revealed cerebellar vermin atrophy and subtle white matter changes in the cerebral hemispheres. Fluorine-18 labeled 2-fluoro-2-deoxyglucose positron emission tomographic (FDG PET) scan of the brain showed a marked decrease in the cerebellar metabolism, probably related to atrophy of cerebellar vermis and secondary cerebellar deafferentation. FDG PET scan is found to be of value in the understanding and assessment of brain functional alterations. It may be useful in monitoring and optimizing treatment strategies of this rare disease.
Collapse
Affiliation(s)
- M A Al-Essa
- Department of Biological and Medical Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- J Dooley
- Department of Pediatrics (Neurology), Dalhousie University and IWK-Grace Health Centre, Halifax, Nova Scotia
| | | | | |
Collapse
|
18
|
Maitre M. The gamma-hydroxybutyrate signalling system in brain: organization and functional implications. Prog Neurobiol 1997; 51:337-61. [PMID: 9089792 DOI: 10.1016/s0301-0082(96)00064-0] [Citation(s) in RCA: 367] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
gamma-Hydroxybutyrate is a metabolite of GABA which is synthesized and accumulated by neurons in brain. This substance is present in micromolar quantities in all brain regions investigated as well as in several peripheral organs. Neuronal depolarization releases gamma-hydroxybutyrate into the extracellular space in a Ca(2+)-dependent manner. Gamma-hydroxybutyrate high-affinity receptors are present only in neurons, with a restricted specific distribution in the hippocampus, cortex and dopaminergic structures of rat brain (the striatum in general, olfactory bulbs and tubercles, frontal cortex, dopaminergic nuclei A9, A10 and A12). Stimulation of these receptors with low amounts of gamma-hydroxybutyrate induces in general hyperpolarizations in dopaminergic structures with a reduction of dopamine release. However, in the hippocampus and the frontal cortex, it seems that gamma-hydroxybutyrate induces depolarization with an accumulation of cGMP and an increase in inositol phosphate turnover. Some of the electrophysiological effects of GHB are blocked by NCS-382, a gamma-hydroxybutyrate receptor antagonist while some others are strongly attenuated by GABAB receptors antagonists. Gamma-hydroxybutyrate penetrates freely into the brain when administered intravenously or intraperitoneally. This is a unique situation for a molecule with signalling properties in the brain. Thus, the gamma-hydroxybutyrate concentration in brain easily can be increased more than 100 times. Under these conditions, gamma-hydroxybutyrate receptors are saturated and probably desensitized and down-regulated. It is unlikely that GABAB receptors could be stimulated directly by GHB. Most probably, GABA is released in part under the control of GHB receptors in specific pathways expressing GABAB receptors. Alternatively, GABAB receptors might be specifically stimulated by the GABA formed via the metabolism of gamma-hydroxybutyrate in brain. In animals and man, these GHBergic and GABAergic potentiations induce dopaminergic hyperactivity (which follows the first phase of dopaminergic terminal hyperpolarization), a strong sedation with anaesthesia and some EEG changes with epileptic spikes. It is presumed that, under pathological conditions (hepatic failure, alcoholic intoxication, succinic semialdehyde dehydrogenase defects), the rate of GHB synthesis or degradation in the peripheral organ is modified and induces increased GHB levels which could interfere with the normal brain mechanisms. This pathological status could benefit from treatments with gamma-hydroxybutyric and/or GABAB receptors antagonists. Nevertheless, the regulating properties of the endogenous gamma-hydroxybutyrate system on the dopaminergic pathways are a cause for the recent interest in synthetic ligands acting specifically at gamma-hydroxybutyrate receptors and devoid of any role as metabolic precursor of GABA in brain.
Collapse
Affiliation(s)
- M Maitre
- Centre de Neurochimie, Laboratoire de Neurobiologie Moléculaire des Interactions Cellulaires, UPR 416 CNRS, Strasbourg, France.
| |
Collapse
|
19
|
Evrard P, Nassogne MC, Ogier de Baulny H, Fernandez-Alvarez E, Bonnier C. [Clinical synthesis and investigation protocol: "extrapyramidal" signs, clinical orientation]. Arch Pediatr 1996; 3 Suppl 1:176s-178s. [PMID: 8796007 DOI: 10.1016/0929-693x(96)86032-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- P Evrard
- Service de neurologie pédiatrique hôpital Robert-Debré, Paris, France
| | | | | | | | | |
Collapse
|
20
|
Rashed M, Ozand PT, al Aqeel A, Gascon GG. Experience of King Faisal Specialist Hospital and Research Center with Saudi organic acid disorders. Brain Dev 1994; 16 Suppl:1-6. [PMID: 7726374 DOI: 10.1016/0387-7604(94)90090-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Inborn Errors of Metabolism and Neurology Services of the King Faisal Specialist Hospital and Research Centre (KFSH&RC) and Armed Forces Hospital have received more than 1,500 patients suspected of having an organic acid disorder (OAD) during a period of four years. Of these, 307 patients suspected of having an organic acid disorder (OAD) during a period of four years. Of these, 307 patients, approximately 20%, had a clearly identifiable disorder. Identified OAD's constituted one-quarter of all patients diagnosed as having various types of inborn errors of metabolism during this period, in these clinical services. Prolonged follow-up was available in the majority of cases, allowing detailed clinical, neuroradiologic and neurophysiologic descriptions. Fifty patients (16%) had rare disorders by standards in the West. Approximately 25% were 'neurologic organic acidurias.' This is a new term we are introducing for OAD's manifesting primarily with neurologic signs, but without appreciable acidosis, hypoglycemia or hyperammonemia. In this special issue, we present the KFSH&RC experience with the rare disorders as individual articles. We estimate the frequency of OAD's in Saudi Arabia as 1/740 births. The increased frequency of OAD's in Saudi Arabia is probably due to increased consanguinity, since most OAD's occurred in excess in certain tribes; and due to increased surveillance and testing by our group. Saudi Arabia provides a unique opportunity for research in this area of pediatrics.
Collapse
Affiliation(s)
- M Rashed
- Department of Pediatrics, King Faisal Specialist Hospital, Riyadh, Saudi Arabia
| | | | | | | |
Collapse
|
21
|
al Aqeel A, Rashed M, Ozand PT, Gascon GG, Rahbeeni Z, al Garawi S, al Odaib A, Brismar J. A new patient with alpha-ketoglutaric aciduria and progressive extrapyramidal tract disease. Brain Dev 1994; 16 Suppl:33-7. [PMID: 7726379 DOI: 10.1016/0387-7604(94)90094-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A 4.5-year-old boy with chronic progressive encephalopathy is described. The clinical presentation initially included seizures and hypotonia which later evolved into severe extrapyramidal disease and dementia. The gas chromatography/mass spectrometry (GC/MS) analysis of urine indicated that alpha-ketoglutarate was increased 210 times and aconitic acid 80 times. No disturbance of acid/base balance, lactic acid or ammonia metabolism accompanied this clinical picture. The fibroblasts contained 29% of normal alpha-ketoglutarate dehydrogenase activity, while the activity of another mitochondrial marker enzyme, glutamate dehydrogenase, was normal. The neuroimaging studies revealed bilateral striatal necrosis. The clinical and biochemical findings were almost identical to two previously reported patients. Experience with this patient emphasizes the need for detailed organic acid biochemical investigation in any progressive encephalopathy and that extrapyramidal tract signs should evoke the possibility of alpha-ketoglutaric aciduria, among other 'neurologic organic acidemias'.
Collapse
Affiliation(s)
- A al Aqeel
- Department of Pediatrics, Armed Forces Hospital, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | |
Collapse
|