1
|
Lv H, Yu X, Wang P, Luo M, Luo Y, Lu H, Wang K, Xi A, Wen C, Xu Z. Locus coeruleus tyrosine hydroxylase positive neurons mediated the peripheral and central therapeutic effects of transcutaneous auricular vagus nerve stimulation (taVNS) in MRL/lpr mice. Brain Stimul 2024; 17:49-64. [PMID: 38145753 DOI: 10.1016/j.brs.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023] Open
Abstract
OBJECTIVE This study aims to investigate the effects of transcutaneous auricular vagus nerve stimulation (taVNS) on the development of systemic lupus erythematosus (SLE) in MRL/lpr mice. METHODS MRL/lpr mice were treated with taVNS for ten weeks. Locus coeruleus (LC) tyrosine hydroxylase positive (TH+) neurons were selectively lesioned by stereotactic injection of 6-hydroxydopamine (6-OHDA) or selectively activated by chemogenetic methods. Sympathetic denervation was conducted by intraperitoneal injection of 6-OHDA. RESULTS TaVNS activated the TH + neurons in LC. TaVNS produced central therapeutic effects by reducing the number of hippocampal microglia, and increasing the number of surviving LC TH+ neurons in MRL/lpr mice. TaVNS also retarded the development of lymphadenectasis and splenomegaly, decreased the proportion of double-negative T (DNT) cells, and alleviated nephritis in MRL/lpr mice. The lesion of LC TH+ neurons eliminated both these central and peripheral therapeutic effects of taVNS, while chemogenetic activation of LC TH+ neurons mimicked most central and peripheral protective effects of taVNS in MRL/lpr mice. Furthermore, taVNS regulated the autonomic nervous system in MRL/lpr mice. CONCLUSION This study provides direct evidence that taVNS can retard the development of peripheral and central symptoms of SLE, which is mediated by the LC TH+ neurons.
Collapse
Affiliation(s)
- Hongjie Lv
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiu Yu
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ping Wang
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Mengxian Luo
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yijun Luo
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Haimei Lu
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Keer Wang
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Anran Xi
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chengping Wen
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Zhenghao Xu
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
You Z, Liu B, Qi H. Neuronal regulation of B-cell immunity: Anticipatory immune posturing? Neuron 2022; 110:3582-3596. [PMID: 36327899 DOI: 10.1016/j.neuron.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/12/2022]
Abstract
The brain may sense, evaluate, modulate, and intervene in the operation of immune system, which would otherwise function autonomously in defense against pathogens. Antibody-mediated immunity is one arm of adaptive immunity that may achieve sterilizing protection against infection. Lymphoid organs are densely innervated. Immune cells supporting the antigen-specific antibody response express receptors for neurotransmitters and glucocorticoid hormones, and they are subjected to collective regulation by the neuroendocrine and the autonomic nervous system. Emerging evidence reveals a brain-spleen axis that regulates antigen-specific B cell responses and antibody-mediated immunity. In this article, we provide a synthesis of those studies as pertinent to neuronal regulation of B cell responses in secondary lymphoid organs. We propose the concept of defensive immune posturing as a brain-initiated top-down reaction in anticipation of potential tissue injury that requires immune protection.
Collapse
Affiliation(s)
- Zhiwei You
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Bo Liu
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Somatosensory and autonomic neuronal regulation of the immune response. Nat Rev Neurosci 2022; 23:157-171. [PMID: 34997214 DOI: 10.1038/s41583-021-00555-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/11/2022]
Abstract
Bidirectional communication between the peripheral nervous system (PNS) and the immune system is a crucial part of an effective but balanced mammalian response to invading pathogens, tissue damage and inflammatory stimuli. Here, we review how somatosensory and autonomic neurons regulate immune cellular responses at barrier tissues and in peripheral organs. Immune cells express receptors for neuronal mediators, including neuropeptides and neurotransmitters, allowing neurons to influence their function in acute and chronic inflammatory diseases. Distinct subsets of peripheral sensory, sympathetic, parasympathetic and enteric neurons are able to signal to innate and adaptive immune cells to modulate their cellular functions. In this Review, we highlight recent studies defining the molecular mechanisms by which neuroimmune signalling mediates tissue homeostasis and pathology. Understanding the neural circuitry that regulates immune responses can offer novel targets for the treatment of a wide array of diseases.
Collapse
|
4
|
Liao YT, Tsai HP, Wang SM, Chen SH. Clinical and Immune Responses of Peripheral Chemical Sympathectomy in Enterovirus 71 Infection. Front Immunol 2021; 12:700903. [PMID: 34566960 PMCID: PMC8458799 DOI: 10.3389/fimmu.2021.700903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/25/2021] [Indexed: 11/25/2022] Open
Abstract
The activation of the sympathetic nervous system, release of norepinephrine (NE), and adrenergic receptor signaling participate in and regulate the complicated enterovirus 71 (EV71) brainstem encephalitis (BE). The neurotoxin 6-hydroxydopamine (6-OHDA) selectively ablates sympathetic nerves and markedly depletes NE in innervated organs. Changes in the plasma levels of NE, severity score, cytokine profiles, and percentages of immunophenotype expression in 7-day-old Bltw : CD1 (ICR) mice infected with EV71, with or without 6-OHDA treatment, were compared. The survival rate (76.9%) of EV71-infected and 6-OHDA (30 μg/g)-treated mice was increased significantly. The clinical scores were decreased markedly on days 8-12 in MP4-infected and 6-OHDA-treated mice compared to those without treatment. The results showed that the plasma levels of NE, epinephrine, and dopamine were decreased on days 4–8 after 6-OHDA treatment and at most on day 8. The plasma levels of interleukin (IL)-12p70, tumor necrosis factor, IL-6, and IL-10 did not change significantly after 6-OHDA treatment. Interferon-γ levels decreased evidently on days 4, 6, and 8 after 6-OHDA treatment. The absolute events of CD3+CD4+, CD3+CD8+, and CD3+NK1.1+ cells of peripheral blood mononuclear cells were increased significantly in MP4-infected and 6-OHDA-treated mice compared to those without treatment. In splenocytes, the absolute cells of CD3−NK1.1+, CD3+NK1.1+ and CD11b+Gr-1+ cells of EV71-infected mice were increased significantly after 6-OHDA treatment. These findings suggested that 6-OHDA may be used a probe to explore clinical improvements and immune responses in the complicated EV71 infection. Taken together, peripheral chemical sympathectomy contribute to further understand the immunopathogenesis of EV71 BE with autonomic nervous system dysregulation.
Collapse
Affiliation(s)
- Yu-Ting Liao
- Department of Pediatrics, College of Medicine, National Cheng Kung University and Hospital, Tainan, Taiwan
| | - Huey-Pin Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Min Wang
- Department of Pediatrics, College of Medicine, National Cheng Kung University and Hospital, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Shun-Hua Chen
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan.,Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
5
|
Elkhatib SK, Moshfegh CM, Watson GF, Schwab AD, Katsurada K, Patel KP, Case AJ. Splenic denervation attenuates repeated social defeat stress-induced T-lymphocyte inflammation. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 1:190-200. [PMID: 35330608 PMCID: PMC8941638 DOI: 10.1016/j.bpsgos.2021.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/12/2021] [Accepted: 05/06/2021] [Indexed: 11/28/2022] Open
Abstract
Background Post-traumatic stress disorder (PTSD) is a devastating psychological disorder. Patients with PTSD canonically demonstrate an increased risk for inflammatory diseases, as well as increased sympathetic tone and norepinephrine (NE) outflow. Yet, the exact etiology and causal nature of these physiologic changes remain unclear. Previously, we demonstrated that exogenous NE alters mitochondrial superoxide in T-lymphocytes to produce a pro-inflammatory T-helper 17 (TH17) phenotype, and observed similar TH17 polarization in a preclinical model of PTSD. Therefore, we hypothesized sympathetic-driven neuroimmune interactions could mediate psychological trauma-induced T-lymphocyte inflammation. Methods Repeated social defeat stress (RSDS) is a preclinical murine model that recapitulates the behavioral, autonomic, and inflammatory aspects of PTSD. Targeted splenic denervation (Dnx) was performed to deduce the contribution of splenic sympathetic nerves to RSDS-induced inflammation. Eighty-five C57BL/6J mice underwent Dnx or sham-operation, followed by RSDS or control paradigms. Animals were assessed for behavioral, autonomic, inflammatory, and redox profiles. Results Dnx did not alter the antisocial or anxiety-like behavior induced by RSDS. In circulation, RSDS Dnx animals exhibited diminished levels of T-lymphocyte-specific cytokines (IL-2, IL-17A, and IL-22) compared to intact animals, whereas other non-specific inflammatory cytokines (e.g., IL-6, TNF-α, and IL-10) were unaffected by Dnx. Importantly, Dnx specifically ameliorated the increases in RSDS-induced T-lymphocyte mitochondrial superoxide, TH17 polarization, and pro-inflammatory gene expression with minimal impact to non-T-lymphocyte immune populations. Conclusions Overall, our data suggest that sympathetic nerves regulate RSDS-induced splenic T-lymphocyte inflammation, but play less of a role in the behavioral and non-T-lymphocyte inflammatory phenotypes induced by this psychological trauma paradigm.
Collapse
Affiliation(s)
- Safwan K. Elkhatib
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Cassandra M. Moshfegh
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Gabrielle F. Watson
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Aaron D. Schwab
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kenichi Katsurada
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Adam J. Case
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Psychiatry and Behavioral Sciences, College of Medicine, Texas A&M Health Science Center, Bryan, Texas
| |
Collapse
|
6
|
Can neural signals override cellular decisions in the presence of DNA damage? DNA Repair (Amst) 2021; 103:103127. [PMID: 33990031 DOI: 10.1016/j.dnarep.2021.103127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/23/2022]
Abstract
Cells within an organism are in constant crosstalk with their surrounding environment. Short and long-range signals influence cellular behavior associated with division, differentiation, and death. This crosstalk among cells underlies tissue renewal to guarantee faithful replacement of old or damaged cells over many years. Renewing tissues also offer recurrent opportunities for DNA damage and cellular transformation that tend to occur with aging. Most cells with extensive DNA damage have limited options such as halting cell cycle to repair DNA, undergo senescence, or programmed cell death. However, in some cases cells carrying toxic forms of DNA damage survive and proliferate. The underlying factors driving survival and proliferation of cells with DNA damage remain unknown. Here we discuss potential roles the nervous system may play in influencing the fate of cells with DNA damage. We present a brief survey highlighting the implications the nervous system has in regeneration, regulation of stem cells, modulation of the immune system, and its contribution to cancer progression. Finally, we propose the use of planarian flatworms as a convenient model organism to molecularly dissect the influence of neural signals over cellular fate regulation in the presence of DNA damage.
Collapse
|
7
|
Cleypool CGJ, Mackaaij C, Lotgerink Bruinenberg D, Schurink B, Bleys RLAW. Sympathetic nerve distribution in human lymph nodes. J Anat 2021; 239:282-289. [PMID: 33677834 PMCID: PMC8273593 DOI: 10.1111/joa.13422] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/01/2022] Open
Abstract
Various lymph node functions are regulated by the sympathetic nervous system as shown in rodent studies. If human lymph nodes show a comparable neural regulation, their afferent nerves could represent a potential therapeutic target to treat, for example, infectious or autoimmune disease. Little information is available on human lymph node innervation and the aim of this study is to establish a comprehensive and accurate representation of the presence and location of sympathetic nerves in human lymph nodes. Since previous studies mention sympathetic paravascular nerves to occasionally extent into T cell‐rich regions, the relation of these nerves with T cells was studied as well. A total number of 15 inguinal lymph nodes were resected from six donated human cadavers. Lymph node sections were stained with HE and a double T/B cell staining for evaluation of their morphology and to screen for general pathologies. A triple stain was used to identify blood vessels, sympathetic nerves and T cells, and, to study the presence and location of sympathetic nerves and their relation to T cells. To evaluate whether the observed nerves were en route to other structures or were involved in local processes, adjacent slides were stained with a marker for varicosities (synaptophysin), which presence is suggestive for synaptic activity. All lymph nodes contained sympathetic nerves, both as paravascular and discrete structures. In 15/15 lymph nodes, nerves were observed in their capsule, medulla and hilum, whereas only 13/15 lymph nodes contained nerves in their cortex. The amount of sympathetic nerves varied between compartments and between and within individuals. In general, if a lymph node contained more paravascular nerves in a specific compartment, more discrete nerves were observed as well. Occasionally, discrete nerves were observed in relation to T cells in lymphoid tissues of the cortex and medulla. Furthermore, discrete nerves were frequently present in the capsule and hilum. The presence of varicosities in a portion of these nerves, independently to their compartment, suggested a local regulatory function for these nerves. Human lymph nodes contain sympathetic nerves in their capsule, trabeculae, cortex, medulla and hilum, both as paravascular or as discrete structures. Discrete nerves were observed in relation to T cells and non‐T cell‐rich areas such as the hilar and capsular connective tissue. The presence of discrete structures suggests neural regulation of structures other than blood vessels, which was further supported by the presence of varicosities in a portion of these nerves. These observations are of relevance in further understanding neural regulation of lymph node immune responses and in the development of neuromodulatory immune therapies.
Collapse
Affiliation(s)
- Cindy G J Cleypool
- Department of Anatomy, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Claire Mackaaij
- Department of Anatomy, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Dyonne Lotgerink Bruinenberg
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Bernadette Schurink
- Department of Pathology, Amsterdam University Medical Centre, Free University of Amsterdam, Amsterdam, the Netherlands
| | - Ronald L A W Bleys
- Department of Anatomy, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
8
|
Priyanka HP, Nair RS, Kumaraguru S, Saravanaraj K, Ramasamy V. Insights on neuroendocrine regulation of immune mediators in female reproductive aging and cancer. AIMS MOLECULAR SCIENCE 2021. [DOI: 10.3934/molsci.2021010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Konstandi M, Sotiropoulos I, Matsubara T, Malliou F, Katsogridaki A, Andriopoulou CE, Gonzalez FJ. Adrenoceptor-stimulated inflammatory response in stress-induced serum amyloid A synthesis. Psychopharmacology (Berl) 2019; 236:1687-1699. [PMID: 30612190 PMCID: PMC6643287 DOI: 10.1007/s00213-018-5149-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/11/2018] [Indexed: 12/20/2022]
Abstract
RATIONALE Stressful life events are suggested to contribute to the development of various pathologies, such as cardiovascular disorders, whose etiopathogenesis is highly associated with elevated levels of serum amyloid A (SAA) proteins. SAA synthesis in the liver is regulated by a complex network of cytokines acting independently or in concert with various hormones/stimulants including the stress-activated sympathetic nervous system. OBJECTIVE This study aims to investigate the underlying mechanisms that regulate the stress-induced hepatic synthesis of SAA, with particular focus on adrenoceptors (AR), major components of the sympathoadrenal response to stress. METHODS AND RESULTS We demonstrated that repeated stress elevates IL-1β, IL-6, and TNFα serum levels in mice, accompanied by increased synthesis and secretion of hepatic SAA1/2 and SAA3, an effect that was blocked by AR antagonists. Moreover, stimulation of α1- and β1/2-ARs mimics the stress effect on SAA1/2 regulation, whereas α2-AR stimulation exhibits a relatively weak impact on SAA. In support of the essential cytokine contribution in the AR-agonist induced SAA production is the fact that the anti-inflammatory drug, sodium salicylate, prevented the AR-stimulated hepatic SAA1/2 synthesis by reducing IL-1β levels, whereas IL-1β inhibition with Anakinra mimics this sodium salicylate preventive effect, thus indicating a crucial role for IL-1β. Interestingly, the AR-driven SAA3 synthesis was elevated by sodium salicylate in a TNFα-dependent way, supporting diverse and complex regulatory roles of cytokines in SAA production. In contrast to α1/α2-AR, the β1/2-AR-mediated SAA1/2 and SAA3 upregulation cannot be reversed by fenofibrate, a hypolipidemic drug with anti-inflammatory properties. CONCLUSION Taken together, these findings strongly support a critical role of the AR-stimulated inflammatory response in the hepatic SAA production under stressful conditions, highlighting distinct AR type-specific mechanisms that regulate the hepatic synthesis of SAA1/2 and SAA3.
Collapse
Affiliation(s)
- Maria Konstandi
- Faculty of Medicine, Department of Pharmacology, University of Ioannina, Ioannina, Greece. .,Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS), Medical School University of Minho, Braga, Portugal,ICVS/3B’s - PT Government Associate Laboratory, Braga, Portugal
| | - Tsutomu Matsubara
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA,Graduate School of Medicine, Department of Anatomy and Regenerative Biology, Osaka City University, Osaka, Japan
| | - Foteini Malliou
- Faculty of Medicine, Department of Pharmacology, University of Ioannina, Ioannina, Greece
| | - Alexandra Katsogridaki
- Faculty of Medicine, Department of Pharmacology, University of Ioannina, Ioannina, Greece
| | | | - Frank J. Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Bleck D, Ma L, Erdene-Bymbadoo L, Brinks R, Schneider M, Tian L, Pongratz G. Introduction and validation of a new semi-automated method to determine sympathetic fiber density in target tissues. PLoS One 2019; 14:e0217475. [PMID: 31141555 PMCID: PMC6541301 DOI: 10.1371/journal.pone.0217475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/12/2019] [Indexed: 12/20/2022] Open
Abstract
In recent years, the role of sympathetic nervous fibers in chronic inflammation has become increasingly evident. At the onset of inflammation, sympathetic activity is increased in the affected tissue. However, sympathetic fibers are largely absent from chronically inflamed tissue. Apparently, there is a very dynamic relationship between sympathetic innervation and the immune system in areas of inflammation, and hence a rapid and easy method for quantification of nerve fiber density of target organs is of great value to answer potential research questions. Currently, nervous fiber densities are either determined by tedious manual counting, which is not suitable for high throughput approaches, or by expensive automated processes relying on specialized software and high-end microscopy equipment. Usually, tyrosine hydroxylase (TH) is used as the marker for sympathetic fibers. In order to overcome the current quantification bottleneck with a cost-efficient alternative, an automated process was established and compared to the classic manual approach of counting TH-positive sympathetic fibers. Since TH is not exclusively expressed on sympathetic fibers, but also in a number of catecholamine-producing cells, a prerequisite for automated determination of fiber densities is to reliably distinct between cells and fibers. Therefore, an additional staining using peripherin exclusively expressed in nervous fibers as a secondary marker was established. Using this novel approach, we studied the spleens from a syndecan-3 knockout (SDC3KO) mouse line, and demonstrated equal results on SNS fiber density for both manual and automated counts (Manual counts: wildtype: 22.57 +/- 11.72 fibers per mm2; ko: 31.95 +/- 18.85 fibers per mm2; p = 0.05; Automated counts: wildtype: 31.6 +/- 18.98 fibers per mm2; ko: 45.49 +/- 19.65 fibers per mm2; p = 0.02). In conclusion, this new and simple method can be used as a high-throughput approach to reliably and quickly estimate SNS nerve fiber density in target tissues.
Collapse
Affiliation(s)
- Dennis Bleck
- Hiller Research Center Rheumatology at University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Li Ma
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Lkham Erdene-Bymbadoo
- Hiller Research Center Rheumatology at University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ralph Brinks
- Hiller Research Center Rheumatology at University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Matthias Schneider
- Hiller Research Center Rheumatology at University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Li Tian
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
- Institute of Biomedicine and Translational Medicine, Department of Physiology, Faculty of Medicine, University of Tartu, Tartu, Estonia
- * E-mail: (GP); (LT)
| | - Georg Pongratz
- Hiller Research Center Rheumatology at University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- * E-mail: (GP); (LT)
| |
Collapse
|
11
|
|
12
|
Schmidtová K, Siroťáková M, Kočišová M, Mechírová E. Acetylcholinesterase (AChE) – Positive Innervation of the Guinea-Pig Spleen. ACTA MEDICA (HRADEC KRÁLOVÉ) 2019. [DOI: 10.14712/18059694.2018.93] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The presence and intraorgan distribution of the acetylcholinesterase (AChE)- positive nerve structures in the guinea-pig spleen were studied by means of the direct thiocholine method. Visualized AChE-positive nerve fibres entered the guinea-pig spleen at its hilum in the vicinity of the splenic artery branches and intra parenchyma were gradually distributed to form thicker periarterial nerves and also fine adventitial nerve plexus. In described topography the AChE-positive nerve fibres were identified in association with the central artery running through the white pulp. Some of the perivascular nerve fibres associated with the central artery extended away and passed into the periarterial lymphatic sheath (PALS) to reach the marginal zone and in continuation entered into the mantle zone of lymphatic follicles. Several AChE-positive nerve fibres were seen in the red pulp but less in the splenic capsule. We did not find any AChE – positive nerve cells in the guinea-pig spleen.
Collapse
|
13
|
Dantzer R. Neuroimmune Interactions: From the Brain to the Immune System and Vice Versa. Physiol Rev 2018; 98:477-504. [PMID: 29351513 PMCID: PMC5866360 DOI: 10.1152/physrev.00039.2016] [Citation(s) in RCA: 572] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 06/05/2017] [Accepted: 06/18/2017] [Indexed: 12/14/2022] Open
Abstract
Because of the compartmentalization of disciplines that shaped the academic landscape of biology and biomedical sciences in the past, physiological systems have long been studied in isolation from each other. This has particularly been the case for the immune system. As a consequence of its ties with pathology and microbiology, immunology as a discipline has largely grown independently of physiology. Accordingly, it has taken a long time for immunologists to accept the concept that the immune system is not self-regulated but functions in close association with the nervous system. These associations are present at different levels of organization. At the local level, there is clear evidence for the production and use of immune factors by the central nervous system and for the production and use of neuroendocrine mediators by the immune system. Short-range interactions between immune cells and peripheral nerve endings innervating immune organs allow the immune system to recruit local neuronal elements for fine tuning of the immune response. Reciprocally, immune cells and mediators play a regulatory role in the nervous system and participate in the elimination and plasticity of synapses during development as well as in synaptic plasticity at adulthood. At the whole organism level, long-range interactions between immune cells and the central nervous system allow the immune system to engage the rest of the body in the fight against infection from pathogenic microorganisms and permit the nervous system to regulate immune functioning. Alterations in communication pathways between the immune system and the nervous system can account for many pathological conditions that were initially attributed to strict organ dysfunction. This applies in particular to psychiatric disorders and several immune-mediated diseases. This review will show how our understanding of this balance between long-range and short-range interactions between the immune system and the central nervous system has evolved over time, since the first demonstrations of immune influences on brain functions. The necessary complementarity of these two modes of communication will then be discussed. Finally, a few examples will illustrate how dysfunction in these communication pathways results in what was formerly considered in psychiatry and immunology to be strict organ pathologies.
Collapse
Affiliation(s)
- Robert Dantzer
- Department of Symptom Research, University of Texas MD Anderson Cancer Center , Houston, Texas
| |
Collapse
|
14
|
Liu Z, Zhou Z, Jiang Q, Wang L, Yi Q, Qiu L, Song L. The neuroendocrine immunomodulatory axis-like pathway mediated by circulating haemocytes in pacific oyster Crassostrea gigas. Open Biol 2017; 7:rsob.160289. [PMID: 28077596 PMCID: PMC5303279 DOI: 10.1098/rsob.160289] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/06/2016] [Indexed: 01/10/2023] Open
Abstract
The neuroendocrine-immune (NEI) regulatory network is a complex system, which plays an indispensable role in the immunity of host. In this study, a neuroendocrine immunomodulatory axis (NIA)-like pathway mediated by the nervous system and haemocytes was characterized in the oyster Crassostrea gigas. Once invaded pathogen was recognized by the host, the nervous system would temporally release neurotransmitters to modulate the immune response. Instead of acting passively, oyster haemocytes were able to mediate neuronal immunomodulation promptly by controlling the expression of specific neurotransmitter receptors on cell surface and modulating their binding sensitivities, thus regulating intracellular concentration of Ca2+. This neural immunomodulation mediated by the nervous system and haemocytes could influence cellular immunity in oyster by affecting mRNA expression level of TNF genes, and humoral immunity by affecting the activities of key immune-related enzymes. In summary, though simple in structure, the ‘nervous-haemocyte’ NIA-like pathway regulates both cellular and humoral immunity in oyster, meaning a world to the effective immune regulation of the NEI network.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
| | - Qiufen Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
| | - Lingling Wang
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, People's Republic of China
| | - Qilin Yi
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, People's Republic of China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
| | - Linsheng Song
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, People's Republic of China
| |
Collapse
|
15
|
Verburg-van Kemenade BML, Cohen N, Chadzinska M. Neuroendocrine-immune interaction: Evolutionarily conserved mechanisms that maintain allostasis in an ever-changing environment. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 66:2-23. [PMID: 27296493 DOI: 10.1016/j.dci.2016.05.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 05/02/2023]
Abstract
It has now become accepted that the immune system and neuroendocrine system form an integrated part of our physiology. Immunological defense mechanisms act in concert with physiological processes like growth and reproduction, energy intake and metabolism, as well as neuronal development. Not only are psychological and environmental stressors communicated to the immune system, but also, vice versa, the immune response and adaptation to a current pathogen challenge are communicated to the entire body, including the brain, to evoke adaptive responses (e.g., fever, sickness behavior) that ensure allocation of energy to fight the pathogen. This phenomenon is evolutionarily conserved. Hence it is both interesting and important to consider the evolutionary history of this bi-directional neuroendocrine-immune communication to reveal phylogenetically ancient or relatively recently acquired mechanisms. Indeed, such considerations have already disclosed an extensive "common vocabulary" of information pathways as well as molecules and their receptors used by both the neuroendocrine and immune systems. This review focuses on the principal mechanisms of bi-directional communication and the evidence for evolutionary conservation of the important physiological pathways involved.
Collapse
Affiliation(s)
- B M Lidy Verburg-van Kemenade
- Cell Biology and Immunology Group, Dept. of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands.
| | - Nicholas Cohen
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14620, USA
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| |
Collapse
|
16
|
Abstract
Recent findings have indicated that immune responses are subjected to modulation by the sympathetic nervous system (SNS). Moreover, the findings show that the SNS inhibits the production of pro-inflammatory cytokines, while stimulating the production of anti-inflammatory cytokines. The present review is an attempt to summarize the current results on how the SNS affects inflammation in dental tissues. In dental tissues, it has been found that the SNS is significant for recruitment of inflammatory cells such as CD 43+ granulocytes. Sympathetic nerves appear to have an inhibitory effect on osteoclasts, odontoclasts, and on IL-1α production. The SNS stimulates reparative dentin production, since reparative dentin formation was reduced after sympathectomy. Sprouting of sympathetic nerve fibers occurs in chronically inflamed dental pulp, and neural imbalance caused by unilateral sympathectomy recruits immunoglobulin-producing cells to the dental pulp. In conclusion, this article presents evidence in support of interactions between the sympathetic nervous system and dental inflammation.
Collapse
Affiliation(s)
- S R Haug
- Department of Biomedicine, Section for Physiology, Faculty of Medicine, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway.
| | | |
Collapse
|
17
|
Klatt S, Stangl H, Kunath J, Lowin T, Pongratz G, Straub RH. Peripheral elimination of the sympathetic nervous system stimulates immunocyte retention in lymph nodes and ameliorates collagen type II arthritis. Brain Behav Immun 2016; 54:201-210. [PMID: 26872423 DOI: 10.1016/j.bbi.2016.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 02/01/2016] [Accepted: 02/08/2016] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES In collagen type II-induced arthritis (CIA), early activation of the sympathetic nervous system (SNS) is proinflammatory. Here, we wanted to find new target organs contributing to proinflammatory SNS effects. In addition, we wanted to clarify the importance of SNS-modulated immunocyte migration. METHODS A new technique termed spatial energy expenditure configuration (SEEC) was developed to demonstrate bodily areas of high energy demand (to find new targets). We studied homing of labeled cells in vivo, lymphocyte expression of CCR7, supernatant concentration of CCL21, and serum levels of sphingosine-1-phosphate (S1P) in sympathectomized control/arthritic animals. RESULTS During the course of arthritis, SEEC identified an early marked increase of energy expenditure in draining lymph nodes and spleen (nowhere else!). Although early sympathectomy ameliorated later disease, early sympathectomy increased energy consumption, organ weight, and cell numbers in arthritic secondary lymphoid organs, possibly a sign of lymphocyte retention (also in controls). Elimination of the SNS retained lymph node cells, elevated expression of CCR7 on lymph node cells, and increased CCL21. Serum levels of S1P, an important factor for lymphocyte egress, were higher in arthritic than control animals. Sympathectomy decreased S1P levels in arthritic animals to control levels. Transfer of retained immune cells from draining lymph nodes of sympathectomized donors to sympathectomized recipients markedly increased arthritis severity over weeks. CONCLUSIONS By using the SEEC technique, we identified draining lymph nodes and spleen as major target organs of the SNS. The data show that the SNS increases egress of lymphocytes from draining lymph nodes to stimulate arthritic inflammation.
Collapse
Affiliation(s)
- Susanne Klatt
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Germany
| | - Hubert Stangl
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Germany
| | - Julia Kunath
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Germany
| | - Torsten Lowin
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Germany
| | - Georg Pongratz
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Germany
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Germany.
| |
Collapse
|
18
|
Case AJ, Zimmerman MC. Sympathetic-mediated activation versus suppression of the immune system: consequences for hypertension. J Physiol 2015; 594:527-36. [PMID: 26830047 DOI: 10.1113/jp271516] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/17/2015] [Indexed: 01/08/2023] Open
Abstract
It is generally well-accepted that the immune system is a significant contributor in the pathogenesis of hypertension. Specifically, activated and pro-inflammatory T-lymphocytes located primarily in the vasculature and kidneys appear to have a causal role in exacerbating elevated blood pressure. It has been proposed that increased sympathetic nerve activity and noradrenaline outflow associated with hypertension may be primary contributors to the initial activation of the immune system early in the disease progression. However, it has been repeatedly demonstrated in many different human and experimental diseases that sympathoexcitation is immunosuppressive in nature. Moreover, human hypertensive patients have demonstrated increased susceptibility to secondary immune insults like infections. Thus, it is plausible, and perhaps even likely, that in diseases like hypertension, specific immune cells are activated by increased noradrenaline, while others are in fact suppressed. We propose a model in which this differential regulation is based upon activation status of the immune cell as well as the resident organ. With this, the concept of global immunosuppression is obfuscated as a viable target for hypertension treatment, and we put forth the concept of focused organ-specific immunotherapy as an alternative option.
Collapse
Affiliation(s)
- Adam J Case
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Centre, Omaha, NE, USA
| | - Matthew C Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Centre, Omaha, NE, USA
| |
Collapse
|
19
|
Decreased proportion of Foxp3+CD4+ regulatory T cells contributes to the development of hypertension in genetically hypertensive rats. J Hypertens 2015; 33:773-83; discussion 783. [DOI: 10.1097/hjh.0000000000000469] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Abstract
The present review assesses the current state of literature defining integrative autonomic-immune physiological processing, focusing on studies that have employed electrophysiological, pharmacological, molecular biological, and central nervous system experimental approaches. Central autonomic neural networks are informed of peripheral immune status via numerous communicating pathways, including neural and non-neural. Cytokines and other immune factors affect the level of activity and responsivity of discharges in sympathetic and parasympathetic nerves innervating diverse targets. Multiple levels of the neuraxis contribute to cytokine-induced changes in efferent parasympathetic and sympathetic nerve outflows, leading to modulation of peripheral immune responses. The functionality of local sympathoimmune interactions depends on the microenvironment created by diverse signaling mechanisms involving integration between sympathetic nervous system neurotransmitters and neuromodulators; specific adrenergic receptors; and the presence or absence of immune cells, cytokines, and bacteria. Functional mechanisms contributing to the cholinergic anti-inflammatory pathway likely involve novel cholinergic-adrenergic interactions at peripheral sites, including autonomic ganglion and lymphoid targets. Immune cells express adrenergic and nicotinic receptors. Neurotransmitters released by sympathetic and parasympathetic nerve endings bind to their respective receptors located on the surface of immune cells and initiate immune-modulatory responses. Both sympathetic and parasympathetic arms of the autonomic nervous system are instrumental in orchestrating neuroimmune processes, although additional studies are required to understand dynamic and complex adrenergic-cholinergic interactions. Further understanding of regulatory mechanisms linking the sympathetic nervous, parasympathetic nervous, and immune systems is critical for understanding relationships between chronic disease development and immune-associated changes in autonomic nervous system function.
Collapse
Affiliation(s)
- M J Kenney
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | | |
Collapse
|
21
|
Horvathova L, Tillinger A, Sivakova I, Mikova L, Mravec B, Bucova M. Chemical sympathectomy increases neutrophil-to-lymphocyte ratio in tumor-bearing rats but does not influence cancer progression. J Neuroimmunol 2014; 278:255-61. [PMID: 25468774 DOI: 10.1016/j.jneuroim.2014.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 12/17/2022]
Abstract
The sympathetic nervous system regulates many immune functions and modulates the anti-tumor immune defense response, too. Therefore, we studied the effect of 6-hydroxydopamine induced sympathectomy on selected hematological parameters and inflammatory markers in rats with Yoshida AH130 ascites hepatoma. We found that chemically sympathectomized tumor-bearing rats had significantly increased neutrophil-to-lymphocyte ratio, leukocyte-to-lymphocyte ratio, and plasma levels of tumor necrosis factor alpha. Although our findings showed that sympathetic denervation in tumor-bearing rats led to increased neutrophil-to-lymphocyte ratio, that is an indicator of the disease progression, we found no significant changes in tumor growth and survival of sympathectomized tumor-bearing rats.
Collapse
Affiliation(s)
- Lubica Horvathova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06 Bratislava, Slovakia.
| | - Andrej Tillinger
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06 Bratislava, Slovakia
| | - Ivana Sivakova
- Institute of Anatomy, Faculty of Medicine, Comenius University, Sasinkova 2, 811 08 Bratislava, Slovakia
| | - Lucia Mikova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06 Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University, Sasinkova 2, 811 08 Bratislava, Slovakia
| | - Boris Mravec
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06 Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University, Sasinkova 2, 811 08 Bratislava, Slovakia
| | - Maria Bucova
- Institute of Immunology, Faculty of Medicine, Comenius University, Odborarske namestie 14, 811 08 Bratislava, Slovakia
| |
Collapse
|
22
|
Abstract
The interaction between the sympathetic nervous system and the immune system has been documented over the last several decades. In this review, the neuroanatomical, cellular, and molecular evidence for neuroimmune regulation in the maintenance of immune homeostasis will be discussed, as well as the potential impact of neuroimmune dysregulation in health and disease.
Collapse
Affiliation(s)
- Caroline J Padro
- The Biomedical Sciences Graduate Program, The Ohio State University Wexner College of Medicine, Columbus, OH 43210, United States.
| | - Virginia M Sanders
- The Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University Wexner College of Medicine, Columbus, OH 43210, United States; The Institute of Behavioral Medicine Research, The Ohio State University Wexner College of Medicine, Columbus, OH 43210, United States.
| |
Collapse
|
23
|
Local sympathetic denervation of femoral artery in a rabbit model by using 6-hydroxydopamine in situ. BIOMED RESEARCH INTERNATIONAL 2014; 2014:874947. [PMID: 25105145 PMCID: PMC4101212 DOI: 10.1155/2014/874947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/11/2014] [Indexed: 12/02/2022]
Abstract
Both artery bundle and sympathetic nerve were involved with the metabolism of bone tissues. Whether the enhancing effects of artery bundle result from its accompanying sympathetic nerve or blood supply is still unknown. There is no ideal sympathetic nerve-inhibited method for the in situ denervation of artery bundle. Therefore, we dipped the femoral artery in the 6-hydroxydopamine (6-OHDA) locally and observed its effect. Compared with control group, the in situ treatment of 6-OHDA did not damage the normal structure of vascular bundle indicated by hematoxylin-eosin (HE) staining. However, the functions of sympathetic nerve was completely inhibited for more than 2 weeks, and only a few function of sympathetic nerve resumed 4 weeks later, evidenced by glyoxylic acid staining and the expression of tyrosine hydroxylase (TH) and nerve peptide Y (NPY). Thus, 6-OHDA is promising as an ideal reagent for the local denervation of sympathetic nerve from artery system.
Collapse
|
24
|
O'Connor TG, Moynihan JA, Caserta MT. Annual research review: The neuroinflammation hypothesis for stress and psychopathology in children--developmental psychoneuroimmunology. J Child Psychol Psychiatry 2014; 55:615-31. [PMID: 24372371 PMCID: PMC4029900 DOI: 10.1111/jcpp.12187] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2013] [Indexed: 12/14/2022]
Abstract
Experimental animal and adult human data suggest that stress exposure is associated with alterations in immune system function that may underlie increased susceptibility to disease and behavioral disorders. The implications of these data for child psychology and psychiatry are not yet clear. The current review seeks to distil and translate the relevant animal and adult human work to children to advance a developmental model of psychoneuroimmunology. In addition to reviewing key specific findings, we consider biological/conceptual models and technical aspects of psychoneuroimmunology work in pediatric populations, and outline the rationales and advantages of integrating hypotheses concerning neuroinflammation in developmental studies of psychopathology.
Collapse
|
25
|
Hall JMF, Witter AR, Racine RR, Berg RE, Podawiltz A, Jones H, Mummert ME. Chronic psychological stress suppresses contact hypersensitivity: potential roles of dysregulated cell trafficking and decreased IFN-γ production. Brain Behav Immun 2014; 36:156-64. [PMID: 24184400 DOI: 10.1016/j.bbi.2013.10.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 11/29/2022] Open
Abstract
Increasing evidence shows that psychological stress can have dramatic impacts on the immune system, particularly the cutaneous immune response in dermatological disorders. While there have been many studies examining the impact of acute psychological stress on contact hypersensitivity there are relatively few studies concerning the impact of chronic psychological stress. Furthermore, the local immunological mechanisms by which chronic psychological stress impacts contact hypersensitivity still remain to be explored. Here we show that restraint-induced chronic psychological stress stimulates activation of the hypothalamus-pituitary-adrenal axis and delays weight gain in female BALB/c mice. We observed that chronic psychological stress reduces the cutaneous immune response as evidence by reduced ear swelling. This correlated with a significant decrease in the inflammatory cell infiltrate. On the other hand, chronic psychological stress does not influence T cell proliferation, activation, or sensitivity to corticosterone but does increase CD4(+) and CD8(+) T cell percentages in draining lymph nodes during a contact hypersensitivity reaction. Chronic psychological stress induces a decrease in overall circulating white blood cells, lymphocytes, and monocytes during a contact hypersensitivity reaction suggesting extravasation from the circulation. Finally, we found markedly reduced local IFN-γ production in chronically stressed animals. Based on these findings we propose that chronic psychological stress reduces contact hypersensitivity due to dysregulated cell trafficking and reduced production of IFN-γ.
Collapse
Affiliation(s)
- Jessica M F Hall
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Alexandra R Witter
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Ronny R Racine
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Rance E Berg
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Alan Podawiltz
- Department of Psychiatry and Behavioral Health, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Harlan Jones
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Mark E Mummert
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, United States; Department of Psychiatry and Behavioral Health, University of North Texas Health Science Center, Fort Worth, TX, United States; Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
26
|
McLachlan EM, Hu P. Inflammation in dorsal root ganglia after peripheral nerve injury: effects of the sympathetic innervation. Auton Neurosci 2013; 182:108-17. [PMID: 24418114 DOI: 10.1016/j.autneu.2013.12.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 12/11/2013] [Indexed: 12/26/2022]
Abstract
Following a peripheral nerve injury, a sterile inflammation develops in sympathetic and dorsal root ganglia (DRGs) with axons that project in the damaged nerve trunk. Macrophages and T-lymphocytes invade these ganglia where they are believed to release cytokines that lead to hyperexcitability and ectopic discharge, possibly contributing to neuropathic pain. Here, we examined the role of the sympathetic innervation in the inflammation of L5 DRGs of Wistar rats following transection of the sciatic nerve, comparing the effects of specific surgical interventions 10-14 days prior to the nerve lesion with those of chronic administration of adrenoceptor antagonists. Immunohistochemistry was used to define the invading immune cell populations 7 days after sciatic transection. Removal of sympathetic activity in the hind limb by transecting the preganglionic input to the relevant lumbar sympathetic ganglia (ipsi- or bilateral decentralization) or by ipsilateral removal of these ganglia with degeneration of postganglionic axons (denervation), caused less DRG inflammation than occurred after a sham sympathectomy. By contrast, denervation of the lymph node draining the lesion site potentiated T-cell influx. Systemic treatment with antagonists of α1-adrenoceptors (prazosin) or β-adrenoceptors (propranolol) led to opposite but unexpected effects on infiltration of DRGs after sciatic transection. Prazosin potentiated the influx of macrophages and CD4(+) T-lymphocytes whereas propranolol tended to reduce immune cell invasion. These data are hard to reconcile with many in vitro studies in which catecholamines acting mainly via β2-adrenoceptors have inhibited the activation and proliferation of immune cells following an inflammatory challenge.
Collapse
Affiliation(s)
- Elspeth M McLachlan
- Neuroscience Research Australia, Randwick, NSW 2031, and the University of New South Wales, Sydney, NSW 2052, Australia.
| | - Ping Hu
- Neuroscience Research Australia, Randwick, NSW 2031, and the University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
27
|
Ebbinghaus M, Gajda M, Boettger MK, Schaible HG, Bräuer R. The anti-inflammatory effects of sympathectomy in murine antigen-induced arthritis are associated with a reduction of Th1 and Th17 responses. Ann Rheum Dis 2012; 71:253-61. [PMID: 21953345 DOI: 10.1136/ard.2011.150318] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Both facilitatory and inhibitory effects of the sympathetic nervous system (SNS) on experimental arthritis have been reported. It is unknown whether such bidirectional effects are inherent to all experimental arthritis models and/or whether critical time windows exist for influences of the SNS on inflammation. OBJECTIVES To assess the effect of sympathectomy at different time points on the course and severity of murine antigen-induced arthritis (AIA). METHODS AIA was induced in mice. Chemical sympathectomy with 6-hydroxydopamine was carried out either neonatally, in the immunisation phase, or immediately before AIA elicitation, or during the chronic phase. In sympathectomised and non-sympathectomised AIA mice the inflammatory process (joint swelling, histopathology of inflammation and joint destruction), pain-related behaviour and cellular and humoral immune responses were analysed. RESULTS Sympathectomy during AIA induction or neonatal sympathectomy significantly reduced the severity of acute AIA. Neither sympathectomy in the immunisation phase nor in the chronic phase influenced AIA. Flare-up reactions were reduced by sympathectomy just before flare-up or during the initial acute AIA stage. Sympathectomised AIA mice showed less hyperalgesia. Sympathectomy significantly reduced interleukin (IL) 2, IL-17 and transforming growth factor β in supernatants from lymph nodes and/or spleen cells and antigen-specific Th1-associated IgG2a in serum; IgG1 titres were unaffected. The ß blocker, propranolol, and the norepinephrine reuptake inhibitor bupropion produced similar anti-inflammatory effects, whereas the ß-adrenergic agonist isoproterenol increased AIA severity in neonatally sympathectomised mice. CONCLUSIONS Sympathetic activity mainly increases the severity of acute episodes of immune-mediated arthritis. Therapeutic reduction of sympathetic activity at acute stages attenuates inflammation, hyperalgesia and proinflammatory immune parameters.
Collapse
Affiliation(s)
- Matthias Ebbinghaus
- Institute of Pathology, University Hospital, Friedrich Schiller University, Jena, Germany
| | | | | | | | | |
Collapse
|
28
|
Vojdani A, Lambert J, Kellermann G. The Role of Th17 in Neuroimmune Disorders: A Target for CAM Therapy. Part III. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2011; 2011:548086. [PMID: 19622602 PMCID: PMC3140049 DOI: 10.1093/ecam/nep064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 05/22/2009] [Indexed: 01/01/2023]
Abstract
Abundant research has mapped the inflammatory pathways leading to autoimmunity and neuroinflammatory disorders. The latest T helper to be identified, Th17, through its proinflammatory cytokine IL-17, plays a pathogenic role in many inflammatory conditions. Today, healthcare providers have a wealth of anti-inflammatory agents from which to choose. On one hand, pharmaceutical companies market brand-name drugs direct to the public and physicians. Medical botanical knowledge, on the other hand, has been passed down from generation to generation. The demands for natural healing therapies have brought corresponding clinical and laboratory research studies to elucidate the medicinal properties of alternative practices. With a variety of options, it can be difficult to pinpoint the proper anti-inflammatory agent for each case presented. In this review, the authors highlight a vast array of anti-inflammatory medicaments ranging from drugs to vitamins and from botanicals to innate molecules. This compilation may serve as a guide for complimentary and alternative healthcare providers who need to target neuroinflammation driven by Th17 and its inflammatory cytokine IL-17. By understanding the mechanisms of anti-inflammatory agents, CAM practitioners can tailor therapeutic interventions to fit the needs of the patient, thereby providing faster relief from inflammatory complaints.
Collapse
Affiliation(s)
| | - Jama Lambert
- Immunosciences Lab., Inc., Los Angeles, CA 90035, USA
| | | |
Collapse
|
29
|
Mathison RD, Davison JS, Befus AD, Gingerich DA. Salivary gland derived peptides as a new class of anti-inflammatory agents: review of preclinical pharmacology of C-terminal peptides of SMR1 protein. JOURNAL OF INFLAMMATION-LONDON 2010; 7:49. [PMID: 20920210 PMCID: PMC2955637 DOI: 10.1186/1476-9255-7-49] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 09/28/2010] [Indexed: 02/02/2023]
Abstract
The limitations of steroidal and non steroidal anti-inflammatory drugs have prompted investigation into other biologically based therapeutics, and identification of immune selective anti-inflammatory agents of salivary origin. The traditional view of salivary glands as accessory digestive structures is changing as their importance as sources of systemically active immunoregulatory and anti-inflammatory factors is recognized. Salivary gland involvement in maintenance of whole body homeostasis is regulated by the nervous system and thus constitutes a "neuroendocrine axis". The potent anti-inflammatory activities, both in vivo and in vitro, of the tripeptide Phe-Glu-Gly (FEG) are reviewed. FEG is a carboxyl terminal peptide of the prohormone SMR1 identified in the rat submandibular salivary gland, The D-isomeric form (feG) mimics the activity of its L-isomer FEG. Macropharmacologically, feG attenuates the cardiovascular and inflammatory effects of endotoxemia and anaphylaxis, by inhibition of hypotension, leukocyte migration, vascular leak, and disruption of pulmonary function and intestinal motility. Mechanistically, feG affects activated inflammatory cells, especially neutrophils, by regulating integrins and inhibiting intracellular production of reactive oxygen species. Pharmacodynamically, feG is active at low doses (100 μg/kg) and has a long (9-12 hour) biological half life. As a therapeutic agent, feG shows promise in diseases characterized by over exuberant inflammatory responses such as systemic inflammatory response syndrome and other acute inflammatory diseases. Arthritis, sepsis, acute pancreatitis, asthma, acute respiratory inflammation, inflammatory bowel disease, and equine laminitis are potential targets for this promising therapeutic peptide. The term "Immune Selective Anti-Inflammatory Derivatives" (ImSAIDs) is proposed for salivary-derived peptides to distinguish this class of agents from corticosteroids and nonsteroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- Ronald D Mathison
- Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.
| | | | | | | |
Collapse
|
30
|
Rogóz Z, Kubera M, Rogóz K, Basta-Kaim A, Budziszewska B. Effect of co-administration of fluoxetine and amantadine on immunoendocrine parameters in rats subjected to a forced swimming test. Pharmacol Rep 2010; 61:1050-60. [PMID: 20081240 DOI: 10.1016/s1734-1140(09)70167-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Revised: 10/16/2009] [Indexed: 12/16/2022]
Abstract
Considerable attention has been paid to a possible role of immunological dysregulation in the pathogenesis of depression. It has been reported that combined administration of antidepressant drugs and the non-competitive NMDA receptor antagonist amantadine reduces immobility time in the forced swimming test (FST). Moreover, preliminary clinical data show that such a combination of drugs has a beneficial effect on treatment-resistant depressed patients. Since immune activation and a pro-inflammatory response are clearly evident in treatment-resistant depression, the aim of the present study was to examine the effect of a combination of the antidepressant fluoxetine and amantadine on immunoendocrine parameters in rats subjected to the forced swimming test. The obtained results revealed synergistic antidepressant effects of the combined administration of fluoxetine (10 mg/kg) and amantadine (10 mg/kg) - drugs otherwise ineffective when given separately in the above doses. Antidepressant activity was accompanied with a significant decrease in the capacity of splenocytes to proliferate in response to concanavalin A. Moerover, fluoxetine and the combination of amantadine and fluoxetine reduced relative spleen weight in rats subjected to the FST, compared to rats treated with the vehicle. The combination of amantadine and fluoxetine enhanced the production of the negative immunoregulator interleukin-10 (but not interferon-gamma) in rats subjected to the FST. The exposure to the FST produced an increase in plasma corticosterone levels, which was significantly attenuated by pretreatment with fluoxetine and amantadine. In summary, the antidepressive efficacy of a combination of fluoxetine and amantadine given in suboptimal doses may be related to the negative immunoendocrine effects of these drugs.
Collapse
Affiliation(s)
- Zofia Rogóz
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, PL 31-343 Kraków, Poland.
| | | | | | | | | |
Collapse
|
31
|
Perez SD, Silva D, Millar AB, Molinaro CA, Carter J, Bassett K, Lorton D, Garcia P, Tan L, Gross J, Lubahn C, Thyagarajan S, Bellinger DL. Sympathetic innervation of the spleen in male Brown Norway rats: a longitudinal aging study. Brain Res 2009; 1302:106-17. [PMID: 19748498 DOI: 10.1016/j.brainres.2009.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 09/02/2009] [Accepted: 09/04/2009] [Indexed: 12/27/2022]
Abstract
Aging leads to reduced cellular immunity with consequent increased rates of infectious disease, cancer, and autoimmunity in the elderly. The sympathetic nervous system (SNS) modulates innate and adaptive immunity via innervation of lymphoid organs. In aged Fischer 344 (F344) rats, noradrenergic (NA) nerve density in secondary lymphoid organs declines, which may contribute to immunosenescence with aging. These studies suggest there is SNS involvement in age-induced immune dysregulation. The purpose of this study was to longitudinally characterize age-related change in sympathetic innervation of the spleen and sympathetic activity/tone in male Brown Norway (BN) rats, which live longer and have a strikingly different immune profile than F344 rats, the traditional animal model for aging research. Splenic sympathetic neurotransmission was evaluated between 8 and 32 months of age by assessing (1) NA nerve fiber density, (2) splenic norepinephrine (NE) concentration, and (3) circulating catecholamine levels after decapitation. We report a decline in NA nerve density in splenic white pulp (45%) at 15 months of age compared with 8-month-old (M) rats, which is followed by a much slower rate of decline between 24 and 32 months. Lower splenic NE concentrations between 15 and 32 months of age compared with 8M rats were consistent with morphometric findings. Circulating catecholamine levels after decapitation stress generally dropped with increasing age. These findings suggest there is a sympathetic-to-immune system dysregulation beginning at middle age. Given the unique T-helper-2 bias in BN rats, altered sympathetic-immune communication may be important for understanding the age-related rise in asthma and autoimmunity.
Collapse
Affiliation(s)
- Sam D Perez
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lechin F, van der Dijs B. Central nervous system plus autonomic nervous system disorders responsible for gastrointestinal and pancreatobiliary diseases. Dig Dis Sci 2009; 54:458-70. [PMID: 18629642 DOI: 10.1007/s10620-008-0369-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 06/03/2008] [Indexed: 12/09/2022]
Abstract
Clinical digestive disorders depend on the non-adequate coupling of functioning of the gastrointestinal tract with that of its affluent systems, namely, the pancreatic exocrine and the hepato-biliary secretions. The secretion of gastrointestinal hormones is monitored by the peripheral autonomic nervous system. However, the latter is regulated by the central nervous system (CNS) circuitry localized at the medullary pontine segment of the CNS. In turn, both parasympathetic and adrenergic medullary circuitries are regulated by the pontine A5 noradrenergic (NA) and the dorsal raphe serotonergic nuclei, respectively. DR-5HT is positively correlated with the C1-Ad medullary nuclei (responsible for adrenal gland secretion), whereas the MR-5HT nucleus is positively correlated with the A5-NA pontomedullary nucleus. The latter is responsible for neural sympathetic activity (sympathetic nerves). Both types of sympathetic activities maintain an alternation with the peripheral parasympathetic branch, which is positively correlated with the enterochromaffin cells that secrete serotonin. Serotonin displays hormonal antagonism to the circulating catecholamines.
Collapse
Affiliation(s)
- Fuad Lechin
- Department of Neurophysiology, Instituto de Medicina Experimental, Faculty of Medicine, Universidad Central de Venezuela, Apartado 80.983, Caracas, 1080, Venezuela.
| | | |
Collapse
|
33
|
Small doses of morphine can enhance NK cell cytotoxicity in pigs. Int Immunopharmacol 2009; 9:277-83. [DOI: 10.1016/j.intimp.2008.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 10/29/2008] [Accepted: 11/13/2008] [Indexed: 11/21/2022]
|
34
|
Flierl MA, Rittirsch D, Nadeau BA, Sarma JV, Day DE, Lentsch AB, Huber-Lang MS, Ward PA. Upregulation of phagocyte-derived catecholamines augments the acute inflammatory response. PLoS One 2009; 4:e4414. [PMID: 19212441 PMCID: PMC2636885 DOI: 10.1371/journal.pone.0004414] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 12/16/2008] [Indexed: 11/18/2022] Open
Abstract
Following our recent report that phagocytic cells (neutrophils, PMNs, and macrophages) are newly discovered sources of catecholamines, we now show that both epinephrine and norepinephrine directly activate NFkappaB in macrophages, causing enhanced release of proinflammatory cytokines (TNFalpha, IL-1beta, IL-6). Both adrenal-intact (AD+) and adrenalectomized (ADX) rodents were used, because ADX animals had greatly enhanced catecholamine release from phagocytes, facilitating our efforts to understand the role of catecholamines released from phagocytes. Phagocytes isolated from adrenalectomized rats displayed enhanced expression of tyrosine-hydroxylase and dopamine-beta-hydroxylase, two key enzymes for catecholamine production and exhibited higher baseline secretion of norepinephrine and epinephrine. The effects of upregulation of phagocyte-derived catecholamines were investigated in two models of acute lung injury (ALI). Increased levels of phagocyte-derived catecholamines were associated with intensification of the acute inflammatory response, as assessed by increased plasma leak of albumin, enhanced myeloperoxidase content in lungs, augmented levels of proinflammatory mediators in bronchoalveolar lavage fluids, and elevated expression of pulmonary ICAM-1 and VCAM-1. In adrenalectomized rats, development of ALI was enhanced and related to alpha(2)-adrenoceptors engagement but not to involvement of mineralocorticoid or glucocorticoid receptors. Collectively, these data demonstrate that catecholamines are potent inflammatory activators of macrophages, upregulating NFkappaB and further downstream cytokine production of these cells. In adrenalectomized animals, which have been used to further assess the role of catecholamines, there appears to be a compensatory increase in catecholamine generating enzymes and catecholamines in macrophages, resulting in amplification of the acute inflammatory response via engagement of alpha(2)-adrenoceptors.
Collapse
Affiliation(s)
- Michael A. Flierl
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Daniel Rittirsch
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Brian A. Nadeau
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - J. Vidya Sarma
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Danielle E. Day
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Alex B. Lentsch
- The Laboratory of Trauma, Sepsis & Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Markus S. Huber-Lang
- Department of Trauma-, Hand- and Reconstructive Surgery, University of Ulm Medical School, Ulm, Germany
| | - Peter A. Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
35
|
Differences in the injury/sprouting response of splenic noradrenergic nerves in Lewis rats with adjuvant-induced arthritis compared with rats treated with 6-hydroxydopamine. Brain Behav Immun 2009; 23:276-85. [PMID: 18984038 DOI: 10.1016/j.bbi.2008.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 09/24/2008] [Accepted: 10/12/2008] [Indexed: 11/21/2022] Open
Abstract
Sympathetic nerves in the spleen undergo an injury and sprouting response with development of adjuvant-induced arthritis (AA), a model of rheumatoid arthritis (RA). The objective of the present study was to determine whether this injury and sprouting response is disease-specific or occurs in a non-specific manner similar to injury and sprouting responses following sympathectomy with specific neurotoxins. Changes in noradrenergic (NA) innervation in spleens from Lewis rats 28 days following adjuvant treatment to induce arthritis and/or local 6-hydroxydopamine (6-OHDA) treatment to destroy NA nerves were examined using immunocytochemistry for tyrosine hydroxylase (TH). We observed significant increases in sympathetic innervation of hilar regions, sites of nerve entry into the spleen, and a striking decline in innervation of splenic regions distant to the hilus in arthritic compared to non-arthritic rats. While increased hilar and decreased distal NA innervation in arthritic rats was strikingly similar to that of non-arthritic 6-OHDA-treated rats, there were differences in splenic compartments innervated by sympathetic nerves between these groups. In 6-OHDA-treated rats, NA nerves re-innervated splenic compartments normally innervated by sympathetic nerves. In arthritic rats, sympathetic nerves returned to normally innervated splenic compartments, but also abundantly innervated red pulp. These findings suggest that splenic sympathetic nerves undergo a disease-associated injury/sprouting response with disease development that alters the normal pattern and distribution of NA innervation. The altered sympathetic innervation pattern is likely to change NA signaling to immune cell targets, which could exert long-term regulatory influences on initiation, maintenance, and resolution of immune responses that impact disease pathology.
Collapse
|
36
|
Kannan-Hayashi Y, Okamura K, Hattori S, Kuwamura M, Higuchi E, Terayama H, Moriyama M, Mukamoto M, Okada M, Ohsugi Y, Nakamura Y. Neuritogenic effects of T cell-derived IL-3 on mouse splenic sympathetic neurons in vivo. THE JOURNAL OF IMMUNOLOGY 2008; 180:4227-34. [PMID: 18322235 DOI: 10.4049/jimmunol.180.6.4227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To determine the role played by lymphocytes and cytokines in the growth of sympathetic neurons in vivo, the innervation and cytokine levels were examined in the spleens of SCID mice that lack T and B cells. Splenic noradrenaline, nerve growth factor (NGF), and IL-1beta levels were elevated in SCID mice. Immunohistochemical examination revealed that the density of tyrosine hydroxylase-positive (TH(+)) fibers of splenic central arteries in SCID mice was increased compared with wild-type C.B-17 mice, while SCID mice had significantly fewer TH(+) fibers in their periarteriolar lymphatic sheaths (PALS). Two weeks after SCID mice were injected with C.B-17 splenic T cells, their TH(+) fiber staining increased in the PALS. IL-3 levels increased significantly in SCID mice following T cell reconstitution, and the administration of anti-IL-3 Ab blocked the above T cell-induced increase in innervation in the PALS. Anti-IL-3 treatment also inhibited the regeneration of splenic sympathetic neurons in C.B-17 mice after they were chemically sympathetomized with 6-hydroxydopamine. Depletion of NK cells by anti-asialo GM1 promoted the splenic innervation in SCID mice, while there were no significant changes in the innervation between CD8(+) T cell-deficient beta(2)-microglobulin knockout mice and their wild type. Our results suggest that T cells (probably CD4(+) Th cells but not CD8(+) CTLs) play a role in regulating the sympathetic innervation of the spleen; this effect appeared to be mediated, at least in part, by IL-3. On the contrary, NK cells may exert an inhibitory effect on the sympathetic innervation.
Collapse
Affiliation(s)
- Yukiko Kannan-Hayashi
- Laboratory of Integrative Physiology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Templeton A, Nguyen G, Ash JD, Straub RH, Carr DJJ. Chemical sympathectomy increases susceptibility to ocular herpes simplex virus type 1 infection. J Neuroimmunol 2008; 197:37-46. [PMID: 18495255 DOI: 10.1016/j.jneuroim.2008.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 03/14/2008] [Accepted: 03/14/2008] [Indexed: 12/13/2022]
Abstract
The cornea is one of the most highly innervated tissues in the mammalian host. We hypothesized changes to cornea innervation through chemical sympathectomy would significantly alter the host response to the neurotropic viral pathogen, herpes simplex virus type 1 (HSV-1) following ocular infection. Mice treated with 6-hydroxydopamine hydrobromide displayed reduced tyrosine hydroxylase-positive fibers residing in the cornea. Sympathectomized mice were also found to show a transient rise in virus recovered in infected tissues and succumbed to infection in greater numbers. Whereas there were no differences in infiltrating leukocyte populations including HSV-1-specific cytotoxic T lymphocytes in the infected tissue, an increase in substance P and a decrease in IFN-gamma levels in the trigeminal ganglion but not brain stem of sympathectomized mice were noted. Sympathectomized mice treated with the neurokinin-1 receptor antagonist L703,606 had delayed mortality implicating the involvement of substance P in HSV-1-mediated death.
Collapse
|
38
|
Bellinger DL, Millar BA, Perez S, Carter J, Wood C, ThyagaRajan S, Molinaro C, Lubahn C, Lorton D. Sympathetic modulation of immunity: relevance to disease. Cell Immunol 2008; 252:27-56. [PMID: 18308299 PMCID: PMC3551630 DOI: 10.1016/j.cellimm.2007.09.005] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 09/01/2007] [Indexed: 02/05/2023]
Abstract
Optimal host defense against pathogens requires cross-talk between the nervous and immune systems. This paper reviews sympathetic-immune interaction, one major communication pathway, and its importance for health and disease. Sympathetic innervation of primary and secondary immune organs is described, as well as evidence for neurotransmission with cells of the immune system as targets. Most research thus far has focused on neural-immune modulation in secondary lymphoid organs, has revealed complex sympathetic modulation resulting in both potentiation and inhibition of immune functions. SNS-immune interaction may enhance immune readiness during disease- or injury-induced 'fight' responses. Research also indicate that dysregulation of the SNS can significantly affect the progression of immune-mediated diseases. However, a better understanding of neural-immune interactions is needed to develop strategies for treatment of immune-mediated diseases that are designed to return homeostasis and restore normal functioning neural-immune networks.
Collapse
Affiliation(s)
- Denise L Bellinger
- Department of Pathology & Human Anatomy, Loma Linda University School of Medicine, 11021 Campus Street, Alumni Hall 325, Loma Linda, CA 92352, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Biros D. Anterior Chamber-Associated Immune Deviation. Vet Clin North Am Small Anim Pract 2008; 38:309-21, vi-vii. [DOI: 10.1016/j.cvsm.2007.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Shevchuk NA, Radoja S. Possible stimulation of anti-tumor immunity using repeated cold stress: a hypothesis. Infect Agent Cancer 2007; 2:20. [PMID: 17999770 PMCID: PMC2211456 DOI: 10.1186/1750-9378-2-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 11/13/2007] [Indexed: 12/21/2022] Open
Abstract
Background The phenomenon of hormesis, whereby small amounts of seemingly harmful or stressful agents can be beneficial for the health and lifespan of laboratory animals has been reported in literature. In particular, there is accumulating evidence that daily brief cold stress can increase both numbers and activity of peripheral cytotoxic T lymphocytes and natural killer cells, the major effectors of adaptive and innate tumor immunity, respectively. This type of regimen (for 8 days) has been shown to improve survival of mice infected with intracellular parasite Toxoplasma gondii, which would also be consistent with enhanced cell-mediated immunity. Presentation of the hypothesis This paper hypothesizes that brief cold-water stress repeated daily over many months could enhance anti-tumor immunity and improve survival rate of a non-lymphoid cancer. The possible mechanism of the non-specific stimulation of cellular immunity by repeated cold stress appears to involve transient activation of the sympathetic nervous system, hypothalamic-pituitary-adrenal and hypothalamic-pituitary-thyroid axes, as described in more detail in the text. Daily moderate cold hydrotherapy is known to reduce pain and does not appear to have noticeable adverse effects on normal test subjects, although some studies have shown that it can cause transient arrhythmias in patients with heart problems and can also inhibit humoral immunity. Sudden immersion in ice-cold water can cause transient pulmonary edema and increase permeability of the blood-brain barrier, thereby increasing mortality of neurovirulent infections. Testing the hypothesis The proposed procedure is an adapted cold swim (5–7 minutes at 20 degrees Celsius, includes gradual adaptation) to be tested on a mouse tumor model. Mortality, tumor size, and measurements of cellular immunity (numbers and activity of peripheral CD8+ T lymphocytes and natural killer cells) of the cold-exposed group would be compared to those of control groups (warm swim and no treatment). Cold-water stress would be administered twice a day for the duration of several months. Implications of the hypothesis If the hypothesis is supported by empirical studies and the method is shown to be safe, this could lead to the development of an adjunctive immunotherapy for some (non-lymphoid) cancers, including those caused by viral infections.
Collapse
Affiliation(s)
- Nikolai A Shevchuk
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, USA.
| | | |
Collapse
|
41
|
Nance DM, Sanders VM. Autonomic innervation and regulation of the immune system (1987-2007). Brain Behav Immun 2007; 21:736-45. [PMID: 17467231 PMCID: PMC1986730 DOI: 10.1016/j.bbi.2007.03.008] [Citation(s) in RCA: 587] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 03/17/2007] [Indexed: 01/09/2023] Open
Abstract
Since 1987, only a few neuroanatomical studies have been conducted to identify the origin of innervation for the immune system. These studies demonstrated that all primary and secondary immune organs receive a substantial sympathetic innervation from sympathetic postganglionic neurons. Neither the thymus nor spleen receive any sensory neural innervation; however, there is evidence that lymph nodes and bone marrow may be innervated by sensory neurons located in dorsal root ganglia. There is no neuroanatomical evidence for a parasympathetic or vagal nerve supply to any immune organ. Thus, the primary pathway for the neural regulation of immune function is provided by the sympathetic nervous system (SNS) and its main neurotransmitter, norepinephrine (NE). Activation of the SNS primarily inhibits the activity of cells associated with the innate immune system, while it either enhances or inhibits the activity of cells associated with the acquired/adaptive immune system. Innate immune cells express both alpha and beta-adrenergic receptor subtypes, while T and B lymphocytes express adrenergic receptors of the beta2 subtype exclusively, except for murine Th2 cells that lack expression of any subtype. Via these adrenergic receptors, NE is able to regulate the level of immune cell activity by initiating a change in the level of cellular activity, which often involves a change in the level of gene expression for cytokines and antibodies.
Collapse
Affiliation(s)
- Dwight M Nance
- Susan Samueli Center for Integrative Medicine, University of California Irvine, Orange, CA 92868-4283, USA.
| | | |
Collapse
|
42
|
Bellinger DL, Millar BA, Perez S, Carter J, Wood C, ThyagaRajan S, Molinaro C, Lubahn C, Lorton D. Innervation of lymphoid organs: Clinical implications. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.cnr.2006.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Anterior chamber–associated immune deviation and its impact on corneal allograft survival. Curr Opin Organ Transplant 2006. [DOI: 10.1097/01.mot.0000236697.07092.ac] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Sanders VM. Adrenergic receptors on T and B lymphocytes: Evidence, function, and clinical implications. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.cnr.2006.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Sternberg EM. Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat Rev Immunol 2006; 6:318-28. [PMID: 16557263 PMCID: PMC1783839 DOI: 10.1038/nri1810] [Citation(s) in RCA: 728] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The central nervous system (CNS) regulates innate immune responses through hormonal and neuronal routes. The neuroendocrine stress response and the sympathetic and parasympathetic nervous systems generally inhibit innate immune responses at systemic and regional levels, whereas the peripheral nervous system tends to amplify local innate immune responses. These systems work together to first activate and amplify local inflammatory responses that contain or eliminate invading pathogens, and subsequently to terminate inflammation and restore host homeostasis. Here, I review these regulatory mechanisms and discuss the evidence indicating that the CNS can be considered as integral to acute-phase inflammatory responses to pathogens as the innate immune system.
Collapse
Affiliation(s)
- Esther M Sternberg
- Section on Neuroendocrine Immunology and Behaviour, National Institute of Mental Health, National Institutes of Health, 5625 Fishers Lane, Room 4N-13, MSC-9401, Rockville, Maryland 20852, USA.
| |
Collapse
|
46
|
Bellinger DL, Stevens SY, Thyaga Rajan S, Lorton D, Madden KS. Aging and sympathetic modulation of immune function in Fischer 344 rats: effects of chemical sympathectomy on primary antibody response. J Neuroimmunol 2005; 165:21-32. [PMID: 16005733 DOI: 10.1016/j.jneuroim.2005.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Revised: 10/27/2004] [Accepted: 03/25/2005] [Indexed: 10/25/2022]
Abstract
In aged Fischer 344 (F334) rats, sympathetic innervation of the spleen is markedly diminished compared with young rats. To determine if this diminished noradrenergic (NA) innervation maintains a functional connection with the immune system, 3- and 17-month-old male F344 rats were treated with the NA-selective neurotoxin, 6-hydroxydopamine (6-OHDA), to ablate peripheral NA nerve fibers. In sympathectomized rats immunized with keyhole limpet hemocyanin (KLH), a T-dependent protein antigen, anti-KLH IgM, IgG, IgG1, IgG2b antibody titers were increased in young and old rats 14 days after immunization compared to vehicle controls. Furthermore, the number of IgM and IgG anti-KLH antibody-secreting spleen cells was elevated 7 and 14 days post-immunization. These effects were prevented by pretreatment with desipramine, a catecholamine uptake blocker that blocks 6-OHDA uptake and subsequent sympathectomy. Chemical sympathectomy also increased KLH-induced proliferation in vitro by spleen cells from old, but not young animals. Isoproterenol (ISO), a beta-adrenergic receptor agonist, elicited a rise in cAMP in spleen cells from NA-intact young and old rats, but the increase was attenuated in spleen cells from old rats. These results demonstrate that, although NA innervation in the F344 rat spleen is diminished with age, sympathetic signaling of the immune system remains intact. Thus, the SNS can inhibit antibody produced in response to a protein antigen in both young and old F344 rats.
Collapse
Affiliation(s)
- Denise L Bellinger
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, 11021 Campus Street, AH 325, Loma Linda, CA 92350, United States.
| | | | | | | | | |
Collapse
|
47
|
Kennedy SL, Nickerson M, Campisi J, Johnson JD, Smith TP, Sharkey C, Fleshner M. Splenic norepinephrine depletion following acute stress suppresses in vivo antibody response. J Neuroimmunol 2005; 165:150-60. [PMID: 15978673 DOI: 10.1016/j.jneuroim.2005.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Accepted: 05/06/2005] [Indexed: 11/25/2022]
Abstract
Exposure to an intense acute stressor immediately following immunization leads to a reduction in anti-KLH IgM, IgG, and IgG2a, but not IgG1. Stress also depletes splenic norepinephrine (NE) content. Immunization during pharmacological (alpha-methyl-p-tyrosine) or stress-induced splenic NE depletion results in antibody suppression similar to that found in rats immunized prior to stressor exposure. Prevention of splenic NE depletion during stress by tyrosine, but not pharmacological elevation (mirtazapine) of NE, resulted in normal antibody responses. These data support the hypothesis that splenic NE depletion is necessary and sufficient for stress-induced suppression of antibody to a T-cell dependent antigen.
Collapse
Affiliation(s)
- S L Kennedy
- Department of Integrative Physiology, University of Colorado, Campus Box 354, Boulder, Colorado 80309-0354, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Härle P, Möbius D, Carr DJJ, Schölmerich J, Straub RH. An opposing time-dependent immune-modulating effect of the sympathetic nervous system conferred by altering the cytokine profile in the local lymph nodes and spleen of mice with type II collagen-induced arthritis. ACTA ACUST UNITED AC 2005; 52:1305-13. [PMID: 15818682 DOI: 10.1002/art.20987] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The sympathetic nervous system (SNS) seems to play a proinflammatory role in the early asymptomatic phase of arthritis, but its role in the late stages of chronic arthritis is not well known. The purpose of this study was to examine the effects of the SNS on late-stage chronic arthritis in mice with type II collagen-induced arthritis (CIA). METHODS We tested the effects of the SNS by ablating sympathetic nerves at different time points in mice with CIA. Early sympathectomy was performed 7 days before immunization. Late sympathectomy was performed on day 56. Cytokine stimulation assays were performed on local lymph node cells and spleen cells, and levels of interleukin-10 (IL-10), IL-4, tumor necrosis factor alpha (TNFalpha), and interferon-gamma (IFNgamma) were determined. RESULTS Animals with CIA that underwent early sympathectomy showed significantly lower arthritis scores than the controls. In contrast, animals that underwent late sympathectomy had significantly increased arthritis scores compared with controls. On day 0, lymph node cells from animals subjected to early sympathectomy had increased levels of IL-10 and IL-4 and unchanged levels of TNFalpha and IFNgamma compared with those from untreated animals. This indicates an immune-stimulating property of the SNS in draining lymph nodes. On day 80, lymph node cells and spleen cells from animals subjected to late sympathectomy showed increased levels of TNFalpha and IFNgamma compared with those from nonsympathectomized controls with CIA. This indicates an immune-depressing property of the SNS in draining lymph nodes and spleen. Arthritis per se largely diminished sympathetic nerve fiber density in synovium on day 80 (P < 0.01). CONCLUSION The effect of the SNS is bimodal, enhancing or depressing levels of proinflammatory and antiinflammatory cytokines. This feature is dependent on the time point of immune system activation and the respective compartment. The SNS supports inflammation during the asymptomatic phase of CIA, whereas it inhibits inflammation during the chronic symptomatic phase.
Collapse
Affiliation(s)
- Peter Härle
- University Hospital Regensburg, Regensburg, Germany
| | | | | | | | | |
Collapse
|
49
|
Kinney KS, Cohen N. Increased splenocyte mitogenesis following sympathetic denervation in Xenopus laevis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2005; 29:287-293. [PMID: 15859233 DOI: 10.1016/j.dci.2004.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Studies in mammals reveal that ablation of the sympathetic nervous system (SNS) can alter in vivo and in vitro parameters of immunity. To shed some light on the phylogenetic history of the interactions between the SNS and the immune system, we studied the effects of chemical sympathectomy on the proliferative response of frog splenocytes to mitogens. Adult Xenopus laevis were injected with 6-hydroxydopamine 3 days before removal of spleen cells for culture with mitogens. Splenocytes from sympathectomized frogs exhibited an increased proliferative response to the T cell mitogens PHA and ConA and the B cell mitogen, LPS. That sympathectomy appears to effect a release from tonic inhibition by the SNS in Xenopus is consistent with comparable experiments in mice. It also reveals a phylogenetically ancient origin for SNS-immune system communications.
Collapse
Affiliation(s)
- Kevin S Kinney
- Department of Biology, DePauw University, Greencastle, IN 46135, USA.
| | | |
Collapse
|
50
|
Li X, Taylor S, Zegarelli B, Shen S, O'Rourke J, Cone RE. The induction of splenic suppressor T cells through an immune-privileged site requires an intact sympathetic nervous system. J Neuroimmunol 2004; 153:40-9. [PMID: 15265662 DOI: 10.1016/j.jneuroim.2004.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2003] [Revised: 04/20/2004] [Accepted: 04/21/2004] [Indexed: 01/03/2023]
Abstract
Antigen injection into the eye's anterior chamber (AC) induces the antigen-specific suppression of delayed-type hypersensitivity (DTH) that is mediated by NKT cells and splenic CD8+ suppressor T cells. Because the AC, uveal tissues, the thymus and spleen required to induce anterior chamber-associated immune deviation (ACAID) have dense sympathetic innervations, we examined the effects of chemical sympathectomy of mice by 6-hydroxydopamine (6-OHDA) on the induction of the suppression of contact sensitivity to trinitrophenol (TNP) induced by the injection of TNP-bovine serum albumin (BSA) into the anterior chamber. DTH measured as contact sensitivity to picrylchloride was not induced in mice that received 6-OHDA before immunization with TNP-BSA. Although spleen cells from 6-OHDA-treated TNP-BSA-immunized mice produced IFN-gamma when stimulated by TNP-BSA, the number of DTH-initiating hepatic NKT cells was reduced markedly in 6-OHDA-treated mice. Chemically denervated mice did not produce splenic suppressor T cells or thymic NKT cells that activate splenic suppressor T cells. We suggest that an intact sympathetic nervous system (SNS) is required to maintain cellular immunoregulation.
Collapse
Affiliation(s)
- Xingya Li
- Department of Pathology, Connecticut Lions Vision Immunology Center. University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3105, USA
| | | | | | | | | | | |
Collapse
|