1
|
Terracina S, Ferraguti G, Tarani L, Messina MP, Lucarelli M, Vitali M, De Persis S, Greco A, Minni A, Polimeni A, Ceccanti M, Petrella C, Fiore M. Transgenerational Abnormalities Induced by Paternal Preconceptual Alcohol Drinking: Findings from Humans and Animal Models. Curr Neuropharmacol 2022; 20:1158-1173. [PMID: 34720083 PMCID: PMC9886817 DOI: 10.2174/1570159x19666211101111430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/14/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Alcohol consumption during pregnancy and lactation is a widespread preventable cause of neurodevelopmental impairment in newborns. While the harmful effects of gestational alcohol use have been well documented, only recently, the role of paternal preconceptual alcohol consumption (PPAC) prior to copulating has drawn specific epigenetic considerations. Data from human and animal models have demonstrated that PPAC may affect sperm function, eliciting oxidative stress. In newborns, PPAC may induce changes in behavior, cognitive functions, and emotional responses. Furthermore, PPAC may elicit neurobiological disruptions, visuospatial impairments, hyperactivity disorders, motor skill disruptions, hearing loss, endocrine, and immune alterations, reduced physical growth, placental disruptions, and metabolic alterations. Neurobiological studies on PPAC have also disclosed changes in brain function and structure by disrupting the growth factors pathways. In particular, as shown in animal model studies, PPAC alters brain nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF) synthesis and release. This review shows that the crucial topic of lifelong disabilities induced by PPAC and/or gestational alcohol drinking is quite challenging at the individual, societal, and familial levels. Since a nontoxic drinking behavior before pregnancy (for both men and women), during pregnancy, and lactation cannot be established, the only suggestion for couples planning pregnancies is to completely avoid the consumption of alcoholic beverages.
Collapse
Affiliation(s)
- Sergio Terracina
- Department of Experimental Medicine, Medical Faculty, Sapienza University of Rome, RomeItaly
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Medical Faculty, Sapienza University of Rome, RomeItaly
| | - Luigi Tarani
- Department of Pediatrics, Medical Faculty, “Sapienza” University of Rome, Rome, Italy
| | | | - Marco Lucarelli
- Department of Experimental Medicine, Medical Faculty, Sapienza University of Rome, RomeItaly
| | | | | | - Antonio Greco
- Department of Sense Organs, Sapienza University Hospital of Rome, Rome, Italy
| | - Antonio Minni
- Department of Sense Organs, Sapienza University Hospital of Rome, Rome, Italy
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell’Alcolismo e le sue Complicanze, Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Rome, Italy,Address correspondence to this author at the Institute of Biochemistry and Cell Biology (IBBC-CNR), Rome, Italy; E-mail:
| |
Collapse
|
2
|
Ceci FM, Ferraguti G, Petrella C, Greco A, Tirassa P, Iannitelli A, Ralli M, Vitali M, Ceccanti M, Chaldakov GN, Versacci P, Fiore M. Nerve Growth Factor, Stress and Diseases. Curr Med Chem 2021; 28:2943-2959. [PMID: 32811396 DOI: 10.2174/0929867327999200818111654] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 11/22/2022]
Abstract
Stress is a constant threat for homeostasis and is represented by different extrinsic and intrinsic stimuli (stressors, Hans Selye's "noxious agents"), such as aggressive behavior, fear, diseases, physical activity, drugs, surgical injury, and environmental and physiological changes. Our organisms respond to stress by activating the adaptive stress system to activate compensatory responses for restoring homeostasis. Nerve Growth Factor (NGF) was discovered as a signaling molecule involved in survival, protection, differentiation, and proliferation of sympathetic and peripheral sensory neurons. NGF mediates stress with an important role in translating environmental stimuli into physiological and pathological feedbacks since NGF levels undergo important variations after exposure to stressful events. Psychological stress, lifestyle stress, and oxidative stress are well known to increase the risk of mental disorders such as schizophrenia, major depressive disorders, bipolar disorder, alcohol use disorders and metabolic disorders such as metabolic syndrome. This review reports recent works describing the activity of NGF in mental and metabolic disorders related to stress.
Collapse
Affiliation(s)
- Flavio Maria Ceci
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Angela Iannitelli
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | | | - Mauro Ceccanti
- Centro Riferimento Alcologico Regione Lazio, ASL Roma 1, Rome, Italy
| | - George N Chaldakov
- Department of Anatomy and Cell Biology, Medical University, and Institute for Advanced Study, Varna, Bulgaria
| | - Paolo Versacci
- Department of Pediatrics, Sapienza University Hospital of Rome, Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| |
Collapse
|
3
|
Ceci FM, Ferraguti G, Petrella C, Greco A, Ralli M, Iannitelli A, Carito V, Tirassa P, Chaldakov GN, Messina MP, Ceccanti M, Fiore M. Nerve Growth Factor in Alcohol Use Disorders. Curr Neuropharmacol 2020; 19:45-60. [PMID: 32348226 PMCID: PMC7903493 DOI: 10.2174/1570159x18666200429003239] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/19/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
The nerve growth factor (NGF) belongs to the family of neurotrophic factors. Initially discovered as a signaling molecule involved in the survival, protection, differentiation, and proliferation of sympathetic and peripheral sensory neurons, it also participates in the regulation of the immune system and endocrine system. NGF biological activity is due to the binding of two classes of receptors: the tropomyosin-related kinase A (TrkA) and the low-affinity NGF pan-neurotrophin receptor p75. Alcohol Use Disorders (AUD) are one of the most frequent mental disorders in developed countries, characterized by heavy drinking, despite the negative effects of alcohol on brain development and cognitive functions that cause individual’s work, medical, legal, educational, and social life problems. In addition, alcohol consumption during pregnancy disrupts the development of the fetal brain causing a wide range of neurobehavioral outcomes collectively known as fetal alcohol spectrum disorders (FASD). The rationale of this review is to describe crucial findings on the role of NGF in humans and animals, when exposed to prenatal, chronic alcohol consumption, and on binge drinking.
Collapse
Affiliation(s)
- Flavio Maria Ceci
- Department of Experimental Medicine, Sapienza University Hospital of Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University Hospital of Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University Hospital of Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University Hospital of Rome, Italy
| | - Angela Iannitelli
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, Italy
| | - Valentina Carito
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), Rome, Italy
| | - George N Chaldakov
- Department of Anatomy and Cell Biology, Medical University, Varna, Bulgaria
| | | | - Mauro Ceccanti
- Centro Riferimento Alcologico Regione Lazio, Sapienza University of Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), Rome, Italy
| |
Collapse
|
4
|
Chatterton BJ, Nunes PT, Savage LM. The Effect of Chronic Ethanol Exposure and Thiamine Deficiency on Myelin-related Genes in the Cortex and the Cerebellum. Alcohol Clin Exp Res 2020; 44:2481-2493. [PMID: 33067870 DOI: 10.1111/acer.14484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Long-term alcohol consumption has been linked to structural and functional brain abnormalities. Furthermore, with persistent exposure to ethanol (EtOH), nutrient deficiencies often develop. Thiamine deficiency is a key contributor to alcohol-related brain damage and is suspected to contribute to white matter pathology. The expression of genes encoding myelin proteins in several cortical brain regions is altered with EtOH exposure. However, there is limited research regarding the impact of thiamine deficiency on myelin dysfunction. METHODS A rat model was used to assess the impact of moderate chronic EtOH exposure (CET; 20% EtOH in drinking water for 1 or 6 months), pyrithiamine-induced thiamine deficiency treatment (PTD), both conditions combined (CET-PTD), or CET with thiamine injections (CET + T) on myelin-related gene expression (Olig1, Olig2, MBP, MAG, and MOG) in the frontal and parietal cortices and the cerebellum. RESULTS The CET-PTD treatments caused the greatest suppression in myelin-related genes in the cortex. Specifically, the parietal cortex was the region that was most susceptible to PTD-CET-induced alterations in myelin-related genes. In addition, PTD treatment, with and without CET, caused minor fluctuations in the expression of several myelin-related genes in the frontal cortex. In contrast, CET alone and PTD alone suppressed several myelin-related genes in the cerebellum. Regardless of the region, there was significant recovery of myelin-related genes with extended abstinence and/or thiamine restoration. CONCLUSION Moderate chronic EtOH alone had a minor effect on the suppression of myelin-related genes in the cortex; however, when combined with thiamine deficiency, the reduction was amplified. There was a suppression of myelin-related genes following long-term EtOH and thiamine deficiency in the cerebellum. However, the suppression in the myelin-related genes mostly occurred 24 h after EtOH removal or following thiamine restoration; within 3 weeks of abstinence or thiamine recovery, gene expression rebounded.
Collapse
Affiliation(s)
- Bradley J Chatterton
- From the, Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York, USA
| | - Polliana T Nunes
- From the, Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York, USA
| | - Lisa M Savage
- From the, Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York, USA
| |
Collapse
|
5
|
Alcohol as an early life stressor: Epigenetics, metabolic, neuroendocrine and neurobehavioral implications. Neurosci Biobehav Rev 2020; 118:654-668. [PMID: 32976915 DOI: 10.1016/j.neubiorev.2020.08.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/18/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
Ethanol exposure during gestation is an early life stressor that profoundly dysregulates structure and functions of the embryonal nervous system, altering the cognitive and behavioral development. Such dysregulation is also achieved by epigenetic mechanisms, which, altering the chromatin structure, redraw the entire pattern of gene expression. In parallel, an oxidative stress response at the cellular level and a global upregulation of neuroendocrine stress response, regulated by the HPA axis, exist and persist in adulthood. This neurobehavioral framework matches those observed in other psychiatric diseases such as mood diseases, depression, autism; those early life stressing events, although probably triggered by specific and different epigenetic mechanisms, give rise to largely overlapping neurobehavioral phenotypes. An early diagnosis of prenatal alcohol exposure, using reliable markers of ethanol intake, together with a deeper understanding of the pathogenic mechanisms, some of them reversible by their nature, can offer a temporal "window" of intervention. Supplementing a mother's diet with protective and antioxidant substances in addition to supportive psychological therapies can protect newborns from being affected.
Collapse
|
6
|
Antioxidant properties of plant polyphenols in the counteraction of alcohol-abuse induced damage: Impact on the Mediterranean diet. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
7
|
Ferraguti G, Merlino L, Battagliese G, Piccioni MG, Barbaro G, Carito V, Messina MP, Scalese B, Coriale G, Fiore M, Ceccanti M. Fetus morphology changes by second-trimester ultrasound in pregnant women drinking alcohol. Addict Biol 2020; 25:e12724. [PMID: 30811093 DOI: 10.1111/adb.12724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/10/2019] [Accepted: 01/13/2019] [Indexed: 12/16/2022]
Abstract
Fetal alcohol spectrum disorders (FASDs) are a group of negative conditions occurring in children exposed to alcohol during gestation. The early discovery of FASD is crucial for mother and infant follow-ups. In this study, we investigated in pregnant women the association between urine ethylglucuronide (EtG-a biomarker of alcohol drinking) and indicators of the physical characteristics of FASD by prenatal ultrasound in the second trimester of gestation. We also correlated these data with the AUDIT-C, T-ACE/TACER-3, TWEAK, and food habit diary, screening questionnaires used to disclose alcohol drinking during pregnancy. Forty-four pregnant women were randomly enrolled and examined for ultrasound investigation during the second trimester of gestation. Urine samples were provided by pregnant women immediately after the routine interviews. EtG determinations were performed with a cutoff established at 100 ng/mL, a value indicating occasional alcohol drinking. Fifteen of the enrolled pregnant women overcame the EtG cutoff (34.09%). Analysis of variance (ANOVA) revealed that the fetuses of the positive EtG pregnant women had significantly longer interorbital distance and also significantly increased frontothalamic distance (P's < 0.02). Quite interestingly, no direct correlation was found between EtG data and both food diary and AUDIT-C. However, a significant correlation was observed between urinary EtG and T-ACE (r = 0.375; P = 0.012) and between urinary EtG and TWEAK (r = 0.512; P < 0.001) and a concordance with all questionnaire for EtG values higher than 500 ng/mL. This study provides clinical evidence that the diagnosis of maternal alcohol consumption during pregnancy by urine EtG may disclose FASD-related damage in the fetus.
Collapse
Affiliation(s)
- Giampiero Ferraguti
- Department of Experimental MedicineSapienza University Hospital of Rome Rome Italy
| | - Lucia Merlino
- Department of Gynecological‐Obstetric Sciences and Urological SciencesSapienza University Hospital of Rome Rome Italy
| | - Gemma Battagliese
- Centro Riferimento Alcologico Regione LazioSapienza University of Rome Rome Italy
| | - Maria Grazia Piccioni
- Department of Gynecological‐Obstetric Sciences and Urological SciencesSapienza University Hospital of Rome Rome Italy
| | - Greta Barbaro
- Department of Gynecological‐Obstetric Sciences and Urological SciencesSapienza University Hospital of Rome Rome Italy
| | - Valentina Carito
- Institute of Cell Biology and Neurobiology (IBCN)National Research Council (CNR) Rome Italy
| | | | - Bruna Scalese
- Centro Riferimento Alcologico Regione LazioSapienza University of Rome Rome Italy
| | - Giovanna Coriale
- Centro Riferimento Alcologico Regione LazioSapienza University of Rome Rome Italy
| | - Marco Fiore
- Institute of Cell Biology and Neurobiology (IBCN)National Research Council (CNR) Rome Italy
| | - Mauro Ceccanti
- Centro Riferimento Alcologico Regione LazioSapienza University of Rome Rome Italy
| |
Collapse
|
8
|
D'Angelo A, Ceccanti M, Petrella C, Greco A, Tirassa P, Rosso P, Ralli M, Ferraguti G, Fiore M, Messina MP. Role of neurotrophins in pregnancy, delivery and postpartum. Eur J Obstet Gynecol Reprod Biol 2020; 247:32-41. [PMID: 32058187 DOI: 10.1016/j.ejogrb.2020.01.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 01/09/2023]
Abstract
Neurotrophins (NTs) are a family of polypeptides whose functions have been extensively studied in the past two decades. In particular, Nerve Growth Factor (NGF) and Brain-Derived Neurotrophic Factor (BDNF) play a major role in the development, nutrition and growth of the central and peripheral nervous system and in the pathogenesis of neurodegenerative, cardiometabolic and (auto)immune diseases. However, NGF and BDNF have subtle functions for follicular development, implantation, and placentation. This short narrative review summarizes the existing evidence, published between 2000 and 2019, about the role of NTs in many different conditions that might affect women during and after pregnancy such as preeclampsia, gestational diabetes, obesity, depression, anxiety, smoking and alcohol abuse. Literature suggests that the dysregulation of synthesis and release of NTs may lead to decisive effects on both maternal and fetal health. Some piece of evidences was found about a possible association between NGF/BDNF and breastfeeding. Additional studies on human models are necessary to further characterize the role of NTs in life-changing experiences like labor and delivery.
Collapse
Affiliation(s)
- Alessio D'Angelo
- Department of Gynecology, Obstetric, and Urology, Sapienza University of Rome, Italy
| | - Mauro Ceccanti
- Centro Riferimento Alcologico Regione Lazio, Sapienza University of Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Pamela Rosso
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, Italy
| | | | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy.
| | | |
Collapse
|
9
|
Nunes PT, Kipp BT, Reitz NL, Savage LM. Aging with alcohol-related brain damage: Critical brain circuits associated with cognitive dysfunction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 148:101-168. [PMID: 31733663 PMCID: PMC7372724 DOI: 10.1016/bs.irn.2019.09.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcoholism is associated with brain damage and impaired cognitive functioning. The relative contributions of different etiological factors, such as alcohol, thiamine deficiency and age vulnerability, to the development of alcohol-related neuropathology and cognitive impairment are still poorly understood. One reason for this quandary is that both alcohol toxicity and thiamine deficiency produce brain damage and cognitive problems that can be modulated by age at exposure, aging following alcohol toxicity or thiamine deficiency, and aging during chronic alcohol exposure. Pre-clinical models of alcohol-related brain damage (ARBD) have elucidated some of the contributions of ethanol toxicity and thiamine deficiency to neuroinflammation, neuronal loss and functional deficits. However, the critical variable of age at the time of exposure or long-term aging with ARBD has been relatively ignored. Acute thiamine deficiency created a massive increase in neuroimmune genes and proteins within the thalamus and significant increases within the hippocampus and frontal cortex. Chronic ethanol treatment throughout adulthood produced very minor fluctuations in neuroimmune genes, regardless of brain region. Intermittent "binge-type" ethanol during the adolescent period established an intermediate neuroinflammatory response in the hippocampus and frontal cortex, that can persist into adulthood. Chronic excessive drinking throughout adulthood, adolescent intermittent ethanol exposure, and thiamine deficiency all led to a loss of the cholinergic neuronal phenotype within the basal forebrain, reduced hippocampal neurogenesis, and alterations in the frontal cortex. Only thiamine deficiency results in gross pathological lesions of the thalamus. The behavioral impairment following these types of treatments is hierarchical: Thiamine deficiency produces the greatest impairment of hippocampal- and prefrontal-dependent behaviors, chronic ethanol drinking ensues mild impairments on both types of tasks and adolescent intermittent ethanol exposure leads to impairments on frontocortical tasks, with sparing on most hippocampal-dependent tasks. However, our preliminary data suggest that as rodents age following adolescent intermittent ethanol exposure, hippocampal functional deficits began to emerge. A necessary requirement for the advancement of understanding the neural consequences of alcoholism is a more comprehensive assessment and understanding of how excessive alcohol drinking at different development periods (adolescence, early adulthood, middle-aged and aged) influences the trajectory of the aging process, including pathological aging and disease.
Collapse
Affiliation(s)
- Polliana Toledo Nunes
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, United States
| | - Brian T Kipp
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, United States
| | - Nicole L Reitz
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, United States
| | - Lisa M Savage
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, United States.
| |
Collapse
|
10
|
Galaj E, Kipp BT, Floresco SB, Savage LM. Persistent Alterations of Accumbal Cholinergic Interneurons and Cognitive Dysfunction after Adolescent Intermittent Ethanol Exposure. Neuroscience 2019; 404:153-164. [PMID: 30742967 PMCID: PMC6450752 DOI: 10.1016/j.neuroscience.2019.01.062] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 02/08/2023]
Abstract
Adolescent binge drinking renders young drinkers vulnerable to alcohol use disorders in adulthood; therefore, understanding alcohol-induced brain damage and associated cognitive dysfunctions is of paramount importance. Here we investigated the effects of binge-like adolescent intermittent ethanol (AIE) exposure on nonspatial working memory, behavioral flexibility and cholinergic alterations in the nucleus accumbens (NAc) in male and female rats. On postnatal days P25-57 rats were intubated with water or ethanol (at a dose of 5 g/kg) on a 2-day-on/2-day-off cycle and were then tested in adulthood on social recognition and probabilistic reversal learning tasks. During the social recognition task AIE-treated rats spent similar amounts of time interacting with familiar and novel juveniles, indicating an impaired ability to sustain memory of the familiar juvenile. During probabilistic reversal learning, AIE-treated male and female rats showed behavioral inflexibility as indicated by a higher number of trials needed to complete three reversals within a session, longer response latencies for lever selection, and for males, a higher number of errors as compared to water-treated rats. AIE exposure also reduced the number of cholinergic interneurons in the NAc in males and females. These findings indicate AIE-related pathologies of accumbal cholinergic interneurons and long lasting cognitive-behavioral deficits, which may be associated with cortico-striatal hypofunction.
Collapse
Affiliation(s)
- E Galaj
- Department of Psychology, Binghamton University of the State University of New York, New York, USA
| | - B T Kipp
- Department of Psychology, Binghamton University of the State University of New York, New York, USA
| | - S B Floresco
- Department of Psychology and Brain Research Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - L M Savage
- Department of Psychology, Binghamton University of the State University of New York, New York, USA.
| |
Collapse
|
11
|
Toledo Nunes P, Vedder LC, Deak T, Savage LM. A Pivotal Role for Thiamine Deficiency in the Expression of Neuroinflammation Markers in Models of Alcohol-Related Brain Damage. Alcohol Clin Exp Res 2019; 43:425-438. [PMID: 30589435 DOI: 10.1111/acer.13946] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alcohol-related brain damage (ARBD) is associated with neurotoxic effects of heavy alcohol use and nutritional deficiency, in particular thiamine deficiency (TD), both of which induce inflammatory responses in brain. Although neuroinflammation is a critical factor in the induction of ARBD, few studies have addressed the specific contribution(s) of ethanol (EtOH) versus TD. METHODS Adult rats were randomly divided into 6 conditions: chronic EtOH treatment (CET) where rats consumed a 20% v/v solution of EtOH for 6 months; CET with injections of thiamine (CET + T); severe pyrithiamine-induced TD (PTD); moderate PTD; moderate PTD during CET; and pair-fed controls. After the treatments, the rats were split into 3 recovery phase time points: the last day of treatment (time point 1), acute recovery (time point 2: 24 hours posttreatment), and delayed recovery (time point 3: 3 weeks posttreatment). At these time points, vulnerable brain regions (thalamus, hippocampus, frontal cortex) were collected and changes in neuroimmune markers were assessed using a combination of reverse transcription polymerase chain reaction and protein analysis. RESULTS CET led to minor fluctuations in neuroimmune genes, regardless of the structure being examined. In contrast, PTD treatment led to a profound increase in neuroimmune genes and proteins within the thalamus. Cytokine changes in the thalamus ranged in magnitude from moderate (3-fold and 4-fold increase in interleukin-1β [IL-1β] and IκBα) to severe (8-fold and 26-fold increase in tumor necrosis factor-α and IL-6, respectively). Though a similar pattern was observed in the hippocampus and frontal cortex, overall fold increases were moderate relative to the thalamus. Importantly, neuroimmune gene induction varied significantly as a function of severity of TD, and most genes displayed a gradual recovery across time. CONCLUSIONS These data suggest an overt brain inflammatory response by TD and a subtle change by CET alone. Also, the prominent role of TD in the immune-related signaling pathways leads to unique regional and temporal profiles of induction of neuroimmune genes.
Collapse
Affiliation(s)
- Polliana Toledo Nunes
- Behavioral Neuroscience Program (PTN, LCV, TD, LMS), Department of Psychology, Binghamton University, State University of New York, Binghamton, New York
| | - Lindsey C Vedder
- Behavioral Neuroscience Program (PTN, LCV, TD, LMS), Department of Psychology, Binghamton University, State University of New York, Binghamton, New York
| | - Terrence Deak
- Behavioral Neuroscience Program (PTN, LCV, TD, LMS), Department of Psychology, Binghamton University, State University of New York, Binghamton, New York
| | - Lisa M Savage
- Behavioral Neuroscience Program (PTN, LCV, TD, LMS), Department of Psychology, Binghamton University, State University of New York, Binghamton, New York
| |
Collapse
|
12
|
Carito V, Ceccanti M, Ferraguti G, Coccurello R, Ciafrè S, Tirassa P, Fiore M. NGF and BDNF Alterations by Prenatal Alcohol Exposure. Curr Neuropharmacol 2019; 17:308-317. [PMID: 28847297 PMCID: PMC6482479 DOI: 10.2174/1570159x15666170825101308] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/02/2017] [Accepted: 08/20/2017] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND It is now widely established that the devastating effects of prenatal alcohol exposure on the embryo and fetus development cause marked cognitive and neurobiological deficits in the newborns. The negative effects of the gestational alcohol use have been well documented and known for some time. However, also the subtle role of alcohol consumption by fathers prior to mating is drawing special attention. OBJECTIVE Both paternal and maternal alcohol exposure has been shown to affect the neurotrophins' signalling pathways in the brain and in target organs of ethanol intoxication. Neurotrophins, in particular nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), are molecules playing a pivotal role in the survival, development and function of the peripheral and central nervous systems but also in the pathogenesis of developmental defects caused by alcohol exposure. METHODS New researches from the available literature and experimental data from our laboratory are presented in this review to offer the most recent findings regarding the effects of maternal and paternal prenatal ethanol exposure especially on the neurotrophins' signalling pathways. RESULTS NGF and BDNF changes play a subtle role in short- and long-lasting effects of alcohol in ethanol target tissues, including neuronal cell death and severe cognitive and physiological deficits in the newborns. CONCLUSION The review suggests a possible therapeutic intervention based on the use of specific molecules with antioxidant properties in order to induce a potential prevention of the harmful effects of the paternal and/or maternal alcohol exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marco Fiore
- Address correspondence to this author at the Istituto di Biologia Cellulare e Neurobiologia, Consiglio Nazionale delle Ricerche (CNR), via del Fosso di Fiorano 64, 00143 Roma, Italy; Tel: +3906501703239;, Fax: +3906501703313; E-mail:
| |
Collapse
|
13
|
Ciafrè S, Carito V, Ferraguti G, Greco A, Chaldakov GN, Fiore M, Ceccanti M. How alcohol drinking affects our genes: an epigenetic point of view. Biochem Cell Biol 2018; 97:345-356. [PMID: 30412425 DOI: 10.1139/bcb-2018-0248] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This work highlights recent studies in epigenetic mechanisms that play a role in alcoholism, which is a complex multifactorial disorder. There is a large body of evidence showing that alcohol can modify gene expression through epigenetic processes, namely DNA methylation and nucleosomal remodeling via histone modifications. In that regard, chronic exposure to ethanol modifies DNA and histone methylation, histone acetylation, and microRNA expression. The alcohol-mediated chromatin remodeling in the brain promotes the transition from use to abuse and addiction. Unravelling the multiplex pattern of molecular modifications induced by ethanol could support the development of new therapies for alcoholism and drug addiction targeting epigenetic processes.
Collapse
Affiliation(s)
- Stefania Ciafrè
- a Institute of Translational Pharmacology, IFT-CNR, 100 via del Fosso del Cavaliere, Rome 00133, Italy
| | - Valentina Carito
- b Institute of Cell Biology and Neurobiology, IBCN-CNR, c/o Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155 (00161), Rome, Italy
| | - Giampiero Ferraguti
- c Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico, 155 (00161), Rome, Italy
| | - Antonio Greco
- d Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155 (00161), Rome, Italy
| | - George N Chaldakov
- e Laboratory of Cell Biology, Department of Anatomy and Histology, Medical University, BG-9002 Varna, Bulgaria
| | - Marco Fiore
- b Institute of Cell Biology and Neurobiology, IBCN-CNR, c/o Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155 (00161), Rome, Italy
| | - Mauro Ceccanti
- f Centro Riferimento Alcologico Regione Lazio, Sapienza University of Rome, Viale del Policlinico, 155 (00161), Rome, Italy
| |
Collapse
|
14
|
Pepeu G, Grazia Giovannini M. The fate of the brain cholinergic neurons in neurodegenerative diseases. Brain Res 2017; 1670:173-184. [PMID: 28652219 DOI: 10.1016/j.brainres.2017.06.023] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 01/03/2023]
Abstract
The aims of this review are: 1) to describe which cholinergic neurons are affected in brain neurodegenerative diseases leading to dementia; 2) to discuss the possible causes of the degeneration of the cholinergic neurons, 3) to summarize the functional consequences of the cholinergic deficit. The brain cholinergic system is basically constituted by three populations of phenotypically similar neurons forming a series of basal forebrain nuclei, the midpontine nuclei and a large population of striatal interneurons. In Alzheimer's disease there is an extensive loss of forebrain cholinergic neurons accompanied by a reduction of the cholinergic fiber network of the cortical mantel and hippocampus. The midpontine cholinergic nuclei are spared. The same situation occurs in the corticobasal syndrome and dementia following alcohol abuse and traumatic brain injury. Conversely, in Parkinson's disease, the midpontine nuclei degenerate, together with the dopaminergic nuclei, reducing the cholinergic input to thalamus and forebrain whereas the forebrain cholinergic neurons are spared. In Parkinson's disease with dementia, Lewis Body Dementia and Parkinsonian syndromes both groups of forebrain and midpontine cholinergic nuclei degenerate. In Huntington's disease a dysfunction of the striatal cholinergic interneurons without cell loss takes place. The formation and accumulation of misfolded proteins such as β-amyloid oligomers and plaques, tau protein tangles and α-synuclein clumps, and aggregated mutated huntingtin play a crucial role in the neuronal degeneration by direct cellular toxicity of the misfolded proteins and through the toxic compounds resulting from an extensive inflammatory reaction. Evidences indicate that β-amyloid disrupts NGF metabolism causing the degeneration of the cholinergic neurons which depend on NGF for their survival, namely the forebrain cholinergic neurons, sparing the midpontine and striatal neurons which express no specific NGF receptors. It is feasible that the latter cholinergic neurons may be damaged by direct toxicity of tau, α-synuclein and inflammations products through mechanisms not fully understood. Attention and learning and memory impairment are the functional consequences of the forebrain cholinergic neuron dysfunction, whereas the loss of midpontine cholinergic neurons results primarily in motor and sleep disturbances.
Collapse
Affiliation(s)
- Giancarlo Pepeu
- Department of Health Sciences, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy.
| | - Maria Grazia Giovannini
- Department of Health Sciences, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy.
| |
Collapse
|
15
|
Ceccanti M, Coccurello R, Carito V, Ciafrè S, Ferraguti G, Giacovazzo G, Mancinelli R, Tirassa P, Chaldakov GN, Pascale E, Ceccanti M, Codazzo C, Fiore M. Paternal alcohol exposure in mice alters brain NGF and BDNF and increases ethanol-elicited preference in male offspring. Addict Biol 2016; 21:776-87. [PMID: 25940002 DOI: 10.1111/adb.12255] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ethanol (EtOH) exposure during pregnancy induces cognitive and physiological deficits in the offspring. However, the role of paternal alcohol exposure (PAE) on offspring EtOH sensitivity and neurotrophins has not received much attention. The present study examined whether PAE may disrupt nerve growth factor (NGF) and/or brain-derived neurotrophic factor (BDNF) and affect EtOH preference/rewarding properties in the male offspring. CD1 sire mice were chronically addicted for EtOH or administered with sucrose. Their male offsprings when adult were assessed for EtOH preference by a conditioned place preference paradigm. NGF and BDNF, their receptors (p75(NTR) , TrkA and TrkB), dopamine active transporter (DAT), dopamine receptors D1 and D2, pro-NGF and pro-BDNF were also evaluated in brain areas. PAE affected NGF levels in frontal cortex, striatum, olfactory lobes, hippocampus and hypothalamus. BDNF alterations in frontal cortex, striatum and olfactory lobes were found. PAE induced a higher susceptibility to the EtOH rewarding effects mostly evident at the lower concentration (0.5 g/kg) that was ineffective in non-PAE offsprings. Moreover, higher ethanol concentrations (1.5 g/kg) produced an aversive response in PAE animals and a significant preference in non-PAE offspring. PAE affected also TrkA in the hippocampus and p75(NTR) in the frontal cortex. DAT was affected in the olfactory lobes in PAE animals treated with 0.5 g/kg of ethanol while no differences were found on D1/D2 receptors and for pro-NGF or pro-BDNF. In conclusion, this study shows that: PAE affects NGF and BDNF expression in the mouse brain; PAE may induce ethanol intake preference in the male offspring.
Collapse
Affiliation(s)
- Mauro Ceccanti
- Centro Riferimento Alcologico Regione Lazio; Sapienza University of Rome; Italy
| | - Roberto Coccurello
- Institute of Cell Biology and Neurobiology (IBCN)/IRCCS S. Lucia Foundation; Italy
| | - Valentina Carito
- Institute of Cell Biology and Neurobiology (IBCN)/IRCCS S. Lucia Foundation; Italy
| | - Stefania Ciafrè
- Institute of Translational Pharmacology (IFT); National Research Council of Italy (C.N.R.); Italy
| | - Giampiero Ferraguti
- Department of Cellular Biotechnologies and Hematology; Sapienza University of Rome; Italy
| | - Giacomo Giacovazzo
- Institute of Cell Biology and Neurobiology (IBCN)/IRCCS S. Lucia Foundation; Italy
| | - Rosanna Mancinelli
- Centro Nazionale Sostanze Chimiche; Instituto Superiore di Sanità; Rome Italy
| | - Paola Tirassa
- Institute of Cell Biology and Neurobiology (IBCN)/IRCCS S. Lucia Foundation; Italy
| | | | - Esterina Pascale
- Department of Medical-Surgical Sciences and Biotechnologies; Sapienza University of Rome; Italy
| | - Marco Ceccanti
- Department of Neurology and Psychiatry; Sapienza University of Rome; Italy
| | - Claudia Codazzo
- Centro Riferimento Alcologico Regione Lazio; Sapienza University of Rome; Italy
| | - Marco Fiore
- Institute of Cell Biology and Neurobiology (IBCN)/IRCCS S. Lucia Foundation; Italy
| |
Collapse
|
16
|
Fernandez GM, Stewart WN, Savage LM. Chronic Drinking During Adolescence Predisposes the Adult Rat for Continued Heavy Drinking: Neurotrophin and Behavioral Adaptation after Long-Term, Continuous Ethanol Exposure. PLoS One 2016; 11:e0149987. [PMID: 26930631 PMCID: PMC4773001 DOI: 10.1371/journal.pone.0149987] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/07/2016] [Indexed: 12/22/2022] Open
Abstract
Previous research has found that adolescent ethanol (EtOH) exposure alters drug seeking behaviors, cognition and neuroplasticity. Using male Sprague Dawley rats, differences in spatial working memory, non-spatial discrimination learning and behavioral flexibility were explored as a function of age at the onset (mid-adolescent vs. adult) of chronic EtOH exposure (CET). Concentrations of mature brain-derived neurotrophic factor (mBDNF) and beta-nerve growth factor (β-NGF) in the prefrontal cortex and hippocampus were also assessed at different time-points: during CET, following acute abstinence (48-hrs), and after protracted abstinence (6-8 wks). Our results revealed that an adolescent onset of CET leads to increased EtOH consumption that persisted into adulthood. In both adult and adolescent onset CET groups, there were significant long-term reductions in prefrontal cortical mBDNF and β-NGF levels. However, only adult onset CET rats displayed decreased hippocampal BDNF levels. Spatial memory, assessed by spontaneous alternation and delayed alternation, was not significantly affected by CET as a function of age of drinking onset, but higher blood-EtOH levels were correlated with lower spontaneous alternation scores. Regardless of the age of onset, EtOH exposed rats were impaired on non-spatial discrimination learning and displayed inflexible behavioral patterns upon reversal learning. Our results indicate that adolescent EtOH exposure changes long-term consumption patterns producing behavioral and neural dysfunctions that persist across the lifespan.
Collapse
Affiliation(s)
- Gina M. Fernandez
- Department of Psychology, Binghamton University, State University of New York, Binghamton, New York, United States of America
| | - William N. Stewart
- Department of Psychology, Binghamton University, State University of New York, Binghamton, New York, United States of America
| | - Lisa M. Savage
- Department of Psychology, Binghamton University, State University of New York, Binghamton, New York, United States of America
| |
Collapse
|
17
|
Vedder LC, Hall JM, Jabrouin KR, Savage LM. Interactions between chronic ethanol consumption and thiamine deficiency on neural plasticity, spatial memory, and cognitive flexibility. Alcohol Clin Exp Res 2015; 39:2143-53. [PMID: 26419807 PMCID: PMC4624484 DOI: 10.1111/acer.12859] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/05/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Many alcoholics display moderate to severe cognitive dysfunction accompanied by brain pathology. A factor confounded with prolonged heavy alcohol consumption is poor nutrition, and many alcoholics are thiamine deficient. Thus, thiamine deficiency (TD) has emerged as a key factor underlying alcohol-related brain damage (ARBD). TD in humans can lead to Wernicke Encephalitis that can progress into Wernicke-Korsakoff syndrome and these disorders have a high prevalence among alcoholics. Animal models are critical for determining the exact contributions of ethanol (EtOH)- and TD-induced neurotoxicity, as well as the interactions of those factors to brain and cognitive dysfunction. METHODS Adult rats were randomly assigned to 1 of 6 treatment conditions: chronic EtOH treatment (CET) where rats consumed a 20% v/v solution of EtOH over 6 months; severe pyrithiamine-induced TD (PTD-moderate acute stage); moderate PTD (PTD-early acute stage); moderate PTD followed by CET (PTD-CET); moderate PTD during CET (CET-PTD); and pair-fed (PF) control. After recovery from treatment, all rats were tested on spontaneous alternation and attentional set-shifting. After behavioral testing, brains were harvested for determination of mature brain-derived neurotrophic factor (BDNF) and thalamic pathology. RESULTS Moderate TD combined with CET, regardless of treatment order, produced significant impairments in spatial memory, cognitive flexibility, and reductions in brain plasticity as measured by BDNF levels in the frontal cortex and hippocampus. These alterations are greater than those seen in moderate TD alone, and the synergistic effects of moderate TD with CET lead to a unique cognitive profile. However, CET did not exacerbate thalamic pathology seen after moderate TD. CONCLUSIONS These data support the emerging theory that subclinical TD during chronic heavy alcohol consumption is critical for the development of significant cognitive impairment associated with ARBD.
Collapse
Affiliation(s)
- Lindsey C Vedder
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York
| | - Joseph M Hall
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York
| | - Kimberly R Jabrouin
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York
| | - Lisa M Savage
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York
| |
Collapse
|
18
|
Aberrant Behavioral and Neurobiologic Profiles in Rodents Exposed to Ethanol or Red Wine Early in Development. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2014. [DOI: 10.1007/s40474-014-0023-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Jamal M, Ameno K, Ruby M, Miki T, Tanaka N, Nakamura Y, Kinoshita H. Ethanol- and acetaldehyde-induced cholinergic imbalance in the hippocampus of Aldh2-knockout mice does not affect nerve growth factor or brain-derived neurotrophic factor. Brain Res 2013; 1539:41-7. [PMID: 24096209 DOI: 10.1016/j.brainres.2013.09.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/13/2013] [Accepted: 09/23/2013] [Indexed: 11/26/2022]
Abstract
Neurotrophins, including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), play an important role in the maintenance of cholinergic-neuron function. The objective of this study was to investigate whether ethanol (EtOH)- and acetaldehyde (AcH)- induced cholinergic effects would cause neurotrophic alterations in the hippocampus of mice. We used Aldh2 knockout (Aldh2-KO) mice, a model of aldehyde dehydrogenase 2 (ALDH2)-deficiency in humans, to examine the effects of acute administration of EtOH and the role of AcH. Hippocampal slices were collected and the mRNA and protein levels of choline acetyltransferase (ChAT), acetylcholinesterase (AChE), NGF and BDNF were analyzed 30 min after the i.p. administration of EtOH (0.5, 1.0, or 2.0 g/kg). We show that treatment with 2.0 g/kg of EtOH decreased ChAT mRNA and protein levels in Aldh2-KO mice but not in wild-type (WT) mice, which suggests a role for AcH in the mechanism of action of EtOH. The administration of 2.0 g/kg of EtOH increased AChE mRNA in both strains of mice. EtOH failed to change the levels of NGF or BDNF at any dose. Aldh2-KO mice exhibited a distinctly lower expression of ChAT and a higher expression of NGF both at mRNA and protein levels in the hippocampus compared with WT mice. Our observations suggest that administration of EtOH and elevated AcH can alter cholinergic markers in the hippocampus of mice, and this effect did not change the levels of NGF or BDNF.
Collapse
Affiliation(s)
- Mostofa Jamal
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki, Kita, Kagawa 761-0793, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
Ehrlich D, Pirchl M, Humpel C. Ethanol transiently suppresses choline-acetyltransferase in basal nucleus of Meynert slices. Brain Res 2012; 1459:35-42. [PMID: 22560095 PMCID: PMC3370645 DOI: 10.1016/j.brainres.2012.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 04/02/2012] [Accepted: 04/11/2012] [Indexed: 12/29/2022]
Abstract
The cholinergic system plays a major role in learning and cognition and cholinergic neurons appear to be particularly vulnerable to ethanol (EtOH) exposure. There are conflicting results if EtOH directly damages cholinergic neurons. Thus, the aims of the present study were (1) to investigate the effect of different EtOH concentrations on cholinergic neurons in organotypic brain slices of the nucleus basalis of Meynert (nbM) and (2) to study if the most potent cholinotrophic substance nerve growth factor (NGF) or inhibitors of mitogen activated kinase (MAPK) p38- and nitric-oxide synthase (NOS)-pathways may counteract any EtOH effect. Two-week old organotypic rat brain slices of the nbM were exposed to 1–100 mM EtOH for 7 days with or without drugs and the number of choline-acetyltransferase (ChAT)-positive neurons was counted. Our data show that EtOH significantly reduced the number of ChAT-positive neurons with the most potent effect at a concentration of 50 mM EtOH (54 ± 5 neurons per slice, p < 0.001), compared to control slices (120 ± 13 neurons per slice). Inhibition of MAPK p38 (SB 203580, 10 μM) and NOS (L-thiocitrulline, 10 μM) counteracted the EtOH-induced decline of cholinergic neurons and NGF protected cholinergic neurons against the EtOH-induced effect. Withdrawal of EtOH resulted in a reversal of cholinergic neurons to nearly controls. In conclusion, EtOH caused a transient decline of cholinergic neurons, possibly involving MAPK p38- and NOS-pathways suggesting that EtOH does not induce direct cell death, but causes a transient downregulation of the cholinergic key enzyme, possibly reflecting a form of EtOH-associated plasticity.
Collapse
Affiliation(s)
- Daniela Ehrlich
- Laboratory of Psychiatry and Exp. Alzheimer's Research, Department of Psychiatry and Psychotherapy, Anichstr.35, 6020 Innsbruck, Austria
| | | | | |
Collapse
|
21
|
Ehrlich D, Pirchl M, Humpel C. Effects of long-term moderate ethanol and cholesterol on cognition, cholinergic neurons, inflammation, and vascular impairment in rats. Neuroscience 2012; 205:154-66. [PMID: 22244974 PMCID: PMC3314917 DOI: 10.1016/j.neuroscience.2011.12.054] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 12/23/2011] [Accepted: 12/28/2011] [Indexed: 12/20/2022]
Abstract
There is strong evidence that vascular risk factors play a role in the development of Alzheimer's disease (AD) or vascular dementia (vaD). Ethanol (EtOH) and cholesterol are such vascular risk factors, and we recently showed that hypercholesterolemia causes pathologies similar to AD [Ullrich et al. (2010) Mol Cell Neurosci 45, 408–417]. The aim of this study was to investigate the effects of long-term (12 months) EtOH treatment (20% v/v in drinking water) alone or long-term 5% cholesterol diet alone or a combination (mix) in adult Sprague–Dawley rats. Long-term EtOH treatment (plasma EtOH levels 58±23 mg/dl) caused significant impairment of spatial memory, reduced the number of choline acetyltransferase- and p75 neurotrophin receptor-positive nucleus basalis of Meynert neurons, decreased cortical acetylcholine, elevated cortical monocyte chemoattractant protein-1 and tissue-type plasminogen activator, enhanced microglia, and markedly induced anti-rat immunoglobulin G-positive blood–brain barrier leakage. The effect of long-term hypercholesterolemia was similar. Combined long-term treatment of rats with 20% EtOH and 5% cholesterol (mix) did not potentiate treatment with EtOH alone, but instead counteracted some of the EtOH-associated effects. In conclusion, our data show that vascular risk factors EtOH and cholesterol play a role in cognitive impairment and possibly vaD.
Collapse
Affiliation(s)
- D Ehrlich
- Laboratory for Psychiatry and Exp. Alzheimer's Research, Department of Psychiatry and Psychotherapy, Anichstr. 35, 6020 Innsbruck, Austria
| | | | | |
Collapse
|
22
|
Fiore M, Chaldakov GN, Aloe L. Nerve growth factor as a signaling molecule for nerve cells and also for the neuroendocrine-immune systems. Rev Neurosci 2009; 20:133-45. [PMID: 19774790 DOI: 10.1515/revneuro.2009.20.2.133] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nerve growth factor (NGF) is a signaling molecule, originally discovered for its role on differentiation and survival of peripheral sensory and sympathetic neurons. It has also been associated with functional activities of cells of the immune and endocrine systems. NGF biological activity is mediated by two classes of receptors: (i) p75 neurotrophin receptor (p75(NTR)), a 75 kDa glycoprotein, belonging to a superfamily of cytokine receptors including TNF receptors, and (ii) TrkA, a transmembrane tyrosine kinase of 140 kDa. Both TrkA and p75(NTR) are known to play a marked action in neurodegenerative disorders, immune-related deficits, and neuroendocrine (including adipoendocrine) mechanisms. This review focuses on these cellular events and presents a working model which attempts to explain the close interrelationships of the neuro-endocrine-immune triad via a modulatory action of NGF.
Collapse
Affiliation(s)
- Marco Fiore
- Institute of Neurobiology and Molecular Medicine, National Research Council, Rome, Italy
| | | | | |
Collapse
|
23
|
Fiore M, Laviola G, Aloe L, di Fausto V, Mancinelli R, Ceccanti M. Early exposure to ethanol but not red wine at the same alcohol concentration induces behavioral and brain neurotrophin alterations in young and adult mice. Neurotoxicology 2009; 30:59-71. [DOI: 10.1016/j.neuro.2008.11.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 11/19/2008] [Accepted: 11/21/2008] [Indexed: 10/21/2022]
|
24
|
Bruns MB, Miller MW. Neurotrophin ligand-receptor systems in somatosensory cortex of adult rat are affected by repeated episodes of ethanol. Exp Neurol 2007; 204:680-92. [PMID: 17320080 PMCID: PMC1995597 DOI: 10.1016/j.expneurol.2006.12.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 12/19/2006] [Accepted: 12/28/2006] [Indexed: 12/24/2022]
Abstract
Ethanol exposure profoundly affects learning and memory and neural plasticity. Key players underlying these functions are neurotrophins. The present study explored the effects of ethanol on the distribution of neurotrophins in the cerebral cortex of the adult rat. Age- and weight-matched pairs of adult male, Long-Evans rats were fed a liquid, ethanol-containing (6.7% v/v) diet or pair-fed an isocaloric control diet three consecutive days per week for 6, 12, 18, or 24 weeks. Brains were processed immunohistochemically for nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) expression and for the expression of three neurotrophin receptors, p75, trkA, and trkB. Total numbers of immunolabeled neurons in specific layers of somatosensory cortex of ethanol- and control-fed animals were determined stereologically. Ethanol exposure induced an increase in the numbers of NGF- or BDNF-expressing neurons and in neurotrophin content per somata. These changes were (a) time and (b) laminar dependent. In contrast, the number of receptor-expressing neurons did not change due to ethanol exposure or to length of time on the ethanol diet. Thus, ethanol induces the recruitment of cortical neurons to express neurotrophins and an increase in the amount of neurotrophin expression per neuron.
Collapse
Affiliation(s)
- Marla B. Bruns
- Department of Neuroscience and Physiology, State University of New York- Upstate Medical University, Syracuse NY 13210 USA
- Developmental Exposure Alcohol Research Center, State University of New York, Binghamton NY 13902 USA and Syracuse NY 13210 USA
| | - Michael W. Miller
- Department of Neuroscience and Physiology, State University of New York- Upstate Medical University, Syracuse NY 13210 USA
- Developmental Exposure Alcohol Research Center, State University of New York, Binghamton NY 13902 USA and Syracuse NY 13210 USA
- Research Service, Veterans Affairs Medical Center, Syracuse NY 13210 USA
| |
Collapse
|
25
|
Yoon SJ, Roh S, Lee H, Lee JY, Lee BH, Kim YK, Kim DJ. Possible role of nerve growth factor in the pathogenesis of alcohol dependence. Alcohol Clin Exp Res 2006; 30:1060-5. [PMID: 16737466 DOI: 10.1111/j.1530-0277.2006.00120.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Recent studies have raised the possibility that nerve growth factor (NGF) is abnormally regulated in the central nervous system (CNS) of animal models of chronic ethanol treatment. The goals of this study were to determine whether prolonged alcohol consumption is associated with the plasma NGF levels and to assess the effect of a positive family history of alcohol dependence on plasma NGF levels in the alcohol-dependent patients. METHODS We used the enzyme-linked immunosorbent assay (ELISA) to determine the concentrations of peripheral NGF in patients with alcohol dependence and in a control group. RESULTS The plasma NGF concentrations in the alcohol-dependent patients were significantly lower than in the controls (71.9 vs 110.5 pg/mL, respectively). Moreover, the alcohol-dependent patients with positive family histories showed a greater decrease in their NGF levels than those subjects with negative family histories (64.7 vs 83.3 pg/mL, respectively). CONCLUSIONS Our study suggests that the NGF levels may be a trait marker for the development of alcohol dependence.
Collapse
Affiliation(s)
- Su-Jung Yoon
- Department of Psychiatry, College of Medicine, Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
26
|
Gericke CA, Schulte-Herbrüggen O, Arendt T, Hellweg R. Chronic alcohol intoxication in rats leads to a strong but transient increase in NGF levels in distinct brain regions. J Neural Transm (Vienna) 2005; 113:813-20. [PMID: 16252071 DOI: 10.1007/s00702-005-0361-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 07/23/2005] [Indexed: 10/25/2022]
Abstract
Nerve growth factor (NGF), a member of the neurotrophin family, is an essential mediator of neuronal activity and synaptic plasticity of basal forebrain cholinergic neurons. In this study NGF-protein levels were determined in areas of the basal forebrain cholinergic system, its projection areas as well as the striatum and the cerebellum after long-term exposure (6 and 9 months) to ethanol and a phase of withdrawal in male Sprague-Dawley rats. 6-month alcohol treatment led to an increase of NGF to 650-850% of controls in the basal forebrain and the septum and to a 210-485% increase in the cholinergic projection areas (anterior cortex, hippocampus and olfactory bulb). After 9 months exposure to ethanol, a decrease of NGF by 16% in the frontal cortex was observed compared to controls. In the other brain regions no differences in NGF expression were detectable at this time-point. These results support the idea of an endogenous neuroprotective mechanism acting through a transient NGF induction followed by a decrease in NGF-levels during the course of further neuronal degeneration.
Collapse
Affiliation(s)
- C A Gericke
- Institute of Health Sciences, Berlin University of Technology, Berlin, Germany
| | | | | | | |
Collapse
|
27
|
Miller MW. Repeated episodic exposure to ethanol affects neurotrophin content in the forebrain of the mature rat. Exp Neurol 2004; 189:173-81. [PMID: 15296847 DOI: 10.1016/j.expneurol.2004.05.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 04/16/2004] [Accepted: 05/20/2004] [Indexed: 11/26/2022]
Abstract
Chronic exposure to ethanol can cause deficits in learning and memory. It has been suggested that withdrawal is potentially more damaging than the ethanol exposure per se. Therefore, we explored the effect of repeated episodic exposure to ethanol on key regulators of cortical activity, the neurotrophins. Rats were exposed to ethanol via a liquid diet for 3 days per week for 6-24 weeks. Control rats were pair-fed an isocaloric liquid diet or ad libitum fed chow and water. The concentrations of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) were determined using enzyme-linked immunosorbant assays (ELISAs). Five telencephalic structures were examined: parietal cortex, entorhinal cortex, hippocampus, the basal nucleus, and the septal nuclei. All five areas expressed each of the three neurotrophins; BDNF was most abundant and NGF the least. The parietal cortex was susceptible to ethanol exposure, NGF and BDNF content increased, and NT-3 content fell, whereas no changes were detectable in the entorhinal cortex. In the hippocampus, the amount all three neurotrophins increased following episodic ethanol exposure. Neurotrophin content in the two segments of the basal forebrain was affected; NGF and NT-3 content in the basal forebrain was reduced and NGF and BDNF content in the septal nuclei was increased by ethanol exposure. In many cases where ethanol had an effect, the change was transient so that by 24 weeks of episodic exposure, no significant changes were evident. Thus, the effects of ethanol are site- and time-dependent. This pattern differs from changes caused by chronic ethanol exposure, hence, neurotrophins must be vulnerable to the effects of withdrawal. Furthermore, the ethanol-induced changes do not appear to fit a model consistent with retrograde regulation, rather they suggest that neurotrophins act through autocrine/paracrine systems.
Collapse
Affiliation(s)
- Michael W Miller
- Department of Neuroscience and Physiology, State University of New York-Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
28
|
Pitkin SR, Savage LM. Age-related vulnerability to diencephalic amnesia produced by thiamine deficiency: the role of time of insult. Behav Brain Res 2004; 148:93-105. [PMID: 14684251 DOI: 10.1016/s0166-4328(03)00208-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Age is a risk factor for the development of many neurological disorders, including alcohol-related neurological disorders. A rodent model of Wernicke-Korsakoff Syndrome (WKS), acute pyrithiamine-induced thiamine deficiency (PTD), produces diencephalic damage and impairments of memory similar to what is seen in WKS patients. Advanced age increases the vulnerability to the cascade of acute and some chronic neurological events caused by PTD treatment. Interactions between PTD treatment and age at the time of treatment (3, 10, or 21 months), in addition to the effects of an increased recovery period, were examined relative to spatial memory impairment and neuropathology in Fischer 344 rats. Although acute neurological disturbances and medial thalamic brain lesions were more prevalent in middle-aged and senescent rats exposed to PTD treatment, relative to young rats, behavioral data did not support the view that PTD and aging have synergistic effects. In addition, both advanced age and PTD treatment result in a loss of basal forebrain cholinergic neurons, though there was no interaction. Despite the fact that no convincing evidence was found for an effect of extended recovery time on neuropathology measures, young rats given an extensive recovery period displayed less working memory impairment. In summary, these data provide evidence for an increased susceptibility of the aged rat to the acute neurological consequences and diencephalic pathology associated with PTD treatment and indicated a similar vulnerability of the middle-aged rat. However, the synergistic interaction between aging and PTD treatment in thalamic tissue loss did not express behaviorally.
Collapse
Affiliation(s)
- Shane R Pitkin
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Binghamton, NY 13905, USA
| | | |
Collapse
|
29
|
Miller MW, Mooney SM. Chronic exposure to ethanol alters neurotrophin content in the basal forebrain-cortex system in the mature rat: Effects on autocrine-paracrine mechanisms. ACTA ACUST UNITED AC 2004; 60:490-8. [PMID: 15307153 DOI: 10.1002/neu.20059] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurotrophins are broadly expressed in the mammalian forebrain: notably in cerebral cortex and the basal forebrain (e.g., the septal and basal nuclei). These factors promote neuronal survival and plasticity, and have been implicated as key players in learning and memory. Chronic exposure to ethanol causes learning and memory deficits. We tested the hypothesis that ethanol affects neurotrophin expression and predicted that these changes would be consistent with alterations in retrograde or autocrine/paracrine systems. Mature rats were fed a liquid diet containing ethanol daily for 8 or 24 weeks. Weight-matched controls were pair-fed an isocaloric, isonutritive diet. Proteins from five structures (parietal and entorhinal cortices, hippocampus, and the basal and septal nuclei) were studied. ELISAs were used to determine the concentration of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3). All three neurotrophins were detected in each structure examined. Ethanol treatment significantly (p < 0.05) affected neurotrophin expression in time- and space-dependent manners. NGF content was generally depressed by ethanol exposure, whereas NT-3 content increased. BDNF concentration was differentially affected by ethanol: it increased in the parietal cortex and the basal forebrain and decreased in the hippocampus. With the exception of NGF in the septohippocampal system, the ethanol-induced changes in connected structures were inconsistent with changes that would be predicted from a retrograde model. Thus, the present data (a) support the concept that neurotrophins act through a nonretrograde system (i.e., a local autocrine/paracrine system), and (b) that chronic exposure to ethanol disrupts these regulatory mechanisms.
Collapse
Affiliation(s)
- Michael W Miller
- Department of Neuroscience and Physiology, S.U.N.Y.-Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA.
| | | |
Collapse
|
30
|
Cadete-Leite A, Pereira PA, Madeira MD, Paula-Barbosa MM. Nerve growth factor prevents cell death and induces hypertrophy of basal forebrain cholinergic neurons in rats withdrawn from prolonged ethanol intake. Neuroscience 2003; 119:1055-69. [PMID: 12831864 DOI: 10.1016/s0306-4522(03)00205-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have previously reported that the hippocampal cholinergic fiber network is severely damaged in animals withdrawn from ethanol, and that a remarkable recovery in fiber density occurs following hippocampal grafting, a finding that we suggested to be underpinned by the graft production of neurotrophic factors, which are known to be decreased after ethanol exposure. It is widely accepted that nerve growth factor (NGF) signals the neurons of the brain cholinergic system, including those of the medial septum/vertical limb of the diagonal band of Broca (MS/VDB) nuclei, from which the septohippocampal projection arises. Because neurons in these nuclei are vulnerable to ethanol consumption and withdrawal we thought of interest to investigate, in withdrawn rats previously submitted to a prolonged period of ethanol intake, the effects of intraventricular delivery of NGF upon the MS/VDB cholinergic neurons. Stereological methods were applied to estimate neuron numbers and neuronal volumes in choline acetyltransferase (ChAT)-immunostained and Nissl-stained material. We have found that in ethanol-fed rats there was a significant reduction in the total number of Nissl-stained and cholinergic neurons in the MS/VDB, and that the suppression of ethanol intake further decreased neuron numbers. In addition, the somatic size of ChAT-IR neurons was reduced by ethanol intake, and withdrawal further aggravated neuronal atrophy. NGF treatment prevented the withdrawal-associated loss, and induced hypertrophy, of cholinergic neurons. These findings show that exogenous NGF protects the phenotype and prevents the withdrawal-induced degeneration of cholinergic neurons in the MS/VDB. These effects might be due to the trophic action of NGF upon the basal forebrain cholinergic neurons, including the hippocampal fiber network that conveys this neurotrophin retrogradely to the MS/VDB, and/or upon their targets, that is, the hippocampal formation neurons.
Collapse
Affiliation(s)
- A Cadete-Leite
- Department of Anatomy, Porto Medical School, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
| | | | | | | |
Collapse
|
31
|
Miller R, King MA, Heaton MB, Walker DW. The effects of chronic ethanol consumption on neurotrophins and their receptors in the rat hippocampus and basal forebrain. Brain Res 2002; 950:137-47. [PMID: 12231238 DOI: 10.1016/s0006-8993(02)03014-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Damage to the basal forebrain frequently results in deficits in learning and memory. Mnenonic dysfunction also occurs following prolonged ethanol consumption in humans and in animal models of chronic ethanol intake, accompanied by specific abnormalities in synaptic transmission between the basal forebrain and hippocampus. The integrity of at least some of the reciprocal neuronal connections between these brain regions is influenced by target-derived neurotrophic factors. We used a semiquantitative reverse transcription polymerase chain reaction technique to measure the messenger RNA for neurotrophins BDNF and NGF, and for their receptors trkB, trkA, and the low affinity receptor, p75(NTR) in the hippocampus and basal forebrain of rats after 28 weeks of alcohol consumption without malnutrition. This chronic ethanol treatment (CET) resulted in a marked and selective reduction in basal forebrain trkA mRNA. Western blotting revealed a similar reduction of basal forebrain trkA protein. CET effects on basal forebrain trkA may reflect impaired NGF signaling that could compromise septohippocampal synaptic connections, cholinergic differentiation, and emergent functional abilities dependent on these properties.
Collapse
MESH Headings
- Alcohol Drinking/metabolism
- Animals
- Brain-Derived Neurotrophic Factor/biosynthesis
- Brain-Derived Neurotrophic Factor/genetics
- Brain-Derived Neurotrophic Factor/metabolism
- Ethanol/administration & dosage
- Hippocampus/drug effects
- Hippocampus/metabolism
- Male
- Prosencephalon/drug effects
- Prosencephalon/metabolism
- RNA, Messenger/biosynthesis
- Rats
- Rats, Long-Evans
- Receptor, Nerve Growth Factor
- Receptor, trkA/biosynthesis
- Receptor, trkA/genetics
- Receptor, trkA/metabolism
- Receptor, trkB/biosynthesis
- Receptor, trkB/genetics
- Receptor, trkB/metabolism
- Receptors, Nerve Growth Factor/biosynthesis
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
Collapse
Affiliation(s)
- R Miller
- Department of Neuroscience and McKnight Brain Institute, Box 100244 JHMHC, University of Florida College of Medicine, Gainesville, FL 32610-0244, USA.
| | | | | | | |
Collapse
|
32
|
Light KE, Brown DP, Newton BW, Belcher SM, Kane CJM. Ethanol-induced alterations of neurotrophin receptor expression on Purkinje cells in the neonatal rat cerebellum. Brain Res 2002; 924:71-81. [PMID: 11743997 DOI: 10.1016/s0006-8993(01)03224-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ethanol causes loss of Purkinje cells in the cerebellum during the early stages of differentiation and maturation by a presently unknown mechanism. Neuronal vulnerability in the cerebellum parallels the prominent temporal and anatomical gradients of development (i.e. early to late interlobular and posterior to anterior, respectively). Development of Purkinje cells is known to require binding of the neurotrophins, including brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3), to the tyrosine-kinase (Trk) receptors TrkB and TrkC, respectively. In addition, Purkinje cells are reported to experience a critical switch between BDNF dependence and NT3 dependence during the period of highest ethanol sensitivity between postnatal days (PN) 4-6. To test the hypothesis that ethanol alters neurotrophin signaling leading to Purkinje neuronal death, the immunohistochemical expression of TrkB and TrkC receptors on Purkinje cells of rat pups following a moderate dose of ethanol was determined at various times surrounding the period of postnatal ethanol vulnerability. Ethanol selectively decreased Purkinje cell expression of TrkB and TrkC receptors following exposures within the vulnerable period (PN4-6). These results suggest that ethanol may induce loss of Purkinje cells by alteration of neurotrophic regulation at this critical stage.
Collapse
Affiliation(s)
- Kim E Light
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205, USA.
| | | | | | | | | |
Collapse
|
33
|
Pitkin SR, Savage LM. Aging potentiates the acute and chronic neurological symptoms of pyrithiamine-induced thiamine deficiency in the rodent. Behav Brain Res 2001; 119:167-77. [PMID: 11165332 DOI: 10.1016/s0166-4328(00)00350-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study aimed to assess the role of advanced age in the development and manifestation of thiamine deficiency using an animal model of Wernicke-Korsakoff syndrome (WKS). Interactions between pyrithiamine-induced thiamine deficiency (PTD) and age were examined relative to working memory impairment and neuropathology in Fischer 344 rats. Young (2-3 months) and aged (22-23 months) F344 rats were assigned to one of two treatment conditions: PTD or pair-fed control (PF). Rats in the former group were further divided into three groups according to duration of PTD treatment. Working memory was assessed with an operant matching-to-position (MTP) task; after testing, animals were sacrificed and both gross and immunocytochemical measures of brain pathology were obtained. Aged rats exhibited acute neurological disturbances during the PTD treatment regime earlier than did young rats, and also developed more extensive neuropathology with a shorter duration of PTD. Aged rats displayed increased brain shrinkage (smaller frontal cortical and callosal thickness) as well as enhanced astrocytic activity in the thalamus and a decrease in ChAT-positive cell numbers in the medial septum; the latter two measures of neuropathology were potentiated by PTD. In both young and aged rats, and to a greater degree in the latter group, PTD reduced thalamic volume. Behaviorally, aged rats displayed impaired choice accuracy on the delayed MTP task. Regardless of age, rats with lesions centered on the internal medullary lamina of the thalamus also displayed impaired choice accuracy. Moreover, increased PTD treatment duration led to increased response times on the delayed MTP task. These results suggest that aging does indeed potentiate the neuropathology associated with experimental thiamine deficiency, supporting an age coupling hypothesis of alcohol-related neurological disorders.
Collapse
Affiliation(s)
- S R Pitkin
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Binghamton, NY 13905, USA
| | | |
Collapse
|
34
|
Aloe L, Iannitelli A, Angelucci F, Bersani G, Fiore M. Studies in animal models and humans suggesting a role of nerve growth factor in schizophrenia-like disorders. Behav Pharmacol 2000; 11:235-42. [PMID: 11103878 DOI: 10.1097/00008877-200006000-00007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neurotrophic factors, such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), are known to play a crucial role in growth, differentiation and function in a variety of brain neurons during development and in adult life. We have recently shown that environmental changes, aggressive behavior and anxiety-like responses alter both circulating and brain basal NGF levels. In the present review, we present data obtained using animal models which suggest that neurotrophic factors, particularly NGF and BDNF, might be implicated in mechanism(s) leading to a condition associated with schizophrenic-like behaviors. The hypothesis that neurotrophins of the NGF family can be implicated in some maldevelopmental aspects of schizophrenia is supported by findings indicating that the constitutive levels of NGF and BDNF are affected in schizophrenic patients.
Collapse
Affiliation(s)
- L Aloe
- Institute of Neurobiology, CNR, Rome, Italy.
| | | | | | | | | |
Collapse
|
35
|
Savage LM, Candon PM, Hohmann HL. Alcohol-Induced Brain Pathology and Behavioral Dysfunction: Using an Animal Model To Examine Sex Differences. Alcohol Clin Exp Res 2000. [DOI: 10.1111/j.1530-0277.2000.tb02013.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Platelet-derived growth factor-mediated signal transduction underlying astrocyte proliferation: site of ethanol action. J Neurosci 1999. [PMID: 10559409 DOI: 10.1523/jneurosci.19-22-10014.1999] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Platelet-derived growth factor (PDGF) is a critical regulator of cell proliferation. Because ethanol inhibits cell proliferation in vivo and in vitro, we hypothesize that ethanol-induced inhibition results from differential interference with signal transduction pathways activated by PDGF. Cultured cortical astrocytes were used to examine the effects of ethanol on PDGF-mediated signal transduction, on the expression of two PDGF monomers (A- and B-chains), and on the expression of two PDGF receptor subunits (PDGFalphar and PDGFbetar). PDGF-B chain homodimer (PDGF-BB), and to a lesser extent PDGF-A chain homodimer (PDGF-AA), stimulated the proliferation of astrocytes raised in a serum-free medium. Ethanol attenuated these actions in a concentration-dependent manner. Ethanol inhibited both PDGF-AA- and PDGF-BB-mediated phosphorylation of PDGFalphar, but it had little effect on PDGFbetar autophosphorylation. Likewise, ethanol abolished the association of PDGFalphar to Ras GTPase-activating protein (Ras-GAP), but it did not affect the binding of Ras-GAP to PDGFbetar. PDGF stimulated the activities of mitogen-activated protein kinase (MAPK) in protein kinase C (PKC) independent and dependent manners. Ethanol inhibited the PKC-independent, acute activation of MAPK; however, it stimulated the PKC-dependent, sustained activation of MAPK. The expression of neither ligand was altered by exposure to ethanol for 3 d. Moreover, such treatment specifically upregulated PDGFalphar expression in a concentration-dependent manner. It did not, however, affect the binding affinity of either receptor. Thus, the signal transduction pathways initiated by PDGF-AA and PDGF-BB were differentially affected by ethanol. This differential vulnerability resulted from the preferential effects of ethanol on PDGFalphar autophosphorylation. Hence, ethanol-induced alterations are transduced through specific receptors of mitogenic growth factors.
Collapse
|
37
|
McAlhany RE, Miranda RC, Finnell RH, West JR. Ethanol Decreases Glial Derived Neurotrophic Factor (GDNF) Protein Release but Not mRNA Expression and Increases GDNF-Stimulated Shc Phosphorylation in the Developing Cerebellum. Alcohol Clin Exp Res 1999. [DOI: 10.1111/j.1530-0277.1999.tb04062.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Angelucci F, Fiore M, Cozzari C, Aloe L. Prenatal ethanol effects on NGF level, NPY and ChAT immunoreactivity in mouse entorhinal cortex: a preliminary study. Neurotoxicol Teratol 1999; 21:415-25. [PMID: 10440485 DOI: 10.1016/s0892-0362(99)00005-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
It has been reported that maternal ethanol consumption leads to deficits in the limbic areas involved in cognitive functions and interferes with synthesis and utilization of neurotrophins. In the present study, it was hypothesized that prenatal alcohol intake might induce neuroanatomical alterations in the entorhinal cortex (EC). We also investigated the possible EC involvement of brain nerve growth factor (NGF), the first neurotrophin to be isolated, during such pathological events. To test this hypothesis, we used pregnant mice exposed to ethanol during EC neurogenesis (starting about gestational day 8). Our data show that prenatal alcohol intake in male mice alters the EC neuronal growth and differentiation. These morphological alterations are accompanied by an altered NGF level in the EC of prenatal alcohol-treated mice. We also found a decrease in choline acetyltransferase- and neuropeptide Y-immunopositive neurons in the EC of alcohol-exposed mice. However, the relationship between neuronal damage induced in the EC by ethanol, low presence of NGF, and the possible functional and behavioral consequences remains to be elucidated.
Collapse
|
39
|
Seabold GK, Luo J, Miller MW. Effect of ethanol on neurotrophin-mediated cell survival and receptor expression in cultures of cortical neurons. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 108:139-45. [PMID: 9693792 DOI: 10.1016/s0165-3806(98)00043-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The interaction of ethanol and neurotrophin-mediated cell survival was examined in primary cultures of cortical neurons. Cells were obtained from rat fetuses on gestational day 16 and maintained in a medium supplemented with either 10% or 1.0% fetal calf serum (FCS). Exogenous nerve growth factor (NGF; 20 ng/ml), brain-derived neurotrophic factor (BDNF; 20 ng/ml) or neurotrophin 3 (NT-3; 20 ng/ml) was added to the cultures alone, or in combination with ethanol (400 mg/dl). The number of viable neurons was determined after a 48 h treatment with a growth factor and/or ethanol. The effects of ethanol on the expression of high affinity neurotrophin receptors (trkA, trkB, and trkC) and the low-affinity receptor (p75), were analyzed using Western immunoblots. In untreated cultures, 22.7% and 26.3% of the cells raised in a medium containing 10% and 1.0% FCS, respectively, were lost. Only NGF prevented the death of the cultured cortical neurons. Ethanol was toxic; it caused a 23.5% and 16.7% loss of cells (for cells grown in a medium containing 10% and 1.0% FCS, respectively) beyond that occurring 'naturally' in an untreated culture. Ethanol completely blocked the NGF-mediated cell survival. In general, BDNF and NT-3 did not offset the toxic effect of ethanol. Immunoblotting studies showed that the expression of p75 was significantly (p < 0.05) lower (40%) in ethanol-treated cultures, but ethanol did not affect trk expression. Thus, ethanol has specific effects upon NGF-mediated cell survival and the effects on the low affinity receptor imply that p75 specifically plays an important role in NGF signaling.
Collapse
Affiliation(s)
- G K Seabold
- Department of Psychiatry, University of Iowa College of Medicine, Iowa City 52242-1000, USA
| | | | | |
Collapse
|
40
|
Baird TJ, Vanecek SA, Briscoe RJ, Vallett M, Carl KL, Gauvin DV. Moderate, long-term, alcohol consumption potentiates normal, age-related spatial memory deficits in rats. Alcohol Clin Exp Res 1998; 22:628-36. [PMID: 9622443 DOI: 10.1111/j.1530-0277.1998.tb04304.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A modified "Samson" sucrose fading procedure was used to establish voluntary consumption of a 20% ethanol (EtOH) solution in male Sprague-Dawley rats for 18 consecutive months. Intakes were stable over the life span, and corresponded to the moderate to high levels of intake typically observed in human "social" drinkers and alcoholics. The Morris Water Maze (WM), Olton Radial Arm Maze (RM), and a "balance beam" test were used to assess the effects of alcohol and aging on spatial memory and motor function. Aged EtOH-consuming rats (AGED/ALC) demonstrated impaired task acquisition, relative to aged controls (AGED), not reaching criterion performance in either spatial memory task even when given four additional days of training. AGED/ALC rats scored significantly lower on percent correct out of the first eight arm entries, and committed more perseverative errors in the RM. There were no significant performance differences between AGED and AGED/ALC rats on a balance beam test of fine motor coordination and equilibrium, suggesting that deficits observed in the RM and WM were not related to differential motor functioning. These results demonstrated that long-term, moderate, oral self-administration of EtOH, within the range typically consumed by humans, had adverse effects on spatial memory in rats, and that such a pattern of EtOH consumption seemed to exacerbate the decline in cognitive functioning associated with normal aging.
Collapse
Affiliation(s)
- T J Baird
- Department of Psychiatry and Behavioral Sciences, University of Oklahoma Health Sciences Center, Oklahoma City 73190-3000, USA
| | | | | | | | | | | |
Collapse
|
41
|
Turrini P, Tirassa P, Vigneti E, Aloe L. A role of the thymus and thymosin-alpha1 in brain NGF levels and NGF receptor expression. J Neuroimmunol 1998; 82:64-72. [PMID: 9526847 DOI: 10.1016/s0165-5728(97)00189-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Using neonatal rats we investigated the role of the thymus and thymosin-alpha1 (T-alpha1) in brain NGF levels, NGF receptor (p75NGFr) expression, as well as the activity of choline acetyl-transferase, a cholinergic enzyme regulated by NGF. It is shown that early postnatal thymectomy causes a decrease in NGF in the hippocampus and cortex and p75NGFr distribution in the basal forebrain cholinergic neurons (FBCN). Intracerebral T-alpha1 injection in thymectomized animals induces a recovery, albeit not complete, of both NGF and p75NGFr. These findings indicate that thymectomy affects both the brain NGF producing and responding cells and that T-alpha1 may be one of the thymic hormones involved in the regulation of cerebral NGF synthesis.
Collapse
Affiliation(s)
- Paolo Turrini
- Institute of Neurobiology, CNR, viale Marx, 15-43, 00137 Rome, Italy
| | - Paola Tirassa
- Institute of Neurobiology, CNR, viale Marx, 15-43, 00137 Rome, Italy
| | - Eliana Vigneti
- Institute of Cellular Biology, CNR, viale Marx, 15-43, 00137 Rome, Italy
| | - Luigi Aloe
- Institute of Neurobiology, CNR, viale Marx, 15-43, 00137 Rome, Italy
| |
Collapse
|
42
|
Dohrman DP, West JR, Pantazis NJ. Ethanol Reduces Expression of the Nerve Growth Factor Receptor, But Not Nerve Growth Factor Protein Levels in the Neonatal Rat Cerebellum. Alcohol Clin Exp Res 1997. [DOI: 10.1111/j.1530-0277.1997.tb03853.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
43
|
Abstract
Prenatal exposure of human brain to ethanol impairs neuronal migration and differentiation and causes mental retardation. The present results indicate that the adverse effects of ethanol on brain development may be partly due to the ethanol-induced disturbance of neuronal interaction with laminin, a protein involved in neuronal migration and axon guidance. This report shows that physiological concentrations (IC50 = 28 mM) of ethanol inhibit neurite outgrowth and neuronal migration of the rat cerebellar granule neurons on a laminin substratum. The ethanol-treated granule neurons undergo apoptosis, degrade their laminin substratum, and appear to release and bind increased amounts of the B2-chain-derived peptides along their surfaces. A protease inhibitor aprotinin, and the NMDA receptor channel, and voltage-gated calcium channel antagonist MK801 partially protect cerebellar granule neurons from ethanol-induced neurotoxicity. These results imply that ethanol-treated granule neurons resemble the granule neurons of the homozygous weaver mouse cerebellum with respect to their apoptosis, laminin expression, and partial rescue by approtinin and MK-801. Thus, ethanol may influence neuronal survival and neurite outgrowth via molecular pathways similar to those involved in neuronal death in other neurodegenerative processes of the central nervous system.
Collapse
Affiliation(s)
- P Liesi
- Laboratory of Molecular and Cellular Neurobiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20852, USA.
| |
Collapse
|
44
|
Luo J, West JR, Pantazis NJ. Ethanol exposure reduces the density of the low-affinity nerve growth factor receptor (p75) on pheochromocytoma (PC12) cells. Brain Res 1996; 737:34-44. [PMID: 8930347 DOI: 10.1016/0006-8993(96)00657-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although ethanol is detrimental to the developing nervous system, the mechanism(s) by which ethanol produces neuronal damage is (are) not clear. One potential mechanism is ethanol-induced inhibition of neurotrophic support. This study utilized an in vitro model, pheochromocytoma PC12 cells, to examine the effect of ethanol on the nerve growth factor (NGF) receptor. NGF binding studies indicated that ethanol exposure (400 mg/dl for 4 days) reduced the density of the low-affinity (p75) NGF receptor on PC12 cells, but had no effect on the density of the high-affinity NGF receptor. The equilibrium dissociation constants (Kd) for both the low-affinity and high-affinity NGF receptors were unaffected by ethanol. Low-affinity NGF binding is mediated by the p75 component of the NGF receptor. Quantification of p75 by immunoprecipitation revealed that ethanol reduced the level of p75 in PC12 cells. However, Northern analysis indicated that the p75 mRNA was not reduced by ethanol exposure, raising the possibilities that ethanol inhibited translation of p75 or incorporation of the p75 protein into the plasma membrane. This work is consistent with the hypothesis that ethanol's detrimental effects may be produced in part by inhibition of neurotrophic support at the receptor level.
Collapse
Affiliation(s)
- J Luo
- Department of Anatomy, Bowen Science Building, University of Iowa College of Medicine, University of Iowa 52242, USA
| | | | | |
Collapse
|
45
|
Nakano T, Fujimoto T, Shimooki S, Fukudome T, Uchida T, Tsuji T, Mitsuyama Y, Akimoto H, Furukawa S. Transient elevation of nerve growth factor content in the rat hippocampus and frontal cortex by chronic ethanol treatment. Psychiatry Clin Neurosci 1996; 50:157-60. [PMID: 9201763 DOI: 10.1111/j.1440-1819.1996.tb01681.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The nerve growth factor (NGF) content in the hippocampus and frontal cortex of chronic ethanol-treated rats was measured and compared with that of control rats, using a two-site enzyme immunoassay (EIA) system. The different time periods of chronic ethanol treatment caused transient elevation of the NGF content in both the hippocampus and frontal cortex. The NGF content in the hippocampus was significantly elevated in rats undergoing ethanol treatment of 2 weeks and 1 month. Nerve growth factor content of the 1 month treatment was higher than that of the 2 week treatment. However, a 3 month administration of ethanol reduced the NGF content to the control level. The NGF content in the frontal cortex increased significantly in the 2 week administration, but decreased to the control level in the 1 month administration. The increase of NGF may be caused by the proliferation of glial cells or the enhancement of neuronal production of NGF.
Collapse
Affiliation(s)
- T Nakano
- South Japan Health Science Centre, Miyazaki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Aloe L, Tuveri MA, Guerra G, Pinna L, Tirassa P, Micera A, Alleva E. Changes in human plasma nerve growth factor level after chronic alcohol consumption and withdrawal. Alcohol Clin Exp Res 1996; 20:462-5. [PMID: 8727238 DOI: 10.1111/j.1530-0277.1996.tb01076.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Numerous studies reported in recent years have shown that withdrawal from chronic consumption of drugs induces high levels of anxiety, both in humans and in animal models. In the present study, we demonstrated that withdrawal from chronic consumption of either ethanol or heroin causes a significant increase in plasma nerve growth factor, suggesting that the resulting anxiety condition triggers the release of this molecule. Although the functional significance of this phenomenon needs to be better defined, it is hypothesized that the increased levels of circulating nerve growth factor might be involved in homeostatic adaptive and/or reparative mechanisms.
Collapse
Affiliation(s)
- L Aloe
- Institute of Neurobiology, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
47
|
Saunders DE, Hannigan JH, Zajac CS, Wappler NL. Reversal of alcohol's effects on neurite extension and on neuronal GAP43/B50, N-myc, and c-myc protein levels by retinoic acid. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 86:16-23. [PMID: 7656409 DOI: 10.1016/0165-3806(95)00008-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Alcohol teratogenesis may be due in part to inhibition of neuronal differentiation by ethanol. We showed previously that alcohol decreased neuronal differentiation (neurite extension) and increased N-myc and c-myc neuronal protein levels. Since Growth-Associated Protein 43 (GAP43/B50) levels must increase for neurons to differentiate, alcohol may decrease GAP43/B50. Alcohol dose-dependently (0-0.5%) decreased GAP43/B50 protein levels by up to 92% in immature LA-N-5 cells. Five nM retinoic acid alone induced differentiation and increased GAP43/B50 levels to 230% of control. These retinoic acid-induced increases in GAP43/B50 and neurite outgrowth, and decreases in N-myc and c-myc, were reversed dose-dependently by alcohol (0-0.5%). Conversely, the adverse effects of 0.25% alcohol on neurite extension, GAP43/B50, N-myc, and c-myc were prevented by 15 and 45 nM retinoic acid. These results suggest that inhibition of neuronal differentiation by alcohol and prevention of such effects by retinoic acid are related to changes in GAP43/B50, N-myc and c-myc.
Collapse
Affiliation(s)
- D E Saunders
- Fetal Alcohol Research Center, C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecoloy, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
48
|
Prasad VV. Alterations and recovery of rat brain gangliosides and glycosidases following long-term exposure to alcohol and rehabilitation during development. Brain Res 1993; 610:75-81. [PMID: 8518932 DOI: 10.1016/0006-8993(93)91219-i] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The present study examines effects of continuous exposure to alcohol during gestation, lactation and postweaning periods and rehabilitation on gangliosides and their catabolizing enzymes in whole brain (WB), cerebrum (C), cerebellum (CB) and brain stem (BS) of 63-day-old rats. Continuous exposure to alcohol was found to cause significant deficits in the body and brain weights. On the other hand, the concentration of total ganglioside in whole brain, cerebrum, cerebellum and brain stem showed an increase following exposure to alcohol. In agreement with the increased ganglioside concentration the activities of sialidase, beta-galactosidase, beta-glucosidase and beta-hexosaminidase, which are likely to be involved in the catabolism of gangliosides, showed reductions due to alcohol. Alcohol was also found to alter the proportions of individual gangliosides and the changes were found to be region-specific. However; the alcohol-induced alterations were reversed, at least to some extent, upon abstinence from alcohol. Body weights of control (CT), alcoholic (AC) and rehabilitated (AR) rats were 164 +/- 2, 107 +/- 7 and 139 +/- 3 (mean +/- S.E.M.), respectively. Decrease in tissue weight was significant in whole brain, cerebrum and brain stem but not in cerebellum. In AR rats significant deficits in tissue weights persisted in cerebrum and almost a complete recovery was observed in brain stem. On the other hand, the increase in the concentration of gangliosides in WB, C, CB and BS of AC rats amounted to 23, 19, 19 and 53% of controls, respectively. The corresponding values for the AR rats were 12, 14, 3 and 5%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- V V Prasad
- Department of Biochemistry, Faculty of Science, M.S. University of Baroda, India
| |
Collapse
|