Santiago AE, Ruiz-Perez F, Jo NY, Vijayakumar V, Gong MQ, Nataro JP. A large family of antivirulence regulators modulates the effects of transcriptional activators in Gram-negative pathogenic bacteria.
PLoS Pathog 2014;
10:e1004153. [PMID:
24875828 PMCID:
PMC4038620 DOI:
10.1371/journal.ppat.1004153]
[Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 04/16/2014] [Indexed: 11/21/2022] Open
Abstract
We have reported that transcription of a hypothetical small open reading frame (orf60) in enteroaggregative E. coli (EAEC) strain 042 is impaired after mutation of aggR, which encodes a global virulence activator. We have also reported that the cryptic orf60 locus was linked to protection against EAEC diarrhea in two epidemiologic studies. Here, we report that the orf60 product acts as a negative regulator of aggR itself. The orf60 protein product lacks homology to known repressors, but displays 44–100% similarity to at least fifty previously undescribed small (<10 kDa) hypothetical proteins found in many gram negative pathogen genomes. Expression of orf60 homologs from enterotoxigenic E. coli (ETEC) repressed the expression of the AraC-transcriptional ETEC regulator CfaD/Rns and its regulon in ETEC strain H10407. Complementation in trans of EAEC 042orf60 by orf60 homologs from ETEC and the mouse pathogen Citrobacter rodentium resulted in dramatic suppression of aggR. A C. rodentium orf60 homolog mutant showed increased levels of activator RegA and increased colonization of the adult mouse. We propose the name Aar (AggR-activated regulator) for the clinically and epidemiologically important orf60 product in EAEC, and postulate the existence of a large family of homologs among pathogenic Enterobacteriaceae and Pasteurellaceae. We propose the name ANR (AraC Negative Regulators) for this family.
We report here the identification and characterization of a new family of negative regulators in Gram-negative bacteria, including many pathotypes of diarrheagenic Enterobacteriaceae and members of the Pasteurellaceae. Members of this regulator family in enteroaggregative (EAEC) and enterotoxigenic E. coli (ETEC) and in Citrobacter rodentium downregulate the expression of positive regulator partners AggR, CfaD/Rns and RegA, respectively, all members of the AraC/XylS family of regulators. Accordingly, we propose the name ANR (AraC Negative Regulators) for this family. ANR members orf60 (termed Aar), orf02851 (Rnr), orf0450 and orf01070 (Cnr) from EAEC, C. rodentium and ETEC respectively were characterized in this study. Deletion of ANR homologs upregulated the expression of AggR and RegA in EAEC strain 042 and C. rodentium respectively; overexpression of orf60, orf02851, orf0450 and orf01070 in EAEC strain 042 down-regulated AggR. C. rodentium harboring a null mutation in orf02851 exhibited a significant increase in expression of the regA and RegA-regulated fimbriae. The orf02851 mutant showed higher levels of C. rodentium in feces and colonic contents, and greater weight loss compared to mice inoculated with the wild-type.
Collapse