1
|
Kim OY, Song J. Important roles of linoleic acid and α-linolenic acid in regulating cognitive impairment and neuropsychiatric issues in metabolic-related dementia. Life Sci 2024; 337:122356. [PMID: 38123015 DOI: 10.1016/j.lfs.2023.122356] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Metabolic syndrome (MetS), which is characterized by insulin resistance, high blood glucose, obesity, and dyslipidemia, is known to increase the risk of dementia accompanied by memory loss and depression. The direct pathways and specific mechanisms in the central nervous system (CNS) for addressing fatty acid imbalances in MetS have not yet been fully elucidated. Among polyunsaturated acids, linoleic acid (LA, n6-PUFA) and α-linolenic acid (ALA, n3-PUFA), which are two essential fatty acids that should be provided by food sources (e.g., vegetable oils and seeds), have been reported to regulate various cellular mechanisms including apoptosis, inflammatory responses, mitochondrial biogenesis, and insulin signaling. Furthermore, inadequate intake of LA and ALA is reported to be involved in neuropathology and neuropsychiatric diseases as well as imbalanced metabolic conditions. Herein, we review the roles of LA and ALA on metabolic-related dementia focusing on insulin resistance, dyslipidemia, synaptic plasticity, cognitive function, and neuropsychiatric issues. This review suggests that LA and ALA are important fatty acids for concurrent treatment of both MetS and neurological problems.
Collapse
Affiliation(s)
- Oh Yoen Kim
- Department of Food Science and Nutrition, Dong A University, Busan, Republic of Korea; Department of Health Sciences, Graduate School of Dong-A University, Busan, Republic of Korea.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Jutanom M, Kato S, Yamashita S, Toda M, Kinoshita M, Nakagawa K. Analysis of oxidized glucosylceramide and its effects on altering gene expressions of inflammation induced by LPS in intestinal tract cell models. Sci Rep 2023; 13:22537. [PMID: 38110468 PMCID: PMC10728070 DOI: 10.1038/s41598-023-49521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023] Open
Abstract
Glucosylceramide (GlcCer) belongs to sphingolipids and is found naturally in plant foods and other sources that humans consume daily. Our previous studies demonstrated that GlcCer prevents inflammatory bowel disease both in vitro and in vivo, whose patients are increasing alarmingly. Although some lipids are vulnerable to oxidation which changes their structure and activities, it is unknown whether oxidative modification of GlcCer affects its activity. In this research, we oxidized GlcCer in the presence of a photosensitizer, analyzed the oxide by mass spectrometric techniques, and examined its anti-inflammatory activity in lipopolysaccharide (LPS)-treated differentiated Caco-2 cells as in vitro model of intestinal inflammation. The results showed that GlcCer is indeed oxidized, producing GlcCer hydroperoxide (GlcCerOOH) as a primary oxidation product. We also found that oxidized GlcCer preserves beneficial functions of GlcCer, suppressing inflammatory-related gene expressions. These findings suggested that GlcCerOOH may perform as an LPS recognition antagonist to discourage inflammation rather than induce inflammation.
Collapse
Affiliation(s)
- Mirinthorn Jutanom
- Food Function Analysis Laboratory, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shunji Kato
- Food Function Analysis Laboratory, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Shinji Yamashita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan
| | - Masako Toda
- Food and Biomolecular Science Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Mikio Kinoshita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan
| | - Kiyotaka Nakagawa
- Food Function Analysis Laboratory, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan.
| |
Collapse
|
3
|
Ramsden CE, Hennebelle M, Schuster S, Keyes GS, Johnson CD, Kirpich IA, Dahlen JE, Horowitz MS, Zamora D, Feldstein AE, McClain CJ, Muhlhausler BS, Makrides M, Gibson RA, Taha AY. Effects of diets enriched in linoleic acid and its peroxidation products on brain fatty acids, oxylipins, and aldehydes in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1206-1213. [PMID: 30053599 PMCID: PMC6180905 DOI: 10.1016/j.bbalip.2018.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/12/2018] [Accepted: 07/21/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Linoleic acid (LA) is abundant in modern industrialized diets. Oxidized LA metabolites (OXLAMs) and reactive aldehydes, such as 4-hydroxy-2-nonenal (4-HNE), are present in heated vegetable oils and can be endogenously synthesized following consumption of dietary LA. OXLAMs have been implicated in cerebellar degeneration in chicks; 4-HNE is linked to neurodegenerative conditions in mammals. It unknown whether increasing dietary LA or OXLAMs alters the levels of oxidized fatty acids (oxylipins), precursor fatty acids, or 4-HNE in mammalian brain. OBJECTIVES To determine the effects of increases in dietary OXLAMs and dietary LA, on levels of fatty acids, oxylipins, and 4-HNE in mouse brain tissues. METHODS Mice (n = 8 per group) were fed one of three controlled diets for 8 weeks: (1) a low LA diet, (2) a high LA diet, or (3) the low LA diet with added OXLAMs. Brain fatty acids, oxylipins, and 4-HNE were quantified in mouse cerebellum and cerebral cortex by gas chromatography-flame ionization detection, liquid chromatography-tandem mass spectrometry, and immunoblot, respectively. RESULTS Increasing dietary LA significantly increased omega-6 fatty acids, decreased omega-3 fatty acids, and increased OXLAMs in brain. Dietary OXLAMs had minimal effect on oxidized lipids but did decrease both omega-6 and omega-3 fatty acids. Neither dietary LA nor OXLAMs altered 4-HNE levels. CONCLUSION Brain fatty acids are modulated by both dietary LA and OXLAMs, while brain OXLAMs are regulated by endogenous synthesis from LA, rather than incorporation of preformed OXLAMs.
Collapse
Affiliation(s)
- Christopher E Ramsden
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA; National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA; FOODplus Research Center, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia.
| | - Marie Hennebelle
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Susanne Schuster
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Gregory S Keyes
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Casey D Johnson
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Irina A Kirpich
- School of Medicine, University of Louisville, Louisville, KY, USA
| | - Jeff E Dahlen
- Neurobiology Section, Center for Neural Circuits and Behavior, Department of Neurosciences, University of California, San Diego, USA
| | - Mark S Horowitz
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Daisy Zamora
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ariel E Feldstein
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Craig J McClain
- School of Medicine, University of Louisville, Louisville, KY, USA
| | - Beverly S Muhlhausler
- FOODplus Research Center, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
| | - Maria Makrides
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Robert A Gibson
- FOODplus Research Center, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| |
Collapse
|
4
|
Thermodynamic selectivity of multicenter chemical reactions. A statistical quantification of a widespread intuitive approach and its application to reactions of fullerenes. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Interaction between non-anionic phospholipids and cytochrome c induced by reactive oxygen species. Chem Phys Lipids 2010; 163:538-44. [DOI: 10.1016/j.chemphyslip.2010.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 03/16/2010] [Accepted: 04/06/2010] [Indexed: 11/21/2022]
|
6
|
Murugavel P, Pari L. Attenuation of Chloroquine‐Induced Renal Damage by α‐Lipoic Acid: Possible Antioxidant Mechanism. Ren Fail 2009; 26:517-24. [PMID: 15526909 DOI: 10.1081/jdi-200031761] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The toxic effect of chloroquine (CQ) has been attributed to oxidative stress with the consequences of lipid peroxidation. This study investigates the effects of alpha-lipoic acid (LA) on CQ-induced nephrotoxicity in rats. A single oral administration of CQ (970 mg/kg)-induced nephrotoxicity, manifested biochemically by a significant increase in serum creatinine and blood urea nitrogen concentrations. In addition, renal tissue from CQ-treated rats showed a significant increase in lipid peroxides measured as thiobarbituric acid reactive substances and hydroperoxides, along with significant decrease in nonenzymic antioxidants (vitamin C, vitamin E, and reduced glutathione) and enzymic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase) levels. Oral administration of LA (10, 30, or 100 mg/kg) in different doses for 10 days produced a significant protection against nephrotoxicity induced by CQ. Treatment with LA markedly reduced the elevated lipid peroxidation, restored the depleted renal antioxidant defense system. LA at 100 mg/kg was effective when compared with other doses (10 and 30 mg/kg). This was accompanied by the histopathological observations in kidney tissue. The results suggest that LA ameliorate the lipid peroxidation and the loss of cellular antioxidants, thereby protecting the CQ-induced oxidative damage in kidney.
Collapse
Affiliation(s)
- P Murugavel
- Department of Biochemistry, Faculty of Science, Annamalai University, Tamil Nadu, India
| | | |
Collapse
|
7
|
Yamaguchi K, Yang L, McCall S, Huang J, Yu XX, Pandey SK, Bhanot S, Monia BP, Li YX, Diehl AM. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 2007; 45:1366-74. [PMID: 17476695 DOI: 10.1002/hep.21655] [Citation(s) in RCA: 782] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
UNLABELLED In the early stages of nonalcoholic fatty liver disease (NAFLD), triglycerides accumulate in hepatocytes. Diacylglycerol acyltransferase 2 (DGAT2) catalyzes the final step in hepatocyte triglyceride biosynthesis. DGAT2 antisense oligonucleotide (ASO) treatment improved hepatic steatosis dramatically in a previous study of obese mice. According to the 2-hit hypothesis for progression of NAFLD, hepatic steatosis is a risk factor for nonalcoholic steatohepatitis (NASH) and fibrosis. To evaluate this hypothesis, we inhibited DGAT2 in a mouse model of NASH induced by a diet deficient in methionine and choline (MCD). Six-week-old genetically obese and diabetic male db/db mice were fed either the control or the MCD diet for 4 or 8 weeks. The MCD diet group was treated with either 25 mg/kg DGAT2 ASO or saline intraperitoneally twice weekly. Hepatic steatosis, injury, fibrosis, markers of lipid peroxidation/oxidant stress, and systemic insulin sensitivity were evaluated. Hepatic steatosis, necroinflammation, and fibrosis were increased in saline-treated MCD diet-fed mice compared to controls. Treating MCD diet-fed mice with DGAT2 ASO for 4 and 8 weeks decreased hepatic steatosis, but increased hepatic free fatty acids, cytochrome P4502E1, markers of lipid peroxidation/oxidant stress, lobular necroinflammation, and fibrosis. Progression of liver damage occurred despite reduced hepatic expression of tumor necrosis factor alpha, increased serum adiponectin, and striking improvement in systemic insulin sensitivity. CONCLUSION Results from this mouse model would suggest accumulation of triglycerides may be a protective mechanism to prevent progressive liver damage in NAFLD.
Collapse
Affiliation(s)
- Kanji Yamaguchi
- Division of Gastroenterology, Duke University Medical Center, 595 LaSalle Street, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Muangman P, Tamura RN, Gibran NS. Antioxidants inhibit fatty acid and glucose-mediated induction of neutral endopeptidase gene expression in human microvascular endothelial cells. J Am Coll Surg 2005; 200:208-15. [PMID: 15664096 DOI: 10.1016/j.jamcollsurg.2004.09.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2003] [Revised: 09/30/2004] [Accepted: 09/30/2004] [Indexed: 11/24/2022]
Abstract
BACKGROUND Neutral endopeptidase (NEP) is a membrane-bound metallopeptidase that degrades tachykinins and may regulate their role in wound repair. NEP enzyme activity is increased in diabetic wounds and skin compared with normal controls. We have shown that unsaturated fatty acids and glucose upregulate NEP activity in human microvascular endothelial cells (HMECs) and that vitamins E and C reduce this effect. STUDY DESIGN To determine whether these changes involve NEP gene expression regulation, we analyzed NEP mRNA levels in HMECs cultured with elevated glucose (40 mM) and fatty acids oleate (40 microM) and linoleate (40 microM) for 48 hours or 1 month. Cells were exposed for an additional 48 hours to antioxidants vitamins E or C or N-acetylcysteine. Total RNA was extracted and analyzed for NEP mRNA using real-time reverse transcriptase polymerase chain reaction. NEP gene expression was standardized to beta-actin mRNA and results were analyzed using ANOVA. RESULTS Elevated glucose, oleate, and linoleate upregulated NEP mRNA in short and longterm HMEC cultures, but did not alter rate of NEP mRNA degradation. Vitamins E and C and N-acetylcysteine blocked glucose- and fatty acid-induced NEP mRNA (p < or = 0.05). The potential role of oxidative stress in NEP activation was confirmed by demonstrating that elevated glucose and fatty acids increase H(2)O(2) levels in HMECs. CONCLUSIONS Regulation of NEP enzyme activity by glucose and fatty acids appears to include gene expression transcription as well as modulation of enzyme activity. Our results also suggest that oxidative stress may be involved in upregulation of NEP by fatty acids and glucose.
Collapse
Affiliation(s)
- Pornprom Muangman
- Department of Surgery, University of Washington, Harborview Medical Center, Seattle, WA 98104, USA
| | | | | |
Collapse
|
9
|
Asatryan L, Ziouzenkova O, Duncan R, Sevanian A. Heme and lipid peroxides in hemoglobin-modified low-density lipoprotein mediate cell survival and adaptation to oxidative stress. Blood 2003; 102:1732-9. [PMID: 12750169 DOI: 10.1182/blood-2003-01-0293] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Low-density lipoprotein (LDL) oxidation mediated by a variety of catalysts in atherosclerotic lesions plays a crucial role in the genesis and evolution of atherosclerotic plaques. In this study we focused on oxidative properties of hemoglobin (Hb)-modified LDL because Hb is present in atherosclerotic lesions. Under low oxygen tensions Hb was previously found to modify apolipoprotein B100 with covalent binding of Hb fragments and formation of electronegative LDL particles (LDL-). Here we show that HbLDL is highly susceptible to oxidation, but is not cytotoxic to vascular cells, as was found for LDL- isolated from human plasma. HbLDL and LDL- have similar levels of oxidized lipid products and low uptake rates; however, the virtual absence of HbLDL-induced toxicity depends on a marked adaptive oxidative stress response. This was evidenced by a time- and dose-dependent induction of heme oxygenase (HO-1). Cell survival was significantly decreased in the presence of HO-1 inhibitor, tin protoporphyrin (SnPPIX). HO-1 induction by HbLDL increased resistance of cells to toxic doses of hemin or t-BuOOH. The high sensitivity to oxidation and HO-1 induction was largely dependent on lipid hydroperoxides and heme associated with HbLDL. Reduction of pre-existing lipid peroxides using ebselen delayed HbLDL kinetics and inhibited HO-1 induction. Moreover, heme inactivation or its degradation inhibited HO-1 induction and provided an additive inhibitory effect to ebselen. We conclude that Hb-catalyzed reactions may modulate vascular cell survival and oxidative stress adaptation due to the presence of peroxides and heme, thus providing a possible mechanism for the evolution of atherosclerotic and hemorrhagic lesions.
Collapse
Affiliation(s)
- Liana Asatryan
- University of Southern California, School of Pharmacy, Department of Molecular Pharmacology and Toxicology, 1985 Zonal Ave, PSC 622, Los Angeles, CA 90089, USA
| | | | | | | |
Collapse
|
10
|
Muangman P, Spenny ML, Tamura RN, Gibran NS. Fatty acids and glucose increase neutral endopeptidase activity in human microvascular endothelial cells. Shock 2003; 19:508-12. [PMID: 12785004 DOI: 10.1097/01.shk.0000055815.40894.16] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neutral endopeptidase (NEP), a membrane-bound metallopeptidase enzyme that degrades neuropeptides, bradykinin, atrial natriuretic factor, enkephalins, and endothelin may regulate response to injury. We have previously demonstrated increased NEP localization and enzyme activity in diabetic wounds and skin compared with normal controls. We hypothesized that hyperlipidemia and hyperglycemia associated with type 2 diabetes mellitus may induce excessive NEP activity and thereby diminish normal response to injury. Human microvascular endothelial cells were treated with five different fatty acids (40 microM) with varying degrees of saturation, including oleic acid, linoleic acid, palmitic acid, stearic acid, and linolenic acid and/or glucose (40 mM) for 48 h. The effect of the antioxidative agents vitamin E and C on NEP enzyme activation was determined by treating the cultured cells with alpha-tocopherol succinate and/or L-ascorbic acid. Cell membrane preparations were assayed for NEP activity by incubation with glutaryl-Ala-Ala-Phe-4-methoxy-beta naphthylamide to generate a fluorescent degradation product methoxy 2 naphthylamine. High glucose or fatty acid concentration upregulated NEP activity. The highest NEP activity was observed with combined elevated glucose, linoleic acid, and oleic acid (P < 0.05). Antioxidant vitamin E and C treatment significantly reduced NEP enzyme activity after fatty acid exposure (P < 0.05). Thus, hyperglycemia and hyperlipidemia associated with type 2 diabetes mellitus may increase endothelial cell NEP activity and thereby decrease early pro-inflammatory responses. The modulator effect of vitamin E and C on NEP membrane enzyme activity after exposure to fatty acid stimulation suggests that lipid oxidation may activate NEP.
Collapse
Affiliation(s)
- Pornprom Muangman
- University of Washington, Department of Surgery, Harborview Medical Center, Seattle, Washington 98104, USA
| | | | | | | |
Collapse
|
11
|
Duncan RF, Peterson H, Hagedorn CH, Sevanian A. Oxidative stress increases eukaryotic initiation factor 4E phosphorylation in vascular cells. Biochem J 2003; 369:213-25. [PMID: 12215171 PMCID: PMC1223074 DOI: 10.1042/bj20020435] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2002] [Revised: 07/31/2002] [Accepted: 09/05/2002] [Indexed: 01/22/2023]
Abstract
Dysregulated cell growth can be caused by increased activity of protein synthesis eukaryotic initiation factor (eIF) 4E. Dysregulated cell growth is also characteristic of atherosclerosis. It is postulated that exposure of vascular cells, such as endothelial cells, smooth muscle cells and monocytes/macrophages, to oxidants, such as oxidized low-density lipoprotein (oxLDL), leads to the elaboration of growth factors and cytokines, which in turn results in smooth muscle cell hyperproliferation. To investigate whether activation of eIF4E might play a role in this hyperproliferative response, vascular cells were treated with oxLDL, oxidized lipid components of oxLDL and several model oxidants, including H(2)O(2) and dimethyl naphthoquinone. Exposure to each of these compounds led to a dose- and time-dependent increase in eIF4E phosphorylation in all three types of vascular cells, correlated with a modest increase in overall translation rate. No changes in eIF4EBP, eIF2 or eIF4B modification state were observed. Increased eIF4E phosphorylation was paralleled by increased presence of eIF4E in high-molecular-mass protein complexes characteristic of its most active form. Anti-oxidants at concentrations typically employed to block oxidant-induced cell signalling likewise promoted eIF4E phosphorylation. The results of this study indicate that increased eIF4E activity may contribute to the pathophysiological events in early atherogenesis by increasing the expression of translationally inefficient mRNAs encoding growth-promoting proteins.
Collapse
Affiliation(s)
- Roger F Duncan
- Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, U.S.A.
| | | | | | | |
Collapse
|
12
|
Shwaery GT, Samii JM, Frei B, Keaney JF. Determination of phospholipid oxidation in cultured cells. Methods Enzymol 2001; 300:51-7. [PMID: 9919508 DOI: 10.1016/s0076-6879(99)00112-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- G T Shwaery
- Evans Memorial Department of Medicine, Boston University School of Medicine, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
13
|
Gulumian M. The ability of mineral dusts and fibres to initiate lipid peroxidation. Part II: relationship to different particle-induced pathological effects. Redox Rep 2001; 5:325-51. [PMID: 11140744 DOI: 10.1179/135100000101535906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Exposure to pathogenic mineral dusts and fibres is associated with pulmonary changes including fibrosis and cancer. Investigations into aetiological mechanisms of these diseases have identified modifications in specific macromolecules as well as changes in certain early processes, which have preceded fibrosis and cancer. Peroxidation of lipids is one such modification, which is observed following exposure to mineral dusts and fibres. Their ability to initiate lipid peroxidation and the parameters that determine this ability have recently been reviewed. Part II of this review examines the relationship between the capacity of mineral dusts and fibres to initiate lipid peroxidation and a number of pathological changes they produce. The oxidative modification of polyunsaturated fatty acids is a major contributor to membrane damage in cells and has been implicated in a great variety of pathological processes. In most pathological conditions where an induction of lipid peroxidation is observed it is assumed to be the consequence of disease, without further establishing if the induction of lipid peroxidation may have preceded or accompanied the disease. In the great majority of instances, however, despite the difficulty in proving this association, a causal relationship between lipid peroxidation and disease cannot be ruled out.
Collapse
Affiliation(s)
- M Gulumian
- National Centre for Occupational Health and Department of Haematology and Molecular Medicine, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
14
|
Takayama F, Egashira T, Yamanaka Y. Protective effect of Ninjin-yoei-to on damage to isolated hepatocytes following transient exposure to tert-butyl hydroperoxide. JAPANESE JOURNAL OF PHARMACOLOGY 2001; 85:227-33. [PMID: 11325014 DOI: 10.1254/jjp.85.227] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
To establish a simple screening system for estimating efficacy of an agent for an oxidative-related lesion, we investigated the damage in isolated rat hepatocytes exposed to 75 microM tert-butyl hydroperoxide (t-BuOOH) and then subsequently incubated the cells in fresh medium. By electron spin resonance spectroscopy analysis using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), DMPO adducts of tert-butoxyl radicals and carbon center radicals were detected during the t-BuOOH exposure, and DMPO-OH formation was detected after t-BuOOH removal. In t-BuOOH-exposed cells, the level of phosphatidylcholine hydroperoxide (PCOOH), a peroxidative product of biomembranes in the hepatocytes, and the leakage of enzymes into the culture medium were significantly increased. An increase in acid phosphatase (AP) activity representing lysosome destabilization preceded the aspartate oxoglutarate aminotransferase (AST), alanine oxoglutarate aminotransferase (ALT) and lactate dehydrogenase (LDH) leakage. Ninjin-yoei-to added to the culture medium following the t-BuOOH exposure significantly inhibited the PCOOH formation and the leakage of AP, AST, ALT and LDH, concentration-dependently. Ninjin-yoei-to at 1 mg/ml in culture medium completely diminished these increases in enzyme activities down to the background levels found in control experiments and this reduction was greater than the most effective alpha-tocopherol concentration of 20 micromol/ml. Considering all of these results, it is likely Ninjin-yoei-to may exert its protective effect by antioxidative action and membrane stabilization.
Collapse
Affiliation(s)
- F Takayama
- Department of Pharmacology, Oita Medical University, Japan.
| | | | | |
Collapse
|
15
|
Rémita S. De la peroxydation lipidique radioinduite : les facteurs déterminant l'oxydabilité des lipides. Can J Physiol Pharmacol 2001. [DOI: 10.1139/y00-091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lipids are the essential components of cell membranes and lipoproteins. Their peroxidation plays an important role in numerous pathologies in which oxidative stress is involved. Lipid peroxidation occurs through a chain reaction that contributes to membrane damage in cells. It results in the conversion of fatty acids to polar hydroperoxides and leads to the breakdown or malfunction of the membrane. Lipids are amphiphilic molecules that aggregate in aqueous solutions into micelles and liposoms. The effect of this structural organization is significant in studies of radiation-induced peroxidation damage in highly ordered biological systems such as biological membranes. In this paper, a synthesis of the data concerning radioinduced lipid peroxidation is completed by an original review of the different parameters that determine lipid oxidizability. In addition, the influence of lipid aggregation and the effect of molecular packing are discussed.Key words: radiolysis, peroxidation, lipids, fatty acids.
Collapse
|
16
|
|
17
|
Tyurina YY, Shvedova AA, Kawai K, Tyurin VA, Kommineni C, Quinn PJ, Schor NF, Fabisiak JP, Kagan VE. Phospholipid signaling in apoptosis: peroxidation and externalization of phosphatidylserine. Toxicology 2000; 148:93-101. [PMID: 10962127 DOI: 10.1016/s0300-483x(00)00199-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The role of phospholipids in apoptosis signaling and the relationship between oxidation of phosphatidylserine and its redistribution in the plasma membrane were studied. A novel method for detection of site-specific phospholipid peroxidation based on the use of cis-parinaric acid as a reporter molecule metabolically integrated into membrane phospholipids in living cells was employed. When several tissue culture cell lines and different exogenous oxidants were used, the relationship between the oxidation of phosphatidylserine and apoptosis has been revealed. The plasma membrane was the preferred site of phosphatidylserine oxidation in cells. It was shown that selective oxidation of phosphatidylserine precedes its translocation from the inside to the outside surface of the plasma membrane during apoptosis. A model is proposed in which cytochrome c released from mitochondria by oxidative stress binds to phosphatidylserine located at the cytoplasmic surface of the plasma membrane and induces its oxidation. Interaction of peroxidized phosphatidylserine with aminophospholipid translocase causes inhibition of the enzyme relevant to phosphatidylserine externalization.
Collapse
Affiliation(s)
- Y Y Tyurina
- Department of Environmental and Occupational Health, University of Pittsburgh, 260 Kappa Drive, RIDC Park, Pittsburgh, PA 15238, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sevanian A, Shen L, Ursini F. Inhibition of LDL oxidation and oxidized LDL-induced cytotoxicity by dihydropyridine calcium antagonists. Pharm Res 2000; 17:999-1006. [PMID: 11028948 DOI: 10.1023/a:1007539607613] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE The antioxidant activity of dihydropyridine calcium channel antagonists was evaluated based on LDL oxidation kinetics, oxidative cell injury associated with reactive species generation, and increases in free intracellular calcium (Ca2+) levels. Interactions with ascorbic acid were studied under conditions representative of LDL oxidation in plasma and tissue. METHODS Analysis of antioxidant activity utilized measurements of one-electron oxidation potentials and scavenging of peroxy radical-mediated oxidation. LDL antioxidant potency was determined spectrophotometrically using copper-mediated oxidation kinetics in the absence and presence of 100 microM ascorbic acid. Prevention of oxidant-induced endothelial cell injury was determined from the formation of reactive oxygen species generation and increases in intracellular free calcium concentrations following addition of oxidized LDL or linoleic acid hydroperoxide. RESULTS Felodipine and amlodipine effectively inhibit peroxyl radical-mediated oxidation in lipoproteins and cells that is markedly enhanced in the presence of ascorbic acid. In the presence of ascorbic acid, inhibition of LDL oxidation is over four times greater than in LDL treated without antioxidants, and oxidized LDL and linoleic acid hydroperoxide-induced reactive oxygen species formation is effectively suppressed in cells. Inhibition of intracellular calcium increases was achieved using nM concentrations of felodipine or amlodipine. CONCLUSIONS The additive effect for ascorbic acid and the calcium channel antagonist is postulated to involve a combination of peroxide-degrading and peroxyl radical scavenging reactions, demonstrating the importance of lipid peroxides during LDL oxidation and oxidized LDL-induced cytotoxicity. Cytoprotection is associated with inhibition of oxidant-induced increases in intracellular free calcium. Both the cytoprotective and LDL antioxidant activity for these compounds is manifested at concentrations approaching the therapeutic levels found in plasma.
Collapse
Affiliation(s)
- A Sevanian
- University of Southern California, School of Pharmacy, Dept. Molecular Pharmacology & Toxicology, Los Angeles 90033, USA.
| | | | | |
Collapse
|
19
|
Therond P, Abella A, Laurent D, Couturier M, Chalas J, Legrand A, Lindenbaum A. In vitro study of the cytotoxicity of isolated oxidized lipid low-density lipoproteins fractions in human endothelial cells: relationship with the glutathione status and cell morphology. Free Radic Biol Med 2000; 28:585-96. [PMID: 10719240 DOI: 10.1016/s0891-5849(99)00265-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Toxic effects of oxidized lipid compounds contained in oxidized LDL to endothelial cells are involved in the pathogenesis of atherosclerosis. Glutathione (GSH) plays an important role in the redox status of the cell and in the protective effect against oxidant injuries. However, little is known about the respective effect of these different oxidized lipid compounds toward cytotoxicity and GSH status of the cell. In this report, we isolated by high-performance liquid chromatography oxidized lipid compounds from low-density lipoproteins (LDL) oxidized by copper and we examined their effects on cultured endothelial cells. Cytotoxicity and GSH status were determined after incubation of endothelial cells with crude LDL or isolated lipid fractions derived from cholesterol, phospholipids, or cholesteryl esters. Their effects on cell morphology were also assessed. Oxidized lipids coming from cholesteryl esters (hydroperoxides or short-chain polar derivatives) induced a slight but significant GSH depletion without inducing cytotoxicity. The same species coming from phospholipids induced a more pronounced GSH depletion and a cytotoxic effect which is only present for the more polar compounds (short-chain polar derivatives) and corresponding to a total GSH depletion. In contrast, fractions containing oxysterols had a larger cytotoxic effect than their effect on GSH depletion suggesting that their cytotoxic effects are mediated by a GSH-independent pathway. All together, these data suggest that LDL-associated oxidized lipids present in copper-oxidized LDL exert cytotoxicity by an additional or synergistic effect on GSH depletion, but also by another mechanism independent of the redox status of the cell.
Collapse
Affiliation(s)
- P Therond
- Inserm U347, Le Kremlin Bicêtre, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Hindo J, Hauville C, Rémita S, Thérond P, Couturier M, Jore D, Gardès-Albert M. Evidence of the formation of different hydroperoxides in irradiated gamma-linolenate solutions: effect of micelle formation. Radiat Res 2000; 153:201-7. [PMID: 10629620 DOI: 10.1667/0033-7587(2000)153[0201:eotfod]2.0.co;2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Peroxidation of unconjugated polyunsaturated fatty acids such as linolenic acid proceeds through a free radical chain mechanism and is accompanied by the formation of conjugated dienes such as hydroperoxides. In an investigation of radiation-induced oxidation of aqueous linolenate, we have measured two indexes of peroxidation: (1) conjugated dienes by means of absorption spectroscopy and (2) hydroperoxides by high-pressure liquid chromatography using detection of chemiluminescence. The experimental results indicate a strong effect of the concentration of linolenate on the yields of oxidized products. In addition, this work shows the quantitative production of two kinds of hydroperoxides. The ratio of these hydroperoxides is independent of the radiation dose but is dependent on the linolenate concentration. One hydroperoxide is formed predominantly below the critical micellar concentration (3 mM under our conditions), while the second is observed predominantly when micelles are formed in the aqueous medium. The influence of the composition of the medium on the nature of both hydroperoxides is discussed. [bj163]
Collapse
Affiliation(s)
- J Hindo
- Laboratoire de Chimie-Physique, UMR 8601, CNRS, Université Paris V, 45 rue des Saints-Pères, 75270 Paris cedex 06, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Hass MA, Nowak DM, Leonova E, Levin RM, Longhurst PA. Identification of components of Prunus africana extract that inhibit lipid peroxidation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 1999; 6:379-388. [PMID: 11962548 DOI: 10.1016/s0944-7113(99)80063-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Extractive and chromatographic separations were performed on V-1326, a chloroform extract from the bark of Prunus africana (also referred to as Pygeum africanum), which is used to treat the symptoms associated with benign prostate hyperplasia (BPH). The relative amounts of eleven identified constituents in crude V-1326 and in separated fractions were determined using gas chromatographic analysis. The ability of V-1326 and its separated fractions to inhibit ferrous ion-induced stimulation of lipid peroxidation in microsomal preparations from rabbit livers was evaluated. The extract, V-1326, and fractions containing high levels of myristic acid potently inhibited lipid peroxidation.
Collapse
Affiliation(s)
- M A Hass
- Division of Basic and Pharmaceutical Sciences, Albany College of Pharmacy, NY 12208, USA.
| | | | | | | | | |
Collapse
|
22
|
McLeod LL, Alayash AI. Detection of a ferrylhemoglobin intermediate in an endothelial cell model after hypoxia-reoxygenation. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H92-9. [PMID: 10409186 DOI: 10.1152/ajpheart.1999.277.1.h92] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A cell culture model of bovine aortic endothelial cells attached to microcarrier beads was used to study the interaction of diaspirin cross-linked hemoglobin (an oxygen-carrying blood substitute) with hypoxia-reoxygenation. Hemoglobin (200 microM) and hypoxia-volume restriction (3-5 h), together and separately, caused toxicity in this model, as measured by decreased cellular replating efficiency. Hemoglobin (60 microM) caused a reduction in hydrogen peroxide concentration and an increase in lipid peroxidation above that induced by hypoxia alone. Incubation of hemoglobin with endothelial cells caused transient oxidation of hemoglobin to its highly reactive and toxic ferryl species after >/=3 h of hypoxia, followed by 1 h of reoxygenation. Lipid peroxidation, which may occur in the presence of ferrylhemoglobin, also occurred after 1 h of reoxygenation. Hemoglobin caused a dose-dependent decrease in intracellular glutathione concentration, suggesting that it caused an oxidative stress to the cells. However, addition of ascorbate, alpha-tocopherol, or trolox did not decrease hemoglobin oxidation in the presence of normal or hypoxic cells. It is concluded that diaspirin cross-linked hemoglobin forms a ferryl intermediate in the absence of any exogenously added oxidant and contributes to the oxidative burden experienced by endothelial cells after hypoxia-reoxygenation, a condition that is likely to be encountered during trauma and surgery when hemoglobin solutions are used as perfusion agents.
Collapse
Affiliation(s)
- L L McLeod
- Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
23
|
Shi H, Noguchi N, Xu Y, Niki E. Formation of phospholipid hydroperoxides and its inhibition by alpha-tocopherol in rat brain synaptosomes induced by peroxynitrite. Biochem Biophys Res Commun 1999; 257:651-6. [PMID: 10208838 DOI: 10.1006/bbrc.1999.0434] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peroxynitrite resulted from the reaction of nitric oxide and superoxide anion has been implicated in the genesis of neurotoxicity. In this study, the oxidation of phospholipids in rat brain synaptosomes induced by peroxynitrite generated from 3-morpholinosydnonimine (SIN-1) was studied in vitro. The formation and accumulation of phospholipid hydroperoxides, including phosphatidylcholine hydroperoxide (PCOOH) and phosphatidyl-ethanolamine hydroperoxide (PEOOH) in rat brain synaptosomes induced by peroxynitrite, were observed. PEOOH and PCOOH were formed rapidly and SIN-1 concentration-dependently. The hydroperoxides formed in synaptosomes were unstable and it was suggested that phospholipase A2 played a role in degradation of the hydroperoxides. The endogenous alpha-tocopherol acted as a potent antioxidant. It was oxidized very rapidly and concentration-dependently by SIN-1 to alpha-tocopheryl quinone. Furthermore, uric acid was found to be an effective antioxidant in inhibiting oxidative damage to synaptosomal lipids induced by SIN-1. The results provide direct evidence to show that peroxynitrite can not only deplete alpha-tocopherol, but also cause production of phospholipid hydroperoxides resulting in disrupted brain tissue.
Collapse
Affiliation(s)
- H Shi
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, 4-6-1 Komaba, 153-8904, Japan
| | | | | | | |
Collapse
|
24
|
Patel RP, Darley-Usmar VM. Molecular mechanisms of the copper dependent oxidation of low-density lipoprotein. Free Radic Res 1999; 30:1-9. [PMID: 10193568 DOI: 10.1080/10715769900300011] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
There is little doubt that oxidative modification of low-density lipoprotein (LDL) is an important process during atherogenesis. This conclusion has been derived in a relatively short period of time since the initial descriptions of LDL oxidation with a significant contribution from Professor Esterbauer and colleagues. In this short overview, we have described the mechanisms by which copper promotes LDL oxidation focussing on the importance of lipid hydroperoxides in this process. These mechanisms are discussed in the context of the ongoing debate as to relevance of metal dependent LDL oxidation in vivo and as a model reaction for assessing antioxidants.
Collapse
Affiliation(s)
- R P Patel
- Center for Free Radical Biology, Department of Pathology, University of Alabama at Birmingham, 35294-0019, USA
| | | |
Collapse
|
25
|
Liu Y, Rosenthal RE, Haywood Y, Miljkovic-Lolic M, Vanderhoek JY, Fiskum G. Normoxic ventilation after cardiac arrest reduces oxidation of brain lipids and improves neurological outcome. Stroke 1998; 29:1679-86. [PMID: 9707212 DOI: 10.1161/01.str.29.8.1679] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Increasing evidence that oxidative stress contributes to delayed neuronal death after global cerebral ischemia has led to reconsideration of the prolonged use of 100% ventilatory O2 following resuscitation from cardiac arrest. This study determined the temporal course of oxidation of brain fatty acyl groups in a clinically relevant canine model of cardiac arrest and resuscitation and tested the hypothesis that postischemic ventilation with 21% inspired O2, rather than 100% O2, results in reduced levels of oxidized brain lipids and decreased neurological impairment. METHODS Neurological deficit scoring and high performance liquid chromatography measurement of fatty acyl lipid oxidation were used in an established canine model using 10 minutes of cardiac arrest followed by resuscitation with different ventilatory oxygenation protocols and restoration of spontaneous circulation for 30 minutes to 24 hours. RESULTS Significant increases in frontal cortex lipid oxidation occurred after 10 minutes of cardiac arrest alone with no reperfusion and after reperfusion for 30 minutes, 2 hours, and 24 hours (relative total 235-nm absorbing peak areas=7.1+/-0.7 SE, 17.3+/-2.7, 14.2+/-3.2, 16.1+/-1.0, and 14.0+/-0.8, respectively; n=4, P<0.05). The predominant oxidized lipids were identified by gas chromatography/mass spectrometry as 13- and 9-hydroxyoctadecadienoic acids (13- and 9-HODE). Animals ventilated on 21% to 30% O2 versus 100% O2 for the first hour after resuscitation exhibited significantly lower levels of total and specific oxidized lipids in the frontal cortex (1.7+/-0.1 versus 3.12+/-0.78 microg 13-HODE/g wet wt cortex., n=4 to 6, P<0.05) and lower neurological deficit scores (45.1+/-3.6 versus 58.3+/-3.8, n=9, P<0.05). CONCLUSIONS With a clinically relevant canine model of 10 minutes of cardiac arrest, resuscitation with 21% versus 100% inspired O2 resulted in lower levels of oxidized brain lipids and improved neurological outcome measured after 24 hours of reperfusion. This study casts further doubt on the appropriateness of present guidelines that recommend the indiscriminate use of 100% ventilatory O2 for undefined periods during and after resuscitation from cardiac arrest.
Collapse
Affiliation(s)
- Y Liu
- Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | | | | | | | | |
Collapse
|
26
|
Nøding R, Brekke OL, Bjerve KS. Specificity of hydroperoxy fatty acid inhibition of cell growth and the lack of effect on tumour necrosis factor-induced cytotoxicity in WEHI clone 13 cells. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1347:82-92. [PMID: 9233690 DOI: 10.1016/s0005-2760(97)00057-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have examined whether different omega6-hydroperoxy fatty acids affect tumour cell growth or modulate TNF-induced toxicity in a fatty acid specific way in WEHI clone 13 fibrosarcoma cells. The omega6-hydroperoxides were synthesized from 8 different n - 6 and n - 3 PUFAs by soybean lipoxygenase. The omega6-hydroperoxy fatty acids inhibited cell growth in a concentration-dependent way by a mechanism that is related to the hydroperoxy moiety. Intracellular GSH seemed to protect since the GSH synthase inhibitor L-buthionine-S,R-sulfoximine (BSO) increased cell growth inhibition further. The antioxidants butylated hydroxyanisole (BHA), butylated hydroxytoluene and alpha-tocopherol did not affect the toxicity. The extent of growth inhibition varied between the hydroperoxides, but the difference was relatively small. The most toxic was hydroperoxy-alpha-linolenic acid which reduced cell survival by 56% after 44 h incubation at 35 microM, while the least toxic, hydroperoxy-gamma-linolenic acid, reduced cell survival by only 10%. The data also show that there is no correlation between toxicity and degree of unsaturation of the hydroperoxy fatty acids. None of the 8 different hydroperoxy fatty acids potentiated TNF-induced toxicity. This, together with the differential effects of BHA and BSO on TNF- and hydroperoxy fatty acid toxicity, indicate that neither the hydroperoxides nor their metabolites are involved in mediating or modulating the TNF-effect.
Collapse
Affiliation(s)
- R Nøding
- Department of Clinical Chemistry, Norwegian University of Science and Technology, Trondheim University Hospital, Norway
| | | | | |
Collapse
|
27
|
Rashba-Step J, Tatoyan A, Duncan R, Ann D, Pushpa-Rehka TR, Sevanian A. Phospholipid peroxidation induces cytosolic phospholipase A2 activity: membrane effects versus enzyme phosphorylation. Arch Biochem Biophys 1997; 343:44-54. [PMID: 9210645 DOI: 10.1006/abbi.1997.0134] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cytosolic phospholipase A2 (cPLA2) is a signal-responsive enzyme that is highly selective to the nature of phospholipid substrates. A mechanism for cPLA2 activity regulation through a signal transduction pathway has been proposed and this signaling appears to be influenced by oxidants. Oxidant-mediated signaling of PLA2 may serve as an alternative mechanism for enzyme regulation; however, the manner of regulation has yet to be delineated. In this report we demonstrate that there is a direct effect of membrane oxidation on cPLA2 phosphorylation and activity. A simple in vitro system consisting of purified cPLA2 and phospholipid vesicles was used to facilitate protein kinase C (PKC) activity and provide substrates for cPLA2. Using these vesicles we found that the activity of cPLA2 was enhanced twofold when the vesicles contained as little as 5 mol% phosphatidylcholine hydroperoxides (PLPCOOH). The order of hydrolytic preference for fatty acyl species was 20:4 > 18:2 > 18:1 > 16:0, and the presence of PLPCOOH stimulated hydrolysis largely of phosphatidylcholine containing 20:4. The Ca2+ concentrations required for stimulated hydrolytic activity were also twofold lower for oxidized compared to unoxidized vesicles. Using phospholipid micelles as substrates, PKC-mediated phosphorylation of cPLA2 increased hydrolytic activity 71% compared to preparations lacking PKC. Using phospholipid vesicles as substrates, PKC-mediated phosphorylation resulted in an 85% increase in cPLA2 activity compared to preparations without PKC. PKC-mediated phosphorylation of cPLA2, therefore, stimulates catalytic activity toward membrane phospholipids and the extent of activation is enhanced directly by peroxidation of membrane phospholipids and involves a peroxide-induced stimulation of cPLA2 phosphorylation.
Collapse
Affiliation(s)
- J Rashba-Step
- Department of Molecular Pharmacology and Toxicology, University of Southern California, Los Angeles 90033, USA
| | | | | | | | | | | |
Collapse
|
28
|
|
29
|
McLeod LL, Sevanian A. Lipid peroxidation and modification of lipid composition in an endothelial cell model of ischemia and reperfusion. Free Radic Biol Med 1997; 23:680-94. [PMID: 9215814 DOI: 10.1016/s0891-5849(97)00055-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Among the changes that accompany the development of ischemia are alterations in the composition and turnover of membrane phospholipids. To study these effects, a cell culture model was developed to facilitate accurate measurements of lipids over varying intervals of ischemia and reperfusion (I/R). In order to mimic ischemia, rabbit aortic endothelial cells were grown to confluency on collagen coated beads and the bead cultures allowed to settle to the bottom of a conical test tube or spectrofluorometric cuvette. The cell-coated beads were then resuspended in media to simulate the process of reperfusion. Survival after ischemia/reperfusion, was determined by measurements of cellular replating efficiency, and found to decrease after periods longer than three hours of ischemia (followed by 24 h of reperfusion). Plating efficiencies were reduced to nearly 50% after 5 h of ischemia followed by reperfusion. Release of LDH inversely correlated with cell survival, and lactate production, ATP levels, and extracellular H2O2 concentration were all affected by the duration of ischemia. These changes could be directly related to rates of cellular oxygen consumption which decreased by 50% after 5 h of ischemia, while the percentage of oxygen consumption not be inhibitable by cyanide, increased. Release of esterified fatty acids, which was partly inhibited by the phospholipase A2 inhibitor, mepacrine, was stimulated by increasing periods of ischemia while the incorporation of free fatty acids into phospholipids was inhibited. The incorporation of arachidonic acid was inhibited to a lesser degree than that of oleic or linoleic acids with a resulting change in phospholipid fatty acyl composition favoring greater proportions of unsaturated fatty acids. In some experiments, the effects of vitamin E or ascorbic acid administered prior to ischemia were studied. The degree of fatty acid unsaturation, fatty acid incorporation into phospholipids, and release from phospholipids into the free fatty acid pool during ischemia/reperfusion were not affected by prior administration of vitamin E or ascorbic acid. However, the extent of lipid peroxidation during ischemia was inhibited by 100 mM ascorbic acid when present during the ischemia/reperfusion period, but not by vitamin E administered for 24 h prior to ischemia. Ascorbic acid treatment, but not vitamin E, also enabled cells to recover substantial amounts of the ATP lost following prolonged ischemia. The ATP recovery corresponded to an increased cell survival and decreased lipid peroxidation. Progressive intervals of ischemia followed by reperfusion result in compromised cell respiratory activity and decreased ATP production, and decreased phospholipid acylation leading to net hydrolysis. The associated changes in phospholipid composition, and specifically increased unsaturation appear to favor peroxidation of membrane phospholipids.
Collapse
Affiliation(s)
- L L McLeod
- Department of Molecular Pharmacology and Toxicology, University of Southern California, School of Pharmacy, Los Angeles 90033, USA
| | | |
Collapse
|
30
|
Sevanian A, Hwang J, Hodis H, Cazzolato G, Avogaro P, Bittolo-Bon G. Contribution of an in vivo oxidized LDL to LDL oxidation and its association with dense LDL subpopulations. Arterioscler Thromb Vasc Biol 1996; 16:784-93. [PMID: 8640406 DOI: 10.1161/01.atv.16.6.784] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Oxidative modification of LDL is thought to be a radical-mediated process involving lipid peroxides. The small dense LDL subpopulations are particularly susceptible to oxidation, and individuals with high proportions of dense LDL are at a greater risk for atherosclerosis. An oxidatively modified plasma LDL, referred to as LDL-, is found largely among the dense LDL fractions. LDL- and dense LDL particles also contain much greater amounts of lipid peroxides compared with total LDL or the more buoyant LDL fractions. The content of LDL- in dense LDL particles appears to be related to copper- or heme-induced oxidative susceptibility, which may be attributable to peroxide levels. The rate of lipid peroxidation during the antioxidant-protected phase (lag period) and the length of the antioxidant-protected phase (lag time) are correlated with the LDL- content of total LDL. Once LDL oxidation enters the propagation phase, there is no relationship to the initial LDL- content or total LDL lipid peroxide or vitamin E levels. Beyond a threshold LDL- content of approximately 2%, there is a significant increase in the oxidative susceptibility of nLDL particles (ie, purified LDL that is free of LDL-), and this susceptibility becomes more pronounced as the LDL- content increases. nLDL is resistant to copper- or heme-induced oxidation. The oxidative susceptibility is not influenced by vitamin E content in LDL but is strongly inhibited by ascorbic acid in the medium. Involvement of LDL(-)-associated peroxides during the stimulated oxidation of LDL is suggested by the inhibition of nLDL oxidation when LDL- is treated with ebselen prior to its addition to nLDL. Populations of LDL enriched with LDL- appear to contain peroxides at levels approaching the threshold required for progressive radical propagation reactions. We postulate that elevated LDL- may constitute a pro-oxidant state that facilitates oxidative reactions in vascular components.
Collapse
Affiliation(s)
- A Sevanian
- Department of Molecular Pharmacology and Toxicology, School of Pharmacy, Los Angeles, CA 90033, USA
| | | | | | | | | | | |
Collapse
|
31
|
Björkerud B, Björkerud S. Contrary effects of lightly and strongly oxidized LDL with potent promotion of growth versus apoptosis on arterial smooth muscle cells, macrophages, and fibroblasts. Arterioscler Thromb Vasc Biol 1996; 16:416-24. [PMID: 8630668 DOI: 10.1161/01.atv.16.3.416] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The inhibition of experimental atherosclerosis by antioxidants and the presence of oxidized LDL (oxLDL) in atherosclerotic lesions indicate that oxLDL may play what is perhaps a primary role in atherogenesis. LDL promotes the growth of arterial smooth muscle cells (SMCs), and oxLDL has cytotoxic effects. Since excessive intimal growth alternating with necrosis is typical of atherosclerotic lesions, we wondered whether these extreme changes in the lesions could be related to the extreme effects of LDL and oxLDL on cells. We therefore examined the effects of increasing LDL oxidation on its capacity to induce cell growth or cell death and whether the latter could be due to apoptosis. Cells of the types present in the atherosclerotic artery used, ie, SMCs (human arterial), macrophages (human macrophage-like cell line THP-1), and human fibroblasts. Growth was evaluated by measuring the synthesis of DNA and culture size (MTT method) and apoptosis by using the in situ labeling of internucleosomally degraded DNA and, in the case of SMCs, the appearance of chromatin condensation. The oxidation of LDL was by UV or Fe ions. Shortly oxidized LDL had a markedly increased growth-promoting effect on all cell types. With prolonged exposure to UV, but not to Fe, LDL became increasingly cytotoxic, and this toxicity was paralleled by the appearance of apoptosis in all cell types. After prolonged UV treatment, low-molecular-weight material from the partially degraded LDL was responsible for the induction of apoptosis. The dual effect of oxLDL, ie, its strong growth-promoting effect or the induction of cell death by apoptosis, depending on the degree of change by oxidation, is compatible with the notion that oxLDL plays a role not only in atherogenesis but also more extensively in the development of the structure typical of the atherosclerotic lesion, with focal excessive growth alternating with necrosis.
Collapse
Affiliation(s)
- B Björkerud
- Department of Pathology, Institute of Laboratory Medicine, Göteborg University, Sweden
| | | |
Collapse
|
32
|
Kaneko T, Baba N, Matsuo M. Cytotoxicity of phosphatidylcholine hydroperoxides is exerted through decomposition of fatty acid hydroperoxide moiety. Free Radic Biol Med 1996; 21:173-9. [PMID: 8818632 DOI: 10.1016/0891-5849(96)00025-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The cytotoxicity of phosphatidylcholine hydroperoxides synthesized regioselectively and stereoselectively was examined in human umbilical vein endothelial cells. Phosphatidylcholine hydroperoxides were readily incorporated into cells, after which the contents declined gradually. Phosphatidylcholine with an arachidonic acid hydroperoxide residue was toxic to cells, while phosphatidylcholine with a linoleic acid hydroperoxide residue had no effect. The toxicity of phosphatidylcholine with arachidonic acid hydroperoxide disappeared after the reduction of the hydroperoxide by triphenylphosphine. Phosphatidylcholine with arachidonic acid hydroperoxide that had decomposed partially upon standing at room temperature was much more toxic than the pure hydroperoxide. 4-Hydroxynonenal, known widely as a toxic secondary product in the lipid peroxidation of polyunsaturated fatty acids, was detected in the decomposition mixture of phosphatidylcholine hydroperoxide. Phosphatidylcholine hydroperoxide incorporated into cells did not show toxicity when the hydroperoxide-containing medium was changed to growth medium after a short time. On the other hand, the phosphatidylcholine hydroperoxide was toxic in cells treated with the lipophilic free radical generator, 2,2'-azobis(2,4-dimethylvaleronitrile). In addition, cells were damaged by long-term treatment in medium containing phosphatidylcholine hydroperoxide and its decomposition products. These results suggest that the toxicity of phosphatidylcholine hydroperoxides is exerted by toxic compounds arising from the decomposition of the hydroperoxide moiety.
Collapse
Affiliation(s)
- T Kaneko
- Laboratory of Biochemistry and Isotopes, Tokyo Metropolitan Institute of Gerontology, Japan
| | | | | |
Collapse
|
33
|
Characterization of endothelial cell injury by cholesterol oxidation products found in oxidized LDL. J Lipid Res 1995. [DOI: 10.1016/s0022-2275(20)41115-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
34
|
Pacifici EH, McLeod LL, Sevanian A. Lipid hydroperoxide-induced peroxidation and turnover of endothelial cell phospholipids. Free Radic Biol Med 1994; 17:297-309. [PMID: 8001834 DOI: 10.1016/0891-5849(94)90016-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effects of lipid peroxidation on rabbit aortic endothelial cell phospholipid turnover was studied using linoleic acid hydroperoxide (LOOH). Following treatments with 20-40 microM LOOH, cells prelabeled with either arachidonic acid (20:4) or oleic acid (18:1) showed a movement of these fatty acids out of the phospholipids and into neutral lipid and free fatty acid pools. There was also a release of radioactive free fatty acids and phospholipids into the media, which was significantly increased as compared to cells maintained under standard culture conditions. Fatty acid uptake and distribution among phospholipid pools was also affected by LOOH treatment where incorporation of 20:4 and 18:1 into phosphatidylcholine (PC) decreased, while uptake into phosphatidylinositol (PI) increased after 1 h of incubation with 40 microM LOOH. These effects were also inhibited by vitamin E. In cells prelabeled with 20:4 or 18:1 under conditions where approximately 99% of the fatty acids were incorporated into neutral and phospholipid pools, LOOH treatment produced a decrease in radioactivity associated with PC, while the specific activity of PI increased. The extent of these changes was greater for 20:4 than 18:1, but in each case the effects were inhibited by vitamin E. The temporal pattern of uptake for labeled choline and inositol after LOOH treatments paralleled those found for fatty acid incorporation. These cell responses indicate that induction of lipid peroxidation produces rapid fatty acid release and phospholipid turnover involving repair as well as de novo synthesis. The implications of these effects on turnover of specific phospholipids and cell responses to oxidative stress are discussed.
Collapse
Affiliation(s)
- E H Pacifici
- University of Southern California, Department of Molecular Pharmacology & Toxicology, School of Pharmacy, Los Angeles 90033
| | | | | |
Collapse
|