1
|
Manjari SKV, Abraham SM, Poornima R, Chaturvedi RK, Maity S, Komal P. Unprecedented effect of vitamin D3 on T-cell receptor beta subunit and alpha7 nicotinic acetylcholine receptor expression in a 3-nitropropionic acid induced mouse model of Huntington's disease. IBRO Neurosci Rep 2023; 15:116-125. [PMID: 38204575 PMCID: PMC10776327 DOI: 10.1016/j.ibneur.2023.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/27/2023] [Accepted: 07/12/2023] [Indexed: 01/12/2024] Open
Abstract
Introduction 3-NP induction in rodent models has been shown to induce selective neurodegeneration in the striatum followed by the cortex (Brouillet, 2014). However, it remains unclear whether, under such a neurotoxic condition, characterized by neuroinflammation and oxidative stress, the gene expression of the immune resident protein, T-cell receptor beta subunit (TCR-β), α7 nicotinic acetylcholine receptor (α7 nAChRs), the nuclear factor kappa B (NF-κB), inflammatory cytokines (TNF-α and IL-6), and antioxidants (Cat and GpX4) get modulated on Vitamin D3 (VD) supplementation in the central nervous system. Methods In the present study, real-time polymerase chain reaction (RT-PCR) was performed to study the expression of respective genes. Male C57BL/6 mice (8-12 weeks) were divided into four groups namely, Group I: Control (saline); Group II: 3-NP induction via i.p (HD); Group III: Vitamin D3 (VD) and Group IV: (HD + VD) (Manjari et al., 2022). Results On administration of 500IU/kg/day of VD, HD mice showed a significant reduction in the gene expression of the immune receptor, TCR-β subunit, nuclear factor kappa B (NF-κB), inflammatory cytokines, and key antioxidants, followed by a decrease in the acetylcholinesterase activity. Conclusion A novel neuroprotective effect of VD in HD is demonstrated by combating the immune receptor, TCR-β gene expression, antioxidant markers, and inflammatory cytokines. In addition, HD mice on VD administration for 0-15 days showed an enhancement in cholinergic signaling with restoration in α7 nAChRs mRNA and protein expression in the striatum and cortex.
Collapse
Affiliation(s)
- SKV Manjari
- Department of Biological Sciences, Birla Institute of Technology and Sciences (BITS)-Pilani (Hyderabad Campus), Shameerpet-Mandal, Hyderabad, Telangana 500078, India
| | - Sharon Mariam Abraham
- Department of Biological Sciences, Birla Institute of Technology and Sciences (BITS)-Pilani (Hyderabad Campus), Shameerpet-Mandal, Hyderabad, Telangana 500078, India
| | - R. Poornima
- Department of Biological Sciences, Birla Institute of Technology and Sciences (BITS)-Pilani (Hyderabad Campus), Shameerpet-Mandal, Hyderabad, Telangana 500078, India
| | - Rajneesh Kumar Chaturvedi
- Department of Toxicology and health assessment, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg P.O. Box No. 80, Lucknow 226 001 Uttar Pradesh, India
| | - Shuvadeep Maity
- Department of Biological Sciences, Birla Institute of Technology and Sciences (BITS)-Pilani (Hyderabad Campus), Shameerpet-Mandal, Hyderabad, Telangana 500078, India
| | - Pragya Komal
- Department of Biological Sciences, Birla Institute of Technology and Sciences (BITS)-Pilani (Hyderabad Campus), Shameerpet-Mandal, Hyderabad, Telangana 500078, India
| |
Collapse
|
2
|
Kılıçoğlu AG, Zadehgan Afshord T, Derin S, Ertas E, Coskun P, Aktas S, Guler EM. Comparison of Possible Changes in Oxidative Stress, DNA Damage, and Inflammatory Markers in Children/Adolescents Diagnosed with Sluggish Cognitive Tempo and Children/Adolescents Diagnosed with Attention-Deficit/Hyperactivity Disorder. J Child Adolesc Psychopharmacol 2023; 33:325-331. [PMID: 37590480 DOI: 10.1089/cap.2022.0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Background: There has been a debate on whether sluggish cognitive tempo (SCT) differs from attention-deficit/hyperactivity disorder (ADHD). Although there have been many studies on metabolic parameters in relation to ADHD, no similar studies have been conducted on patients with SCT. We investigated whether there are differences between SCT and ADHD in terms of these factors. Subjects and Methods: Sixty-two participants with ages ranging from 11 to 18 who have diagnosis of ADHD (33 subjects) and SCT (29 subjects) were included in this study. The parents of all participants completed the 48-item Conners' Parent Rating Scale (CPRS) and the Barkley Child Attention Scale (BCAS) forms, and all participants' blood was taken to compare metabolic, oxidative stress, and antioxidant status of the SCT and ADHD groups. A child and adolescent psychiatrist interviewed the parents and children to assess the diagnosis of SCT and ADHD using standard diagnostic procedures. Results: In the comparison between the SCT and ADHD groups in terms of metabolic parameters, statistically significant differences were found in terms of total oxidant status, total antioxidant status, Oxidative Stress Index, total thiol, native thiol, disulfide, interleukin (IL)-1β, IL-6, and DNA damage (p < 0.05), but not in terms of tumor necrosis factor-α (p > 0.05). Conclusions: Our data showed that these two disorders may be different, but we believe that the data that indicate their differences remain inconclusive overall, but this study may be a potential pathway for future research.
Collapse
Affiliation(s)
- Ali Güven Kılıçoğlu
- Department of Psychology, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | | | - Songul Derin
- Department of Child and Adolescent Psychiatry, Bezmialem Vakıf University, Istanbul, Turkey
| | | | - Pınar Coskun
- Department of Child and Adolescent Psychiatry, Bezmialem Vakıf University, Istanbul, Turkey
| | - Selman Aktas
- Department of Biostatistics and Medical Informatics, University of Health Sciences, Istanbul, Turkey
| | - Eray Metin Guler
- Department of Medical Biochemistry, Hamidiye School of Medicine, University of Health Sciences, Istanbul, Turkey
- Haydarpasa Numune Health Application and Research Center, Clinic of Medical Biochemistry, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
3
|
Anti-depressive-like behaviors of APN KO mice involve Trkb/BDNF signaling related neuroinflammatory changes. Mol Psychiatry 2022; 27:1047-1058. [PMID: 34642455 DOI: 10.1038/s41380-021-01327-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/08/2021] [Accepted: 09/27/2021] [Indexed: 12/26/2022]
Abstract
Major depression disorder is a severe mental illness often linked with metabolic disorders. Adiponectin is an adipocyte-secreted circulatory hormone with antidiabetic and glucose/lipid modulation capacities. Studies have demonstrated the pathophysiological roles of adiponectin involved in various neurological disorders, including depression. However, the underlying mechanisms are poorly understood. Here we showed that adiponectin deprivation enhanced antidepressive-like behaviors in the LPS-induced model of depression. APN KO mice displayed increased cytokines (both pro and anti-inflammatory), accompanied by an impaired expression of adiponectin receptors (mRNA/protein level) and decreasing IBA-1 level in the cortex and primary microglia of LPS treated APN KO mice. Further, LPS-treatment significantly reduced p-NFκB expression in the microglia of APN KO mice. However, the Bay11-7082 treatment recovered p-NFκB expression in the cortex of APN KO mice in the presence of LPS. Interestingly, the antidepressant potentials of APN KO mice were abolished by TrkB antagonist K252a, IKK inhibitor Bay11-7082, and AdipoRon suggesting crosstalk between TrkB/BDNF signaling and NFκB in depression. Furthermore, the effects of Bay11-7082 were abolished by a TrkB/BDNF activator (7,8-DHF), indicating a critical role of TrkB/BDNF signaling. Taken together, these findings showed that dysregulated neuroinflammatory status and BDNF signaling might underlie the antidepressive-like behaviors of APN KO mice. NFκB elicited BDNF changes may be accountable for the pathogenesis of LPS induced depression, where APN might present an alternative therapeutic target for depressive disorders.
Collapse
|
4
|
Wickramasuriya SS, Park I, Lee K, Lee Y, Kim WH, Nam H, Lillehoj HS. Role of Physiology, Immunity, Microbiota, and Infectious Diseases in the Gut Health of Poultry. Vaccines (Basel) 2022; 10:vaccines10020172. [PMID: 35214631 PMCID: PMC8875638 DOI: 10.3390/vaccines10020172] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 01/10/2023] Open
Abstract
“Gut health” refers to the physical state and physiological function of the gastrointestinal tract and in the livestock system; this topic is often focused on the complex interacting components of the intestinal system that influence animal growth performance and host-microbial homeostasis. Regardless, there is an increasing need to better understand the complexity of the intestinal system and the various factors that influence gut health, since the intestine is the largest immune and neuroendocrine organ that interacts with the most complex microbiome population. As we face the post-antibiotic growth promoters (AGP) era in many countries of the world, livestock need more options to deal with food security, food safety, and antibiotic resilience to maintain agricultural sustainability to feed the increasing human population. Furthermore, developing novel antibiotic alternative strategies needs a comprehensive understanding of how this complex system maintains homeostasis as we face unpredictable changes in external factors like antibiotic-resistant microbes, farming practices, climate changes, and consumers’ preferences for food. In this review, we attempt to assemble and summarize all the relevant information on chicken gut health to provide deeper insights into various aspects of gut health. Due to the broad and complex nature of the concept of “gut health”, we have highlighted the most pertinent factors related to the field performance of broiler chickens.
Collapse
Affiliation(s)
- Samiru S. Wickramasuriya
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
| | - Inkyung Park
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
| | - Kyungwoo Lee
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
- Department of Animal Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Youngsub Lee
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
| | - Woo H. Kim
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
- College of Veterinary Medicine and Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Hyoyoun Nam
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
| | - Hyun S. Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
- Correspondence: ; Tel.: +1-301-504-8771
| |
Collapse
|
5
|
Heat Stress Modulates Brain Monoamines and Their Metabolites Production in Broiler Chickens Co-Infected with Clostridium perfringens Type A and Eimeria spp. Vet Sci 2019; 6:vetsci6010004. [PMID: 30634470 PMCID: PMC6466424 DOI: 10.3390/vetsci6010004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/03/2019] [Indexed: 11/17/2022] Open
Abstract
Heat stress has been related to the impairment of behavioral and immunological parameters in broiler chickens. However, the literature is not clear on the involvement of neuroimmune interactions in a heat stress situation associated with bacterial and parasitic infections. The present study evaluated the production of monoamines and their metabolites in brain regions (rostral pallium, hypothalamus, brain stem, and midbrain) in broiler chickens submitted to chronic heat stress and/or infection and co-infection with Eimeria spp. and Clostridium perfringens type A. The heat stress and avian necrotic enteritis (NE) modulated the neurochemical profile of monoamines in different areas of the central nervous system, in particular, those related to the activity of the hypothalamus-hypophysis-adrenal (HPA) axis that is responsible for sickness behavior. C. perfringens and/or Eimeria infection, heat stress increased 5-hydroxytryptamine (5-HT), 4,4 dihydroxyphenylacetic acid (DOPAC), and DOPAC/dopamine (DA) in the rostral pallium; 3-methoxy-4-hydroxyphenylethylene glycol (MHPG), homovanillic acid (HVA), HVA/DA, DOPAC/DA, and 5-hydroxyindoleacetic acid (5-HIAA)/5-HT in the hypothalamus; MHPG, 5-HIAA/5-HT, DOPAC/DA, and HVA/DA in the midbrain; and MHPG, DOPAC, HVA, HVA/DA, DOPAC/DA, and 5-HIAA/5-HT in the brainstem. Heat stress decreased noradrenaline + norepinephrine (NOR + AD) in all brain regions analyzed; 5-HT in the hypothalamus, midbrain, and brainstem; and DA in the midbrain. The results also showed the existence and activity of the brain-gut axis in broiler chickens. The brain neurochemical profile and corticosterone production are consistent with those observed in chronic stressed mammals, in animals with sickness behavior, and an overloading of the HPA axis.
Collapse
|
6
|
DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. J Neurochem 2016; 139 Suppl 2:136-153. [PMID: 26990767 DOI: 10.1111/jnc.13607] [Citation(s) in RCA: 989] [Impact Index Per Article: 109.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/27/2016] [Accepted: 03/02/2016] [Indexed: 12/11/2022]
Abstract
There is significant interest in understanding inflammatory responses within the brain and spinal cord. Inflammatory responses that are centralized within the brain and spinal cord are generally referred to as 'neuroinflammatory'. Aspects of neuroinflammation vary within the context of disease, injury, infection, or stress. The context, course, and duration of these inflammatory responses are all critical aspects in the understanding of these processes and their corresponding physiological, biochemical, and behavioral consequences. Microglia, innate immune cells of the CNS, play key roles in mediating these neuroinflammatory responses. Because the connotation of neuroinflammation is inherently negative and maladaptive, the majority of research focus is on the pathological aspects of neuroinflammation. There are, however, several degrees of neuroinflammatory responses, some of which are positive. In many circumstances including CNS injury, there is a balance of inflammatory and intrinsic repair processes that influences functional recovery. In addition, there are several other examples where communication between the brain and immune system involves neuroinflammatory processes that are beneficial and adaptive. The purpose of this review is to distinguish different variations of neuroinflammation in a context-specific manner and detail both positive and negative aspects of neuroinflammatory processes. In this review, we will use brain and spinal cord injury, stress, aging, and other inflammatory events to illustrate the potential harm and benefits inherent to neuroinflammation. Context, course, and duration of the inflammation are highly important to the interpretation of these events, and we aim to provide insight into this by detailing several commonly studied insults. This article is part of the 60th anniversary supplemental issue.
Collapse
Affiliation(s)
- Damon J DiSabato
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Ning Quan
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA. .,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
7
|
Central Interleukin-1β Suppresses the Nocturnal Secretion of Melatonin. Mediators Inflamm 2016; 2016:2589483. [PMID: 27212805 PMCID: PMC4861797 DOI: 10.1155/2016/2589483] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 04/10/2016] [Indexed: 11/18/2022] Open
Abstract
In vertebrates, numerous processes occur in a rhythmic manner. The hormonal signal reliably reflecting the environmental light conditions is melatonin. Nocturnal melatonin secretion patterns could be disturbed in pathophysiological states, including inflammation, Alzheimer's disease, and depression. All of these states share common elements in their aetiology, including the overexpression of interleukin- (IL-) 1β in the central nervous system. Therefore, the present study was designed to determine the effect of the central injection of exogenous IL-1β on melatonin release and on the expression of the enzymes of the melatonin biosynthetic pathway in the pineal gland of ewe. It was found that intracerebroventricular injections of IL-1β (50 µg/animal) suppressed (P < 0.05) nocturnal melatonin secretion in sheep regardless of the photoperiod. This may have resulted from decreased (P < 0.05) synthesis of the melatonin intermediate serotonin, which may have resulted, at least partially, from a reduced expression of tryptophan hydroxylase. IL-1β also inhibited (P < 0.05) the expression of the melatonin rhythm enzyme arylalkylamine-N-acetyltransferase and hydroxyindole-O-methyltransferase. However, the ability of IL-1β to affect the expression of these enzymes was dependent upon the photoperiod. Our study may shed new light on the role of central IL-1β in the aetiology of disruptions in melatonin secretion.
Collapse
|
8
|
Bhatt S, Shukla P, Raval J, Goswami S. Role of Aspirin and Dexamethasone against Experimentally Induced Depression in Rats. Basic Clin Pharmacol Toxicol 2016; 119:10-8. [DOI: 10.1111/bcpt.12539] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/20/2015] [Indexed: 12/28/2022]
Affiliation(s)
| | | | - Jibril Raval
- L. J. Institute of Pharmacy; L.J. Campus; Ahmedabad India
| | - Sunita Goswami
- Department of Pharmacology; L. M. College of Pharmacy; Navrangpura Ahmedabad India
| |
Collapse
|
9
|
On the association between lipopolysaccharide induced catalepsy and serotonin metabolism in the brain of mice genetically different in the predisposition to catalepsy. Pharmacol Biochem Behav 2013; 111:71-5. [DOI: 10.1016/j.pbb.2013.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/06/2013] [Accepted: 08/10/2013] [Indexed: 11/20/2022]
|
10
|
del Rey A, Balschun D, Wetzel W, Randolf A, Besedovsky HO. A cytokine network involving brain-borne IL-1β, IL-1ra, IL-18, IL-6, and TNFα operates during long-term potentiation and learning. Brain Behav Immun 2013; 33:15-23. [PMID: 23747799 DOI: 10.1016/j.bbi.2013.05.011] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/27/2013] [Accepted: 05/30/2013] [Indexed: 12/30/2022] Open
Abstract
We have previously shown that long-term potentiation (LTP) induces hippocampal IL-1β and IL-6 over-expression, and interfering their signalling either inhibits or supports, respectively, LTP maintenance. Consistently, blockade of endogenous IL-1 or IL-6 restricts or favours hippocampal-dependent memory, effects that were confirmed in genetically manipulated mice. Since cytokines are known for their high degree of mutual crosstalk, here we studied whether a network of cytokines with known neuromodulatory actions is activated during LTP and learning. We found that, besides IL-1β and IL-6, also IL-1 receptor antagonist (IL-1ra) and IL-18, but not TNFα are over-expressed during LTP maintenance in freely moving rats. The increased expression of these cytokines is causally related to an increase in synaptic strength since it was abrogated when LTP was interfered by blockade of NMDA-glutamate receptors. Likewise, IL-1 and IL-6 were found to be over-expressed in defined regions of the hippocampus during learning a hippocampus-dependent task. However, during learning, changes in IL-18 were restricted to the dorsal hippocampus, and no differences in TNFα and IL1-ra expression were noticed in the hippocampus. Noticeably, IL-1ra transcripts were significantly reduced in the prefrontal cortex. The relation between cytokine expression and learning was causal because such changes were not observed in animals from a pseudo-trained group that was subject to the same manipulation but could not learn the task. Taken together with previous studies, we conclude that activation of a cytokine network in the brain is a physiologic relevant phenomenon not only for LTP maintenance but also for certain types of learning.
Collapse
Affiliation(s)
- Adriana del Rey
- Research Group Immunophysiology, Institute of Physiology and Pathophysiology, Philipps University, 35037 Marburg, Germany
| | | | | | | | | |
Collapse
|
11
|
Park HJ, Shim HS, Kim KS, Shim I. WITHDRAWN: Protective effect of IL-4 on IL-1ß-induced behavioral, biochemical and immunological alterations. Neurosci Res 2013:S0168-0102(13)00010-2. [PMID: 23403364 DOI: 10.1016/j.neures.2013.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 11/20/2022]
Abstract
This article has been withdrawn at the request of the authors. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Hyun-Jung Park
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University,1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | | | | | | |
Collapse
|
12
|
Baganz NL, Blakely RD. A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem Neurosci 2013; 4:48-63. [PMID: 23336044 DOI: 10.1021/cn300186b] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 12/07/2012] [Indexed: 12/20/2022] Open
Abstract
Neuropsychiatric disorders have long been linked to both immune system activation and alterations in serotonin (5-HT) signaling. In the CNS, the contributions of 5-HT modulate a broad range of targets, most notably, hypothalamic, limbic and cortical circuits linked to the control of mood and mood disorders. In the periphery, many are aware of the production and actions of 5-HT in the gut but are unaware that the molecule and its receptors are also present in the immune system where evidence suggests they contribute to the both innate and adaptive responses. In addition, there is clear evidence that the immune system communicates to the brain via both humoral and neuronal mechanisms, and that CNS 5-HT neurons are a direct or indirect target for these actions. Following a brief primer on the immune system, we describe our current understanding of the synthesis, release, and actions of 5-HT in modulating immune function, including the expression of 5-HT biosynthetic enzymes, receptors, and transporters that are typically studied with respect to the roles in the CNS. We then orient our presentation to recent findings that pro-inflammatory cytokines can modulate CNS 5-HT signaling, leading to a conceptualization that among the many roles of 5-HT in the body is an integrated physiological and behavioral response to inflammatory events and pathogens. From this perspective, altered 5-HT/immune conversations are likely to contribute to risk for neurobehavioral disorders historically linked to compromised 5-HT function or ameliorated by 5-HT targeted medications, including depression and anxiety disorders, obsessive-compulsive disorder (OCD), and autism. Our review raises the question as to whether genetic variation impacting 5-HT signaling genes may contribute to maladaptive behavior as much through perturbed immune system modulation as through altered brain mechanisms. Conversely, targeting the immune system for therapeutic development may provide an important opportunity to treat mental illness.
Collapse
Affiliation(s)
- Nicole L. Baganz
- Department of Pharmacology and ‡Department of Psychiatry, Vanderbilt University Medical Center, Nashville, Tennessee 37232-8548, United States
| | - Randy D. Blakely
- Department of Pharmacology and ‡Department of Psychiatry, Vanderbilt University Medical Center, Nashville, Tennessee 37232-8548, United States
| |
Collapse
|
13
|
Jouda J, Wildmann J, Schäfer M, Roggero E, Besedovsky HO, del Rey A. T cells affect central and peripheral noradrenergic mechanisms and neurotrophin concentration in the spleen and hypothalamus. Ann N Y Acad Sci 2012; 1261:18-25. [DOI: 10.1111/j.1749-6632.2012.06642.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Prager G, Hadamitzky M, Engler A, Doenlen R, Wirth T, Pacheco-López G, Krügel U, Schedlowski M, Engler H. Amygdaloid signature of peripheral immune activation by bacterial lipopolysaccharide or staphylococcal enterotoxin B. J Neuroimmune Pharmacol 2012; 8:42-50. [PMID: 22639228 DOI: 10.1007/s11481-012-9373-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 04/27/2012] [Indexed: 01/21/2023]
Abstract
Activated immune cells produce soluble mediators that not only coordinate local and systemic immune responses but also act on the brain to initiate behavioral, neuroendocrine and metabolic adaptations. Earlier studies have shown that the amygdala, a group of nuclei located in the medial temporal lobe, is engaged in the central processing of afferent signals from the peripheral immune system. Here, we compared amygdaloid responses to lipopolysaccharide (LPS) and staphylococcal enterotoxin B (SEB), two prototypic bacterial products that elicit distinct immune responses. Intraperitoneal administration of LPS (0.1 mg/kg) or SEB (1 mg/kg) in adult rats induced substantial increases in amygdaloid neuronal activity as measured by intracerebral electroencephalography and c-fos gene expression. Amygdaloid neuronal activation was accompanied by an increase in anxiety-related behavior in the elevated plus-maze test. However, only treatment with LPS, but not SEB, enhanced amygdaloid IL-1β and TNF-α mRNA expression. This supports the view of the immune system as a sensory organ that recognizes invading pathogens and rapidly relays this information to the brain, independent of the nature of the immune response induced. The observation that neuronal and behavioral responses to peripheral immune challenges are not necessarily accompanied by increased brain cytokine expression suggests that cytokines are not the only factors driving sickness-related responses in the CNS.
Collapse
Affiliation(s)
- Geraldine Prager
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Engler H, Doenlen R, Engler A, Riether C, Prager G, Niemi MB, Pacheco-López G, Krügel U, Schedlowski M. Acute amygdaloid response to systemic inflammation. Brain Behav Immun 2011; 25:1384-92. [PMID: 21521653 DOI: 10.1016/j.bbi.2011.04.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/05/2011] [Accepted: 04/07/2011] [Indexed: 01/22/2023] Open
Abstract
The amygdala, a group of nuclei located in the medial temporal lobe, is a key limbic structure involved in mood regulation, associative learning, and modulation of cognitive functions. Functional neuroanatomical studies suggest that this brain region plays also an important role in the central integration of afferent signals from the peripheral immune system. In the present study, intracerebral electroencephalography and microdialysis were employed to investigate the electrophysiological and neurochemical consequences of systemic immune activation in the amygdala of freely moving rats. Intraperitoneal administration of bacterial lipopolysaccharide (100 μg/kg) induced with a latency of about 2 h a significant increase in amygdaloid neuronal activity and a substantial rise in extracellular noradrenaline levels. Activated neurons in the amygdaloid complex, identified by c-Fos immunohistochemistry, were mainly located in the central nucleus and, to a lesser extent, in the basolateral nucleus of the amygdala. Gene expression analysis in micropunches of the amygdala revealed that endotoxin administration induced a strong time-dependent increase in IL-1β, IL-6, and TNF-α mRNA levels indicating that these cytokines are de novo synthesized in the amygdala in response to peripheral immune activation. The changes in amygdaloid activity were timely related to an increase in anxiety-like behavior and decreased locomotor activity and exploration in the open-field. Taken together, these data give novel insights into different features of the acute amygdaloid response during experimental inflammation and provides further evidence that the amygdala integrates immune-derived information to coordinate behavioral and autonomic responses.
Collapse
Affiliation(s)
- Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, D-45122 Essen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wakabayashi C, Kiyama Y, Kunugi H, Manabe T, Iwakura Y. Age-dependent regulation of depression-like behaviors through modulation of adrenergic receptor α1A subtype expression revealed by the analysis of interleukin-1 receptor antagonist knockout mice. Neuroscience 2011; 192:475-84. [DOI: 10.1016/j.neuroscience.2011.06.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 05/29/2011] [Accepted: 06/09/2011] [Indexed: 11/29/2022]
|
17
|
Neural pathways in allergic inflammation. J Allergy (Cairo) 2011; 2010:491928. [PMID: 21331366 PMCID: PMC3038426 DOI: 10.1155/2010/491928] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 11/30/2010] [Accepted: 12/08/2010] [Indexed: 12/20/2022] Open
Abstract
Allergy is on the rise worldwide. Asthma, food allergy, dermatitis, and systemic anaphylaxis are amongst the most common allergic diseases. The association between allergy and altered behavior patterns has long been recognized. The molecular and cellular pathways in the bidirectional interactions of nervous and immune systems are now starting to be elucidated. In this paper, we outline the consequences of allergic diseases, especially food allergy and asthma, on behavior and neural activity and on the neural modulation of allergic responses.
Collapse
|
18
|
Connection between inflammatory processes and transmittor function—Modulatory effects of interleukin-1. Prog Neurobiol 2010; 90:256-62. [DOI: 10.1016/j.pneurobio.2009.10.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 07/27/2009] [Accepted: 10/09/2009] [Indexed: 12/27/2022]
|
19
|
Mathieu P, Battista D, Depino A, Roca V, Graciarena M, Pitossi F. The more you have, the less you get: the functional role of inflammation on neuronal differentiation of endogenous and transplanted neural stem cells in the adult brain. J Neurochem 2009; 112:1368-85. [PMID: 20028453 DOI: 10.1111/j.1471-4159.2009.06548.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The differentiation of neural stem cells toward a neuronal phenotype is determined by the extracellular and intracellular factors that form the neurogenic niche. In this review, we discuss the available data on the functional role of inflammation and in particular, pro- and anti-inflammatory cytokines, on neuronal differentiation from endogenous and transplanted neural stem/progenitor cells. In addition, we discuss the role of microglial cell activation on these processes and the fact that microglial cell activation is not univocally associated with a pro-inflammatory milieu. We conclude that brain cytokines could be regarded as part of the endogenous neurogenic niche. In addition, we propose that accumulating evidence suggests that pro-inflammatory cytokines have a negative effect on neuronal differentiation, while anti-inflammatory cytokines exert an opposite effect. The clarification of the functional role of cytokines on neuronal differentiation will be relevant not only to better understand adult neurogenesis, but also to envisage complementary treatments to modulate cytokine action that could increase the therapeutic benefit of future progenitor/stem cell-based therapies.
Collapse
Affiliation(s)
- Patricia Mathieu
- Institute Leloir Foundation-IIBBA-CONICET, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
20
|
Miura H, Shirokawa T, Isobe K, Ozaki N. Shifting the balance of brain tryptophan metabolism elicited by isolation housing and systemic administration of lipopolysaccharide in mice. Stress 2009; 12:206-14. [PMID: 19006008 DOI: 10.1080/10253890802252442] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The kynurenine (KYN) pathway, which is initiated by indoleamine 2,3-dioxygenase, is a key tryptophan (TRP) metabolic pathway. It shares TRP mainly with the serotonin (5-HT) pathway. Activation of the KYN pathway by stimulation of the inflammatory response system (IRS) is known to induce depressive symptoms. Thus, we considered that shifting the balance between the KYN and 5-HT systems in the brain to the KYN pathway closely relate to the etiology of depression. In the present study, we investigated the influence of environmental risk factors for depression, such as social isolation and activation of the IRS, on brain TRP metabolism. Male ICR mice (postnatal day 21) were divided into two housing conditions, isolation and group housing, reared for 4 weeks, and then given an intraperitoneal injection of lipopolysaccharide (LPS). We measured the TRP, KYN, and 5-HT levels in the prefrontal cortex, hippocampus, amygdala, and dorsal raphe nuclei. Isolation housing decreased the KYN/5-HT ratio in the amygdala and dorsal raphe nuclei. LPS increased the KYN/5-HT ratio in all regions except the dorsal raphe nuclei. Thus, isolation housing shifted the balance between the KYN and 5-HT pathways to the 5-HT pathway, whereas systemic administration of LPS shifted it to the KYN pathway.
Collapse
Affiliation(s)
- Hideki Miura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | | | | |
Collapse
|
21
|
Ota K, Wildmann J, Ota T, Besedovsky HO, Del Rey A. Interleukin-1beta and insulin elicit different neuroendocrine responses to hypoglycemia. Ann N Y Acad Sci 2009; 1153:82-8. [PMID: 19236331 DOI: 10.1111/j.1749-6632.2008.03981.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interleukin (IL)-1beta induces a prolonged hypoglycemia in mice that is not caused by a reduction in food intake and is dissociable from insulin effects. There is a peripheral component in the hypoglycemia that the cytokine induces resulting from an increased glucose uptake, an effect that can be exerted in a paracrine fashion at the site where IL-1 is locally produced. However, the maintenance of hypoglycemia is controlled at brain levels because the blockade of IL-1 receptors in the central nervous system inhibits this effect to a large extent. Furthermore, there is evidence that the cytokine interferes with counter regulation to hypoglycemia. Here we report that administration of IL-1 or long-lasting insulin results in different changes in food intake and in neuroendocrine mechanisms 8 h following induction of the same degree of hypoglycemia (40-45% decrease in glucose blood levels). Insulin, but not IL-1, caused an increase in food intake and an endocrine response that tends to reestablish euglycemia. Conversely, a decrease in noradrenergic and an increase in serotonergic activity in the hypothalamus occur in parallel with a reduction of glucose blood levels only in IL-1-treated mice, effects that can contribute to the maintenance of hypoglycemia. These results are compatible with the proposal that IL-1 acting in the brain can reset glucose homeostasis at a lower level. The biologic significance of this effect is discussed.
Collapse
Affiliation(s)
- Kazuki Ota
- Department of Immunophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Philipps University, Marburg, Germany
| | | | | | | | | |
Collapse
|
22
|
Grippo AJ, Johnson AK. Stress, depression and cardiovascular dysregulation: a review of neurobiological mechanisms and the integration of research from preclinical disease models. Stress 2009; 12:1-21. [PMID: 19116888 PMCID: PMC2613299 DOI: 10.1080/10253890802046281] [Citation(s) in RCA: 296] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bidirectional associations between mood disorders and cardiovascular diseases are extensively documented. However, the precise physiological and biochemical mechanisms that underlie such relationships are not well understood. This review focuses on the neurobiological processes and mediators that are common to both mood and cardiovascular disorders. The discussion places an emphasis on the role of exogenous stressors in addition to: (a) neuroendocrine and neurohumoral changes involving dysfunction of the hypothalamic-pituitary-adrenal axis and the activation of the renin-angiotensin-aldosterone system, (b) immune alterations including activation of pro-inflammatory cytokines, (c) autonomic and cardiovascular dysregulation including increased sympathetic drive, withdrawal of parasympathetic tone, cardiac rate and rhythm disturbances, and altered baroreceptor reflex function, (d) central neurotransmitter system dysfunction involving the dopamine, norepinephrine and serotonin systems, and (e) behavioral changes including fatigue and physical inactivity. The review also discusses experimental investigations using preclinical disease models to elucidate the neurobiological mechanisms underlying the link between mood disorders and cardiovascular disease. These include: (a) the chronic mild stress model of depression, (b) a model of congestive heart failure, (c) a model of cardiovascular deconditioning, (d) pharmacological manipulations of body fluid and sodium balance, and (e) pharmacological manipulations of the central serotonergic system. In combination with an extensive human research literature, the investigation of mechanisms underlying mood and cardiovascular regulation using animal models will enhance understanding the association between depression and cardiovascular disease. This will ultimately promote the development of better treatments and interventions for individuals with co-morbid psychological and somatic pathologies.
Collapse
Affiliation(s)
- Angela J Grippo
- Department of Psychiatry and Brain Body Center, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | |
Collapse
|
23
|
del Rey A, Wolff C, Wildmann J, Randolf A, Hahnel A, Besedovsky HO, Straub RH. Disrupted brain-immune system-joint communication during experimental arthritis. ACTA ACUST UNITED AC 2008; 58:3090-9. [DOI: 10.1002/art.23869] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Miura H, Ozaki N, Sawada M, Isobe K, Ohta T, Nagatsu T. A link between stress and depression: shifts in the balance between the kynurenine and serotonin pathways of tryptophan metabolism and the etiology and pathophysiology of depression. Stress 2008; 11:198-209. [PMID: 18465467 DOI: 10.1080/10253890701754068] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Alteration of tryptophan (TRP) metabolism elicited by proinflammatory cytokines has gained attention as a new concept to explain the etiological and pathophysiological mechanisms of major depression. The kynurenine (KYN) pathway, which is initiated by indoleamine 2,3-dioxygenase (IDO), is the main TRP metabolic pathway. It shares TRP with the serotonin (5-HT) pathway. Proinflammatory cytokines induce IDO under stress, promote the KYN pathway, deprive the 5-HT pathway of TRP, and reduce 5-HT synthesis. The resultant decrease in 5-HT production may relate to the monoamine hypothesis of major depression. Furthermore, metabolites of the KYN pathway have neurotoxic/neuroprotective activities; 3-hydroxykynurenine and quinolinic acid are neurotoxic, whereas kynurenic acid is neuroprotective. The hippocampal atrophy that appears in chronic depression may be associated with imbalances in neurotoxic/neuroprotective activities. Because proinflammatory cytokines also activate the hypothalamo-pituitary-adrenal (HPA) axis, these imbalances may inhibit the hippocampal negative feedback system. Thus, changes in the TRP metabolism may also relate to the HPA axis-hyperactivity hypothesis of major depression. In this article, we review the changes in TRP metabolism by proinflammatory cytokines under stress, which is assumed to be a risk factor for major depression, and the relationship between physiological risk factors for major depression and proinflammatory cytokines.
Collapse
Affiliation(s)
- Hideki Miura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Bhatt S, Bhatt R, Zalcman SS, Siegel A. Role of IL-1 beta and 5-HT2 receptors in midbrain periaqueductal gray (PAG) in potentiating defensive rage behavior in cat. Brain Behav Immun 2008; 22:224-33. [PMID: 17890051 PMCID: PMC2276628 DOI: 10.1016/j.bbi.2007.07.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 07/17/2007] [Accepted: 07/28/2007] [Indexed: 11/26/2022] Open
Abstract
Feline defensive rage, a form of aggressive behavior that occurs in response to a threat can be elicited by electrical stimulation of the medial hypothalamus or midbrain periaqueductal gray (PAG). Our laboratory has recently begun a systematic examination of the role of cytokines in the regulation of rage and aggressive behavior. It was shown that the cytokine, interleukin-2 (IL-2), differentially modulates defensive rage when microinjected into the medial hypothalamus and PAG by acting through separate neurotransmitter systems. The present study sought to determine whether a similar relationship exists with respect to interleukin 1-beta (IL-1 beta), whose receptor activation in the medial hypothalamus potentiates defensive rage. Thus, the present study identified the effects of administration of IL-1 beta into the PAG upon defensive rage elicited from the medial hypothalamus. Microinjections of IL-1 beta into the dorsal PAG significantly facilitated defensive rage behavior elicited from the medial hypothalamus in a dose and time dependent manner. In addition, the facilitative effects of IL-1 beta were blocked by pre-treatment with anti-IL-1 beta receptor antibody, while IL-1 beta administration into the PAG had no effect upon predatory attack elicited from the lateral hypothalamus. The findings further demonstrated that IL-1 beta's effects were mediated through 5-HT(2) receptors since pretreatment with a 5-HT(2C) receptors antagonist blocked the facilitating effects of IL-1 beta. An extensive pattern of labeling of IL-1 beta and 5-HT(2C) receptors in the dorsal PAG supported these findings. The present study demonstrates that IL-beta in the dorsal PAG, similar to the medial hypothalamus, potentiates defensive rage behavior and is mediated through a 5-HT(2C) receptor mechanism.
Collapse
Affiliation(s)
- Suresh Bhatt
- Department of Neurology & Neurosciences, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Rekha Bhatt
- Department of Neurology & Neurosciences, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Steven S Zalcman
- Department of Psychiatry, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Allan Siegel
- Department of Neurology & Neurosciences, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
- Department of Psychiatry, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
- * Corresponding author. Tel.: +1 973 972 4471; fax: + 1 973 972 3291., E-mail address: (A. Siegel)
| |
Collapse
|
26
|
Dunn AJ. Infection as a stressor: a cytokine-mediated activation of the hypothalamo-pituitary-adrenal axis? CIBA FOUNDATION SYMPOSIUM 2007; 172:226-39; discussion 239-42. [PMID: 8491088 DOI: 10.1002/9780470514368.ch11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Infections are associated with increased plasma concentrations of adrenocorticotropic hormone (ACTH) and corticosterone. Hypothalamo-pituitary-adrenal (HPA) responses have also been observed with immunological stimuli that are not infective. Although such responses have been suggested to be mediated by ACTH secreted by lymphocytes, adrenocortical activation by immunological stimuli requires a functional pituitary. The most likely mechanism by which immunological stimuli activate the HPA axis involves production of cytokines by lymphocytes. The prime candidate is interleukin 1 (IL-1), because IL-1 production follows activation of the immune system and IL-1 administration is a potent activator of the HPA axis. However, other cytokines, such as tumour necrosis factor, may also be involved. Most immunological stimuli and IL-1 also activate both peripheral and central noradrenergic neurons. IL-1-induced activation of the HPA axis in vivo depends upon secretion of corticotropin-releasing factor (CRF), an intact pituitary, and the ventral noradrenergic bundle which innervates the CRF-containing neurons in the paraventricular nucleus (PVN) of the hypothalamus. Besides elevating body temperature, administration of IL-1 elicits a number of behavioural responses in rats and mice, including anorexia, increased sleep time, decreased investigation of novel objects and other animals, increased defensive withdrawal and other behaviours characteristic of sickness. Some of these responses can be reversed by CRF-antagonists and mimicked by CRF administration. Thus, endogenous production of IL-1 can account for a range of physiological and behavioural responses characteristic of sickness. Nevertheless, definitive evidence that IL-1 mediates these responses in sick animals is lacking.
Collapse
Affiliation(s)
- A J Dunn
- Department of Pharmacology and Therapeutics, Louisiana State University Medical Center, Shreveport 71130-3932
| |
Collapse
|
27
|
Swiergiel AH, Dunn AJ. Effects of interleukin-1beta and lipopolysaccharide on behavior of mice in the elevated plus-maze and open field tests. Pharmacol Biochem Behav 2007; 86:651-9. [PMID: 17360031 PMCID: PMC2014736 DOI: 10.1016/j.pbb.2007.02.010] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 01/26/2007] [Accepted: 02/07/2007] [Indexed: 10/23/2022]
Abstract
It has been postulated that infections, inflammatory processes and resulting cytokines may be causative factors in emotional disorders, including depression and anxiety. Support for this possibility has been sought in studies of animal behavior following administration of interleukin-1 (IL-1) and lipopolysaccharide (LPS). However, such treatments induce a variety of behavioral responses, collectively known as sickness behavior, some of which could affect the performance in tests used to assess anxiety and depression. Thus the effects of peripheral administration of IL-1beta and LPS on the behavior of mice were studied in the elevated plus-maze (EPM) and the open field (OF). Mouse IL-1beta (30, 100, 300, and 1000 ng) was injected intraperitoneally 30 or 60 min, and LPS (0.5, 1 and 5 microg) 120 min before the tests. IL-1beta and LPS induced dose-dependent decreases in open arm entries and the time spent on the open arms in the EPM, effects considered to reflect anxiety-like behavior. However, entries to all arms were also reduced in a dose-dependent manner, indicating a decrease in general activity. In the OF, IL-1beta and LPS decreased the number of line crossings in the center of the field, that can also be considered to reflect anxiety-like behavior. However, this effect was accompanied by a similar decrease in line crossings in the periphery, as well as in rears and climbs. Thus the doses of IL-1beta and LPS necessary to induce these effects also decreased locomotor activity in the EPM and OF. Therefore, the behavioral responses induced by IL-1beta and LPS in the EPM and the OF considered to reflect anxiety must be interpreted in the light of this reduction in overall activity. Thus the results do not provide unequivocal support for the suggestion that LPS or IL-1 mediate anxiety. Nevertheless, because infections, endotoxins, and the ensuing cytokines cause alterations in CNS norepinephrine and serotonin, they may contribute to emotionality, and perhaps to anxiety.
Collapse
Affiliation(s)
- Artur H Swiergiel
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, P.O. Box 33932, Louisiana, USA
| | | |
Collapse
|
28
|
|
29
|
Wieczorek M, Dunn AJ. Relationships among the behavioral, noradrenergic, and pituitary-adrenal responses to interleukin-1 and the effects of indomethacin. Brain Behav Immun 2006; 20:477-87. [PMID: 16330180 PMCID: PMC1950692 DOI: 10.1016/j.bbi.2005.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2005] [Revised: 09/27/2005] [Accepted: 10/09/2005] [Indexed: 11/18/2022] Open
Abstract
Peripheral administration of interleukin-1 (IL-1) is known to activate the hypothalamo-pituitary-adrenal axis (HPA axis) and brain noradrenergic systems. We studied the relationship between these responses using in vivo microdialysis to assess the release of hypothalamic norepinephrine (NE), while simultaneously sampling blood for ACTH and corticosterone, and monitoring body temperature and behavior in freely moving rats. Rats were implanted with microdialysis probes in the medial hypothalamus, with intravenous catheters, and with telethermometers in the abdomen. Each rat was injected with saline and IL-1beta (1 microg ip) in random order, monitoring microdialysate NE, body temperature and plasma ACTH and corticosterone for 2-4 h after injection. Saline injections were followed by transient increases in microdialysate NE and in plasma ACTH and corticosterone. IL-1beta injections resulted in prolonged elevations of microdialysate NE, as well as plasma ACTH and corticosterone, and body temperature. IL-1beta also induced shivering and a prolonged depression of locomotor activity. Pretreatment with indomethacin (10 mg/kg sc) prevented the IL-1beta-induced increases in body temperature and the apparent increase in hypothalamic NE release, but only attenuated the IL-1beta-induced shivering and the increase in plasma ACTH. The results indicate a close temporal relationship between the release of NE and HPA axis activation. Such a relationship is also supported by the similar effects of indomethacin pretreatment on NE and ACTH. The shivering is likely involved in the increase in body temperature, but indomethacin only attenuated the shivering while it blocked the fever. However, the effects of indomethacin clearly indicate that neither the increase in body temperature nor the increase in hypothalamic NE release was essential for HPA axis activation. These results suggest that hypothalamic NE is involved in the IL-1-induced HPA axis activation, but that this is not the only mechanism by which the HPA axis is activated by intraperitoneally injected IL-1.
Collapse
Affiliation(s)
- Marek Wieczorek
- Department of Neurophysiology, University of Lodz, Poland
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Adrian J. Dunn
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- * Corresponding author. Fax: +1 318 675 7857. E-mail address: (A.J. Dunn)
| |
Collapse
|
30
|
Abstract
Administration of cytokines to animals can elicit many effects on the brain, particularly neuroendocrine and behavioral effects. Cytokine administration also alters neurotransmission, which may underlie these effects. The most well studied effect is the activation of the hypothalamo-pituitary-adrenocortical (HPA) axis, especially that by interleukin-1 (IL-1). Peripheral and central administration of IL-1 also induces norepinephrine (NE) release in the brain, most markedly in the hypothalamus. Small changes in brain dopamine (DA) are occasionally observed, but these effects are not regionally selective. IL-1 also increases brain concentrations of tryptophan, and the metabolism of serotonin (5-HT) throughout the brain in a regionally nonselective manner. Increases of tryptophan and 5-HT, but not NE, are also elicited by IL-6, which also activates the HPA axis, although it is much less potent in these respects than IL-1. IL-2 has modest effects on DA, NE and 5-HT. Like IL-6, tumor necrosis factor-α (TNFα) activates the HPA axis, but affects NE and tryptophan only at high doses. The interferons (IFN's) induce fever and HPA axis activation in man, but such effects are weak or absent in rodents. The reported effects of IFN's on brain catecholamines and serotonin have been very varied. However, interferon-γ, and to a lesser extent, interferon-α, have profound effects on the catabolism of tryptophan, effectively reducing its concentration in plasma, and may thus limit brain 5-HT synthesis.Administration of endotoxin (LPS) elicits responses similar to those of IL-1. Bacterial and viral infections induce HPA activation, and also increase brain NE and 5-HT metabolism and brain tryptophan. Typically, there is also behavioral depression. These effects are strikingly similar to those of IL-1, suggesting that IL-1 secretion, which accompanies many infections, may mediate these responses. Studies with IL-1 antagonists, support this possibility, although in most cases the antagonism is incomplete, suggesting the existence of multiple mechanisms. Because LPS is known to stimulate the secretion of IL-1, IL-6 and TNFα, it seems likely that these cytokines mediate at least some of the responses, but studies with antagonists indicate that there are multiple mechanisms. The neurochemical responses to cytokines are likely to underlie the endocrine and behavioral responses. The NE response to IL-1 appears to be instrumental in the HPA activation, but other mechanisms exist. Neither the noradrenergic nor the serotonergic systems appear to be involved in the major behavioral responses. The significance of the serotonin response is unknown.
Collapse
Affiliation(s)
- Adrian J Dunn
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, P.O. Box 33932, Shreveport, LA 71130-3932, USA
| |
Collapse
|
31
|
Wieczorek M, Dunn AJ. Effect of subdiaphragmatic vagotomy on the noradrenergic and HPA axis activation induced by intraperitoneal interleukin-1 administration in rats. Brain Res 2006; 1101:73-84. [PMID: 16784727 PMCID: PMC1976279 DOI: 10.1016/j.brainres.2006.04.120] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 04/27/2006] [Accepted: 04/29/2006] [Indexed: 11/18/2022]
Abstract
The vagus nerve is thought to participate in signal transduction from the immune system to the CNS. The role of the vagus in the physiological, behavioral and neurochemical responses to intraperitoneally (ip) injected interleukin-1beta (IL-1beta) was studied using awake subdiaphragmatically vagotomized rats. The rats were injected ip with saline and IL-1beta (1 microg/rat) in random order. For the next 2-4 h, they were monitored for locomotor activity, body temperature via abdominally implanted telethermometers, hypothalamic norepinephrine (NE) secretion using in vivo microdialysis and blood sampled via intravenous catheters to determine concentrations of ACTH and corticosterone to assess hypothalamo-pituitary-adrenocortical (HPA) axis activation. Saline injections were followed by transient increases in locomotor activity, body temperature, dialysate NE and plasma concentrations of ACTH and corticosterone. These responses were not significantly altered by vagotomy. IL-1beta injections resulted in short-lived increases in shivering and longer decreases in locomotor activity, as well as a delayed modest fever. IL-1beta also induced prolonged elevations of hypothalamic microdialysate NE, as well as plasma ACTH and corticosterone. Similar responses were observed regardless of the order of the saline and IL-1beta injections. Subdiaphragmatic vagotomy prevented the IL-1-induced increases in body temperature and the increase in dialysate NE, and markedly attenuated the increases in plasma ACTH and corticosterone. The results indicate close temporal relationships between the apparent release of NE and the increase in body temperature and the HPA activation. This together with the effects of vagotomy suggests that the activation of NE in turn increases body temperature and activates the HPA axis. However, because IL-1beta induces a limited HPA activation in subdiaphragmatically vagotomized rats, the vagus nerve does not appear to be the only route by which ip IL-1beta can activate the HPA axis. It is suggested that IL-1beta-induced vagal activation of hypothalamic NE is the major mechanism of HPA activation at low doses of IL-1beta. However, IL-1beta can also exert direct effects on IL-1 receptors on cerebral blood vessels, activating cyclooxygenases and hence synthesis of prostaglandins which in turn can affect body temperature, behavior and HPA axis activation.
Collapse
Affiliation(s)
- Marek Wieczorek
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, PO Box 33932, Shreveport, LA 71130-3932, USA
- Laboratory of Neurophysiology, University of Lodz, Poland
| | - Adrian J. Dunn
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, PO Box 33932, Shreveport, LA 71130-3932, USA
- * Corresponding author. Fax: +1 318 675 7857. E-mail address: (A.J. Dunn)
| |
Collapse
|
32
|
Swiergiel AH, Dunn AJ. Feeding, exploratory, anxiety- and depression-related behaviors are not altered in interleukin-6-deficient male mice. Behav Brain Res 2006; 171:94-108. [PMID: 16677721 PMCID: PMC1975690 DOI: 10.1016/j.bbr.2006.03.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 03/15/2006] [Accepted: 03/20/2006] [Indexed: 12/26/2022]
Abstract
Interleukin-6 (IL-6) has been implicated in behavioral responses associated with inflammation, sickness behavior and various nervous system disorders. We studied a range of different behaviors in IL-6-knockout (IL-6ko) and wild-type (WT) male mice. No significant differences were observed in ambulatory, exploratory, and stereotypic activities in home or novel cages, in an open field (OF), in the multicompartment chamber (MCC), or in the elevated plus-maze (EPM). IL-6ko mice shed fewer fecal boli than WT mice in the OF, in novel cages and in the MCC although this effect was not statistically significant in the OF. In novel cages, intraperitoneal (i.p.) injection of IL-6 (1 microg) depressed ambulatory activity slightly more in IL-6ko than in WT mice. Restraint and interleukin-1beta (IL-1beta, 100 ng i.p.) decreased exploration of mice in the MCC and EPM, but there was no indication of altered sensitivity in IL-6ko mice. No significant differences were detected in the tail suspension and the Porsolt forced swim tests. IL-1beta and lipopolysaccharide (LPS 1 microg i.p.) injection depressed sweetened milk and solid food intake similarly in IL-6ko and WT mice, but IL-6 had no effect, suggesting that IL-6 is not involved in these effects of IL-1 or LPS. However, IL-1beta and LPS depressed body weight more in WT than in IL-6ko mice. Plasma corticosterone and basal concentrations of catecholamines, indoleamines and their metabolites in several brain regions were similar. The responses in these measures to IL-1beta and LPS were also similar, except that there were no significant changes in tryptophan and serotonin metabolism in IL-6ko mice. This may reflect a role for IL-6 in the tryptophan and serotonin responses to IL-1 and LPS. It is concluded that the lack of IL-6 is not associated with substantial alterations in several different mouse behaviors, and in the responses to restraint, IL-1beta, IL-6 and LPS.
Collapse
Affiliation(s)
- Artur H Swiergiel
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, 71130-3932, USA.
| | | |
Collapse
|
33
|
Obuchowicz E, Marcinowska A, Drzyzga L, Wójcikowski J, Daniel WA, Herman ZS. Effect of chronic treatment with perazine on lipopolysaccharide-induced interleukin-1β levels in the rat brain. Naunyn Schmiedebergs Arch Pharmacol 2006; 373:79-84. [PMID: 16583240 DOI: 10.1007/s00210-006-0058-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Accepted: 03/02/2006] [Indexed: 10/24/2022]
Abstract
In the present study, we sought to determine whether chronic treatment with perazine alters lipopolysaccharide (LPS)-induced interleukin-1 beta (IL-1 beta) levels in the following rat brain regions: the hypothalamus, frontal cortex, striatum and hippocampus. Male Wistar rats were administered perazine dimaleate (15 or 30 mg/kg/day) in drinking water for 21 days. On day 22, LPS was injected i.p. (125 microg/kg) 2 h before decapitation. Concentrations of perazine and its metabolites in plasma and brain was assessed by HPLC. The levels of IL-1 beta were determined using ELISA. Treatment with perazine (30 mg/kg/day) reduced LPS-stimulated IL-1 beta levels in the hypothalamus, and a tendency to its decrease in the striatum and frontal cortex was observed. This in vivo study suggests for the first time that long-term oral administration of perazine modulates reactivity of cells producing IL-1 beta.
Collapse
Affiliation(s)
- Ewa Obuchowicz
- Department of Clinical Pharmacology, Silesian University School of Medicine, Medykow 18 Street, 40-752, Katowice, Poland.
| | | | | | | | | | | |
Collapse
|
34
|
Wieczorek M, Swiergiel AH, Pournajafi-Nazarloo H, Dunn AJ. Physiological and behavioral responses to interleukin-1beta and LPS in vagotomized mice. Physiol Behav 2006; 85:500-11. [PMID: 15996692 PMCID: PMC2293826 DOI: 10.1016/j.physbeh.2005.05.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 05/18/2005] [Accepted: 05/27/2005] [Indexed: 11/26/2022]
Abstract
It is well established that peripheral administration of interleukin-1 (IL-1) and lipopolysaccharide (LPS) can activate the hypothalamo-pituitary-adrenocortical (HPA) axis, alter brain catecholamine and indoleamine metabolism, and affect behavior. However, the mechanisms of these effects are not fully understood. Stimulation of afferents of the vagus nerve has been implicated in the induction of Fos in the brain, changes in body temperature, brain norepinephrine, and some behavioral responses. In the present study, the IL-1beta- and LPS-induced changes in certain behaviors, HPA axis activation, and catecholamine and indoleamine metabolism were studied in mice following subdiaphragmatic vagotomy. IL-1beta and LPS induced the expected decreases in sweetened milk, food intake, and locomotor activity, and the responses to IL-1beta, but not LPS, were slightly attenuated in vagotomized mice. Subdiaphragmatic vagotomy also attenuated the IL-1beta- and LPS-induced increases in plasma ACTH and corticosterone, but the attenuations of the responses to IL-1beta were only marginally significant. There were also slight reductions in the responses in catecholamine and serotonin metabolism, and the increases in brain tryptophan in several brain regions. These results indicate that the vagus nerve is not the major pathway by which abdominal IL-1beta and LPS effect behavioral, HPA and brain catecholamine and indoleamine responses in the mouse. These results resemble those we observed in subdiaphragmatically vagotomized rats, but in that species the subdiaphragmatic vagotomy markedly attenuated the ACTH and corticosterone responses, and prevented the hypothalamic noradrenergic activation, as well as the fever. Overall the results indicate that the various responses to peripheral IL-1 and LPS involve multiple mechanisms including vagal afferents, and that there are species differences in the relative importance of the various mechanisms.
Collapse
Affiliation(s)
- Marek Wieczorek
- Laboratory of Neurophysiology, University of Lodz, 66 Rewolucji 1905 r st., 90-222 Lodz, Poland
| | | | | | | |
Collapse
|
35
|
Lenard NR, Dunn AJ. Mechanisms and Significance of the Increased Brain Uptake of Tryptophan. Neurochem Res 2005; 30:1543-8. [PMID: 16362773 DOI: 10.1007/s11064-005-8832-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2005] [Indexed: 11/28/2022]
Abstract
Changes in brain tryptophan concentrations may affect the synthesis of brain serotonin (5-hydroxytryptamine, 5-HT). Concentrations of tryptophan are regulated more than those of any other amino acid. Such stimuli as acute stress, carbohydrate ingestion, and treatment with various drugs increase the brain content of tryptophan. Treatment of rats and mice with interleukin-1 (IL-1), interleukin-6 (IL-6), lipopolysaccharide (LPS), and beta-adrenoceptor agonists, as well as a variety of stressors, such as footshock and restraint, all increase brain concentrations of tryptophan. The peak effect following both acute stress and beta-adrenoceptor agonist administration occurs within 30-60 min, whereas the peak effect following LPS and the cytokines occurs much later at around 4-8 h. Experiments using the ganglionic blocker chlorisondamine, and beta-adrenoceptor antagonists suggest that the sympathetic nervous system plays an important role in the modulation of brain tryptophan concentrations. The mechanisms involved in the increases observed in brain tryptophan are discussed, as well as their possible biological significance.
Collapse
|
36
|
Dunn AJ, Swiergiel AH, de Beaurepaire R. Cytokines as mediators of depression: what can we learn from animal studies? Neurosci Biobehav Rev 2005; 29:891-909. [PMID: 15885777 DOI: 10.1016/j.neubiorev.2005.03.023] [Citation(s) in RCA: 319] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It has recently been postulated that cytokines may cause depressive illness in man. This hypothesis is based on the following observations: 1. Treatment of patients with cytokines can produce symptoms of depression; 2. Activation of the immune system is observed in many depressed patients; 3. Depression occurs more frequently in those with medical disorders associated with immune dysfunction; 4. Activation of the immune system, and administration of endotoxin (LPS) or interleukin-1 (IL-1) to animals induces sickness behavior, which resembles depression, and chronic treatment with antidepressants has been shown to inhibit sickness behavior induced by LPS; 5. Several cytokines can activate the hypothalamo-pituitary-adrenocortical axis (HPAA), which is commonly activated in depressed patients; 6. Some cytokines activates cerebral noradrenergic systems, also commonly observed in depressed patients; 7. Some cytokines activate brain serotonergic systems, which have been implicated in major depressive illness and its treatment. The evidence for each of these tenets is reviewed and evaluated along with the effects of cytokines in classical animal tests of depression. Although certain sickness behaviors resemble the symptoms of depression, they are not identical and each has distinct features. Thus the value of sickness behavior as an animal model of major depressive disorder is limited, so that care should be taken in extrapolating results from the model to the human disorder. Nevertheless, the model may provide insight into the etiology and the mechanisms underlying some symptoms of major depressive disorder. It is concluded that immune activation and cytokines may be involved in depressive symptoms in some patients. However, cytokines do not appear to be essential mediators of depressive illness.
Collapse
Affiliation(s)
- Adrian J Dunn
- Department of Pharmacology, Louisiana State University Health Sciences Center, P.O. Box 33932, Shreveport, LA 71130-3932, USA.
| | | | | |
Collapse
|
37
|
Xu S, Guo S, Jiang X, Umezawa T, Hisamitsu T. The role of norepinephrine and nitric oxide in activities of rat arginine vasopressin neurons in response to immune challenge. Neurosci Lett 2005; 383:231-5. [PMID: 15955417 DOI: 10.1016/j.neulet.2005.04.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 03/25/2005] [Accepted: 04/06/2005] [Indexed: 11/20/2022]
Abstract
To explore the potential role of norepinephrine (NE) and nitric oxide (NO) in activities of rat hypothalamus arginine vasopressin (AVP) neurons in response to immune challenge, we observed the effect of prazosin, an antagonist of alpha1-adrenergic receptor, and the specific nitric oxide synthase (NOS) inhibitor N(w)nitro-L-arginine-methylester (L-NAME) on the Fos expression in AVP neurons induced by systemic lipopolysaccharide (LPS) using double immunohistochemistry. Intravenous (i.v.) injection of LPS induced Fos expression in AVP neurons mainly in the hypothalamus paraventricular nucleus (PVN) and in the supraoptic nucleus (SON). The percentage of Fos-positive AVP neurons was dose-dependent. Pretreatment with prazosin (5 mg/kg) effectively suppressed the Fos expression induced by LPS (5 microg/kg), whereas L-NAME (30 mg/kg) did not influence the Fos expression in the AVP neurons induced by LPS (0.25, 0.5, 1, 5 microg/kg). Our results suggest that the activation of central AVP neurons caused by systemic LPS may be mediated by NE through alpha1-adrenergic receptors, but could not be changed by NO.
Collapse
Affiliation(s)
- Shuang Xu
- Department of Physiology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | |
Collapse
|
38
|
Novotná M, Hanusova J, Klose J, Preiss M, Havlicek J, Roubalová K, Flegr J. Probable neuroimmunological link between Toxoplasma and cytomegalovirus infections and personality changes in the human host. BMC Infect Dis 2005; 5:54. [PMID: 16000166 PMCID: PMC1187888 DOI: 10.1186/1471-2334-5-54] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Accepted: 07/06/2005] [Indexed: 12/25/2022] Open
Abstract
Background Recently, a negative association between Toxoplasma-infection and novelty seeking was reported. The authors suggested that changes of personality trait were caused by manipulation activity of the parasite, aimed at increasing the probability of transmission of the parasite from an intermediate to a definitive host. They also suggested that low novelty seeking indicated an increased level of the neurotransmitter dopamine in the brain of infected subjects, a phenomenon already observed in experimentally infected rodents. However, the changes in personality can also be just a byproduct of any neurotropic infection. Moreover, the association between a personality trait and the toxoplasmosis can even be caused by an independent correlation of both the probability of Toxoplasma-infection and the personality trait with the third factor, namely with the size of living place of a subject. To test these two alternative hypotheses, we studied the influence of another neurotropic pathogen, the cytomegalovirus, on the personality of infected subjects, and reanalyzed the original data after the effect of the potential confounder, the size of living place, was controlled. Methods In the case-control study, 533 conscripts were tested for toxoplasmosis and presence of anti-cytomegalovirus antibodies and their novelty seeking was examined with Cloninger's TCI questionnaire. Possible association between the two infections and TCI dimensions was analyzed. Results The decrease of novelty seeking is associated also with cytomegalovirus infection. After the size of living place was controlled, the effect of toxoplasmosis on novelty seeking increased. Significant difference in novelty seeking was observed only in the largest city, Prague. Conclusion Toxoplasma and cytomegalovirus probably induce a decrease of novelty seeking. As the cytomegalovirus spreads in population by direct contact (not by predation as with Toxoplasma), the observed changes are the byproduct of brain infections rather than the result of manipulation activity of a parasite. Four independent lines of indirect evidence, namely direct measurement of neurotransmitter concentration in mice, the nature of behavioral changes in rodents, the nature of personality changes in humans, and the observed association between schizophrenia and toxoplasmosis, suggest that the changes of dopamine concentration in brain could play a role in behavioral changes of infected hosts.
Collapse
Affiliation(s)
- Martina Novotná
- Department of Parasitology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| | - Jitka Hanusova
- Department of Parasitology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| | - Jiří Klose
- Central Medical Psychological Unit, Central Military Hospital, U vojenské nemocnice 1200, Prague 169 02, Czech Republic
| | - Marek Preiss
- Prague Psychiatric Clinic, Ústavní 91, Prague, 180 00, Czech Republic
| | - Jan Havlicek
- Department of Anthropology, Faculty of Humanities, Charles University, Husnikova 2075, 158 00 Prague 13, Czech Republic
| | - Kateřina Roubalová
- National Reference Laboratory for Herpesviruses, National Institute of Public Health, Šrobárova 48, Prague 100 42, Czech Republic
| | - Jaroslav Flegr
- Department of Parasitology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| |
Collapse
|
39
|
Stress, corticotropin-releasing factor and serotonergic neurotransmission. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0921-0709(05)80028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
40
|
Feleder C, Perlik V, Blatteis CM. Preoptic alpha 1- and alpha 2-noradrenergic agonists induce, respectively, PGE2-independent and PGE2-dependent hyperthermic responses in guinea pigs. Am J Physiol Regul Integr Comp Physiol 2004; 286:R1156-66. [PMID: 14962823 DOI: 10.1152/ajpregu.00486.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have shown previously that norepinephrine (NE) microdialyzed into the preoptic area (POA) of conscious guinea pigs stimulates local PGE(2) release. To identify the cyclooxygenase (COX) isozyme that catalyzes the production of this PGE(2) and the adrenoceptor (AR) subtype that mediates this effect, we microdialyzed for 6 h NE, cirazoline (alpha(1)-AR agonist), and clonidine (alpha(2)-AR agonist) into the POA of conscious guinea pigs pretreated intrapreoptically (intra-POA) with SC-560 (COX-1 inhibitor) or nimesulide or MK-0663 (COX-2 inhibitors) and measured the animals' core temperature (T(c)) and intra-POA PGE(2) responses. Cirazoline induced T(c) rises promptly after the onset of its dialysis without altering PGE(2) levels. NE and clonidine caused early falls followed by late rises of T(c); intra-POA PGE(2) levels were closely correlated with this thermal course. COX-1 inhibition attenuated the clonidine-induced T(c) and PGE(2) falls but not the NE-elicited hyperthermia, but COX-2 inhibition suppressed both the clonidine- and NE-induced T(c) and PGE(2) rises. Coinfused cirazoline and clonidine reproduced the late T(c) rise of clonidine but not its early fall and also not the early rise produced by cirazoline; on the other hand, the PGE(2) responses were similar to those to NE. Prazosin (alpha(1)-AR antagonist) and yohimbine (alpha(2)-AR antagonist) blocked the effects of their respective agonists. These results indicate that alpha(1)- and alpha(2)-AR agonists microdialyzed into the POA of conscious guinea pigs evoke distinct T(c) responses: alpha(1)-AR activation produces quick, PGE(2)-independent T(c) rises, and alpha(2)-AR stimulation causes an early T(c) fall and a late, COX-2/PGE(2)-dependent T(c) rise.
Collapse
Affiliation(s)
- Carlos Feleder
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, 38163, USA
| | | | | |
Collapse
|
41
|
Nadjar A, Combe C, Layé S, Tridon V, Dantzer R, Amédée T, Parnet P. Nuclear factor κB nuclear translocation as a crucial marker of brain response to interleukin-1. A study in rat and interleukin-1 type I deficient mouse. J Neurochem 2004; 87:1024-36. [PMID: 14622131 DOI: 10.1046/j.1471-4159.2003.02097.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The signalling pathways that mediate early central effects of interleukin-1 (IL-1) during the acute phase reaction have been poorly elucidated. Interaction of IL-1beta to its specific receptor interleukin-1 receptor type I (IL-1RI) leads to nuclear factor kappa B (NuFkappaB) nuclear translocation and a robust transcriptional activation of inhibitor of kappa B alpha (IkappaBalpha) within the rat brain. Indeed, we demonstrated that IL-1RI expressed in blood brain barrier (BBB) cells and in circumventricular organs (CVOs) is crucial for p65-NFkappaB translocation induced by peripheral injection of IL-1beta. Moreover, it has been previously shown that monitoring IkappaBalpha mRNA synthesis is an effective tool to investigate the activity of the transcription factor NFkappaB into the CNS. However in the present study we observed time-related and cell-type differences between IkappaBalpha mRNA synthesis and p65-NFkappaB translocation. This indicates that the expression of IkappaBalpha mRNA does not strictly parallel p65-NFkappaB nuclear translocation, suggesting that these markers are not interchangeable to investigate NFkappaB activity but must be studied together. Thus, we hypothesize that IL-1beta reached the brain across the CVOs that lack a BBB and endothelial cells all over the brain and interacted with its receptors to induce NFkappaB translocation. The study of the consequences of the impairment of NFkappaB pathway activation in in vivo experimentation should bring important clues about the precise role of this transcription factor.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Active Transport, Cell Nucleus/physiology
- Animals
- Astrocytes/drug effects
- Astrocytes/metabolism
- Biomarkers
- Brain/blood supply
- Brain/drug effects
- Brain/immunology
- Brain/metabolism
- Capillaries/cytology
- Capillaries/metabolism
- Cell Nucleus/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- I-kappa B Proteins/genetics
- Injections, Intraperitoneal
- Injections, Intraventricular
- Interleukin-1/administration & dosage
- Interleukin-1/pharmacology
- Male
- Mice
- Mice, Knockout
- NF-KappaB Inhibitor alpha
- NF-kappa B/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptors, Interleukin-1/deficiency
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/immunology
- Receptors, Interleukin-1 Type I
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Agnès Nadjar
- INRA-INSERM U.394, Institut F Magendie, Bordeaux, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Gemma C, Imeri L, Opp MR. Serotonergic activation stimulates the pituitary-adrenal axis and alters interleukin-1 mRNA expression in rat brain. Psychoneuroendocrinology 2003; 28:875-84. [PMID: 12892655 DOI: 10.1016/s0306-4530(02)00103-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interactions between neurotransmitters and immunomodulators within the central nervous system may be functionally relevant for communication between the immune system and the brain. Previous studies indicate that cytokines such as interleukin-1 (IL-1) alter activity of the serotonergic system at multiple levels. This study tested the hypothesis that serotonergic activation modulates cytokine mRNA expression in brain. Serotonergic activation was induced by injecting rats intraperitoneally (i.p.) prior to dark onset with the serotonin precursor L-5-hydroxytryptophan (5-HTP; 100 mg/kg). Cytokine mRNA expression in discrete brain regions at selected time points was determined by means of ribonuclease protection assay. Plasma corticosterone concentrations were also measured to determine if the hypothalamic-pituitary-adrenal axis is activated in response to this treatment, which potentially could exert feedback regulating cytokine message expression in brain. Plasma corticosterone was elevated for 4 h after 5-HTP administration. At this time IL-1alpha mRNA expression was reduced in the hippocampus, hypothalamus, and brainstem, and IL-1beta mRNA was reduced in the hippocampus. Six hours after 5-HTP injection, IL-1beta mRNA increased in the hypothalamus. These results show that activation of the serotonergic system affects cytokine message expression in rat brain, possibly by actions of corticosterone.
Collapse
Affiliation(s)
- C Gemma
- Institute of Human Physiology II, University of Milan School of Medicine, Via Mangiagalli 32, I-20133 Milan, Italy
| | | | | |
Collapse
|
43
|
Del Rey A, Kabiersch A, Petzoldt S, Besedovsky HO. Sympathetic abnormalities during autoimmune processes: potential relevance of noradrenaline-induced apoptosis. Ann N Y Acad Sci 2003; 992:158-67. [PMID: 12794055 DOI: 10.1111/j.1749-6632.2003.tb03146.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sympathetic nervous system is one of the major pathways involved in immune-neuroendocrine interactions. Disturbances in these interactions are likely to have consequences during lymphoproliferative diseases. Work derived from our group as well as from several others led us to the hypothesis that the overstimulation of the immune system that characterizes this type of pathology results in decreased sympathetic nerve activity in lymphoid organs. To explore this possibility, we used as a model lpr/lpr mice, which develop a genetically determined autoimmune, lupus-like lymphoproliferative disease. We show that 18-week-old female C57Bl/6J lpr/lpr mice, which do not show overt symptoms of the disease but already have increased IgM and IgG2a levels in the blood, have decreased noradrenaline (NA) concentration and content in the spleen, but not in the kidney, as compared to normal C57Bl/6J littermates. Lpr/lpr mice do not express normal Fas, and therefore apoptosis cannot be triggered through this receptor. The defects in sympathetic innervation in the spleen of lpr/lpr mice prompted us to evaluate whether NA could influence lymphoid cell mass by inducing apoptosis. We found that NA can directly induce apoptosis in normal lymphoid cells via beta-adrenergic receptors. From the reported results we propose that reduction in sympathetic nerve function in lpr/lpr mice contributes to aggravation of the disease and suggest that in addition to the incapacity to mount Fas-mediated apoptosis, a second proapoptotic mechanism, namely, that triggered by NA, is defective in these animals because of reduced availability of the neurotransmitter.
Collapse
Affiliation(s)
- Adriana Del Rey
- Department of Immunophysiology, Institute of Physiology, Medical Faculty, 35037, Marburg, Germany.
| | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Adrian J Dunn
- Department of Pharmacology and Therapeutics, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| |
Collapse
|
45
|
|
46
|
Abstract
Psychological depression is shown to be associated with several aspects of coronary artery disease (CAD), including arrhythmias, myocardial infarction, heart failure and sudden death. The physiological mechanisms accounting for this association are unclear. Hypothalamic-pituitary-adrenal dysregulation, diminished heart rate variability, altered blood platelet function and noncompliance with medial treatments have been proposed as mechanisms underlying depression and cardiovascular disease. Recent evidence also suggests that reduced baroreflex sensitivity, impaired immune function, chronic fatigue and the co-morbidity of depression and anxiety may be involved in the relationship between depression and cardiovascular dysregulation. An experimental strategy using animal models for investigating underlying physiological abnormalities in depression is presented. A key to understanding the bidirectional association between depression and heart disease is to determine whether there are common changes in brain systems that are associated with these conditions. Such approaches may hold promise for advancing our understanding of the interaction between this mood disorder and CAD.
Collapse
Affiliation(s)
- Angela J Grippo
- Department of Psychology, The University of Iowa, Iowa City 52242-1407, USA
| | | |
Collapse
|
47
|
del Rey A, Kabiersch A, Petzoldt S, Besedovsky HO. Involvement of noradrenergic nerves in the activation and clonal deletion of T cells stimulated by superantigen in vivo. J Neuroimmunol 2002; 127:44-53. [PMID: 12044974 DOI: 10.1016/s0165-5728(02)00096-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Superantigens, like staphylococcal enterotoxin B (SEB), induce a strong proliferative response followed by clonal deletion of a substantial portion of defined Vbeta T cells. The remaining cells display in vitro anergy. We found that the immune response to SEB was paralleled by biphasic changes in the activity of the sympathetic nervous system. Furthermore, sympathetic denervation resulted in decreased SEB-induced cell proliferation and IL-2 production, and impeded the specific deletion of splenic CD4Vbeta8 cells observed in intact animals without affecting anergy. These studies provide the first evidence of an immunoregulatory cross-talk between sympathetic nerves and superantigen-activated immune cells.
Collapse
Affiliation(s)
- Adriana del Rey
- Department of Immunophysiology, Institute of Physiology, Medical Faculty, Deutschhausstrasse 2, 35037 Marburg, Germany.
| | | | | | | |
Collapse
|
48
|
Ben-Hur T, Cialic R, Itzik A, Barak O, Yirmiya R, Weidenfeld J. A novel permissive role for glucocorticoids in induction of febrile and behavioral signs of experimental herpes simplex virus encephalitis. Neuroscience 2002; 108:119-27. [PMID: 11738136 DOI: 10.1016/s0306-4522(01)00404-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) encephalitis may present with fever and behavioral changes, to the extent of a psychotic state and psychomotor agitation. We developed a clinically relevant experimental model of HSV-1 encephalitis and investigated host brain responses associated with its clinical signs and whether these responses depend on the presence of circulating glucocorticoids. Intracerebral inoculation of HSV-1 in rats induced fever, motor hyperactivity and aggressive behavior. In adrenalectomized rats HSV-1 failed to induce these signs, although mortality rate was identical to sham-operated rats. Hypophysectomy or blocking glucocorticoid receptors also prevented HSV-1-induced fever. Dexamethasone replacement therapy to adrenalectomized rats restored the HSV-1-induced fever and behavioral abnormalities. HSV-1 inoculation produced hyperproduction of prostaglandin E(2) by brain slices. This effect was abolished in adrenalectomized rats and was restored by dexamethasone treatment. In intact rats HSV-1 induced brain interleukin-1beta (IL-1beta) gene expression. Adrenalectomy alone caused brain IL-1beta expression, which did not increase after HSV-1 infection. Similarly, HSV-1 induced IL-1beta expression in astrocyte cultures. Removal of cortisol from the culture medium caused basal IL-1beta mRNA expression which was not increased by infection. In conclusion, fever, motor hyperactivity and aggressive behavior during experimental HSV-1 encephalitis are dependent on brain responses, including prostaglandin E(2) and IL-1beta synthesis. Circulating glucocorticoids play an essential permissive role in the induction of these host brain responses.
Collapse
Affiliation(s)
- T Ben-Hur
- Department of Neurology, Hadassah Hebrew University Hospital, Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
49
|
Artico M, Cavallotti C, Cameroni M, Cavallotti D. Interleukin 1beta as stimulator of the rat thymus. Cytokine 2001; 15:261-5. [PMID: 11594790 DOI: 10.1006/cyto.2001.0924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of interleukin 1beta administration on the thymus of adult and old rats were studied in order to study the interactions between the nervous and immune systems and to confirm the important role played by catecholaminergic nerve fibres (CNF) in the regulation of thymic functions. Moreover, chemical sympathectomy was performed in a group of rats to study the effects on thymus of the destruction of the majority of CNF. Our results indicate that thymic stimulation (performed by means of interleukin 1beta) induces substantial changes in the fresh weight of the whole thymus, as well as in the thymic microenvironment, thymic nerve fibres, CNF, neuropeptide Y (NPY)-like positive nerve fibres and total amount of both proteins and norepinephrine in rat thymic tissue homogenates. The majority of CNF are destroyed after chemical sympathectomy with 6-OH-Dopamine (DA) and remain unchanged after treatment with interleukin 1beta.
Collapse
Affiliation(s)
- M Artico
- Department of Pharmacology of Natural Substances and General Physiology, University La Sapienza, Rome, Italy
| | | | | | | |
Collapse
|
50
|
Del Rey A, Kabiersch A, Petzoldt S, Randolf A, Besedovsky HO. Sympathetic innervation affects superantigen-induced decrease in CD4V beta 8 cells in the spleen. Ann N Y Acad Sci 2001; 917:575-81. [PMID: 11268386 DOI: 10.1111/j.1749-6632.2000.tb05423.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The stimulation by superantigens of T cells expressing an appropriate V beta chain results in a strong proliferative response that is followed by a state of energy specific for the antigen used. This model was used to continue our studies on immunoregulatory host neuroendocrine responses. We have recently found that four days after administration of the superantigen staphylococcal enterotoxin B (SEB) into mice, that is, at an early stage of the anergic phase, the decrease in the percentage of splenic CD4V beta 8 was accompanied by a decrease in the splenic concentration of the sympathetic neurotransmitter noradrenaline (NA) as compared to vehicle-injected mice. No comparable changes were detected in the kidney. At this point, blood levels of NA, adrenaline, and corticosterone were comparable in SEB- and vehicle-injected mice. We have also found that the decrease in splenic CD4V beta 8 cells was not observed in animals that had been chemically sympathectomized prior to the administration of the superantigen. These results indicate that the sympathetic response induced by SEB may have immunoregulatory implications.
Collapse
Affiliation(s)
- A Del Rey
- Institute of Physiology, Philipps-University, Deutschhausstrasse 2, 35037 Marburg, Germany
| | | | | | | | | |
Collapse
|