1
|
Liu M, Gao Y, Xin F, Hu Y, Wang T, Xie F, Shao C, Li T, Wang N, Yuan K. Parvalbumin and Somatostatin: Biomarkers for Two Parallel Tectothalamic Pathways in the Auditory Midbrain. J Neurosci 2024; 44:e1655232024. [PMID: 38326037 PMCID: PMC10919325 DOI: 10.1523/jneurosci.1655-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 02/09/2024] Open
Abstract
The inferior colliculus (IC) represents a crucial relay station in the auditory pathway, located in the midbrain's tectum and primarily projecting to the thalamus. Despite the identification of distinct cell classes based on various biomarkers in the IC, their specific contributions to the organization of auditory tectothalamic pathways have remained poorly understood. In this study, we demonstrate that IC neurons expressing parvalbumin (ICPV+) or somatostatin (ICSOM+) represent two minimally overlapping cell classes throughout the three IC subdivisions in mice of both sexes. Strikingly, regardless of their location within the IC, these neurons predominantly project to the primary and secondary auditory thalamic nuclei, respectively. Cell class-specific input tracing suggested that ICPV+ neurons primarily receive auditory inputs, whereas ICSOM+ neurons receive significantly more inputs from the periaqueductal gray and the superior colliculus (SC), which are sensorimotor regions critically involved in innate behaviors. Furthermore, ICPV+ neurons exhibit significant heterogeneity in both intrinsic electrophysiological properties and presynaptic terminal size compared with ICSOM+ neurons. Notably, approximately one-quarter of ICPV+ neurons are inhibitory neurons, whereas all ICSOM+ neurons are excitatory neurons. Collectively, our findings suggest that parvalbumin and somatostatin expression in the IC can serve as biomarkers for two functionally distinct, parallel tectothalamic pathways. This discovery suggests an alternative way to define tectothalamic pathways and highlights the potential usefulness of Cre mice in understanding the multifaceted roles of the IC at the circuit level.
Collapse
Affiliation(s)
- Mengting Liu
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Yixiao Gao
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fengyuan Xin
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Ying Hu
- Zhili College, Tsinghua University, Beijing 100084, China
| | - Tao Wang
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fenghua Xie
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
| | - Chengjun Shao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tianyu Li
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Ningyu Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Kexin Yuan
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
- IDG/McGovern Institute for Brain Research at Tsinghua, Tsinghua University, Beijing 10084, China
| |
Collapse
|
2
|
Reuss S, Linsmayer D, Balmaceda-Braun J, von Rittberg J, Mitz S, Disque-Kaiser U, Usdin T, Leube RE. Synaptoporin and parathyroid hormone 2 as markers of multimodal inputs to the auditory brainstem. J Chem Neuroanat 2023; 130:102259. [PMID: 36958466 PMCID: PMC10164705 DOI: 10.1016/j.jchemneu.2023.102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
The distribution of the synaptic vesicle protein synaptoporin was investigated by immunofluorescence in the central auditory system of the mouse brainstem. Synaptoporin immunostaining displayed region-specific differences. High and moderate accumulations of were seen in the superficial layer of the dorsal cochlear nucleus, dorsal and external regions of the inferior colliculus, the medial and dorsal divisions of the medial geniculate body and in periolivary regions of the superior olivary complex (SOC). Low or absent labeling was observed in the more central parts of these structures such as the principal nuclei of the SOC. It was conspicuous that dense synaptoporin immunoreactivity was detected predominantly in areas, which are known to be synaptic fields of multimodal, extra-auditory inputs. Target neurons of synaptoporin-positive synapses in the SOC were then identified by double-labelling immunofluorescence microscopy. We thereby detected synaptoporin puncta perisomatically at nitrergic, glutamatergic and serotonergic neurons but none next to neurons immunoreactive for choline-acetyltransferase and calcitonin-gene related peptide. These results leave open whether functionally distinct neuronal groups are accessed in the SOC by synaptoporin-containing neurons. The last part of our study sought to find out whether synaptoporin-positive neurons originate in the medial paralemniscal nucleus (MPL), which is characterized by expression of the peptide parathyroid hormone 2 (PTH2). Anterograde neuronal tracing upon injection into the MPL in combination with synaptoporin- and PTH2-immunodetection showed that (1) the MPL projects to the periolivary SOC using PTH2 as transmitter, (2) synaptoporin-positive neurons do not originate in the MPL, and (3) the close juxtaposition of synaptoporin-staining with either the anterograde tracer or PTH2 reflect concerted action of the different inputs to the SOC.
Collapse
Affiliation(s)
- Stefan Reuss
- Department of Nuclear Medicine, University Medical Center, Johannes Gutenberg-University, Mainz, Germany.
| | - Denise Linsmayer
- Department of Anatomy and Cell Biology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Julia Balmaceda-Braun
- Department of Anatomy and Cell Biology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Julia von Rittberg
- Department of Anatomy and Cell Biology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Stephanie Mitz
- Department of Anatomy and Cell Biology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Ursula Disque-Kaiser
- Department of Anatomy and Cell Biology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Ted Usdin
- Systems Neuroscience Imaging Resource, National Institute of Mental Health, Bethesda, MD, USA
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
3
|
Romero GE, Trussell LO. Central circuitry and function of the cochlear efferent systems. Hear Res 2022; 425:108516. [DOI: 10.1016/j.heares.2022.108516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 11/04/2022]
|
4
|
Wallace MN, Shackleton TM, Thompson Z, Palmer AR. Juxtacellular Labeling of Stellate, Disk and Basket Neurons in the Central Nucleus of the Guinea Pig Inferior Colliculus. Front Neural Circuits 2021; 15:721015. [PMID: 34790099 PMCID: PMC8592287 DOI: 10.3389/fncir.2021.721015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022] Open
Abstract
We reconstructed the intrinsic axons of 32 neurons in the guinea pig inferior colliculus (IC) following juxtacellular labeling. Biocytin was injected into cells in vivo, after first analyzing physiological response properties. Based on axonal morphology there were two classes of neuron: (1) laminar cells (14/32, 44%) with an intrinsic axon and flattened dendrites confined to a single fibrodendritic lamina and (2) translaminar cells (18/32, 56%) with axons that terminated in two or more laminae in the central nucleus (ICc) or the surrounding cortex. There was also one small, low-frequency cell with bushy-like dendrites that was very sensitive to interaural timing differences. The translaminar cells were subdivided into three groups of cells with: (a) stellate dendrites that crossed at least two laminae (8/32, 25%); (b) flattened dendrites confined to one lamina and that had mainly en passant axonal swellings (7/32, 22%) and (c) short, flattened dendrites and axons with distinctive clusters of large terminal boutons in the ICc (3/32, 9%). These terminal clusters were similar to those of cortical basket cells. The 14 laminar cells all had sustained responses apart from one offset response. Almost half the non-basket type translaminar cells (7/15) had onset responses while the others had sustained responses. The basket cells were the only ones to have short-latency (7–9 ms), chopper responses and this distinctive temporal response should allow them to be studied in more detail in future. This is the first description of basket cells in the auditory brainstem, but more work is required to confirm their neurotransmitter and precise post-synaptic targets.
Collapse
Affiliation(s)
- Mark N Wallace
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Trevor M Shackleton
- Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Zoe Thompson
- Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Alan R Palmer
- Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
5
|
Sobrido-Cameán D, Yáñez-Guerra LA, Deber A, Freire-Delgado M, Cacheiro-Vázquez R, Rodicio MC, Tostivint H, Anadón R, Barreiro-Iglesias A. Differential expression of somatostatin genes in the central nervous system of the sea lamprey. Brain Struct Funct 2021; 226:1031-1052. [PMID: 33532926 DOI: 10.1007/s00429-021-02224-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/19/2021] [Indexed: 01/29/2023]
Abstract
The identification of three somatostatin (SST) genes (SSTa, SSTb, and SSTc) in lampreys (Tostivint et al. Gen Comp Endocrinol 237:89-97 https://doi.org/10.1016/j.ygcen.2016.08.006 , 2016) prompted us to study their expression in the brain and spinal cord of the sea lamprey by in situ hybridization. These three genes were only expressed in equivalent neuronal populations in the hypothalamus. In other regions, SST transcripts showed clear differential expression. In the telencephalon, SSTc-positive cells were observed in the medial pallium, ventral part of the lateral pallium, striatum, subhippocampal lobe, and preoptic region. In the diencephalon, SSTa-positive cells were observed in the thalamus and SSTc-positive cells in the prethalamus, posterior tubercle, pretectal area, and nucleus of the medial longitudinal fascicle. In the midbrain, SSTc-positive cells were observed in the torus semicircularis, lateral reticular area, and perioculomotor tegmentum. Different SSTa- and SSTc-positive populations were observed in the isthmus. SSTc neurons were also observed in the rostral octavolateralis area and caudal rhombencephalon. In the spinal cord, SSTa was expressed in cerebrospinal-fluid-contacting (CSF-c) neurons and SSTc in non-CSF-c interneurons. Comparison with previous immunohistochemical studies using anti-SST-14 antibodies strongly suggests that SST-14-like neurons correspond with the SSTa populations. Thus, the SSTc populations were not reported previously in immunohistochemical studies. Cluster-based analyses and alignments of mature peptides suggested that SSTa is an ortholog of SST1 and that SSTb is closely related to SST2 and SST6. These results provide important new insights into the evolution of the somatostatinergic system in vertebrates.
Collapse
Affiliation(s)
- D Sobrido-Cameán
- Department of Functional Biology, Faculty of Biology, CIBUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain.,Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - A Deber
- Department of Functional Biology, Faculty of Biology, CIBUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain
| | - M Freire-Delgado
- Department of Functional Biology, Faculty of Biology, CIBUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain
| | - R Cacheiro-Vázquez
- Department of Functional Biology, Faculty of Biology, CIBUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain
| | - M C Rodicio
- Department of Functional Biology, Faculty of Biology, CIBUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain
| | - H Tostivint
- Molecular Physiology and Adaptation, UMR7221, CNRS and Muséum National D'Histoire Naturelle, Paris, France
| | - R Anadón
- Department of Functional Biology, Faculty of Biology, CIBUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain
| | - A Barreiro-Iglesias
- Department of Functional Biology, Faculty of Biology, CIBUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain.
| |
Collapse
|
6
|
Neurons, Connections, and Microcircuits of the Inferior Colliculus. THE MAMMALIAN AUDITORY PATHWAYS 2018. [DOI: 10.1007/978-3-319-71798-2_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Ono M, Ito T. Functional organization of the mammalian auditory midbrain. J Physiol Sci 2015; 65:499-506. [PMID: 26362672 PMCID: PMC10718034 DOI: 10.1007/s12576-015-0394-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 08/22/2015] [Indexed: 12/12/2022]
Abstract
The inferior colliculus (IC) is a critical nexus between the auditory brainstem and the forebrain. Parallel auditory pathways that emerge from the brainstem are integrated in the IC. In this integration, de-novo auditory information processed as local and ascending inputs converge via the complex neural circuit of the IC. However, it is still unclear how information is processed within the neural circuit. The purpose of this review is to give an anatomical and physiological overview of the IC neural circuit. We address the functional organization of the IC where the excitatory and inhibitory synaptic inputs interact to shape the responses of IC neurons to sound.
Collapse
Affiliation(s)
- Munenori Ono
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030-3401, USA.
- Department of Physiology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.
| | - Tetsufumi Ito
- Department of Anatomy, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, 910-1193, Japan
- Research and Education Program for Life Science, University of Fukui, Fukui, Fukui, 910-8507, Japan
| |
Collapse
|
8
|
Osumi Y, Shibata SB, Kanda S, Yagi M, Ooka H, Shimano T, Asako M, Kawamoto K, Kuriyama H, Inoue T, Nishiyama T, Yamashita T, Tomoda K. Downregulation of N-methyl-D-aspartate receptor ζ1 subunit (GluN1) gene in inferior colliculus with aging. Brain Res 2012; 1454:23-32. [PMID: 22483791 DOI: 10.1016/j.brainres.2012.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 02/17/2012] [Accepted: 03/06/2012] [Indexed: 11/15/2022]
Abstract
Presbycusis is the impairment of auditory function associated with aging, which stems from peripheral cochlear lesions and degeneration of the central auditory process. The effect of age-induced peripheral hearing loss on the central auditory process is not fully understood. C57Bl/6 (C57) mice present accelerated peripheral hearing loss, which is well developed by middle-age and mimics the human presbycusis pattern. The aim of this study was to elucidate the molecular effects of peripheral hearing loss in the inferior colliculus (IC) with age between young and middle-aged C57 mice using cDNA microarray. Glutamate receptor ionotropic NMDA ζ1 (GluN1) exhibited the greatest decrease in the middle-aged group as determined using cDNA microarray and by further assessment using real-time PCR (qPCR). Histological assessment with in situ hybridization of GluN1 showed significantly decreased expression in all IC subdivisions of the middle-aged group. GluN1 is a receptor for excitatory neurotransmission, and significant downregulation of this gene may be subsequent to the decline of afferent input from the cochlea in aging C57 mice. Consequently, using the combination of microarray, qPCR, and in situ hybridization, we showed that the decline of GluN1 in the IC of aging animals might have a key role in the pathogenesis of presbycusis.
Collapse
Affiliation(s)
- Yasunori Osumi
- Department of Otolaryngology, Kansai Medical University, Takii Hospital, 10-15 Fumizono-cho, Moriguchi, Osaka 570-8506, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Xu M, Hu HT, Jin Z, Chen G, Wang WX, Fan YL, Anniko M, Duan M. Ototoxicity on cochlear nucleus neurons following systemic application of gentamicin. Acta Otolaryngol 2009; 129:745-8. [PMID: 18855163 DOI: 10.1080/00016480802454716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
CONCLUSION The gentamicin-induced pathological alteration in the cochlear nucleus is not exclusively a secondary consequence of the damage in the cochlea. Instead, the toxic effect of gentamicin on the cochlear nucleus may occur simultaneously or even earlier than that on the cochlea. OBJECTIVES To investigate the pathological alteration of cochlear nucleus neurons in guinea pigs following systemic application of gentamicin. MATERIALS AND METHODS Guinea pigs were injected with gentamicin for 1 day, 3 days, 1 week, 2 weeks, and 3 weeks, respectively. In gentamicin-treated animals, the hearing function was evaluated by measuring the auditory brainstem response (ABR). The number and cross-sectional area of substance P-positive neurons in the cochlear nucleus were also measured. RESULTS The threshold of ABR and the number of substance P-positive neurons in the cochlear nucleus were significantly increased after 1 week and 3 days of injection of gentamicin, respectively. The cross-sectional area of substance P-positive neurons in the cochlear nucleus was significantly reduced after 1-day injection of gentamicin.
Collapse
|
10
|
Lacoste B, Riad M, Ratté MO, Boye SM, Lévesque D, Descarries L. Trafficking of neurokinin-1 receptors in serotonin neurons is controlled by substance P within the rat dorsal raphe nucleus. Eur J Neurosci 2009; 29:2303-14. [DOI: 10.1111/j.1460-9568.2009.06775.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Dong S, Mulders W, Rodger J, Robertson D. Changes in neuronal activity and gene expression in guinea-pig auditory brainstem after unilateral partial hearing loss. Neuroscience 2009; 159:1164-74. [DOI: 10.1016/j.neuroscience.2009.01.043] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 01/20/2009] [Accepted: 01/22/2009] [Indexed: 11/24/2022]
|
12
|
Argence M, Vassias I, Kerhuel L, Vidal PP, de Waele C. Stimulation by cochlear implant in unilaterally deaf rats reverses the decrease of inhibitory transmission in the inferior colliculus. Eur J Neurosci 2009; 28:1589-602. [PMID: 18973578 DOI: 10.1111/j.1460-9568.2008.06454.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the last decade, numerous studies have investigated synaptic transmission changes in various auditory nuclei after unilateral cochlear injury. However, few data are available concerning the potential effect of electrical stimulation of the deafferented auditory nerve on the inhibitory neurotransmission in these nuclei. We report here for the first time the effect of chronic electrical stimulation of the deafferented auditory nerve on alpha1 subunit of the glycinergic receptor (GlyRalpha1) and glutamic acid decarboxylase (GAD)67 expression in the central nucleus of inferior colliculus (CIC). Adult rats were unilaterally cochleectomized by intracochlear neomycin sulphate injection. Fifteen days later, the ipsilateral auditory nerve was chronically stimulated either 4, 8 or 22 h daily, for 5 days using intracochlear bipolar electrodes. GlyRalpha1 and GAD67 mRNA and protein were quantified in the CIC using in situ hybridization and immunohistofluorescence methods. Our data showed that as after surgical ablation, GlyRalpha1 and GAD67 expression were strongly decreased in the contralateral CIC after unilateral chemical cochleectomy. Most importantly, these postlesional down-modulations were significantly reversed by chronic electrical stimulation of the deafferented auditory nerve. This recovery, however, did not persist for more than 5 days after the cessation of the deafferented auditory nerve electrical stimulation. Thus, downregulations of GlyRalpha1 and GAD67 may be involved both in the increased excitability observed in the CIC after unilateral deafness and consequently in the tinnitus frequently observed in unilateral adult deaf patients. Electrical stimulation of the deafferented auditory nerve in patients may be a potential new approach for treating tinnitus with unilateral hearing loss.
Collapse
Affiliation(s)
- Meritxell Argence
- Laboratoire de Neurobiologie des Réseaux Sensorimoteurs, Université Paris Descartes - CNRS, Centre Universitaire des Saints-Pères, Paris, France
| | | | | | | | | |
Collapse
|
13
|
Tongjaroenbuangam W, Jongkamonwiwat N, Phansuwan-Pujito P, Casalotti SO, Forge A, Dodson H, Govitrapong P. Relationship of opioid receptors with GABAergic neurons in the rat inferior colliculus. Eur J Neurosci 2006; 24:1987-94. [PMID: 17040471 DOI: 10.1111/j.1460-9568.2006.05098.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The inferior colliculus is a critical structure for processing auditory information and receives ascending and descending synaptic auditory projections. In addition to GABAergic and glutamatergic innervations, other neurotransmitter systems are also reported in the inferior colliculus, including opioid peptides. In the present study, the relative distribution of each type of opioid receptor, mu (MOR), delta (DOR) and kappa (KOR) within GABAergic neurons in the inferior colliculus was examined. GABA immunoreactivity was expressed by small, medium and large neurons and distributed in the central nucleus and the pericentral nucleus of the inferior colliculus. Immunostaining for MOR, DOR and KOR receptors was found in both disc-shaped cells and stellate cells. Punctiform beta-endorphin immunolabelling was observed in the proximity of GABA-positive neurons. Co-localization of GABA and MOR receptors was observed in neurons and nerve terminals in the central nucleus, dorsal cortex and external cortex of the inferior colliculus. Quantification of the co-localization patterns determined that a higher proportion of GABA neurons was associated with MOR receptors compared with KOR or DOR receptors.
Collapse
Affiliation(s)
- W Tongjaroenbuangam
- Neuro-Behavioral Biology Center, Institute of Science and Technology for Research and Development, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand
| | | | | | | | | | | | | |
Collapse
|
14
|
Argence M, Saez I, Sassu R, Vassias I, Vidal PP, de Waele C. Modulation of inhibitory and excitatory synaptic transmission in rat inferior colliculus after unilateral cochleectomy: an in situ and immunofluorescence study. Neuroscience 2006; 141:1193-207. [PMID: 16757119 DOI: 10.1016/j.neuroscience.2006.04.058] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 04/25/2006] [Accepted: 04/26/2006] [Indexed: 10/24/2022]
Abstract
We investigated whether inhibitory synaptic transmission mediated through glycinergic receptor, GABAA receptors, glutamic acid decarboxylase, the enzyme synthesizing GABA, and excitatory synaptic transmission through alpha-amino-3-hydroxi-5-methylisoxazole-4-propionic acid receptors and N-methyl-D-aspartate receptors are affected in the inferior colliculus by unilateral surgical cochleectomy. In situ hybridization and immunohistofluorescence studies were performed in normal and lesioned adult rats at various times following the lesion (1-150 days). Unilateral auditory deprivation decreased glycine receptor alpha1 and glutamic acid decarboxylase 67 expression in the contralateral central nucleus of the inferior colliculus. This decrease began one day after cochleectomy, and continued until day 8; thereafter expression was consistently low until day 150. The glycine receptor alpha1 subunit decrease did not occur if a second contralateral cochleectomy was performed either on day 8 or 150 after the first cochleectomy. Bilateral cochleectomy caused also a bilateral inferior colliculus diminution of glutamic acid decarboxylase 67 mRNA at post-lesion day 8 but there were no changes in glycine receptor alpha1 compared with controls. In contrast, the abundance of other alpha2-3, and beta glycine receptor, gephyrin, the anchoring protein of glycine receptor, the alpha1, beta2 and gamma2 subunits of GABAA receptors, GluR2, R3 subunits of alpha-amino-3-hydroxi-5-methylisoxazole-4-propionic acid receptors, and NR1 and NR2A transcripts of N-methyl-D-aspartate receptors was unaffected during the first week following the lesion. Thus, unilateral cochlear removal resulted in a selective and long-term decrease in the amount of the glycine receptor alpha1 subunit and of glutamic acid decarboxylase 67 in the contralateral central nucleus of the inferior colliculus. These changes most probably result from the induced asymmetry of excitatory auditory inputs into the central nucleus of the inferior colliculus and may be one of the mechanisms involved in the tinnitus frequently encountered in patients suffering from a sudden hearing loss.
Collapse
Affiliation(s)
- M Argence
- UMR 7060, CNRS-Paris 5, Centre Universitaire des Saints-Pères, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | | | | | | | | | | |
Collapse
|
15
|
Tong L, Altschuler RA, Holt AG. Tyrosine hydroxylase in rat auditory midbrain: distribution and changes following deafness. Hear Res 2005; 206:28-41. [PMID: 16080996 DOI: 10.1016/j.heares.2005.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 03/07/2005] [Indexed: 11/22/2022]
Abstract
Tyrosine hydroxylase (TH), a key enzyme in the catecholaminergic pathway, allows for the differentiation of dopaminergic neurons. We previously showed decreases in TH gene expression in the rat inferior colliculus (IC) 3 and 21 days following deafness. In the present study, we characterized the normal distribution of TH as well as changes following deafness (bilateral cochlear ablation) in the IC and nuclei of the lateral lemniscus. Immunostaining was compared in three groups of rats: normal hearing (n=8), 21 day deaf (n=5) and 90 days following deafening (n=5). Many TH immunoreactive fibers and puncta were identified in the IC and nuclei of the lateral lemniscus of normal hearing animals and labeling was most dense in the external cortex of the IC. We also identified immunolabeling for fibers and puncta for another catecholaminergic enzyme, dopamine beta hydroxylase (DBH), but not phenylethanolamine-N-methyltranferase (PNMT). Neurons immunopositive for TH but not DBH or PNMT were observed in the dorsal cortex and dorsal horn of the central nucleus of the IC and ventral and intermediate lemniscus. In the central nucleus of the IC and dorsal lateral lemniscus many lightly labeled TH neurons were also DBH positive. Although the number of immunopositive cells in the IC and lemniscus declined 3 weeks and 3 months after deafening, the decline was not significant at three weeks in the VNLL nor after three months in the dorsal cortex. Immunolabeling for TH decreased significantly in IC and lemniscus 3 weeks and 3 months following deafening. These results suggest a role for dopaminergic neurons and fibers in deafness-related plasticity.
Collapse
Affiliation(s)
- Ling Tong
- Department of Otolaryngology/Head Neck Surgery, Kresge Hearing Research Institute, University of Michigan, 1301 East Ann Street, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
16
|
Irfan N, Zhang H, Wu SH. Synaptic transmission mediated by ionotropic glutamate, glycine and GABA receptors in the rat’s ventral nucleus of the lateral lemniscus. Hear Res 2005; 203:159-71. [PMID: 15855041 DOI: 10.1016/j.heares.2004.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Accepted: 11/30/2004] [Indexed: 01/22/2023]
Abstract
The synaptic pharmacology of the ventral nucleus of the lateral lemniscus (VNLL) was investigated in brain slices obtained from rats of 14-37 days old using intracellular recording techniques. Excitatory and inhibitory synaptic potentials (EPSPs and IPSPs) were elicited by electrical stimulation of the lemniscal pathway and recorded from neurons with five types of intrinsic firing patterns (onset, pause, adapting, regular and bursting types). Synaptic receptors that mediated the EPSPs and IPSPs were identified using AMPA, NMDA, GABA(A) and glycine receptor antagonists. The early/short EPSPs were mediated by AMPA receptors. The late/long EPSPs, encountered only in neurons of younger animals, were mediated by NMDA receptors. The IPSPs in most neurons were mediated by glycine receptors. In some neurons the IPSPs were mediated by GABA(A) receptors or both glycine and GABA(A) receptors. The temporal dynamics of fast AMPA EPSPs and glycinergic IPSPs were very similar. AMPA EPSPs and glycinergic (and/or GABAergic) IPSPs could be encountered in a single neuron. The results suggest that the VNLL not only relays incoming signals rapidly from the lower brainstem to the inferior colliculus, but also integrates excitatory and inhibitory inputs to modify and process auditory information.
Collapse
Affiliation(s)
- Nashwa Irfan
- Institute of Neuroscience, Carleton University, 335 Life Sciences Research Building, 1125 Colonel By Drive, Ottawa, Ont., Canada
| | | | | |
Collapse
|
17
|
Llona I, Ampuero E, Eugenín JL. Somatostatin inhibition of fictive respiration is modulated by pH. Brain Res 2005; 1026:136-42. [PMID: 15476705 DOI: 10.1016/j.brainres.2004.08.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2004] [Indexed: 02/06/2023]
Abstract
We studied the respiratory effects of the tetradecapeptide somatostatin (SST) upon fictive respiration using the in vitro brain stem spinal cord preparation from new-born mouse. We found that SST inhibits respiration, an effect that was potentiated when the chemical drive to respiration was increased. SST inhibited fictive respiration decreasing both the frequency and amplitude in a dose-dependent way. SST inhibition was not antagonized by cyclosomatostatin (cyclo [7-aminoheptanoyl-Phe-D-Trp-Lys-Thr(Bzl)]), a putative SST antagonist, which in contrast behaved as a partial agonist. When the chemical drive to respiration was increased, by lowering the pH of the brain stem superfusion medium from 7.4 to 7.3, the inhibitory effect of SST on respiratory frequency was potentiated. These results suggest an interaction between SST and respiratory central chemoreception in new-born mouse.
Collapse
Affiliation(s)
- Isabel Llona
- Laboratory of Neural Systems, Biology Department, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, USACH, Alameda 3363, Casilla 40 Correo 33, Santiago, Chile.
| | | | | |
Collapse
|
18
|
Gleich O, Weiss M, Strutz J. Age-dependent changes in the lateral superior olive of the gerbil (Meriones unguiculatus). Hear Res 2004; 194:47-59. [PMID: 15276675 DOI: 10.1016/j.heares.2004.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Accepted: 03/24/2004] [Indexed: 11/29/2022]
Abstract
Data from humans and animal models provide evidence for an age-dependent impairment in the ability to localize sound. The lateral superior olive (LSO) in the ascending auditory pathway is one important center involved in processing of binaural auditory stimuli. To identify potential age-dependent changes we characterized the LSO in young (< 15 months) and old (> or =3 years) gerbils with a special emphasis on the expression of GABA- and glycine-like immuno-reactivity. The dimensions of the LSO, as well as the number and density of glycine- and GABA-immuno-reactive neurons, were not significantly different between young and old gerbils. The size of glycine- and GABA-immuno-reactive neurons was significantly reduced in the high-frequency (medial) limb of the LSO. Over all, age-dependent changes in the LSO of the gerbil were small.
Collapse
Affiliation(s)
- Otto Gleich
- ENT-Department, University of Regensburg, Franz-Joseph-Strauss-Allee 11, Postfach, D-93042 Regensburg, Germany.
| | | | | |
Collapse
|
19
|
Aguilar LA, Malmierca MS, Coveñas R, López-Poveda EA, Tramu G, Merchán M. Immunocytochemical distribution of Met-enkephalin-Arg6-Gly7-Leu8 (Met-8) in the auditory system of the rat. Hear Res 2004; 187:111-21. [PMID: 14698092 DOI: 10.1016/s0378-5955(03)00333-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Methionine-enkephalin-Arg(6)-Gly(7)-Leu(8) (Met(8)) is known to act as a neurotransmitter or neuromodulator and it has been implicated in pain, cardiovascular and motor mechanisms, but its role in audition is currently unknown. In the present study we have applied an immunocytochemical technique and describe the distribution of cell bodies and fibers containing Met(8) in the auditory pathway of the rat. The main finding is that we found either Met(8)-immunoreactive fibers or cell bodies or both in virtually all nuclei of the rat auditory system except for the medial superior olive and the ventral division of the medial geniculate body in which we did not find any immunoreactivity for Met(8). This suggests that the neuropeptide Met(8) is widely distributed throughout the auditory system of the rat. Our results suggest that Met(8) could play at least two roles in hearing. It seems to be involved in the processing of the descending auditory pathway, and it may be implicated in the multisensory integration of auditory information that takes place in the non-lemniscal auditory pathway.
Collapse
Affiliation(s)
- Luis A Aguilar
- Department of Cell Biology and Pathology, University of Salamanca, School of Medicine and Institute of Neuroscience of Castilla y León (INCyL), Campus Unamuno, c/Alfonso X El Sabio s/n, 37007, Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Morand-Villeneuve N, Micheyl C, Gagnieu MC, Lemoine P, Sebert P, Collet L, Veuillet E. Influence of benzodiazepines on auditory perception. Neuropsychopharmacology 2003; 28:778-86. [PMID: 12655325 DOI: 10.1038/sj.npp.1300072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aim of this study was to test for an influence of benzodiazepine (BZD) on various perceptual and/or cognitive auditory processes. Loudness, auditory selective attention, and the ability of subjects to form perceptual streams out of alternating tone sequences were tested. Nine subjects were tested before, 1, 3, 7, and 24 h after a single-dose oxazepam vs placebo administration in a crossover design. A sample of blood allows us to measure plasma oxazepam concentration. The results revealed a significant reduction in stream segregation expressed as d' scores 1 h after oxazepam intake in the test subjects. No significant change occurred across time in the same subjects when they were administrated a placebo in another session. Furthermore, oxazepam had no substantial and systematic influence either on auditory selective attention or on loudness perception. Altogether, these results suggest that the perceptual organization of sound sequences involves inhibitory neural mechanisms, which can be affected by BZDs. This outcome is consistent with existing models of auditory stream segregation and may be paralleled with earlier findings on the effect of BZDs on perceptual binding in the visual modality.
Collapse
Affiliation(s)
- N Morand-Villeneuve
- UMR CNRS 5020, Laboratoire Neurosciences et Systèmes Sensoriels, Lyon, Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
21
|
van Eekelen JAM, Bradley CK, Göthert JR, Robb L, Elefanty AG, Begley CG, Harvey AR. Expression pattern of the stem cell leukaemia gene in the CNS of the embryonic and adult mouse. Neuroscience 2003; 122:421-36. [PMID: 14614907 DOI: 10.1016/s0306-4522(03)00571-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The basic helix-loop-helix (bHLH) transcription factor stem cell leukaemia (SCL) is a 'master regulator' of haematopoiesis, where SCL is pivotal in cell fate determination and differentiation. SCL has also been detected in CNS, where other members of the bHLH-family have been shown to be indispensable for neuronal development; however, no detailed expression pattern of SCL has so far been described. We have generated a map of SCL expression in the embryonic and adult mouse brain based on histochemical analysis of LacZ reporter gene expression in sequential sections of brain tissue derived from SCL-LacZ knockin mice. The expression of LacZ was confirmed to reflect SCL expression by in situ hybridisation. LacZ expression was found in a range of different diencephalic, mesencephalic and metencephalic brain nuclei in adult CNS. Co-localisation of LacZ with the neuronal marker NeuN indicated expression in post-mitotic neurons in adulthood. LacZ expression by neurons was confirmed in tissue culture analysis. The nature of the pretectal, midbrain and hindbrain regions expressing LacZ suggest that SCL in adult CNS is potentially involved in processing of visual, auditory and pain related information. During embryogenesis, LacZ expression was similarly confined to thalamus, midbrain and hindbrain. LacZ staining was also evident in parts of the intermediate and marginal zone of the aqueduct and ventricular zone of the fourth ventricle at E12.5 and E14. These cells may represent progenitor stages of differentiating neural cells. Given the presence of SCL in both the developing brain and in post-mitotic neurons, it seems likely that the function of SCL in neuronal differentiation may differ from its function in maintaining the differentiated state of the mature neuron.
Collapse
Affiliation(s)
- J A M van Eekelen
- Centre for Child Health Research and WAIMR, University of Western Australia, at the Telethon Institute for Child Health Research, PO Box 855, West Perth WA 6872, Australia.
| | | | | | | | | | | | | |
Collapse
|
22
|
Hafidi A, Beurg M, Bouleau Y, Dulon D. Comparative distribution of NK1, NK2, and NK3 receptors in the rat brainstem auditory nuclei. Brain Res 2002; 947:299-306. [PMID: 12176174 DOI: 10.1016/s0006-8993(02)03139-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
While the distribution of substance P in the auditory system is well illustrated, the localization of its receptors has not yet been documented. The goal of our study was to characterize the distribution of the tachykinin receptors NK1-R, NK2-R and NK3-R in the brainstem auditory nuclei of the adult rat using immunohistochemical techniques. The immunoreactivity of the neurokinin receptors was found to be widely distributed in most neurons of the cochlear nucleus (CN), the lateral superior olive (LSO), the medial nucleus of the trapezoid body (MNTB) and in the inferior colliculus (IC). Immunoreactivity was generally confined to post-synaptic targets (neuronal cell body and proximal or primary dendrites) in all auditory nuclei. However, unlike brainstem nuclei, the IC showed, in addition to neuronal cell body staining, a positive axonal immunolabeling (axons and pre-synaptic terminals) with the anti-NK1-R antibody. This axonal staining, revealing a pre-synaptic expression of NK1-R, is in good agreement with the known presence of substance P in the IC neurons. The absence of axonal staining in the superior olivary complex nuclei which projects afferent to the IC indicated that the NK1-R labeled axons are rather intrinsic IC fibers or descending thalamic projections to the IC. Overall, the wide distribution of the three types of tachykinin receptors observed in the present study argues for an important role of tachykinin neuropeptides in the central auditory system.
Collapse
Affiliation(s)
- Aziz Hafidi
- Laboratoire de Biologie Cellulaire et Moléculaire de l'Audition, INSERM EMI 99-27, Université Bordeaux-2, Hôpital Pellegrin, 33076 Bordeaux, France.
| | | | | | | |
Collapse
|
23
|
Abstract
It has been recognized for some time that serotonin fibers originating in raphe nuclei are present in the inferior colliculi of all mammalian species studied. More recently, serotonin has been found to modulate the responses of single inferior colliculus neurons to many types of auditory stimuli, ranging from simple tone bursts to complex species-specific vocalizations. The effects of serotonin are often quite strong, and for some neurons are also highly specific. A dramatic illustration of this is that serotonin can change the selectivity of some neurons for sounds, including species-specific vocalizations. These results are discussed in light of several theories on the function of serotonin in the IC, and of outstanding issues that remain to be addressed.
Collapse
Affiliation(s)
- Laura M Hurley
- 1001 E. Third St., Jordan Hall, Indiana University, , Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
24
|
Cho Y, Gong TWL, Stöver T, Lomax MI, Altschuler RA. Gene expression profiles of the rat cochlea, cochlear nucleus, and inferior colliculus. J Assoc Res Otolaryngol 2002; 3:54-67. [PMID: 12083724 PMCID: PMC3202363 DOI: 10.1007/s101620010042] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
High-throughput DNA microarray technology allows for the assessment of large numbers of genes and can reveal gene expression in a specific region, differential gene expression between regions, as well as changes in gene expression under changing experimental conditions or with a particular disease. The present study used a gene array to profile normal gene expression in the rat whole cochlea, two subregions of the cochlea (modiolar and sensorineural epithelium), and the cochlear nucleus and inferior colliculus of the auditory brainstem. The hippocampus was also assessed as a well-characterized reference tissue. Approximately 40% of the 588 genes on the array showed expression over background. When the criterion for a signal threshold was set conservatively at twice background, the number of genes above the signal threshold ranged from approximately 20% in the cochlea to 30% in the inferior colliculus. While much of the gene expression pattern was expected based on the literature, gene profiles also revealed expression of genes that had not been reported previously. Many genes were expressed in all regions while others were differentially expressed (defined as greater than a twofold difference in expression between regions). A greater number of differentially expressed genes were found when comparing peripheral (cochlear) and central nervous system regions than when comparing the central auditory regions and the hippocampus. Several families of insulin-like growth factor binding proteins, matrix metalloproteinases, and tissue inhibitor of metalloproteinases were among the genes expressed at much higher levels in the cochlea compared with the central nervous system regions.
Collapse
Affiliation(s)
- Younsook Cho
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Kresge Hearing Research Institute, Department of Otolaryngology/Head-Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tzy-Wen L. Gong
- Kresge Hearing Research Institute, Department of Otolaryngology/Head-Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Timo Stöver
- Kresge Hearing Research Institute, Department of Otolaryngology/Head-Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Otolaryngology, Medical University of Hannover, Hannover, Germany
| | - Margaret I. Lomax
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Kresge Hearing Research Institute, Department of Otolaryngology/Head-Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Richard A. Altschuler
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Kresge Hearing Research Institute, Department of Otolaryngology/Head-Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
25
|
Härtig W, Singer A, Grosche J, Brauer K, Ottersen OP, Brückner G. Perineuronal nets in the rat medial nucleus of the trapezoid body surround neurons immunoreactive for various amino acids, calcium-binding proteins and the potassium channel subunit Kv3.1b. Brain Res 2001; 899:123-33. [PMID: 11311873 DOI: 10.1016/s0006-8993(01)02211-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Perineuronal nets (PNs) are known as chondroitin sulfate-rich, lattice-like coatings of the extracellular matrix ensheathing mainly GABAergic, parvalbumin-containing neurons especially in the cerebral cortex. PNs have also been detected around GABA-immunonegative cells which were shown to be not aminergic, cholinergic, nitrinergic or peptidergic in various brain regions of some mammalian species. To find out whether glycine and aspartate may occur in net-bearing neurons the present study was focused on the rat medial nucleus of the trapezoid body (MNTB) which contains a large portion of cells immunoreactive for these amino acids, but appears to be devoid of GABA-immunoreactive cell bodies. PNs were detected around many glycine- and aspartate-immunopositive neurons in the MNTB by carbocyanine double labeling and confocal laser scanning microscopy. An additional finding was that the lectin-cytochemically stained extracellular matrix surrounds the calretinin-immunoreactive calyces of Held known as giant glutamatergic endbulbs which cover glycinergic principal cells in the MNTB. As elucidated by triple fluorescence labeling, the vast majority of somata co-expressed the calcium-binding proteins parvalbumin and calbindin, but not calretinin. The observed co-localization of PNs and immunoreactivity for the voltage-dependent potassium channel Kv3.1b - as an established marker of fast-firing parvalbumin-containing neurons - supports the assumed function of PNs as a cation exchanger ensuring rapid ion transport as required by highly active nerve cells.
Collapse
Affiliation(s)
- W Härtig
- University of Leipzig, Paul Flechsig Institute for Brain Research, Jahnallee 59, D-04109, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
We used retrograde tracing techniques to examine the projections from the inferior colliculus to the cochlear nucleus in guinea pigs. Following injection of a retrograde tracer into one cochlear nucleus, labeled cells were found bilaterally in all subdivisions of the inferior colliculus. The majority of cells were located in the central nucleus and external cortex; relatively few cells were located in the dorsal cortex. Multipolar (stellate) cells were labeled in all subdivisions of the inferior colliculus. In the central nucleus, disk-shaped cells were also labeled. To determine whether individual collicular neurons send collateral projections to the cochlear nuclei on both sides, we injected different fluorescent tracers into left and right cochlear nuclei in the same animal. The inferior colliculi contained very few double-labeled cells, indicating that the projections to ipsilateral and contralateral cochlear nuclei originate from separate populations of cells.
Collapse
Affiliation(s)
- B R Schofield
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA.
| |
Collapse
|
27
|
Marianowski R, Liao WH, Van Den Abbeele T, Fillit P, Herman P, Frachet B, Huy PT. Expression of NMDA, AMPA and GABA(A) receptor subunit mRNAs in the rat auditory brainstem. I. Influence of early auditory deprivation. Hear Res 2000; 150:1-11. [PMID: 11077189 DOI: 10.1016/s0378-5955(00)00166-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Impact of early post-natal deafening on auditory pathways was investigated in newborn rats deafened by daily amikacin injections from P7 to P16 inducing a complete destruction of the organ of Corti. The expression of mRNAs encoding N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole (AMPA) and gamma-aminobutyric acid type A (GABA(A)) receptor subunits was then studied by in situ hybridization in the dorsal and ventral cochlear nucleus and in the central nucleus of the inferior colliculus (CNIC). Early post-natal deafening decreased bilaterally the expression of mRNAs encoding NR1, NR2a, NR2b and flop isoforms of AMPA receptors. On the contrary, it increased the expression of mRNAs encoding some GABA(A) subunits (alpha1, beta1, gamma2) and flip isoforms of AMPA receptors. These changes were more pronounced in cochlear nuclei than in CNIC. They suggest that auditory sensation is essential in the normal development of central auditory pathways.
Collapse
Affiliation(s)
- R Marianowski
- Service d'Otorhinolaryngologie de l'Hôpital Lariboisière et Neurobiologie des Réseaux Sensorimoteurs, UPRESA-CNRS 7060, Faculté Lariboisière-St-Louis, Paris, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Godfrey DA, Farms WB, Godfrey TG, Mikesell NL, Liu J. Amino acid concentrations in rat cochlear nucleus and superior olive. Hear Res 2000; 150:189-205. [PMID: 11077203 DOI: 10.1016/s0378-5955(00)00199-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Distributions of 10 amino acids were mapped in the cochlear nucleus and superior olive of rats by microdissection of freeze-dried sections combined with high performance liquid chromatography. Glutamate concentrations were relatively high in regions containing granule cell bodies, axons and terminals, whereas aspartate concentrations were higher in the rest of the cochlear nucleus. The distribution of glutamine, a metabolic precursor of glutamate, correlated highly with that of glutamate. In the superior olive, glutamate concentrations were similar among the nuclei, whereas aspartate concentrations were higher in the more dorsal nuclei. Glycine concentrations were relatively high in dorsal portions of the cochlear nucleus and superior olive and were much higher in all regions than those of gamma-aminobutyrate (GABA). Both GABA and taurine showed decreasing gradients from superficial to deep layers of the dorsal cochlear nucleus. Concentrations of serine, threonine, arginine and alanine were generally lower than those of the other six amino acids. The results support other evidence for prominent roles of glutamate and glycine as neurotransmitters in the cochlear nucleus and superior olive. They support a neurotransmitter role also for GABA, especially in the superficial layers of the dorsal cochlear nucleus, but less in the superior olive. The literature related to our results is reviewed.
Collapse
Affiliation(s)
- D A Godfrey
- Department of Otolaryngology - Head and Neck Surgery, Medical College of Ohio, 3065 Arlington Avenue, Toledo, OH 43614-5807, USA.
| | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- S Reuss
- Department of Anatomy, School of Medicine, Johannes Gutenberg-University, D-55099 Mainz, Germany
| |
Collapse
|
30
|
Robertson D, Mulders WH. Distribution and possible functional roles of some neuroactive peptides in the mammalian superior olivary complex. Microsc Res Tech 2000; 51:307-17. [PMID: 11071716 DOI: 10.1002/1097-0029(20001115)51:4<307::aid-jemt2>3.0.co;2-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mammalian superior olivary complex (SOC) is innervated by neuronal systems that contain a variety of neuroactive peptides. Conversely, neurones of the SOC form peptidergic projections to other targets. In this review, the peptides substance P, calcitonin-gene-related peptide, enkephalins and dynorphins, cholecystokinin and somatostatin are considered. Their distribution in fibres and cell bodies of the SOC are considered, with particular attention to differences between the SOC subdivisions. Evidence for the functional effects of these peptides is also reviewed and some brief speculations are offered about their possible functional role in hearing.
Collapse
Affiliation(s)
- D Robertson
- Auditory Laboratory, Department of Physiology, The University of Western Australia, Nedlands, Western Australia, 6907, Australia.
| | | |
Collapse
|
31
|
Sato K, Shiraishi S, Nakagawa H, Kuriyama H, Altschuler RA. Diversity and plasticity in amino acid receptor subunits in the rat auditory brain stem. Hear Res 2000; 147:137-44. [PMID: 10962180 DOI: 10.1016/s0378-5955(00)00127-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glutamate, gamma aminobutyric acid (GABA) and glycine receptors have different properties depending on the specific subunit combination utilized. The subunit composition of amino acid receptors may help to shape the responses of neurons and can provide a diversity of response properties in different neuronal types and regions. This allows a synaptic fine tuning for an optimization of processing requirements and may also allow for changes in response to changes in input. This article reviews the diversity that has been found in the subunit composition of GABA, glycine, alpha amino-3-hydroxy-5-methyl-4 isoxazole propionic acid and N-Methyl, D-aspartate (NMDA) receptors in the mammalian auditory brain stem and provides new data on how the NMDAR1 glutamate receptor subunit changes as a consequence of deafness. In the latter study, quantitative in situ hybridization was used to assess NMDAR1 mRNA expression in six cell types of the rat cochlear nucleus. A unilateral cochlear ablation was performed and expression determined in the ipsilateral and contralateral cochlear nucleus 5 and 20 days later. Significantly decreased expression, compared to normal, was found 5 days following deafness, in ipsilateral spherical bushy cells, octopus cells and shell neurons, but not in fusiform cells, corn cells or granule cells. At 20 days the expression was not significantly different from normal in any of the six cell types.
Collapse
MESH Headings
- Animals
- Auditory Pathways/metabolism
- Base Sequence
- Brain Stem/metabolism
- Cochlear Nucleus/metabolism
- DNA Primers/genetics
- Deafness/metabolism
- Neuronal Plasticity
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Receptors, AMPA/metabolism
- Receptors, Amino Acid/chemistry
- Receptors, Amino Acid/metabolism
- Receptors, GABA/metabolism
- Receptors, Glutamate/metabolism
- Receptors, Glycine/metabolism
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
Collapse
Affiliation(s)
- K Sato
- Kresge Hearing Research Institute, University of Michigan, 1301 E. Ann Street, Ann Arbor, MI 48109-0506, USA
| | | | | | | | | |
Collapse
|
32
|
Mulders WH, Robertson D. Morphological relationships of peptidergic and noradrenergic nerve terminals to olivocochlear neurones in the rat. Hear Res 2000; 144:53-64. [PMID: 10831865 DOI: 10.1016/s0378-5955(00)00045-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the rat, the outer hair cells in the cochlea receive direct synaptic input from neurones in the ventral nucleus of the trapezoid body. These so-called medial olivocochlear neurones exert an inhibitory influence on the cochlear neural output. Electrophysiological in vitro studies suggest that the activity of medial olivocochlear neurones may be affected by a variety of neuropeptides as well as noradrenaline, but anatomical confirmation of direct synaptic input is still lacking. We have investigated, at the light microscopical level, the morphological relationships between terminals containing noradrenaline, substance P, cholecystokinin and leu-enkephalin, and medial olivocochlear neurones in the rat. A retrograde tracer was injected into the cochlea to label medial olivocochlear neurones and a double labelling immunocytochemical method was used to visualise the retrograde tracer as well as the neurotransmitters within each brain section. Light microscopical analysis revealed nerve endings containing substance P, cholecystokinin and leu-enkephalin in close apposition to the dendrites of medial olivocochlear neurones, and nerve endings containing dopamine-beta-hydroxylase, a marker for noradrenaline, in close contact with the somata as well as dendrites of medial olivocochlear neurones. Although the technique cannot prove the existence of functional synaptic contacts, the results are broadly consistent with electrophysiological data and suggest a direct input to medial olivocochlear neurones from substance P, cholecystokinin, leu-enkephalin and noradrenaline-containing neural pathways. Differences in the densities and spatial distribution of the various neuropharmacological inputs suggest differences in the relative strengths and possible roles of these diverse inputs to the olivocochlear system.
Collapse
Affiliation(s)
- W H Mulders
- The Auditory Laboratory, Department of Physiology, The University of Western Australia, 6907, Nedlands, WA, Australia
| | | |
Collapse
|
33
|
Ueyama T, Sato K, Kakimoto S, Houtani T, Sakuma S, Ohishi H, Kase M, Sugimoto T. Comparative distribution of GABAergic and peptide-containing neurons in the lateral lemniscal nuclei of the rat. Brain Res 1999; 849:220-5. [PMID: 10592305 DOI: 10.1016/s0006-8993(99)02079-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
By immunostaining, neurons expressing peptides (dynorphin and corticotropin-releasing factor, CRF) and glutamate decarboxylase (GAD), a GABA-synthesizing enzyme, were precisely mapped in the rat lateral lemniscal nuclei. While GAD neurons were numerous and preferably localized in the dorsal (DLL) and ventral (VLL) nuclei, neurons expressing these peptides were less numerous and localized primarily in the intermediate (ILL) nucleus of the lateral lemniscus. The ILL nucleus was shown to project to the inferior colliculus and to express Fos rapidly in response to peripheral acoustic stimulation, suggesting that the ILL nucleus may take part in non-GABAergic relay of acoustic information in the lateral lemniscus.
Collapse
Affiliation(s)
- T Ueyama
- Department of Anatomy, Kansai Medical University, Moriguchi, Osaka 570-8506, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The dorsal nucleus of the lateral lemniscus (DNLL) is a distinct auditory neuronal group located ventral to the inferior colliculus (IC). It receives excitatory and inhibitory afferent inputs from various structures of the auditory lower brainstem and sends GABAergic inhibitory efferents mainly to the contralateral DNLL and the bilateral IC. The synaptic excitation in DNLL neurons consists of two components, an early fast depolarization and a later long lasting one. Glutamate is the probable excitatory neurotransmitter for DNLL neurons. alpha-Amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors mediate the early part of the excitation while N-Methyl-D-aspartate (NMDA) receptors mediate the long lasting component. The long lasting NMDA receptor-mediated component in the DNLL may contribute to a prolonged inhibition in the IC. The DNLL is thought to be a structure for processing binaural information. Most DNLL neurons in rat and bat are sensitive to interaural intensity differences (IIDs). They are excited by stimulation of the contralateral ear and inhibited by stimulation of the ipsilateral ear, showing an excitatory/inhibitory (EI) binaural response pattern. The EI pattern can be attributed to synaptic inputs that originate from various structures in the lower auditory brainstem and impinge on the DNLL neurons. In cat some DNLL neurons are sensitive to IIDs and some are sensitive to interaural time differences. In addition, DNLL neurons exhibit different temporal response patterns to contralateral tonal stimulation and respond to amplitude modulated tones, implying that DNLL may contribute to processing temporally complex acoustic information. DNLL neurons shape binaural responses in the contralateral inferior colliculus and auditory cortex through their inhibitory brainstem projections and contribute to the accuracy with which animals localize sounds in space.
Collapse
Affiliation(s)
- S H Wu
- Laboratory of Sensory Neuroscience, Institute of Neuroscience, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
35
|
Abstract
By using otoacoustic emission, we looked for change in outer hair cell (OHC) motile activity and medial olivocochlear (MOC) system inhibition due to benzodiazepine administration, a drug that is known to produce a pharmacological effect by interacting with GABAergic inhibitory neurotransmission. No effect was observed on OHC motile activity, in contrast benzodiazepines decreased MOC system effectiveness suggesting the existence of GABAergic fibers projecting onto the MOC system.
Collapse
Affiliation(s)
- N Morand
- Laboratoire Neurosciences et Systèmes Sensoriels, Hôpital Edouard Herriot, Lyon, France
| | | | | | | | | |
Collapse
|
36
|
Wang X, Robertson D. Substance P-induced inward current in identified auditory efferent neurons in rat brain stem slices. J Neurophysiol 1998; 80:218-29. [PMID: 9658043 DOI: 10.1152/jn.1998.80.1.218] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The effects of substance P (SP) on whole cell currents were studied in neurons of the medial olivocochlear efferent system (MOCS) in the ventral nucleus of the trapezoid body (VNTB) of brain stem slices from neonatal rats. Each neuron was identified by retrograde labeling with Fast Blue injected into the cochlea. Bath application of SP (0.1-10 microM) reversibly induced an apparent inward current in 49 of 63 labeled neurons when voltage clamped at near resting voltages. This apparent inward current was consistent with the SP-induced membrane depolarization observed in current-clamp mode. The SP-induced change in current was dose dependent with a half-maximal response dose of 200 nM. It was mimicked by [Cys3,6, Tyr8, Pro9]-SP, a neurokinin (NK1) receptor selective agonist, whereas [Succinyl-Asp6, MePhe8]-SP 6-11 (Senktide), a NK3 receptor agonist, had no detectable effect. The SP effect was not blocked by 10(-6) M tetrodotoxin (TTX) and persisted when the perfusate contained 30 mM tetraethylammonium (TEA) or 100 microM Cd2+ or was in a 0-Ca solution. In a TTX-containing solution, SP caused a voltage-dependent decrease of membrane conductance, and the SP-evoked current reversed at a potential at around -105 mV. The predicted K+ equilibrium potential was -93.8 mV under the experimental conditions. The SP-induced inward current was attenuated by 66% when the perfusate contained 3 mM Cs+. We conclude that the apparent inward current is partly caused by SP decreasing an outward current normally maintained by the inward rectifier K+ channels in these cells. In the presence of Cs solution in the recording pipette and with a perfusate containing 3 mM Cs+, 0.1 mM Cd2+ and 10(-6) M TTX, a residual SP-induced inward current was observed at test voltages ranging from -120 to 40 mV. This subcomponent reversed its polarity at approximately 20 mV. This inward current was reduced substantially (but not abolished) when all NaCl in the external solution was replaced by TEA-Cl. The results indicate that SP also opens an unknown cation channel, which the available data suggests may be relatively nonselective. The results suggest that MOCS neurons are subject to modulation by SP, which depolarizes the cell membrane by decreasing the activity of inward rectifier K+ channels as well as concurrently activating a separate cation conductance. It also was found that in MOCS neurons responsive to both SP and norepinephrine, the norepinephrine effect was abolished by TTX, suggesting that an interneuronal population excited by norepinephrine converges selectively onto SP-sensitive MOCS neurons in the VNTB.
Collapse
Affiliation(s)
- X Wang
- Department of Physiology, The Auditory Laboratory, The University of Western Australia, Nedlands, Western Australia 6907, Australia
| | | |
Collapse
|
37
|
Wang X, Robertson D. Substance P-sensitive neurones in the rat auditory brainstem: possible relationship to medial olivocochlear neurones. Hear Res 1998; 116:86-98. [PMID: 9508031 DOI: 10.1016/s0378-5955(97)00203-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Using in vitro techniques, intracellular microelectrode recordings were made from the regions of origin of medial olivocochlear neurones in the rat auditory brainstem. Cells were characterised according to their action potential shape and their excitatory response to bath application of micromolar concentrations of the peptide neurotransmitter substance P and were filled with biocytin by injection through the intracellular microelectrode for subsequent morphological reconstruction. Cells with a rapid component to the after-hyperpolarising phase of their action potentials (AHP2 cells) were most likely to show excitatory effects of substance P. Histological reconstruction showed that these cells were stellate with numerous large, slowly tapering dendrites exhibiting small. scattered spines. In examples in which the major axon was not cut near the cell body, the axons ascended dorsally out of the superior olivary complex, in a manner that was consistent with the trajectory of axons of medial olivocochlear neurones. These features differed from other cells in the ventral nucleus of the trapezoid body that were unresponsive to substance P. In a further series of experiments, medial olivocochlear cells in the same region were retrogradely labeled by prior intracochlear injection with fast blue and recordings were made under direct visual observation using either microelectrode impalement or whole-cell patch methods. These data support the view that medial olivocochlear neurones are substance P-sensitive and exhibit a characteristic spike shape. These data strongly suggest that medial olivocochlear neurones possess receptors for substance P and may therefore receive excitatory input from a substance P-utilising neural pathway.
Collapse
Affiliation(s)
- X Wang
- Department of Physiology, The University of Western Australia, Nedlands
| | | |
Collapse
|
38
|
Wynne B, Robertson D. Somatostatin and substance P-like immunoreactivity in the auditory brainstem of the adult rat. J Chem Neuroanat 1997; 12:259-66. [PMID: 9243345 DOI: 10.1016/s0891-0618(97)00219-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The superior olivary complex (SOC) of the adult rat brainstem was studied in detail with regard to its innervation by neural elements showing immunoreactivity for two neuroactive peptides, somatostatin and substance P. Nerve fibres and varicosities showing positive immuno-reactivity for both peptides were particularly dense immediately dorsal and lateral to the lateral superior olivary nucleus (LSO) and dorsal to the superior paraolivary nucleus (SPN). Penetration of this curtain-like innervation into the SPN was limited, and the LSO showed only a very minor innervation by somatostatin-positive structures in its most medial (high frequency) lobe. Dense fibre labelling and varicosities were also apparent for both peptides immediately medial to the ventral and dorsal nuclei of the lateral lemniscus, and in the external cortex and dorsomedial zones of the inferior colliculus (IC). Labelled fibres and endings were also seen in the granule cell regions of anteroventral cochlear nucleus (AVCN) and the most dorsomedial parts of the dorsal cochlear nucleus (DCN). The majority of cells in the medial nucleus of the trapezoid body (MNTB) showed a prominent innervation by nerve terminals that stained positive for somatostatin only whereas the medial superior olivary nucleus (MSO) was devoid of label for both peptides. The ventral nucleus of the trapezoid body (VNTB) showed sparse but significant innervation by both somatostatin and substance P-positive structures. Hence the VNTB was the only defined nucleus of the SOC to show a significant substance P-positive innervation. Neuronal somata immuno-reactive for somatostatin were found in anteroventral and posteroventral cochlear nuclei (AVCN and PVCN) and the A5 and A7 cell groups adjacent to the LSO and the VNLL and DNLL and in all subdivisions of the inferior colliculus (IC). Somata showing only faint immunoreactivity for substance P were found in the VNLL, AVCN and PVCN. These results suggest a potential role for both peptides in auditory signal processing in the adult rat brain.
Collapse
Affiliation(s)
- B Wynne
- Department of Physiology, University of Western Australia, Nedlands, Australia.
| | | |
Collapse
|
39
|
Wang X, Robertson D. Effects of bioamines and peptides on neurones in the ventral nucleus of trapezoid body and rostral periolivary regions of the rat superior olivary complex: an in vitro investigation. Hear Res 1997; 106:20-8. [PMID: 9112104 DOI: 10.1016/s0378-5955(96)00211-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Intracellular microelectrode recordings were made from single neurones of the ventral nucleus of trapezoid body and rostral periolivary regions in the rat auditory brainstem, using in vitro slic techniques. Bath application was used to examine the effects of putative neurotransmitters and neuromodulators on cell responses to constant depolarizing current pulse. Noraderaline exerted excitatory effects (increased firing rate) that were probably mediated by alpha-receptors, whereas inhibitory effects (decreased firing rate) were probably mediated by beta-receptors. Serotonin also produced either excitatory effects in different cells. Of the neuroactive peptides, substance P and enkephalin were especially potent. Substance P was found to be exclusively excitatory and enkephalin was exclusively inhibitory. Choleycystokinin exerted either inhibitory or excitatory effects in a small percentage of cells. Somatostatin had only very weak or non-existent effects. These effects were able to be elicited under conditions of synaptic blockade, indicating they were mediated by direct action on the cells in question. Most effects on firing rate were accompanied by either depolarization or hyperpolarization of the resting membrane potential although in many cases this change in membrane potential was small. Changes in cell access resistance were also relatively difficult to detect, but in the case of both noradrenaline and substance P, clear increases in cell access resistance were recorded in a number of cells. These could be obtained in the presence of tetrodotoxin, again indicating a direct action of these substances rather than an indirect action mediated via synaptic connections. Although the exact mechanisms of action remain to be investigated in each case, it is clear that neurones in this region of the auditory brainstem are potentially subject to a wide variety of modulatory influences that could be important in auditory processing.
Collapse
Affiliation(s)
- X Wang
- Department of Physiology, University of Western Australia, Nedlands, Australia
| | | |
Collapse
|