1
|
Glunčić M, Vlahović I, Rosandić M, Paar V. Novel Cascade Alpha Satellite HORs in Orangutan Chromosome 13 Assembly: Discovery of the 59mer HOR-The largest Unit in Primates-And the Missing Triplet 45/27/18 HOR in Human T2T-CHM13v2.0 Assembly. Int J Mol Sci 2024; 25:7596. [PMID: 39062839 PMCID: PMC11276891 DOI: 10.3390/ijms25147596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
From the recent genome assembly NHGRI_mPonAbe1-v2.0_NCBI (GCF_028885655.2) of orangutan chromosome 13, we computed the precise alpha satellite higher-order repeat (HOR) structure using the novel high-precision GRM2023 algorithm with Global Repeat Map (GRM) and Monomer Distance (MD) diagrams. This study rigorously identified alpha satellite HORs in the centromere of orangutan chromosome 13, discovering a novel 59mer HOR-the longest HOR unit identified in any primate to date. Additionally, it revealed the first intertwined sequence of three HORs, 18mer/27mer/45mer HORs, with a common aligned "backbone" across all HOR copies. The major 7mer HOR exhibits a Willard's-type canonical copy, although some segments of the array display significant irregularities. In contrast, the 14mer HOR forms a regular Willard's-type HOR array. Surprisingly, the GRM2023 high-precision analysis of chromosome 13 of human genome assembly T2T-CHM13v2.0 reveals the presence of only a 7mer HOR, despite both the orangutan and human genome assemblies being derived from whole genome shotgun sequences.
Collapse
Affiliation(s)
- Matko Glunčić
- Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;
| | - Ines Vlahović
- Department of Interdisciplinary Sciences, Algebra University College, 10000 Zagreb, Croatia;
| | - Marija Rosandić
- University Hospital Centre Zagreb (Ret.), 10000 Zagreb, Croatia;
- Croatian Academy of Sciences and Arts, 10000 Zagreb, Croatia
| | - Vladimir Paar
- Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;
- Croatian Academy of Sciences and Arts, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Federico C, Brancato D, Bruno F, Galvano D, Caruso M, Saccone S. Robertsonian Translocation between Human Chromosomes 21 and 22, Inherited across Three Generations, without Any Phenotypic Effect. Genes (Basel) 2024; 15:722. [PMID: 38927657 PMCID: PMC11202415 DOI: 10.3390/genes15060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Chromosomal translocations can result in phenotypic effects of varying severity, depending on the position of the breakpoints and the rearrangement of genes within the interphase nucleus of the translocated chromosome regions. Balanced translocations are often asymptomatic phenotypically and are typically detected due to a decrease in fertility resulting from issues during meiosis. Robertsonian translocations are among the most common chromosomal abnormalities, often asymptomatic, and can persist in the population as a normal polymorphism. We serendipitously discovered a Robertsonian translocation between chromosome 21 and chromosome 22, which is inherited across three generations without any phenotypic effect, notably only in females. In situ hybridization with alpha-satellite DNAs revealed the presence of both centromeric sequences in the translocated chromosome. The reciprocal translocation resulted in a partial deletion of the short arm of both chromosomes 21, and 22, with the ribosomal RNA genes remaining present in the middle part of the new metacentric chromosome. The rearrangement did not cause alterations to the long arm. The spread of an asymptomatic heterozygous chromosomal polymorphism in a population can lead to mating between heterozygous individuals, potentially resulting in offspring with a homozygous chromosomal configuration for the anomaly they carry. This new karyotype may not produce phenotypic effects in the individual who presents it. The frequency of karyotypes with chromosomal rearrangements in asymptomatic heterozygous form in human populations is likely underestimated, and molecular karyotype by array Comparative Genomic Hybridization (array-CGH) analysis does not allow for the identification of this type of chromosomal anomaly, making classical cytogenetic analysis the preferred method for obtaining clear results on a karyotype carrying a balanced rearrangement.
Collapse
Affiliation(s)
- Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (D.B.); (F.B.)
| | - Desiree Brancato
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (D.B.); (F.B.)
| | - Francesca Bruno
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (D.B.); (F.B.)
| | - Daiana Galvano
- Cytogenetic Laboratory, A.O.U. Policlinico Vittorio Emanuele, 95124 Catania, Italy; (D.G.); (M.C.)
| | - Mariella Caruso
- Cytogenetic Laboratory, A.O.U. Policlinico Vittorio Emanuele, 95124 Catania, Italy; (D.G.); (M.C.)
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (D.B.); (F.B.)
| |
Collapse
|
3
|
Logsdon GA, Rozanski AN, Ryabov F, Potapova T, Shepelev VA, Catacchio CR, Porubsky D, Mao Y, Yoo D, Rautiainen M, Koren S, Nurk S, Lucas JK, Hoekzema K, Munson KM, Gerton JL, Phillippy AM, Ventura M, Alexandrov IA, Eichler EE. The variation and evolution of complete human centromeres. Nature 2024; 629:136-145. [PMID: 38570684 PMCID: PMC11062924 DOI: 10.1038/s41586-024-07278-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Human centromeres have been traditionally very difficult to sequence and assemble owing to their repetitive nature and large size1. As a result, patterns of human centromeric variation and models for their evolution and function remain incomplete, despite centromeres being among the most rapidly mutating regions2,3. Here, using long-read sequencing, we completely sequenced and assembled all centromeres from a second human genome and compared it to the finished reference genome4,5. We find that the two sets of centromeres show at least a 4.1-fold increase in single-nucleotide variation when compared with their unique flanks and vary up to 3-fold in size. Moreover, we find that 45.8% of centromeric sequence cannot be reliably aligned using standard methods owing to the emergence of new α-satellite higher-order repeats (HORs). DNA methylation and CENP-A chromatin immunoprecipitation experiments show that 26% of the centromeres differ in their kinetochore position by >500 kb. To understand evolutionary change, we selected six chromosomes and sequenced and assembled 31 orthologous centromeres from the common chimpanzee, orangutan and macaque genomes. Comparative analyses reveal a nearly complete turnover of α-satellite HORs, with characteristic idiosyncratic changes in α-satellite HORs for each species. Phylogenetic reconstruction of human haplotypes supports limited to no recombination between the short (p) and long (q) arms across centromeres and reveals that novel α-satellite HORs share a monophyletic origin, providing a strategy to estimate the rate of saltatory amplification and mutation of human centromeric DNA.
Collapse
Affiliation(s)
- Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Department of Genetics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Allison N Rozanski
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Fedor Ryabov
- Masters Program in National Research University Higher School of Economics, Moscow, Russia
| | - Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Claudia R Catacchio
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Yafei Mao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - DongAhn Yoo
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Mikko Rautiainen
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sergey Nurk
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Oxford Nanopore Technologies, Oxford, United Kingdom
| | - Julian K Lucas
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mario Ventura
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Ivan A Alexandrov
- Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv, Israel
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Dan David Center for Human Evolution and Biohistory Research, Tel Aviv University, Tel Aviv, Israel
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Altemose N, Glennis A, Bzikadze AV, Sidhwani P, Langley SA, Caldas GV, Hoyt SJ, Uralsky L, Ryabov FD, Shew CJ, Sauria MEG, Borchers M, Gershman A, Mikheenko A, Shepelev VA, Dvorkina T, Kunyavskaya O, Vollger MR, Rhie A, McCartney AM, Asri M, Lorig-Roach R, Shafin K, Aganezov S, Olson D, de Lima LG, Potapova T, Hartley GA, Haukness M, Kerpedjiev P, Gusev F, Tigyi K, Brooks S, Young A, Nurk S, Koren S, Salama SR, Paten B, Rogaev EI, Streets A, Karpen GH, Dernburg AF, Sullivan BA, Straight AF, Wheeler TJ, Gerton JL, Eichler EE, Phillippy AM, Timp W, Dennis MY, O'Neill RJ, Zook JM, Schatz MC, Pevzner PA, Diekhans M, Langley CH, Alexandrov IA, Miga KH. Complete genomic and epigenetic maps of human centromeres. Science 2022; 376:eabl4178. [PMID: 35357911 PMCID: PMC9233505 DOI: 10.1126/science.abl4178] [Citation(s) in RCA: 270] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Existing human genome assemblies have almost entirely excluded repetitive sequences within and near centromeres, limiting our understanding of their organization, evolution, and functions, which include facilitating proper chromosome segregation. Now, a complete, telomere-to-telomere human genome assembly (T2T-CHM13) has enabled us to comprehensively characterize pericentromeric and centromeric repeats, which constitute 6.2% of the genome (189.9 megabases). Detailed maps of these regions revealed multimegabase structural rearrangements, including in active centromeric repeat arrays. Analysis of centromere-associated sequences uncovered a strong relationship between the position of the centromere and the evolution of the surrounding DNA through layered repeat expansions. Furthermore, comparisons of chromosome X centromeres across a diverse panel of individuals illuminated high degrees of structural, epigenetic, and sequence variation in these complex and rapidly evolving regions.
Collapse
Affiliation(s)
- Nicolas Altemose
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - A. Glennis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Andrey V. Bzikadze
- Graduate Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA, USA
| | - Pragya Sidhwani
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Sasha A. Langley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Gina V. Caldas
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Savannah J. Hoyt
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Lev Uralsky
- Sirius University of Science and Technology, Sochi, Russia
- Vavilov Institute of General Genetics, Moscow, Russia
| | | | - Colin J. Shew
- Genome Center, MIND Institute, and Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, USA
| | | | | | - Ariel Gershman
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, USA
| | - Alla Mikheenko
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | | | - Tatiana Dvorkina
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Olga Kunyavskaya
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Mitchell R. Vollger
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ann M. McCartney
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mobin Asri
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Ryan Lorig-Roach
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Kishwar Shafin
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Sergey Aganezov
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Daniel Olson
- Department of Computer Science, University of Montana, Missoula, MT. USA
| | | | - Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Gabrielle A. Hartley
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Marina Haukness
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | | | - Fedor Gusev
- Vavilov Institute of General Genetics, Moscow, Russia
| | - Kristof Tigyi
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Shelise Brooks
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alice Young
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sergey Nurk
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sofie R. Salama
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, CA, USA
| | - Evgeny I. Rogaev
- Sirius University of Science and Technology, Sochi, Russia
- Vavilov Institute of General Genetics, Moscow, Russia
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Aaron Streets
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Gary H. Karpen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- BioEngineering and BioMedical Sciences Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Abby F. Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
| | - Beth A. Sullivan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | | | - Travis J. Wheeler
- Department of Computer Science, University of Montana, Missoula, MT. USA
| | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, MO, USA
- University of Kansas Medical School, Department of Biochemistry and Molecular Biology and Cancer Center, University of Kansas, Kansas City, KS, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Adam M. Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Winston Timp
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Megan Y. Dennis
- Genome Center, MIND Institute, and Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Rachel J. O'Neill
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Justin M. Zook
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Michael C. Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Pavel A. Pevzner
- Department of Computer Science and Engineering, University of California at San Diego, San Diego, CA, USA
| | - Mark Diekhans
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Charles H. Langley
- Department of Evolution and Ecology, University of California Davis, Davis, CA, USA
| | - Ivan A. Alexandrov
- Vavilov Institute of General Genetics, Moscow, Russia
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Karen H. Miga
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, CA, USA
| |
Collapse
|
5
|
Franek M, Kilar A, Fojtík P, Olšinová M, Benda A, Rotrekl V, Dvořáčková M, Fajkus J. Super-resolution microscopy of chromatin fibers and quantitative DNA methylation analysis of DNA fiber preparations. J Cell Sci 2021; 134:jcs258374. [PMID: 34350964 DOI: 10.1242/jcs.258374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/05/2021] [Indexed: 11/20/2022] Open
Abstract
Analysis of histone variants and epigenetic marks is dominated by genome-wide approaches in the form of chromatin immunoprecipitation-sequencing (ChIP-seq) and related methods. Although uncontested in their value for single-copy genes, mapping the chromatin of DNA repeats is problematic for biochemical techniques that involve averaging of cell populations or analysis of clusters of tandem repeats in a single-cell analysis. Extending chromatin and DNA fibers allows us to study the epigenetics of individual repeats in their specific chromosomal context, and thus constitutes an important tool for gaining a complete understanding of the epigenetic organization of genomes. We report that using an optimized fiber extension protocol is essential in order to obtain more reproducible data and to minimize the clustering of fibers. We also demonstrate that the use of super-resolution microscopy is important for reliable evaluation of the distribution of histone modifications on individual fibers. Furthermore, we introduce a custom script for the analysis of methylation levels on DNA fibers and apply it to map the methylation of telomeres, ribosomal genes and centromeres.
Collapse
Affiliation(s)
- Michal Franek
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Agata Kilar
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-61137 Brno, Czech Republic
| | - Petr Fojtík
- International Clinical Research Center (ICRC) at St. Anne's University Hospital, Pekařská 53, CZ-65691 Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Marie Olšinová
- Charles University, Faculty of Science, Biology Section, Imaging methods core facility at BIOCEV, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Aleš Benda
- Charles University, Faculty of Science, Biology Section, Imaging methods core facility at BIOCEV, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Vladimír Rotrekl
- International Clinical Research Center (ICRC) at St. Anne's University Hospital, Pekařská 53, CZ-65691 Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Jíří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-61137 Brno, Czech Republic
| |
Collapse
|
6
|
Gatto KP, Souza LHB, Nascimento J, Suárez P, Lourenço LB. Comparative mapping of a new repetitive DNA sequence and chromosome region-specific probes unveiling rearrangements in an Amazonian frog complex. Genome 2021; 64:857-868. [PMID: 34232087 DOI: 10.1139/gen-2020-0199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The frog species Physalaemus ephippifer exists in the Amazonian region and harbors heteromorphic Z and W chromosomes. A genetic lineage closely related to this species was recognized based on its mitochondrial DNA and RADseq-style markers, but its taxonomic status is still unclear and has been referred to as Lineage 1 of "P. cuvieri". The heteromorphic sex chromosomes found in P. ephippifer are not present in this lineage and which of its chromosome pairs is homologous to the sex chromosomes of P. ephippifer remain to be elucidated as well as the role of such a karyotypic divergence in the evolution of these frogs. Here, we described a new family of repetitive DNA and used its chromosomal sites along with the markers detected by a probe constructed from the microdissected segment of the Z chromosome of P. ephippifer to infer chromosomal homology. We also analyzed an unnamed species that is considered to be the sister group of the clade composed of Lineage 1 of "P. cuvieri" and P. ephippifer. Our results suggest that complex rearrangements involving the chromosomes that were inferred to be homeologous to the sex chromosomes of P. ephippifer have occurred during the divergence of this group of frogs.
Collapse
Affiliation(s)
- Kaleb Pretto Gatto
- Laboratório de Estudos Cromossômicos (LabEsC), Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Lucas H B Souza
- Laboratório de Estudos Cromossômicos (LabEsC), Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Juliana Nascimento
- Laboratório de Estudos Cromossômicos (LabEsC), Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Pablo Suárez
- Instituto de Biología Subtropical (CONICET-UNaM), Puerto Iguazú, Misiones, Argentina
| | - Luciana Bolsoni Lourenço
- Laboratório de Estudos Cromossômicos (LabEsC), Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
7
|
Balzano E, Giunta S. Centromeres under Pressure: Evolutionary Innovation in Conflict with Conserved Function. Genes (Basel) 2020; 11:E912. [PMID: 32784998 PMCID: PMC7463522 DOI: 10.3390/genes11080912] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022] Open
Abstract
Centromeres are essential genetic elements that enable spindle microtubule attachment for chromosome segregation during mitosis and meiosis. While this function is preserved across species, centromeres display an array of dynamic features, including: (1) rapidly evolving DNA; (2) wide evolutionary diversity in size, shape and organization; (3) evidence of mutational processes to generate homogenized repetitive arrays that characterize centromeres in several species; (4) tolerance to changes in position, as in the case of neocentromeres; and (5) intrinsic fragility derived by sequence composition and secondary DNA structures. Centromere drive underlies rapid centromere DNA evolution due to the "selfish" pursuit to bias meiotic transmission and promote the propagation of stronger centromeres. Yet, the origins of other dynamic features of centromeres remain unclear. Here, we review our current understanding of centromere evolution and plasticity. We also detail the mutagenic processes proposed to shape the divergent genetic nature of centromeres. Changes to centromeres are not simply evolutionary relics, but ongoing shifts that on one side promote centromere flexibility, but on the other can undermine centromere integrity and function with potential pathological implications such as genome instability.
Collapse
Affiliation(s)
- Elisa Balzano
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, 00185 Roma, Italy;
| | - Simona Giunta
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
8
|
Evolutionary Dynamics of the POTE Gene Family in Human and Nonhuman Primates. Genes (Basel) 2020; 11:genes11020213. [PMID: 32085667 PMCID: PMC7073761 DOI: 10.3390/genes11020213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 12/20/2022] Open
Abstract
POTE (prostate, ovary, testis, and placenta expressed) genes belong to a primate-specific gene family expressed in prostate, ovary, and testis as well as in several cancers including breast, prostate, and lung cancers. Due to their tumor-specific expression, POTEs are potential oncogenes, therapeutic targets, and biomarkers for these malignancies. This gene family maps within human and primate segmental duplications with a copy number ranging from two to 14 in different species. Due to the high sequence identity among the gene copies, specific efforts are needed to assemble these loci in order to correctly define the organization and evolution of the gene family. Using single-molecule, real-time (SMRT) sequencing, in silico analyses, and molecular cytogenetics, we characterized the structure, copy number, and chromosomal distribution of the POTE genes, as well as their expression in normal and disease tissues, and provided a comparative analysis of the POTE organization and gene structure in primate genomes. We were able, for the first time, to de novo sequence and assemble a POTE tandem duplication in marmoset that is misassembled and collapsed in the reference genome, thus revealing the presence of a second POTE copy. Taken together, our findings provide comprehensive insights into the evolutionary dynamics of the primate-specific POTE gene family, involving gene duplications, deletions, and long interspersed nuclear element (LINE) transpositions to explain the actual repertoire of these genes in human and primate genomes.
Collapse
|
9
|
Lopes-Coelho F, Silva F, Gouveia-Fernandes S, Martins C, Lopes N, Domingues G, Brito C, Almeida AM, Pereira SA, Serpa J. Monocytes as Endothelial Progenitor Cells (EPCs), Another Brick in the Wall to Disentangle Tumor Angiogenesis. Cells 2020; 9:cells9010107. [PMID: 31906296 PMCID: PMC7016533 DOI: 10.3390/cells9010107] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/22/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022] Open
Abstract
Bone marrow contains endothelial progenitor cells (EPCs) that, upon pro-angiogenic stimuli, migrate and differentiate into endothelial cells (ECs) and contribute to re-endothelialization and neo-vascularization. There are currently no reliable markers to characterize EPCs, leading to their inaccurate identification. In the past, we showed that, in a panel of tumors, some cells on the vessel wall co-expressed CD14 (monocytic marker) and CD31 (EC marker), indicating a putative differentiation route of monocytes into ECs. Herein, we disclosed monocytes as potential EPCs, using in vitro and in vivo models, and also addressed the cancer context. Monocytes acquired the capacity to express ECs markers and were able to be incorporated into blood vessels, contributing to cancer progression, by being incorporated in tumor neo-vasculature. Reactive oxygen species (ROS) push monocytes to EC differentiation, and this phenotype is reverted by cysteine (a scavenger and precursor of glutathione), which indicates that angiogenesis is controlled by the interplay between the oxidative stress and the scavenging capacity of the tumor microenvironment.
Collapse
Affiliation(s)
- Filipa Lopes-Coelho
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (F.L.-C.); (F.S.); (S.G.-F.); (G.D.); (S.A.P.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof. Lima Basto 1099-023 Lisboa, Portugal; (C.M.); (A.M.A.)
| | - Fernanda Silva
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (F.L.-C.); (F.S.); (S.G.-F.); (G.D.); (S.A.P.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof. Lima Basto 1099-023 Lisboa, Portugal; (C.M.); (A.M.A.)
| | - Sofia Gouveia-Fernandes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (F.L.-C.); (F.S.); (S.G.-F.); (G.D.); (S.A.P.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof. Lima Basto 1099-023 Lisboa, Portugal; (C.M.); (A.M.A.)
| | - Carmo Martins
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof. Lima Basto 1099-023 Lisboa, Portugal; (C.M.); (A.M.A.)
| | - Nuno Lopes
- Instituto de Biologia Experimental e Tecnológica, Avenida da República, Estação Agronómica, 2780-157 Oeiras, Portugal; (N.L.); (C.B.)
| | - Germana Domingues
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (F.L.-C.); (F.S.); (S.G.-F.); (G.D.); (S.A.P.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof. Lima Basto 1099-023 Lisboa, Portugal; (C.M.); (A.M.A.)
| | - Catarina Brito
- Instituto de Biologia Experimental e Tecnológica, Avenida da República, Estação Agronómica, 2780-157 Oeiras, Portugal; (N.L.); (C.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - António M Almeida
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof. Lima Basto 1099-023 Lisboa, Portugal; (C.M.); (A.M.A.)
- Hospital da Luz, Av. Lusíada 100, 1500-650 Lisboa, Portugal
| | - Sofia A Pereira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (F.L.-C.); (F.S.); (S.G.-F.); (G.D.); (S.A.P.)
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (F.L.-C.); (F.S.); (S.G.-F.); (G.D.); (S.A.P.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof. Lima Basto 1099-023 Lisboa, Portugal; (C.M.); (A.M.A.)
- Correspondence: ; Tel.: +350-217-229-800; Fax: +351-217-248-756
| |
Collapse
|
10
|
Cacheux L, Ponger L, Gerbault-Seureau M, Loll F, Gey D, Richard FA, Escudé C. The Targeted Sequencing of Alpha Satellite DNA in Cercopithecus pogonias Provides New Insight Into the Diversity and Dynamics of Centromeric Repeats in Old World Monkeys. Genome Biol Evol 2018; 10:1837-1851. [PMID: 29860303 PMCID: PMC6061836 DOI: 10.1093/gbe/evy109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2018] [Indexed: 02/06/2023] Open
Abstract
Alpha satellite is the major repeated DNA element of primate centromeres. Specific evolutionary mechanisms have led to a great diversity of sequence families with peculiar genomic organization and distribution, which have till now been studied mostly in great apes. Using high throughput sequencing of alpha satellite monomers obtained by enzymatic digestion followed by computational and cytogenetic analysis, we compare here the diversity and genomic distribution of alpha satellite DNA in two related Old World monkey species, Cercopithecus pogonias and Cercopithecus solatus, which are known to have diverged about 7 Ma. Two main families of monomers, called C1 and C2, are found in both species. A detailed analysis of our data sets revealed the existence of numerous subfamilies within the centromeric C1 family. Although the most abundant subfamily is conserved between both species, our fluorescence in situ hybridization (FISH) experiments clearly show that some subfamilies are specific for each species and that their distribution is restricted to a subset of chromosomes, thereby pointing to the existence of recurrent amplification/homogenization events. The pericentromeric C2 family is very abundant on the short arm of all acrocentric chromosomes in both species, pointing to specific mechanisms that lead to this distribution. Results obtained using two different restriction enzymes are fully consistent with a predominant monomeric organization of alpha satellite DNA that coexists with higher order organization patterns in the C. pogonias genome. Our study suggests a high dynamics of alpha satellite DNA in Cercopithecini, with recurrent apparition of new sequence variants and interchromosomal sequence transfer.
Collapse
Affiliation(s)
- Lauriane Cacheux
- Département Adaptations du Vivant, Structure et Instabilité des Génomes, INSERM U1154, CNRS UMR7196, Sorbonne Universités, Muséum National d’Histoire Naturelle, Paris, France
- Département Origines et Evolution, Institut de Systématique, Evolution, Biodiversité, UMR 7205 MNHN, CNRS, UPMC, EPHE, Sorbonne Universités, Muséum National d’Histoire Naturelle, Paris, France
| | - Loïc Ponger
- Département Adaptations du Vivant, Structure et Instabilité des Génomes, INSERM U1154, CNRS UMR7196, Sorbonne Universités, Muséum National d’Histoire Naturelle, Paris, France
| | - Michèle Gerbault-Seureau
- Département Origines et Evolution, Institut de Systématique, Evolution, Biodiversité, UMR 7205 MNHN, CNRS, UPMC, EPHE, Sorbonne Universités, Muséum National d’Histoire Naturelle, Paris, France
| | - François Loll
- Département Adaptations du Vivant, Structure et Instabilité des Génomes, INSERM U1154, CNRS UMR7196, Sorbonne Universités, Muséum National d’Histoire Naturelle, Paris, France
| | - Delphine Gey
- Service de Systématique Moléculaire, UMS 2700 CNRS, Sorbonne Universités, Muséum National d’Histoire Naturelle, Paris, France
| | - Florence Anne Richard
- Département Origines et Evolution, Institut de Systématique, Evolution, Biodiversité, UMR 7205 MNHN, CNRS, UPMC, EPHE, Sorbonne Universités, Muséum National d’Histoire Naturelle, Paris, France
- Université Versailles St-Quentin, Montigny-le-Bretonneux, France
| | - Christophe Escudé
- Département Adaptations du Vivant, Structure et Instabilité des Génomes, INSERM U1154, CNRS UMR7196, Sorbonne Universités, Muséum National d’Histoire Naturelle, Paris, France
| |
Collapse
|
11
|
de Castro IJ, Budzak J, Di Giacinto ML, Ligammari L, Gokhan E, Spanos C, Moralli D, Richardson C, de las Heras JI, Salatino S, Schirmer EC, Ullman KS, Bickmore WA, Green C, Rappsilber J, Lamble S, Goldberg MW, Vinciotti V, Vagnarelli P. Repo-Man/PP1 regulates heterochromatin formation in interphase. Nat Commun 2017; 8:14048. [PMID: 28091603 PMCID: PMC5241828 DOI: 10.1038/ncomms14048] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 11/23/2016] [Indexed: 12/28/2022] Open
Abstract
Repo-Man is a protein phosphatase 1 (PP1) targeting subunit that regulates mitotic progression and chromatin remodelling. After mitosis, Repo-Man/PP1 remains associated with chromatin but its function in interphase is not known. Here we show that Repo-Man, via Nup153, is enriched on condensed chromatin at the nuclear periphery and at the edge of the nucleopore basket. Repo-Man/PP1 regulates the formation of heterochromatin, dephosphorylates H3S28 and it is necessary and sufficient for heterochromatin protein 1 binding and H3K27me3 recruitment. Using a novel proteogenomic approach, we show that Repo-Man is enriched at subtelomeric regions together with H2AZ and H3.3 and that depletion of Repo-Man alters the peripheral localization of a subset of these regions and alleviates repression of some polycomb telomeric genes. This study shows a role for a mitotic phosphatase in the regulation of the epigenetic landscape and gene expression in interphase.
Collapse
Affiliation(s)
- Inês J. de Castro
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - James Budzak
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - Maria L. Di Giacinto
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - Lorena Ligammari
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - Ezgi Gokhan
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - Christos Spanos
- Wellcome Trust Centre for Cell Biology, Edinburgh EH9 3BF, UK
| | - Daniela Moralli
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | | | | | - Silvia Salatino
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | | | - Katharine S. Ullman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Wendy A. Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Catherine Green
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, Edinburgh EH9 3BF, UK
- Technische Universitat Berlin, 13355 Berlin, Germany
| | - Sarah Lamble
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Martin W. Goldberg
- School of Biological and Medical Science, Durham University, Durham DH1 3LE, UK
| | - Veronica Vinciotti
- College of Engineering, Design and Technology, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - Paola Vagnarelli
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| |
Collapse
|
12
|
Cacheux L, Ponger L, Gerbault-Seureau M, Richard FA, Escudé C. Diversity and distribution of alpha satellite DNA in the genome of an Old World monkey: Cercopithecus solatus. BMC Genomics 2016; 17:916. [PMID: 27842493 PMCID: PMC5109768 DOI: 10.1186/s12864-016-3246-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 11/02/2016] [Indexed: 11/10/2022] Open
Abstract
Background Alpha satellite is the major repeated DNA element of primate centromeres. Evolution of these tandemly repeated sequences has led to the existence of numerous families of monomers exhibiting specific organizational patterns. The limited amount of information available in non-human primates is a restriction to the understanding of the evolutionary dynamics of alpha satellite DNA. Results We carried out the targeted high-throughput sequencing of alpha satellite monomers and dimers from the Cercopithecus solatus genome, an Old World monkey from the Cercopithecini tribe. Computational approaches were used to infer the existence of sequence families and to study how these families are organized with respect to each other. While previous studies had suggested that alpha satellites in Old World monkeys were poorly diversified, our analysis provides evidence for the existence of at least four distinct families of sequences within the studied species and of higher order organizational patterns. Fluorescence in situ hybridization using oligonucleotide probes that are able to target each family in a specific way showed that the different families had distinct distributions on chromosomes and were not homogeneously distributed between chromosomes. Conclusions Our new approach provides an unprecedented and comprehensive view of the diversity and organization of alpha satellites in a species outside the hominoid group. We consider these data with respect to previously known alpha satellite families and to potential mechanisms for satellite DNA evolution. Applying this approach to other species will open new perspectives regarding the integration of satellite DNA into comparative genomic and cytogenetic studies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3246-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lauriane Cacheux
- Département Régulations, Développement et Diversité Moléculaire, Structure et Instabilité des Génomes, INSERM U1154, CNRS UMR7196, Sorbonne Universités, Muséum national d'Histoire naturelle, Paris, France.,Département Systématique et Evolution, Institut de Systématique, Evolution, Biodiversité, UMR 7205 MNHN, CNRS, UPMC, EPHE, Sorbonne Universités, Muséum national d'Histoire naturelle, Paris, France
| | - Loïc Ponger
- Département Régulations, Développement et Diversité Moléculaire, Structure et Instabilité des Génomes, INSERM U1154, CNRS UMR7196, Sorbonne Universités, Muséum national d'Histoire naturelle, Paris, France
| | - Michèle Gerbault-Seureau
- Département Systématique et Evolution, Institut de Systématique, Evolution, Biodiversité, UMR 7205 MNHN, CNRS, UPMC, EPHE, Sorbonne Universités, Muséum national d'Histoire naturelle, Paris, France
| | - Florence Anne Richard
- Département Systématique et Evolution, Institut de Systématique, Evolution, Biodiversité, UMR 7205 MNHN, CNRS, UPMC, EPHE, Sorbonne Universités, Muséum national d'Histoire naturelle, Paris, France.,Université Versailles St-Quentin, Montigny-le-Bretonneux, France
| | - Christophe Escudé
- Département Régulations, Développement et Diversité Moléculaire, Structure et Instabilité des Génomes, INSERM U1154, CNRS UMR7196, Sorbonne Universités, Muséum national d'Histoire naturelle, Paris, France.
| |
Collapse
|
13
|
Chromosome-Specific Centromere Sequences Provide an Estimate of the Ancestral Chromosome 2 Fusion Event in Hominin Genomes. J Hered 2016; 108:45-52. [DOI: 10.1093/jhered/esw039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/20/2016] [Indexed: 12/14/2022] Open
|
14
|
Fan X, Supiwong W, Weise A, Mrasek K, Kosyakova N, Tanomtong A, Pinthong K, Trifonov VA, Cioffi MDB, Grothmann P, Liehr T, Oliveira EH. Comprehensive characterization of evolutionary conserved breakpoints in four New World Monkey karyotypes compared to Chlorocebus aethiops and Homo sapiens. Heliyon 2015; 1:e00042. [PMID: 27441227 PMCID: PMC4945616 DOI: 10.1016/j.heliyon.2015.e00042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/20/2015] [Accepted: 10/23/2015] [Indexed: 11/21/2022] Open
Abstract
Comparative cytogenetic analysis in New World Monkeys (NWMs) using human multicolor banding (MCB) probe sets were not previously done. Here we report on an MCB based FISH-banding study complemented with selected locus-specific and heterochromatin specific probes in four NWMs and one Old World Monkey (OWM) species, i.e. in Alouatta caraya (ACA), Callithrix jacchus (CJA), Cebus apella (CAP), Saimiri sciureus (SSC), and Chlorocebus aethiops (CAE), respectively. 107 individual evolutionary conserved breakpoints (ECBs) among those species were identified and compared with those of other species in previous reports. Especially for chromosomal regions being syntenic to human chromosomes 6, 8, 9, 10, 11, 12 and 16 previously cryptic rearrangements could be observed. 50.4% (54/107) NWM-ECBs were colocalized with those of OWMs, 62.6% (62/99) NWM-ECBs were related with those of Hylobates lar (HLA) and 66.3% (71/107) NWM-ECBs corresponded with those known from other mammalians. Furthermore, human fragile sites were aligned with the ECBs found in the five studied species and interestingly 66.3% ECBs colocalized with those fragile sites (FS). Overall, this study presents detailed chromosomal maps of one OWM and four NWM species. This data will be helpful to further investigation on chromosome evolution in NWM and hominoids in general and is prerequisite for correct interpretation of future sequencing based genomic studies in those species.
Collapse
Key Words
- ACA, Alouatta caraya
- Atelidae
- BACs, bacterial artificial chromosomes
- CAE, Chlorocebus aethiops
- CAP, Cebus apella
- CJA, Callithrix jacchus
- Cebidae
- EC, evolutionary conserved
- ECBs, evolutionary conserved breakpoints
- Evolutionary conserved breakpoints
- Evolutionary genetics
- FISH, fluorescence in situ hybridization
- FS, fragile site
- Fragile sites
- Genetics
- HCM, heterochromatin mix
- HLA, Hylobates lar
- HSA, Homo sapiens
- HSBs, homologous syntenic blocks
- MCB, multicolor banding
- Multicolor banding
- NGS, Next-generation sequencing
- NOR, nucleolus organizer region
- NWMs, New World Monkeys
- New World Monkeys
- OWMs, Old World Monkeys
- Old World Monkeys
- SSC, Saimiri sciureus
- subCTM, sub-centromere/subtelomere-specific multicolor (FISH)
- wcp, whole human chromosome painting
Collapse
Affiliation(s)
- Xiaobo Fan
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
| | - Weerayuth Supiwong
- Department of Biology Faculty of Science, KhonKaen University, 123 Moo 16 Mittapap Rd., Muang District, KhonKaen 40002, Thailand
| | - Anja Weise
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
| | - Kristin Mrasek
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
| | - Nadezda Kosyakova
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
| | - Alongkoad Tanomtong
- Department of Biology Faculty of Science, KhonKaen University, 123 Moo 16 Mittapap Rd., Muang District, KhonKaen 40002, Thailand
| | - Krit Pinthong
- Department of Biology Faculty of Science, KhonKaen University, 123 Moo 16 Mittapap Rd., Muang District, KhonKaen 40002, Thailand
| | | | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Pierre Grothmann
- Serengeti-Park Hodenhagen GmbH, Am Safaripark 1, 29693, Hodenhagen, Germany
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
| | - Edivaldo H.C.de Oliveira
- Faculdade de Ciências Naturais, ICEN, Universidade Federal do Pará, Campus Universitário do Guamá, 66075-110 Belém-PA, Brazil
| |
Collapse
|
15
|
Catacchio CR, Ragone R, Chiatante G, Ventura M. Organization and evolution of Gorilla centromeric DNA from old strategies to new approaches. Sci Rep 2015; 5:14189. [PMID: 26387916 PMCID: PMC4585704 DOI: 10.1038/srep14189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/18/2015] [Indexed: 11/09/2022] Open
Abstract
The centromere/kinetochore interaction is responsible for the pairing and segregation of replicated chromosomes in eukaryotes. Centromere DNA is portrayed as scarcely conserved, repetitive in nature, quickly evolving and protein-binding competent. Among primates, the major class of centromeric DNA is the pancentromeric α-satellite, made of arrays of 171 bp monomers, repeated in a head-to-tail pattern. α-satellite sequences can either form tandem heterogeneous monomeric arrays or assemble in higher-order repeats (HORs). Gorilla centromere DNA has barely been characterized, and data are mainly based on hybridizations of human alphoid sequences. We isolated and finely characterized gorilla α-satellite sequences and revealed relevant structure and chromosomal distribution similarities with other great apes as well as gorilla-specific features, such as the uniquely octameric structure of the suprachromosomal family-2 (SF2). We demonstrated for the first time the orthologous localization of alphoid suprachromosomal families-1 and −2 (SF1 and SF2) between human and gorilla in contrast to chimpanzee centromeres. Finally, the discovery of a new 189 bp monomer type in gorilla centromeres unravels clues to the role of the centromere protein B, paving the way to solve the significance of the centromere DNA’s essential repetitive nature in association with its function and the peculiar evolution of the α-satellite sequence.
Collapse
Affiliation(s)
- C R Catacchio
- University of Bari Aldo Moro, Department of Biology, Via Orabona 4, Bari, 70125, Italy
| | - R Ragone
- University of Bari Aldo Moro, Department of Biology, Via Orabona 4, Bari, 70125, Italy
| | - G Chiatante
- University of Bari Aldo Moro, Department of Biology, Via Orabona 4, Bari, 70125, Italy
| | - M Ventura
- University of Bari Aldo Moro, Department of Biology, Via Orabona 4, Bari, 70125, Italy
| |
Collapse
|
16
|
Catenacci DVT, Liao WL, Thyparambil S, Henderson L, Xu P, Zhao L, Rambo B, Hart J, Xiao SY, Bengali K, Uzzell J, Darfler M, Krizman DB, Cecchi F, Bottaro DP, Karrison T, Veenstra TD, Hembrough T, Burrows J. Absolute quantitation of Met using mass spectrometry for clinical application: assay precision, stability, and correlation with MET gene amplification in FFPE tumor tissue. PLoS One 2014; 9:e100586. [PMID: 24983965 PMCID: PMC4077664 DOI: 10.1371/journal.pone.0100586] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/25/2014] [Indexed: 12/16/2022] Open
Abstract
Background Overexpression of Met tyrosine kinase receptor is associated with poor prognosis. Overexpression, and particularly MET amplification, are predictive of response to Met-specific therapy in preclinical models. Immunohistochemistry (IHC) of formalin-fixed paraffin-embedded (FFPE) tissues is currently used to select for ‘high Met’ expressing tumors for Met inhibitor trials. IHC suffers from antibody non-specificity, lack of quantitative resolution, and, when quantifying multiple proteins, inefficient use of scarce tissue. Methods After describing the development of the Liquid-Tissue-Selected Reaction Monitoring-mass spectrometry (LT-SRM-MS) Met assay, we evaluated the expression level of Met in 130 FFPE gastroesophageal cancer (GEC) tissues. We assessed the correlation of SRM Met expression to IHC and mean MET gene copy number (GCN)/nucleus or MET/CEP7 ratio by fluorescence in situ hybridization (FISH). Results Proteomic mapping of recombinant Met identified 418TEFTTALQR426 as the optimal SRM peptide. Limits of detection (LOD) and quantitation (LOQ) for this peptide were 150 and 200 amol/µg tumor protein, respectively. The assay demonstrated excellent precision and temporal stability of measurements in serial sections analyzed one year apart. Expression levels of 130 GEC tissues ranged (<150 amol/µg to 4669.5 amol/µg. High correlation was observed between SRM Met expression and both MET GCN and MET/CEP7 ratio as determined by FISH (n = 30; R2 = 0.898). IHC did not correlate well with SRM (n = 44; R2 = 0.537) nor FISH GCN (n = 31; R2 = 0.509). A Met SRM level of ≥1500 amol/µg was 100% sensitive (95% CI 0.69–1) and 100% specific (95% CI 0.92–1) for MET amplification. Conclusions The Met SRM assay measured the absolute Met levels in clinical tissues with high precision. Compared to IHC, SRM provided a quantitative and linear measurement of Met expression, reliably distinguishing between non-amplified and amplified MET tumors. These results demonstrate a novel clinical tool for efficient tumor expression profiling, potentially leading to better informed therapeutic decisions for patients with GEC.
Collapse
Affiliation(s)
- Daniel V. T. Catenacci
- Department of Medicine, Section of Hematology & Oncology, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - Wei-Li Liao
- OncoPlex Diagnostics Inc., Rockville, Maryland, United States of America
| | - Sheeno Thyparambil
- OncoPlex Diagnostics Inc., Rockville, Maryland, United States of America
| | - Les Henderson
- Department of Medicine, Section of Hematology & Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Peng Xu
- Department of Medicine, Section of Hematology & Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Lei Zhao
- Department of Pathology, University of Chicago, Chicago, Illinois, United States of America
| | - Brittany Rambo
- Department of Medicine, Section of Hematology & Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - John Hart
- Department of Pathology, University of Chicago, Chicago, Illinois, United States of America
| | - Shu-Yuan Xiao
- Department of Pathology, University of Chicago, Chicago, Illinois, United States of America
| | - Kathleen Bengali
- OncoPlex Diagnostics Inc., Rockville, Maryland, United States of America
| | - Jamar Uzzell
- OncoPlex Diagnostics Inc., Rockville, Maryland, United States of America
| | - Marlene Darfler
- OncoPlex Diagnostics Inc., Rockville, Maryland, United States of America
| | - David B. Krizman
- OncoPlex Diagnostics Inc., Rockville, Maryland, United States of America
| | - Fabiola Cecchi
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Donald P. Bottaro
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Theodore Karrison
- Department of Health Studies, University of Chicago, Chicago, Illinois, United States of America
| | | | - Todd Hembrough
- OncoPlex Diagnostics Inc., Rockville, Maryland, United States of America
| | - Jon Burrows
- OncoPlex Diagnostics Inc., Rockville, Maryland, United States of America
| |
Collapse
|
17
|
Slee RB, Steiner CM, Herbert BS, Vance GH, Hickey RJ, Schwarz T, Christan S, Radovich M, Schneider BP, Schindelhauer D, Grimes BR. Cancer-associated alteration of pericentromeric heterochromatin may contribute to chromosome instability. Oncogene 2011; 31:3244-53. [PMID: 22081068 DOI: 10.1038/onc.2011.502] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many tumors exhibit elevated chromosome mis-segregation termed chromosome instability (CIN), which is likely to be a potent driver of tumor progression and drug resistance. Causes of CIN are poorly understood but probably include prior genome tetraploidization, centrosome amplification and mitotic checkpoint defects. This study identifies epigenetic alteration of the centromere as a potential contributor to the CIN phenotype. The centromere controls chromosome segregation and consists of higher-order repeat (HOR) alpha-satellite DNA packaged into two chromatin domains: the kinetochore, harboring the centromere-specific H3 variant centromere protein A (CENP-A), and the pericentromeric heterochromatin, considered important for cohesion. Perturbation of centromeric chromatin in model systems causes CIN. As cancer cells exhibit widespread chromatin changes, we hypothesized that pericentromeric chromatin structure could also be affected, contributing to CIN. Cytological and chromatin immunoprecipitation and PCR (ChIP-PCR)-based analyses of HT1080 cancer cells showed that only one of the two HORs on chromosomes 5 and 7 incorporate CENP-A, an organization conserved in all normal and cancer-derived cells examined. Contrastingly, the heterochromatin marker H3K9me3 (trimethylation of H3 lysine 9) mapped to all four HORs and ChIP-PCR showed an altered pattern of H3K9me3 in cancer cell lines and breast tumors, consistent with a reduction on the kinetochore-forming HORs. The JMJD2B demethylase is overexpressed in breast tumors with a CIN phenotype, and overexpression of exogenous JMJD2B in cultured breast epithelial cells caused loss of centromere-associated H3K9me3 and increased CIN. These findings suggest that impaired maintenance of pericentromeric heterochromatin may contribute to CIN in cancer and be a novel therapeutic target.
Collapse
Affiliation(s)
- R B Slee
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hasson D, Alonso A, Cheung F, Tepperberg JH, Papenhausen PR, Engelen JJM, Warburton PE. Formation of novel CENP-A domains on tandem repetitive DNA and across chromosome breakpoints on human chromosome 8q21 neocentromeres. Chromosoma 2011; 120:621-32. [PMID: 21826412 DOI: 10.1007/s00412-011-0337-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 07/21/2011] [Accepted: 07/25/2011] [Indexed: 01/02/2023]
Abstract
Endogenous human centromeres form on megabase-sized arrays of tandemly repeated alpha satellite DNA. Human neocentromeres form epigenetically at ectopic sites devoid of alpha satellite DNA and permit analysis of centromeric DNA and chromatin organization. In this study, we present molecular cytogenetic and CENP-A chromatin immunoprecipitation (ChIP) on CHIP analyses of two neocentromeres that have formed in chromosome band 8q21 each with a unique DNA and CENP-A chromatin configuration. The first neocentromere was found on a neodicentric chromosome 8 with an inactivated endogenous centromere, where the centromeric activity and CENP-A domain were repositioned to band 8q21 on a large tandemly repeated DNA. This is the first example of a neocentromere forming on repetitive DNA, as all other mapped neocentromeres have formed on single copy DNA. Quantitative fluorescent in situ hybridization (FISH) analysis showed a 60% reduction in the alpha satellite array size at the inactive centromere compared to the active centromere on the normal chromosome 8. This neodicentric chromosome may provide insight into centromere inactivation and the role of tandem DNA in centromere structure. The second neocentromere was found on a neocentric ring chromosome that contained the 8q21 tandemly repeated DNA, although the neocentromere was localized to a different genomic region. Interestingly, this neocentromere is composed of two distinct CENP-A domains in bands 8q21 and 8q24, which are brought into closer proximity on the ring chromosome. This neocentromere suggests that chromosomal rearrangement and DNA breakage may be involved in neocentromere formation. These novel examples provide insight into the formation and structure of human neocentromeres.
Collapse
Affiliation(s)
- Dan Hasson
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, Icahn Medical Institute, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Coluccia E, Pichiri G, Nieddu M, Coni P, Manconi S, Deiana AM, Salvadori S, Mezzanotte R. Identification of two new repetitive elements and chromosomal mapping of repetitive DNA sequences in the fish Gymnothorax unicolor (Anguilliformes: Muraenidae). Eur J Histochem 2011; 55:e12. [PMID: 22193293 PMCID: PMC3284148 DOI: 10.4081/ejh.2011.e12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/18/2011] [Accepted: 02/23/2011] [Indexed: 11/23/2022] Open
Abstract
Muraenidae is a species-rich family, with relationships among genera and species and taxonomy that have not been completely clarified. Few cytogenetic studies have been conducted on this family, and all of them showed the same diploid chromosome number (2n=42) but with conspicuous karyotypic variation among species. The Mediterranean moray eel Gymnothorax unicolor was previously cytogenetically studied using classical techniques that allowed the characterization of its karyotype structure and the constitutive heterochromatin and argyrophilic nucleolar organizer regions (Ag-NORs) distribution pattern. In the present study, we describe two new repetitive elements (called GuMboI and GuDdeI) obtained from restricted genomic DNA of G. unicolor that were characterized by Southern blot and physically localized by in situ hybridization on metaphase chromosomes. As they are highly repetitive DNA sequences, they map in heterochromatic regions. However, while GuDdeI was localized in the centromeric regions, the GuMboI fraction was distributed on some centromeres and was co-localized with the nucleolus organizer region (NOR). Comparative analysis with other Mediterranean species such as Muraena helena pointed out that these DNA fractions are species-specific and could potentially be used for species discrimination. As a new contribution to the karyotype of this species, we found that the major ribosomal genes are localized on acrocentric chromosome 9 and that the telomeres of each chromosome are composed of a tandem repeat derived from a poly-TTAGGG DNA sequence, as it occurs in most vertebrate species. The results obtained add new information useful in comparative genomics at the chromosomal level and contribute to the cytogenetic knowledge regarding this fish family, which has not been extensively studied.
Collapse
Affiliation(s)
- E Coluccia
- Dipartimento di Biologia Animale ed Ecologia, Università di Cagliari, via T. Fiorelli, 1, 09126 Cagliari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Paar V, Glunčić M, Basar I, Rosandić M, Paar P, Cvitković M. Large Tandem, Higher Order Repeats and Regularly Dispersed Repeat Units Contribute Substantially to Divergence Between Human and Chimpanzee Y Chromosomes. J Mol Evol 2010; 72:34-55. [DOI: 10.1007/s00239-010-9401-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 10/25/2010] [Indexed: 10/18/2022]
|
21
|
Gosálvez J, Crespo F, Vega-Pla JL, López-Fernández C, Cortés-Gutiérrez EI, Devila-Rodriguez MI, Mezzanotte R. Shared Y chromosome repetitive DNA sequences in stallion and donkey as visualized using whole-genomic comparative hybridization. Eur J Histochem 2010; 54:e2. [PMID: 20353909 PMCID: PMC3167294 DOI: 10.4081/ejh.2010.e2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 12/18/2009] [Indexed: 11/23/2022] Open
Abstract
The genome of stallion (Spanish breed) and donkey (Spanish endemic Zamorano-Leonés) were compared using whole comparative genomic in situ hybridization (W-CGH) technique, with special reference to the variability observed in the Y chromosome. Results show that these diverging genomes still share some highly repetitive DNA families localized in pericentromeric regions and, in the particular case of the Y chromosome, a sub-family of highly repeated DNA sequences, greatly expanded in the donkey genome, accounts for a large part of the chromatin in the stallion Y chromosome.
Collapse
Affiliation(s)
- J Gosálvez
- Department of Biology, Genetics Unit, Universidad Autonoma de Madrid, Madrid, spain.
| | | | | | | | | | | | | |
Collapse
|
22
|
Krstic AD, Impera L, Guc-Scekic M, Lakic N, Djokic D, Slavkovic B, Storlazzi CT. A complex rearrangement involving cryptic deletion of ETV6 and CDKN1B genes in a case of childhood acute lymphoblastic leukemia. CANCER GENETICS AND CYTOGENETICS 2009; 195:125-31. [PMID: 19963112 DOI: 10.1016/j.cancergencyto.2009.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 06/27/2009] [Accepted: 07/10/2009] [Indexed: 11/30/2022]
Abstract
We report on a case of childhood B-cell lineage acute lymphoblastic leukemia (ALL). Conventional cytogenetic analysis at diagnosis showed the karyotype: 47,XY,add(3)(q?),-12,+2mar[4]/46,XY[18]. Fluorescence in situ hybridization (FISH) revealed a complex rearrangement: 47,XY,der(3)(3pter->3q29::12q13->12q24.33::12p13.31->12p13.2::12q24.33->12qter),der(12)(12pter->12p13.31::12p12.3->12q12::3q29->3qter),+del(21)(q?). The derivative chromosome 3 arose likely from multiple events due to clonal evolution. After insertion of the segment of the short arm of the chromosome 12 to the distal part of the long arm of chromosome 12 [ins(12)(q24.33p13.31p13.2)], a translocation occurred between chromosome 3 and derivative chromosome 12. Additional FISH results disclosed two heterozygous deletions flanking the translocated region on both 12p13.2 approximately p12.3 and 12q12 approximately q13.13. The deleted segment on 12p contains several genes, among the tumor suppressor genes ETV6 and CDKN1B, which are frequently involved in 12p abnormalities in childhood ALL. Thus, the present study documents the loss of both ETV6 and CDKN1B genes accompanying the occurrence of a complex rearrangement involving chromosomes 3 and 12 in a case of childhood ALL.
Collapse
Affiliation(s)
- Aleksandra Drago Krstic
- Laboratory of Medical Genetics, Mother and Child Health Institute Dr. Vukan Cupic, Radoja Dakica 6-8, 11070 Belgrade, Serbia.
| | | | | | | | | | | | | |
Collapse
|
23
|
Heilig CE, Löffler H, Mahlknecht U, Janssen JWG, Ho AD, Jauch A, Krämer A. Chromosomal instability correlates with poor outcome in patients with myelodysplastic syndromes irrespectively of the cytogenetic risk group. J Cell Mol Med 2009; 14:895-902. [PMID: 19754665 PMCID: PMC3823121 DOI: 10.1111/j.1582-4934.2009.00905.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chromosomal instability (CIN), defined by an elevated frequency of the occurrence of novel chromosomal aberrations, is strongly implicated in the generation of aneuploidy, one of the hallmarks of human cancers. As for aneuploidy itself, the role of CIN in the evolution and progression of malignancy is a matter still open to debate. We investigated numerical as well as structural CIN in primary CD34-positive cells by determining the cell-to-cell variability of the chromosome content using fluorescence-in situ-hybridization (FISH). Thereby, CIN was measured in 65 patients with myelodysplastic syndromes (MDS), acute myeloid leukaemia (AML) and control subjects. Among MDS patients, a subgroup with elevated levels of CIN was identified. At a median follow-up of 17.2 months, all patients within this ‘high CIN’ subgroup had died or progressed to AML, while 80% of MDS patients with normal CIN levels had stable disease (P < 0.001). Notably, there was no statistically significant difference between ‘normal CIN’ and ‘high CIN’ MDS patients regarding established risk factors. Hence, elevated CIN levels were associated with poor outcome, and our method provided additional prognostic information beyond conventional cytogenetics. Furthermore, in all three MDS patients for whom serial measurements were available, development of AML was preceded by increasing CIN levels. In conclusion, elevated CIN levels may be valuable as an early indicator of poor prognosis in MDS, hence corroborating the concept of CIN as a driving force in tumour progression.
Collapse
Affiliation(s)
- Christoph E Heilig
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Trazzi S, Perini G, Bernardoni R, Zoli M, Reese JC, Musacchio A, Valle GD. The C-terminal domain of CENP-C displays multiple and critical functions for mammalian centromere formation. PLoS One 2009; 4:e5832. [PMID: 19503796 PMCID: PMC2688085 DOI: 10.1371/journal.pone.0005832] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 04/29/2009] [Indexed: 12/02/2022] Open
Abstract
CENP-C is a fundamental component of functional centromeres. The elucidation of its structure-function relationship with centromeric DNA and other kinetochore proteins is critical to the understanding of centromere assembly. CENP-C carries two regions, the central and the C-terminal domains, both of which are important for the ability of CENP-C to associate with the centromeric DNA. However, while the central region is largely divergent in CENP-C homologues, the C-terminal moiety contains two regions that are highly conserved from yeast to humans, named Mif2p homology domains (blocks II and III). The activity of these two domains in human CENP-C is not well defined. In this study we performed a functional dissection of C-terminal CENP-C region analyzing the role of single Mif2p homology domains through in vivo and in vitro assays. By immunofluorescence and Chromatin immunoprecipitation assay (ChIP) we were able to elucidate the ability of the Mif2p homology domain II to target centromere and contact alpha satellite DNA. We also investigate the interactions with other conserved inner kinetochore proteins by means of coimmunoprecipitation and bimolecular fluorescence complementation on cell nuclei. We found that the C-terminal region of CENP-C (Mif2p homology domain III) displays multiple activities ranging from the ability to form higher order structures like homo-dimers and homo-oligomers, to mediate interaction with CENP-A and histone H3. Overall, our findings support a model in which the Mif2p homology domains of CENP-C, by virtue of their ability to establish multiple contacts with DNA and centromere proteins, play a critical role in the structuring of kinethocore chromatin.
Collapse
Affiliation(s)
- Stefania Trazzi
- Department of Biology, University of Bologna, Bologna, Italy
| | - Giovanni Perini
- Department of Biology, University of Bologna, Bologna, Italy
| | | | - Monica Zoli
- Department of Biology, University of Bologna, Bologna, Italy
| | - Joseph C. Reese
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Andrea Musacchio
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | | |
Collapse
|
25
|
Cellamare A, Catacchio CR, Alkan C, Giannuzzi G, Antonacci F, Cardone MF, Della Valle G, Malig M, Rocchi M, Eichler EE, Ventura M. New insights into centromere organization and evolution from the white-cheeked gibbon and marmoset. Mol Biol Evol 2009; 26:1889-900. [PMID: 19429672 DOI: 10.1093/molbev/msp101] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The evolutionary history of alpha-satellite DNA, the major component of primate centromeres, is hardly defined because of the difficulty in its sequence assembly and its rapid evolution when compared with most genomic sequences. By using several approaches, we have cloned, sequenced, and characterized alpha-satellite sequences from two species representing critical nodes in the primate phylogeny: the white-cheeked gibbon, a lesser ape, and marmoset, a New World monkey. Sequence analyses demonstrate that white-cheeked gibbon and marmoset alpha-satellite sequences are formed by units of approximately 171 and approximately 342 bp, respectively, and they both lack the high-order structure found in humans and great apes. Fluorescent in situ hybridization characterization shows a broad dispersal of alpha-satellite in the white-cheeked gibbon genome including centromeric, telomeric, and chromosomal interstitial localizations. On the other hand, centromeres in marmoset appear organized in highly divergent dimers roughly of 342 bp that show a similarity between monomers much lower than previously reported dimers, thus representing an ancient dimeric structure. All these data shed light on the evolution of the centromeric sequences in Primates. Our results suggest radical differences in the structure, organization, and evolution of alpha-satellite DNA among different primate species, supporting the notion that 1) all the centromeric sequence in Primates evolved by genomic amplification, unequal crossover, and sequence homogenization using a 171 bp monomer as the basic seeding unit and 2) centromeric function is linked to relatively short repeated elements, more than higher-order structure. Moreover, our data indicate that complex higher-order repeat structures are a peculiarity of the hominid lineage, showing the more complex organization in humans.
Collapse
Affiliation(s)
- A Cellamare
- Department of Genetics and Microbiology, University of Bari, Bari, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Murmann AE, Conrad DF, Mashek H, Curtis CA, Nicolae RI, Ober C, Schwartz S. Inverted duplications on acentric markers: mechanism of formation. Hum Mol Genet 2009; 18:2241-56. [PMID: 19336476 DOI: 10.1093/hmg/ddp160] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Acentric inverted duplication (inv dup) markers, the largest group of chromosomal abnormalities with neocentromere formation, are found in patients both with idiopathic mental retardation and with cancer. The mechanism of their formation has been investigated by analyzing the breakpoints and the genotypes of 12 inv dup marker cases (three trisomic, six tetrasomic, two polysomic and one X chromosome derived marker) using a combination of fluorescence in situ hybridization, quantitative SNP array and microsatellite analysis. Inv dup markers were found to form either symmetrically with one breakpoint or asymmetrically with two distinct breakpoints. Genotype analyses revealed that all inv dup markers formed from one single chromatid end. This observation is incompatible with the previously suggested model by which the acentric inv dup markers form through inter-chromosomal U-type exchange. On the basis of the identification of DNA sequence motifs with inverted homologies within all observed breakpoint regions, a new general mechanism is proposed for the acentric inv dup marker formation: following a double-strand break an acentric fragment forms, during either meiosis or mitosis. The open DNA end of the acentric fragment is stabilized by the formation of an intra-chromosomal loop promoted by the presence of sequences with inverted homologies. Likely coinciding with the neocentromere formation, this stabilized fragment is duplicated during an early mitotic event, insuring the marker's survival during cell division and its presence in all cells.
Collapse
Affiliation(s)
- Andrea E Murmann
- Department of Human Genetics, The University of Chicago, 5841 S. Maryland Avenue, Room L-155, MC0077, Chicago, IL 60637, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Frescas D, Guardavaccaro D, Kuchay SM, Kato H, Poleshko A, Basrur V, Elenitoba-Johnson KS, Katz RA, Pagano M. KDM2A represses transcription of centromeric satellite repeats and maintains the heterochromatic state. Cell Cycle 2008; 7:3539-47. [PMID: 19001877 PMCID: PMC2636745 DOI: 10.4161/cc.7.22.7062] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Heterochromatin plays an essential role in the preservation of epigenetic information, the transcriptional repression of repetitive DNA elements and inactive genes, and the proper segregation of chromosomes during mitosis. Here we identify KDM2A, a JmjC-domain containing histone demethylase, as a heterochromatin-associated and HP1-interacting protein that promotes HP1 localization to chromatin. We show that KDM2A is required to maintain the heterochromatic state, as determined using a candidate-based approach coupled to an in vivo epigenetic reporter system. Remarkably, a parallel and independent siRNA screen also detected a role for KDM2A in epigenetic silencing. Moreover, we demonstrate that KDM2A associates with centromeres and represses transcription of small non-coding RNAs that are encoded by the clusters of satellite repeats at the centromere. Dissecting the relationship between heterochromatin and centromeric RNA transcription is the basis of ongoing studies. We demonstrate that forced expression of these satellite RNA transcripts compromise the heterochromatic state and HP1 localization to chromatin. Finally, we show that KDM2A is required to sustain centromeric integrity and genomic stability, particularly during mitosis. Since the disruption of epigenetic control mechanisms contributes to cellular transformation, these results, together with the low levels of KDM2A found in prostate carcinomas, suggest a role for KDM2A in cancer development.
Collapse
Affiliation(s)
- David Frescas
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Manvelyan M, Hunstig F, Mrasek K, Bhatt S, Pellestor F, Weise A, Liehr T. Position of chromosomes 18, 19, 21 and 22 in 3D-preserved interphase nuclei of human and gorilla and white hand gibbon. Mol Cytogenet 2008; 1:9. [PMID: 18471270 PMCID: PMC2390566 DOI: 10.1186/1755-8166-1-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 04/29/2008] [Indexed: 11/16/2022] Open
Abstract
Background Even though comparative nuclear architecture studies in hominoids are sparse, nuclear chromosome architecture was shown to be conserved during hominoid evolution. Thus, it is suspected that yet unknown biological mechanisms must underlie this observation. Results Here for the first time a combination of multicolor banding (MCB) and three-dimensional analysis of interphase cells was used to characterize the position and orientation of human chromosomes #18, #19, #21 and #22 and their homologues in primate B-lymphocytic cells. In general, our data is in concordance with previous studies. The position of the four studied human chromosomes and their homologues were conserved during primate evolution. However, comparison of interphase architecture in human B-lymphocytic cells and sperm revealed differences of localization of acrocentric chromosomes. The latter might be related to the fact that the nucleolus organizing region is not active in sperm. Conclusion Studies in different tissue types may characterize more – potentially biologically relevant differences in nuclear architecture.
Collapse
Affiliation(s)
- Marina Manvelyan
- Institute of Human Genetics and Anthropology, Kollegiengasse 10, D-07743 Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|
29
|
Alkan C, Ventura M, Archidiacono N, Rocchi M, Sahinalp SC, Eichler EE. Organization and evolution of primate centromeric DNA from whole-genome shotgun sequence data. PLoS Comput Biol 2007; 3:1807-18. [PMID: 17907796 PMCID: PMC1994983 DOI: 10.1371/journal.pcbi.0030181] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 07/31/2007] [Indexed: 11/18/2022] Open
Abstract
The major DNA constituent of primate centromeres is alpha satellite DNA. As much as 2%–5% of sequence generated as part of primate genome sequencing projects consists of this material, which is fragmented or not assembled as part of published genome sequences due to its highly repetitive nature. Here, we develop computational methods to rapidly recover and categorize alpha-satellite sequences from previously uncharacterized whole-genome shotgun sequence data. We present an algorithm to computationally predict potential higher-order array structure based on paired-end sequence data and then experimentally validate its organization and distribution by experimental analyses. Using whole-genome shotgun data from the human, chimpanzee, and macaque genomes, we examine the phylogenetic relationship of these sequences and provide further support for a model for their evolution and mutation over the last 25 million years. Our results confirm fundamental differences in the dispersal and evolution of centromeric satellites in the Old World monkey and ape lineages of evolution. Centromeric DNA has been described as the last frontier of genomic sequencing; such regions are typically poorly assembled during the whole-genome shotgun sequence assembly process due to their repetitive complexity. This paper develops a computational algorithm to systematically extract data regarding primate centromeric DNA structure and organization from that ∼5% of sequence that is not included as part of standard genome sequence assemblies. Using this computational approach, we identify and reconstruct published human higher-order alpha satellite arrays and discover new families in human, chimpanzee, and Old World monkeys. Experimental validation confirms the utility of this computational approach to understanding the centromere organization of other nonhuman primates. An evolutionary analysis in diverse primate genomes supports fundamental differences in the structure and organization of centromere DNA between ape and Old World monkey lineages. The ability to extract meaningful biological data from random shotgun sequence data helps to fill an important void in large-scale sequencing of primate genomes, with implications for other genome sequencing projects.
Collapse
Affiliation(s)
- Can Alkan
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Mario Ventura
- Department of Genetics and Microbiology, University of Bari, Bari, Italy
| | | | - Mariano Rocchi
- Department of Genetics and Microbiology, University of Bari, Bari, Italy
| | - S. Cenk Sahinalp
- Department of Computing Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
30
|
Goetze S, Mateos-Langerak J, Gierman HJ, de Leeuw W, Giromus O, Indemans MHG, Koster J, Ondrej V, Versteeg R, van Driel R. The three-dimensional structure of human interphase chromosomes is related to the transcriptome map. Mol Cell Biol 2007; 27:4475-87. [PMID: 17420274 PMCID: PMC1900058 DOI: 10.1128/mcb.00208-07] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The three-dimensional (3D) organization of the chromosomal fiber in the human interphase nucleus is an important but poorly understood aspect of gene regulation. Here we quantitatively analyze and compare the 3D structures of two types of genomic domains as defined by the human transcriptome map. While ridges are gene dense and show high expression levels, antiridges, on the other hand, are gene poor and carry genes that are expressed at low levels. We show that ridges are in general less condensed, more irregularly shaped, and located more closely to the nuclear center than antiridges. Six human cell lines that display different gene expression patterns and karyotypes share these structural parameters of chromatin. This shows that the chromatin structures of these two types of genomic domains are largely independent of tissue-specific variations in gene expression and differentiation state. Moreover, we show that there is remarkably little intermingling of chromatin from different parts of the same chromosome in a chromosome territory, neither from adjacent nor from distant parts. This suggests that the chromosomal fiber has a compact structure that sterically suppresses intermingling. Together, our results reveal novel general aspects of 3D chromosome architecture that are related to genome structure and function.
Collapse
Affiliation(s)
- Sandra Goetze
- Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kehrer-Sawatzki H, Cooper DN. Understanding the recent evolution of the human genome: insights from human-chimpanzee genome comparisons. Hum Mutat 2007; 28:99-130. [PMID: 17024666 DOI: 10.1002/humu.20420] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The sequencing of the chimpanzee genome and the comparison with its human counterpart have begun to reveal the spectrum of genetic changes that has accompanied human evolution. In addition to gross karyotypic rearrangements such as the fusion that formed human chromosome 2 and the human-specific pericentric inversions of chromosomes 1 and 18, there is considerable submicroscopic structural variation involving deletions, duplications, and inversions. Lineage-specific segmental duplications, detected by array comparative genomic hybridization and direct sequence comparison, have made a very significant contribution to this structural divergence, which is at least three-fold greater than that due to nucleotide substitutions. Since structural genomic changes may have given rise to irreversible functional differences between the diverging species, their detailed analysis could help to identify the biological processes that have accompanied speciation. To this end, interspecies comparisons have revealed numerous human-specific gains and losses of genes as well as changes in gene expression. The very considerable structural diversity (polymorphism) evident within both lineages has, however, hampered the analysis of the structural divergence between the human and chimpanzee genomes. The concomitant evaluation of genetic divergence and diversity at the nucleotide level has nevertheless served to identify many genes that have evolved under positive selection and may thus have been involved in the development of human lineage-specific traits. Genes that display signs of weak negative selection have also been identified and could represent candidate loci for complex genomic disorders. Here, we review recent progress in comparing the human and chimpanzee genomes and discuss how the differences detected have improved our understanding of the evolution of the human genome.
Collapse
|
32
|
Golzio C, Guirchoun J, Ozilou C, Thomas S, Goudefroye G, Morichon-Delvallez N, Vekemans M, Attié-Bitach T, Etchevers HC. Cytogenetic and histological features of a human embryo with homogeneous chromosome 8 trisomy. Prenat Diagn 2007; 26:1201-5. [PMID: 17075794 DOI: 10.1002/pd.1588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Homogeneous and complete trisomy 8 is extremely rare. With one recent neonatal exception, all reported cases have been mosaic, due to mitotic non-disjunction during early zygotic development. We report a case of chromosome 8 trisomy in a human embryo examined at Carnegie stage 11 (25 days post-fertilization). It presented severe cardiovascular and central nervous system malformations. METHODS The unusual bifid heart in this embryo spurred a detailed histological examination, karyotyping of a chorionic villus sample and subsequent FISH on inter-phase nuclei of intra-embryonic sections. RESULTS Trophoblast cells had a karyotype of 47,XX, +8. Within the embryo proper, FISH demonstrated that the trisomy 8 was homogeneous in embryonic as well as extra-embryonic tissues. FQ-PCR supports a meiosis I origin of non-disjunction. In sections, the pharyngeal arches (including cardiac outflow tract), forebrain, mesonephros and liver were absent. Somites and yolk sac blood vessels were irregularly shaped. CONCLUSION We show that homogeneous, intra-embryonic trisomy 8 is compatible with implantation and early human development. Molecular pathways that may be compromised and their impact on organogenesis are discussed.
Collapse
Affiliation(s)
- Christelle Golzio
- INSERM U781, Hôpital Necker - Enfants Malades, 149 rue de Sèvres, 75743 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Monier K, Mouradian S, Sullivan KF. DNA methylation promotes Aurora-B-driven phosphorylation of histone H3 in chromosomal subdomains. J Cell Sci 2007; 120:101-14. [PMID: 17164288 DOI: 10.1242/jcs.03326] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Confinement of enzymatic reactions to nuclear and chromosomal subdomains regulates functional organization of the nucleus. Aurora-B kinase regulates cell-cycle-dependent phosphorylation of chromosomal substrates through sequential localization to a series of sites on chromosomes and the mitotic spindle. In G2 nuclei, Aurora-B recruitment to heterochromatin restricts histone H3S10 phosphorylation to a domain around centromeres (pericentromeres). However, no intrinsic chromosomal determinants have been implicated in Aurora-B recruitment to interphase pericentromeres. Using cyclin B1 as a cell-cycle marker, we found that the great majority of nuclei exhibiting H3S10 phosphorylated foci were positive for cyclin B1, thus revealing that H3S10 phosphorylation arises at pericentromeres during late S phase and persists in G2. By immunofluorescent in situ hybridization, Aurora-B and H3S10 phosphorylated foci were found more frequently at larger pericentromeres than at smaller ones, revealing a preferential phosphorylation of pericentromeres, exhibiting a high density of methyl cytosines. Disruption of DNA methylation inhibited pericentromeric Aurora-B targeting and H3S10 phosphorylation in G2 nuclei, thus demonstrating the role of DNA methylation in Aurora-B targeting to pericentromeres. These results favour the idea that DNA methylation maintains a local environment essential for regulating the functional properties of sub-chromosomal domains during S-G2 progression.
Collapse
Affiliation(s)
- Karine Monier
- The Scripps Research Institute, Department of Cell Biology, CB163, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
34
|
Rosandić M, Paar V, Basar I, Gluncić M, Pavin N, Pilas I. CENP-B box and pJalpha sequence distribution in human alpha satellite higher-order repeats (HOR). Chromosome Res 2006; 14:735-53. [PMID: 17115329 DOI: 10.1007/s10577-006-1078-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 06/03/2006] [Indexed: 01/13/2023]
Abstract
Using our Key String Algorithm (KSA) to analyze Build 35.1 assembly we determined consensus alpha satellite higher-order repeats (HOR) and consensus distributions of CENP-B box and pJalpha motif in human chromosomes 1, 4, 5, 7, 8, 10, 11, 17, 19, and X. We determined new suprachromosomal family (SF) assignments: SF5 for 13mer (2211 bp), SF5 for 13mer (2214 bp), SF2 for 11mer (1869 bp), SF1 for 18mer (3058 bp), SF3 for 12mer (2047 bp), SF3 for 14mer (2379 bp), and SF5 for 17mer (2896 bp) in chromosomes 4, 5, 8, 10, 11, 17, and 19, respectively. In chromosome 5 we identified SF5 13mer without any CENP-B box and pJalpha motif, highly homologous (96%) to 13mer in chromosome 19. Additionally, in chromosome 19 we identified new SF5 17mer with one CENP-B box and pJalpha motif, aligned to 13mer by deleting four monomers. In chromosome 11 we identified SF3 12mer, homologous to 12mer in chromosome X. In chromosome 10 we identified new SF1 18mer with eight CENP-B boxes in every other monomer (except one). In chromosome 4 we identified new SF5 13mer with CENP-B box in three consecutive monomers. We found four exceptions to the rule that CENP-B box belongs to type B and pJalpha motif to type A monomers.
Collapse
Affiliation(s)
- Marija Rosandić
- Department of Internal Medicine, University Hospital Rebro, University of Zagreb, 10000, Zagreb, Croatia
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Centromeres are the elements of chromosomes that assemble the proteinaceous kinetochore, maintain sister chromatid cohesion, regulate chromosome attachment to the spindle, and direct chromosome movement during cell division. Although the functions of centromeres and the proteins that contribute to their complex structure and function are conserved in eukaryotes, centromeric DNA diverges rapidly. Human centromeres are particularly complicated. Here, we review studies on the organization of homogeneous arrays of chromosome-specific alpha-satellite repeats and evolutionary links among eukaryotic centromeric sequences. We also discuss epigenetic mechanisms of centromere identity that confer structural and functional features of the centromere through DNA-protein interactions and post-translational modifications, producing centromere-specific chromatin signatures. The assembly and organization of human centromeres, the contributions of satellite DNA to centromere identity and diversity, and the mechanism whereby centromeres are distinguished from the rest of the genome reflect ongoing puzzles in chromosome biology.
Collapse
Affiliation(s)
- Mary G Schueler
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
36
|
Ciccone R, Mattina T, Giorda R, Bonaglia MC, Rocchi M, Pramparo T, Zuffardi O. Inversion polymorphisms and non-contiguous terminal deletions: the cause and the (unpredicted) effect of our genome architecture. J Med Genet 2006; 43:e19. [PMID: 16648372 PMCID: PMC2564524 DOI: 10.1136/jmg.2005.037671] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Molecular definition at the BAC level of an 8p dicentric chromosome and an 8p deleted chromosome is reported in a patient with two different cell lines. The dicentric, which differed from that generating the recurrent inv dup del(8p) for the location of its break point, originated during the paternal meiosis on the background of the classical 8p23.1 inversion polymorphism. The breakage of this dicentric gave rise to the 8p deleted chromosome which, as a result of the inversion, had two non-contiguous deletions. These findings confirm previous data on 1p distal deletions, showing that at least some of the deletions stem from the breakage of dicentric chromosomes. They suggest that non-contiguous deletions may be frequent among distal deletions. This type of rearrangement can easily be overlooked when two contiguous clones, one absent and the other present by FISH analysis, are taken as boundaries of the deletion break point; in this case only high resolution array-CGH will reveal their real frequency. The definition of such non-contiguous distal deletions is relevant for phenotype/karyotype correlations. There are historical examples of blunders caused by overlooking a second non-contiguous deletion. This paper shows how small scale structural variations, such as common polymorphic inversions, may cause complex rearrangements such as terminal deletions.
Collapse
|
37
|
Storlazzi CT, Fioretos T, Surace C, Lonoce A, Mastrorilli A, Strömbeck B, D'Addabbo P, Iacovelli F, Minervini C, Aventin A, Dastugue N, Fonatsch C, Hagemeijer A, Jotterand M, Mühlematter D, Lafage-Pochitaloff M, Nguyen-Khac F, Schoch C, Slovak ML, Smith A, Solè F, Van Roy N, Johansson B, Rocchi M. MYC-containing double minutes in hematologic malignancies: evidence in favor of the episome model and exclusion of MYC as the target gene. Hum Mol Genet 2006; 15:933-42. [PMID: 16452126 DOI: 10.1093/hmg/ddl010] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Double minutes (dmin)-circular, extra-chromosomal amplifications of specific acentric DNA fragments-are relatively frequent in malignant disorders, particularly in solid tumors. In acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), dmin are observed in approximately 1% of the cases. Most of them consist of an amplified segment from chromosome band 8q24, always including the MYC gene. Besides this information, little is known about their internal structure. We have characterized in detail the genomic organization of 32 AML and two MDS cases with MYC-containing dmin. The minimally amplified region was shown to be 4.26 Mb in size, harboring five known genes, with the proximal and the distal amplicon breakpoints clustering in two regions of approximately 500 and 600 kb, respectively. Interestingly, in 23 (68%) of the studied cases, the amplified region was deleted in one of the chromosome 8 homologs at 8q24, suggesting excision of a DNA segment from the original chromosomal location according to the 'episome model'. In one case, sequencing of both the dmin and del(8q) junctions was achieved and provided definitive evidence in favor of the episome model for the formation of dmin. Expression status of the TRIB1 and MYC genes, encompassed by the minimally amplified region, was assessed by northern blot analysis. The TRIB1 gene was found over-expressed in only a subset of the AML/MDS cases, whereas MYC, contrary to expectations, was always silent. The present study, therefore, strongly suggests that MYC is not the target gene of the 8q24 amplifications.
Collapse
Affiliation(s)
- Clelia Tiziana Storlazzi
- Department of Genetics and Microbiology, University of Bari, Via Amendola 165/A, 70126 Bari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Laner A, Goussard S, Ramalho AS, Schwarz T, Amaral MD, Courvalin P, Schindelhauer D, Grillot-Courvalin C. Bacterial transfer of large functional genomic DNA into human cells. Gene Ther 2005; 12:1559-72. [PMID: 15973438 DOI: 10.1038/sj.gt.3302576] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Efficient transfer of chromosome-based vectors into mammalian cells is difficult, mostly due to their large size. Using a genetically engineered invasive Escherichia coli vector, alpha satellite DNA cloned in P1-based artificial chromosome was stably delivered into the HT1080 cell line and efficiently generated human artificial chromosomes de novo. Similarly, a large genomic cystic fibrosis transmembrane conductance regulator (CFTR) construct of 160 kb containing a portion of the CFTR gene was stably propagated in the bacterial vector and transferred into HT1080 cells where it was transcribed, and correctly spliced, indicating transfer of an intact and functional locus of at least 80 kb. These results demonstrate that bacteria allow the cloning, propagation and transfer of large intact and functional genomic DNA fragments and their subsequent direct delivery into cells for functional analysis. Such an approach opens new perspectives for gene therapy.
Collapse
MESH Headings
- Cell Line, Tumor/metabolism
- Cell Line, Tumor/microbiology
- Chromosomes, Artificial, Bacterial
- Chromosomes, Artificial, Human
- Clone Cells
- DNA, Recombinant/metabolism
- Electroporation
- Escherichia coli/genetics
- Flow Cytometry
- Gene Expression
- Genetic Therapy/methods
- Genetic Vectors/administration & dosage
- Genome, Bacterial
- Humans
- In Situ Hybridization, Fluorescence
- Lung Neoplasms
- Recombination, Genetic
- Reverse Transcriptase Polymerase Chain Reaction
- Sarcoma
Collapse
Affiliation(s)
- A Laner
- Department of Medical Genetics, Childrens Hospital, Ludwig Maximilians University, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Bonati MT, Finelli P, Giardino D, Gottardi G, Roberts W, Larizza L. Trisomy 15q25.2-qter in an autistic child: genotype-phenotype correlations. Am J Med Genet A 2005; 133A:184-8. [PMID: 15666303 DOI: 10.1002/ajmg.a.30503] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We report on the case of a male child with autistic disorder, postnatal overgrowth, and a minor brain malformation. Karyotyping and fluorescent in situ hybridization (FISH) analysis showed the presence of an extra copy of the distal portion of chromosome 15q (15q25.2-qter) transposed to chromosome 15p leading to 15q25.2-qter pure trisomy. This karyotype-phenotype study further supports the evidence for a specific phenotype related to trisomy 15q25 or 26-qter and suggests that distal chromosome 15q may be implicated in specific behavioral phenotypes.
Collapse
Affiliation(s)
- Maria Teresa Bonati
- Clinic of Medical Genetics, Istituto Auxologico Italiano, Via Viotti 3/5, 20133 Milan, Italy
| | | | | | | | | | | |
Collapse
|
40
|
Kehrer-Sawatzki H, Szamalek JM, Tänzer S, Platzer M, Hameister H. Molecular characterization of the pericentric inversion of chimpanzee chromosome 11 homologous to human chromosome 9. Genomics 2005; 85:542-50. [PMID: 15820305 DOI: 10.1016/j.ygeno.2005.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Accepted: 01/25/2005] [Indexed: 12/01/2022]
Abstract
In addition to the fusion of human chromosome 2, nine pericentric inversions are the most conspicuous karyotype differences between humans and chimpanzees. In this study we identified the breakpoint regions of the pericentric inversion of chimpanzee chromosome 11 (PTR 11) homologous to human chromosome 9 (HSA 9). The break in homology between PTR 11p and HSA 9p12 maps to pericentromeric segmental duplications, whereas the breakpoint region orthologous to 9q21.33 is located in intergenic single-copy sequences. Close to the inversion breakpoint in PTR 11q, large blocks of alpha satellites are located, which indicate the presence of the centromere. Since G-banding analysis and the comparative BAC analyses performed in this study imply that the inversion breaks occurred in the region homologous to HSA 9q21.33 and 9p12, but not within the centromere, the structure of PTR 11 cannot be explained by a single pericentric inversion. In addition to this pericentric inversion of PTR 11, further events like centromere repositioning or a second smaller inversion must be assumed to explain the structure of PTR 11 compared with HSA 9.
Collapse
|
41
|
Perry J, Nouri S, La P, Daniel A, Wu Z, Purvis-Smith S, Northrop E, Choo KHA, Slater HR. Molecular distinction between true centric fission and pericentric duplication-fission. Hum Genet 2005; 116:300-10. [PMID: 15712016 DOI: 10.1007/s00439-004-1209-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Accepted: 09/30/2004] [Indexed: 11/25/2022]
Abstract
Centromere (centric) fission, also known as transverse or lateral centric misdivision, has been defined as the splitting of one functional centromere of a metacentric or submetacentric chromosome to produce two derivative centric chromosomes. It has been observed in a range of organisms and has been ascribed an important role in karyotype evolution; however, the underlying mechanisms remain unknown. We have investigated four cases of apparent centric fission in humans. Two cases show a missing chromosome 22 or 18 that is replaced by two centric ring products, a third case shows two chromosome-10-derived telocentric chromosomes, whereas a fourth case involves the formation of two chromosome-18-derived isochromosomes. In all four cases, results of gross cytogenetic and fluorescence in situ hybridisation analyses were consistent with a simple centric fission event. However, detailed molecular analyses provided evidence in support of centromere duplication as a predisposing mechanism for the observed chromosomal breakage in two of the cases. Results for the third case are consistent with direct centric fission not involving centromere pre-duplication as the likely mechanism. Insufficient material has precluded the further study of the fourth case. The data provide the first molecular evidence for centromere pre-duplication as a possible mechanism to explain the classically assumed simple "centric fission" events in clinical cytogenetics, karyotype evolution and speciation.
Collapse
Affiliation(s)
- Jo Perry
- Chromosome Research Laboratory, Murdoch Childrens Research Institute and Department of Paediatrics, Royal Children's Hospital, Parkville, VIC, 3052, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Weise A, Starke H, Mrasek K, Claussen U, Liehr T. New insights into the evolution of chromosome 1. Cytogenet Genome Res 2004; 108:217-22. [PMID: 15545733 DOI: 10.1159/000080819] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Accepted: 11/07/2003] [Indexed: 11/19/2022] Open
Abstract
A complex low-repetitive human DNA probe (BAC RP11-35B4) together with two microdissection-derived region-specific probes of the multicolor banding (MCB) probe-set for chromosome 1 were used to re-analyze the evolution of human chromosome 1 in comparison to four ape species. BAC RP11-35B4 derives from 1q21 and contains 143 kb of non-repetitive DNA; however, it produces three specific FISH signals in 1q21, 1p12 and 1p36.1 of Homo sapiens (HSA). Human chromosome 1 was studied in comparison to its homologues in Hylobates lar (HLA), Pongo pygmaeus (PPY), Gorilla gorilla (GGO) and Pan troglodytes (PTR). A duplication of sequences homologous to human 1p36.1 could be detected in PPY plus an additional signal on PPY 16q. The region homologous to HSA 1p36.1 is also duplicated in HLA, and split onto chromosomes 7q and 9p; the region homologous to HSA 1q21/1p12 is present as one region on 5q. Additionally, the breakpoint of a small pericentric inversion in the evolution of human chromosome 1 compared to other great ape species could be refined. In summary, the results obtained here are in concordance with previous reports; however, there is evidence for a deletion of regions homologous to human 1p34.2-->p34.1 during evolution in the Pongidae branch after separation of PPY.
Collapse
Affiliation(s)
- A Weise
- Institut für Humangenetik und Anthropologie, Jena, Germany
| | | | | | | | | |
Collapse
|
43
|
Laner A, Schwarz T, Christan S, Schindelhauer D. Suitability of a CMV/EGFP cassette to monitor stable expression from human artificial chromosomes but not transient transfer in the cells forming viable clones. Cytogenet Genome Res 2004; 107:9-13. [PMID: 15305049 DOI: 10.1159/000079564] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Accepted: 05/28/2004] [Indexed: 11/19/2022] Open
Abstract
Human artificial chromosomes (HACs) were generated by transfer of telomerized PAC constructs containing alpha satellite DNA of various human chromosomes. To monitor which cells took up constructs and subsequently formed stable clones under blasticidin S (BS) selection, a CMV/EGFP expression cassette was inserted into a HAC construct based on chromosome 5 alpha satellite DNA (142 kb). Lipofection into HT1080 cells resulted in a small proportion of cells exhibiting bright green fluorescence on day 1. Areas containing such early green cells were marked, and plates monitored over 2 weeks. In only one out of 41 marked areas, a viable clone developed. In the remaining 40 areas, the green cells ceased division at 1-8 cells. In contrast, outside the marked areas, 16 stable clones formed which did not exhibit green fluorescence during the first cell divisions, but all cells of each became green around day 4-6. Fluorescence in situ hybridization (FISH) analysis of isolated clonal lines demonstrated low copy HAC formation without integration. We conclude that transient expression of an EGFP marker on HAC DNA is not a suitable means for the identification of the proportion of transfected cells which are capable of forming viable clones. One explanation could be that the high copy number required to consistently detect transient EGFP expression (Schindelhauer and Laner, 2002) impairs viability and clone formation.
Collapse
Affiliation(s)
- A Laner
- Medical Genetics, Childrens Hospital, Ludwig Maximilians University, Munich, Germany
| | | | | | | |
Collapse
|
44
|
Amor DJ, Bentley K, Ryan J, Perry J, Wong L, Slater H, Choo KHA. Human centromere repositioning "in progress". Proc Natl Acad Sci U S A 2004; 101:6542-7. [PMID: 15084747 PMCID: PMC404081 DOI: 10.1073/pnas.0308637101] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Accepted: 03/12/2004] [Indexed: 01/31/2023] Open
Abstract
Centromere repositioning provides a potentially powerful evolutionary force for reproductive isolation and speciation, but the underlying mechanisms remain ill-defined. An attractive model is through the simultaneous inactivation of a normal centromere and the formation of a new centromere at a hitherto noncentromeric chromosomal location with minimal detrimental effect. We report a two-generation family in which the centromeric activity of one chromosome 4 has been relocated to a euchromatic site at 4q21.3 through the epigenetic formation of a neocentromere in otherwise cytogenetically normal and mitotically stable karyotypes. Strong epigenetic inactivation of the original centromere is suggested by retention of 1.3 megabases of centromeric alpha-satellite DNA, absence of detectable molecular alteration in chromosome 4-centromereproximal p- and q-arm sequences, and failure of the inactive centromere to be reactivated through extensive culturing or treatment with histone deacetylase inhibitor trichostatin A. The neocentromere binds functionally essential centromere proteins (CENP-A, CENP-C, CENP-E, CENP-I, BUB1, and HP1), although a moderate reduction in CENP-A binding and sister-chromatid cohesion compared with the typical centromeres suggests possible underlying structural/functional differences. The stable mitotic and meiotic transmissibility of this pseudodicentric-neocentric chromosome in healthy individuals and the ability of the neocentric activity to form in a euchromatic site in preference to a preexisting alphoid domain provide direct evidence for an inherent mechanism of human centromere repositioning and karyotype evolution "in progress." We discuss the wider implication of such a mechanism for meiotic drive and the evolution of primate and other species.
Collapse
Affiliation(s)
- David J Amor
- Murdoch Children's Research Institute and Department of Paediatrics, Genetic Health Services Victoria, Royal Children's Hospital, Flemington Road, Victoria 3052, Australia
| | | | | | | | | | | | | |
Collapse
|
45
|
Vermeesch JR, Duhamel H, Raeymaekers P, Van Zand K, Verhasselt P, Fryns JP, Marynen P. A physical map of the chromosome 12 centromere. Cytogenet Genome Res 2004; 103:63-73. [PMID: 15004466 DOI: 10.1159/000076291] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Accepted: 08/19/2003] [Indexed: 11/19/2022] Open
Abstract
While current sequencing efforts consider the detection of alpha satellite repeats as logical end points for map construction, detailed maps of most pericentromeric regions are lacking to confirm this hypothesis. Here we identify the different alpha satellite families present at the pericentromeric region of chromosome 12. The order, size and location of these repeats is established using radiation hybrid analysis, pulsed field gel analysis and FISH and the maps are integrated with current sequence information. For the different classes of alpha satellites present at the chromosome 12 centromere the paralogs in the human genome were mapped by FISH. Unique sequences flanking the alpha satellite repeats were identified, some of which are not represented in the current draft sequence. This mapping effort localises the different alpha satellite repeats within the pericentromeric region and anchors them in the current maps. The novel sequences identified may serve as the end point for the ongoing sequencing efforts.
Collapse
Affiliation(s)
- J R Vermeesch
- Center for Human Genetics, University Hospital, Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
46
|
GARCÍA F, GARCIA M, MORA L, ALARCÓN L, EGOZCUE J, PONSÀ M. Qualitative analysis of constitutive heterochromatin and primate evolution. Biol J Linn Soc Lond 2003. [DOI: 10.1046/j.1095-8312.2003.00223.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Simopoulou M, Harper JC, Fragouli E, Mantzouratou A, Speyer BE, Serhal P, Ranieri DM, Doshi A, Henderson J, Rodeck CH, Delhanty JDA. Preimplantation genetic diagnosis of chromosome abnormalities: implications from the outcome for couples with chromosomal rearrangements. Prenat Diagn 2003; 23:652-62. [PMID: 12913872 DOI: 10.1002/pd.662] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Chromosomal rearrangements can lead to infertility or repeated spontaneous or induced abortions. The use of preimplantation genetic diagnosis (PGD) allows the selected transfer of chromosomally balanced embryos. The aim of this study was to carry out detailed analysis of the outcome of 11 PGD cycles for 8 patients carrying various chromosomal rearrangements. METHODS Patients underwent routine in vitro fertilisation with biopsy of embryos on day 3. Specific fluorescent in situ hybridisation protocols were developed for each couple. Embryo transfer was possible in all 11 cycles. RESULTS The outcome was four pregnancies, leading to three live births and one biochemical pregnancy. Post-zygotic mosaicism was detected in 75% of untransferred embryos, the majority of which were chaotic. Detailed follow-up and analysis provided evidence for the co-existence of chromosomally balanced and abnormal cells in six embryos. The mechanisms involved included chromosome breakage and loss of material. CONCLUSIONS Biopsy and analysis of two blastomeres, where possible, reduced the risk of misdiagnosis in cases of balanced/aneuploid mosaics. The three live births achieved for the eight couples treated in this series, despite the poor history in almost all cases, is further proof that a policy of biopsying two cells from embryos consisting of six or more cells and a single cell from four- or five-cell embryos is compatible with a positive outcome.
Collapse
Affiliation(s)
- M Simopoulou
- UCL Centre for Preimplantation Genetic Diagnosis and Assisted Conception Unit, Department of Obstetrics and Gynaecology, University College London, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Gamerdinger U, Teigler-Schlegel A, Pils S, Bruch J, Viehmann S, Keller M, Jauch A, Harbott J. Cryptic chromosomal aberrations leading to an AML1/ETO rearrangement are frequently caused by small insertions. Genes Chromosomes Cancer 2003; 36:261-72. [PMID: 12557226 DOI: 10.1002/gcc.10168] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The translocation t(8;21)(q22;q22), which results in the fusion of the AML1 (RUNX1) and ETO (CBFA2T1) genes, is a recurrent aberration in acute myeloid leukemia (AML), preferentially correlated with FAB M2, and has the highest incidence in childhood AML. Because of the favorable prognosis, the evidence of the t(8;21) or the AML1/ETO fusion gene is mandatory in most of the therapy trials, allowing the stratification of the patients to the correct risk group in terms of treatment. Here we present six out of 59 children with AML who were positive for AML1/ETO by RT-PCR, but showed no evidence of the classical t(8;21)(q22;q22) by conventional cytogenetics. Because of the discrepancies between molecular and cytogenetic analyses, these six patients were further investigated by fluorescence in situ hybridization analysis. Small hidden interstitial insertions resulting in an AML1/ETO rearrangement were detected in five (8.5%) of the 59 patients, whereas the sixth patient showed a cryptic three-way translocation. The insertions could be characterized as ins(21;8) in three patients and ins(8;21) in the remaining two. Additionally, three of the patients showed secondary chromosome aberrations leading to a higher complexity of the karyotype. In conclusion, the combination of more than one standard technique in the analysis of AML1/ETO is useful to reveal the overall frequency of cryptic chromosome rearrangements and permits a better understanding of the mechanisms involved in the generation of this fusion gene.
Collapse
|
49
|
Locke DP, Segraves R, Carbone L, Archidiacono N, Albertson DG, Pinkel D, Eichler EE. Large-scale variation among human and great ape genomes determined by array comparative genomic hybridization. Genome Res 2003; 13:347-57. [PMID: 12618365 PMCID: PMC430292 DOI: 10.1101/gr.1003303] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Large-scale genomic rearrangements are a major force of evolutionary change and the ascertainment of such events between the human and great ape genomes is fundamental to a complete understanding of the genetic history and evolution of our species. Here, we present the results of an evolutionary analysis utilizing array comparative genomic hybridization (array CGH), measuring copy-number gains and losses among these species. Using an array of 2460 human bacterial artificial chromosomes (BACs) (12% of the genome), we identified a total of 63 sites of putative DNA copy-number variation between humans and the great apes (chimpanzee, bonobo, gorilla, and orangutan). Detailed molecular characterization of a subset of these sites confirmed rearrangements ranging from 40 to at least 175 kb in size. Surprisingly, the majority of variant sites differentiating great ape and human genomes were found within interstitial euchromatin. These data suggest that such large-scale events are not restricted solely to subtelomeric or pericentromeric regions, but also occur within genic regions. In addition, 5/9 of the verified variant sites localized to areas of intrachromosomal segmental duplication within the human genome. On the basis of the frequency of duplication in humans, this represents a 14-fold positional bias. In contrast to previous cytogenetic and comparative mapping studies, these results indicate extensive local repatterning of hominoid chromosomes in euchromatic regions through a duplication-driven mechanism of genome evolution.
Collapse
Affiliation(s)
- Devin P Locke
- Department of Genetics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Prochazkova M, Chevret E, Beylot-Barry M, Sobotka J, Vergier B, Delaunay M, Turmo M, Ferrer J, Kuglik P, Merlio JP. Chromosomal imbalances: a hallmark of tumour relapse in primary cutaneous CD30+ T-cell lymphoma. J Pathol 2003; 201:421-9. [PMID: 14595754 DOI: 10.1002/path.1469] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Primary cutaneous CD30+ large T-cell lymphoma (CD30+ CTCL) is a subset of non-epidermotropic primary cutaneous T-cell lymphoma. Although frequent spontaneous regression may be observed, skin relapses occur frequently. Cytogenetic abnormalities that could play a role in CD30+ CTCL tumour pathogenesis and relapses remain unknown. The identification of recurrent cytogenetic abnormalities is hampered by difficulty in culturing tumours and the lack of CD30+ CTCL serial studies comparing genetic changes both at diagnosis and at relapse. The purpose of this study was to investigate the cytogenetic abnormalities present in a series of 13 CD30+ CTCL samples obtained from nine patients fulfilling both EORTC and WHO diagnostic criteria, by the use of comparative genomic hybridization (CGH). CGH analysis revealed a non-random distribution of genetic imbalances between relapsing and non-relapsing disease. In relapsing disease, chromosomal abnormalities were detected both in the primary tumour and in relapses. The mean number of changes in non-relapsing disease was 0.33 (range 0-1), compared with 6.29 (range 1-16) in relapsing disease. The recurrent chromosomes involved in relapsing disease were chromosomes 6 (86%), 9 (86%), and 18 (43%). While chromosome 9 was mostly affected by gain, chromosomes 6 and 18 mainly contained regions of loss, exclusively on 6q and 18p. The common regions of deletion were 6q21 and 18p11.3. In one patient, we successfully cultured tumour cells from a skin biopsy from a second relapse. The G-banded karyotype was concordant with both CGH and fluorescence in situ hybridization (FISH) results. Although further studies are required to strengthen these data, this CGH analysis demonstrates chromosomal imbalances that may be involved in the pathogenesis of relapsing CD30+ CTCL.
Collapse
MESH Headings
- Adult
- Aged
- Chromosome Aberrations
- Chromosomes, Human, Pair 18/genetics
- Chromosomes, Human, Pair 6/genetics
- Chromosomes, Human, Pair 9/genetics
- DNA, Neoplasm/analysis
- Gene Deletion
- Gene Rearrangement
- Humans
- Hybridization, Genetic/genetics
- In Situ Hybridization, Fluorescence/methods
- Karyotyping/methods
- Ki-1 Antigen/genetics
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, T-Cell, Cutaneous/genetics
- Middle Aged
- Neoplasm Recurrence, Local/genetics
- Skin Neoplasms/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Martina Prochazkova
- Histology and Molecular Pathology Laboratory, EA2406, V Segalen University, Bordeaux, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|