1
|
Liu B, Kong Y, Shi W, Kuss M, Liao K, Hu G, Xiao P, Sankarasubramanian J, Guda C, Wang X, Lei Y, Duan B. Exosomes derived from differentiated human ADMSC with the Schwann cell phenotype modulate peripheral nerve-related cellular functions. Bioact Mater 2022; 14:61-75. [PMID: 35310346 PMCID: PMC8892082 DOI: 10.1016/j.bioactmat.2021.11.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
Peripheral nerve regeneration remains a significant clinical challenge due to the unsatisfactory functional recovery and public health burden. Exosomes, especially those derived from mesenchymal stem cells (MSCs), are promising as potential cell-free therapeutics and gene therapy vehicles for promoting neural regeneration. In this study, we reported the differentiation of human adipose derived MSCs (hADMSCs) towards the Schwann cell (SC) phenotype (hADMSC-SCs) and then isolated exosomes from hADMSCs with and without differentiation (i.e., dExo vs uExo). We assessed and compared the effects of uExo and dExo on antioxidative, angiogenic, anti-inflammatory, and axon growth promoting properties by using various peripheral nerve-related cells. Our results demonstrated that hADMSC-SCs secreted more neurotrophic factors and other growth factors, compared to hADMSCs without differentiation. The dExo isolated from hADMSC-SCs protected rat SCs from oxidative stress and enhanced HUVEC migration and angiogenesis. Compared to uExo, dExo also had improved performances in downregulating pro-inflammatory gene expressions and cytokine secretions and promoting axonal growth of sensory neurons differentiated from human induced pluripotent stem cells. Furthermore, microRNA (miRNA) sequencing analysis revealed that exosomes and their parent cells shared some similarities in their miRNA profiles and exosomes displayed a distinct miRNA signature. Many more miRNAs were identified in dExo than in uExo. Several upregulated miRNAs, like miRNA-132-3p and miRNA-199b-5p, were highly related to neuroprotection, anti-inflammation, and angiogenesis. The dExo can effectively modulate various peripheral nerve-related cellular functions and is promising for cell-free biological therapeutics to enhance neural regeneration. Exosomes were isolated from hADMSCs with and without differentiation towards SC phenotype (i.e., dExo vs uExo). hADMSC-SCs secreted more growth factors compared to hADMSCs without differentiation. The dExo protected rat SCs from oxidative stress and enhanced endothelial cell migration and angiogenesis. dExo promoted axonal growth of sensory neurons differentiated from hiPSCs. miRNA sequencing analysis unveiled and compared the exosomal and cellular miRNA profiles.
Collapse
|
2
|
Ruangsomboon P, Nepal S, Udomkiat P, Unnanuntana A. No Effect of Oral Mecobalamin on Skin Numbness at 3 Months After Total Knee Arthroplasty. JB JS Open Access 2022; 7:JBJSOA-D-22-00002. [PMID: 35425873 PMCID: PMC9000051 DOI: 10.2106/jbjs.oa.22.00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
An area of skin numbness (AON) around an incision commonly occurs following total knee arthroplasty (TKA). Mecobalamin has been shown to facilitate peripheral nerve recovery in various conditions; accordingly, the present study aimed to investigate the ameliorative effect of mecobalamin on AON following TKA, as compared with a placebo.
Collapse
Affiliation(s)
- Pakpoom Ruangsomboon
- Department of Orthopaedic Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sarthak Nepal
- Department of Orthopaedic Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pacharapol Udomkiat
- Department of Orthopaedic Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Aasis Unnanuntana
- Department of Orthopaedic Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Therapeutic Potential of Polyphenols in the Management of Diabetic Neuropathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9940169. [PMID: 34093722 PMCID: PMC8137294 DOI: 10.1155/2021/9940169] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
Diabetic neuropathy (DN) is a common and serious diabetes-associated complication that primarily takes place because of neuronal dysfunction in patients with diabetes. Use of current therapeutic agents in DN treatment is quite challenging because of their severe adverse effects. Therefore, there is an increased need of identifying new safe and effective therapeutic agents. DN complications are associated with poor glycemic control and metabolic imbalances, primarily oxidative stress (OS) and inflammation. Various mediators and signaling pathways such as glutamate pathway, activation of channels, trophic factors, inflammation, OS, advanced glycation end products, and polyol pathway have a significant contribution to the progression and pathogenesis of DN. It has been indicated that polyphenols have the potential to affect DN pathogenesis and could be used as potential alternative therapy. Several polyphenols including kolaviron, resveratrol, naringenin, quercetin, kaempferol, and curcumin have been administered in patients with DN. Furthermore, chlorogenic acid can provide protection against glutamate neurotoxicity via its hydrolysate, caffeoyl acid group, and caffeic acid through regulating the entry of calcium into neurons. Epigallocatechin-3-gallate treatment can protect motor neurons by regulating the glutamate level. It has been demonstrated that these polyphenols can be promising in combating DN-associated damaging pathways. In this article, we have summarized DN-associated metabolic pathways and clinical manifestations. Finally, we have also focused on the roles of polyphenols in the treatment of DN.
Collapse
|
4
|
Naseri R, Farzaei F, Fakhri S, El-Senduny FF, Altouhamy M, Bahramsoltani R, Ebrahimi F, Rahimi R, Farzaei MH. Polyphenols for diabetes associated neuropathy: Pharmacological targets and clinical perspective. Daru 2019; 27:781-798. [PMID: 31352568 PMCID: PMC6895369 DOI: 10.1007/s40199-019-00289-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/01/2019] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Diabetic neuropathy (DNP) is a widespread and debilitating complication with complex pathophysiology that is caused by neuronal dysfunction in diabetic patients. Conventional therapeutics for DNP are quite challenging due to their serious adverse effects. Hence, there is a need to investigate novel effective and safe options. The novelty of the present study was to provide available therapeutic approaches, emerging molecular mechanisms, signaling pathways and future directions of DNP as well as polyphenols' effect, which accordingly, give new insights for paving the way for novel treatments in DNP. EVIDENCE ACQUISITION A comprehensive review was done in electronic databases including Medline, PubMed, Web of Science, Scopus, national database (Irandoc and SID), and related articles regarding metabolic pathways on the pathogenesis of DNP as well as the polyphenols' effect. The keywords "diabetic neuropathy" and "diabetes mellitus" in the title/abstract and "polyphenol" in the whole text were used. Data were collected from inception until May 2019. RESULTS DNP complications is mostly related to a poor glycemic control and metabolic imbalances mainly inflammation and oxidative stress. Several signaling and molecular pathways play key roles in the pathogenesis and progression of DNP. Among natural entities, polyphenols are suggested as multi-target alternatives affecting most of these pathogenesis mechanisms in DNP. CONCLUSION The findings revealed novel pathogenicity signaling pathways of DNP and affirmed the auspicious role of polyphenols to tackle these destructive pathways in order to prevent, manage, and treat various diseases. Graphical Abstract .
Collapse
Affiliation(s)
- Rozita Naseri
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fardous F El-Senduny
- Biochemistry division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Miram Altouhamy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Roodabeh Bahramsoltani
- Department of Pharmacy in Persian Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farnaz Ebrahimi
- Pharmacy students` research committee, School of pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roja Rahimi
- Department of Pharmacy in Persian Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
5
|
Benga A, Zor F, Korkmaz A, Marinescu B, Gorantla V. The neurochemistry of peripheral nerve regeneration. Indian J Plast Surg 2017; 50:5-15. [PMID: 28615804 PMCID: PMC5469235 DOI: 10.4103/ijps.ijps_14_17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Peripheral nerve injuries (PNIs) can be most disabling, resulting in the loss of sensitivity, motor function and autonomic control in the involved anatomical segment. Although injured peripheral nerves are capable of regeneration, sub-optimal recovery of function is seen even with the best reconstruction. Distal axonal degeneration is an unavoidable consequence of PNI. There are currently few strategies aimed to maintain the distal pathway and/or target fidelity during regeneration across the zone of injury. The current state of the art approaches have been focussed on the site of nerve injury and not on their distal muscular targets or representative proximal cell bodies or central cortical regions. This is a comprehensive literature review of the neurochemistry of peripheral nerve regeneration and a state of the art analysis of experimental compounds (inorganic and organic agents) with demonstrated neurotherapeutic efficacy in improving cell body and neuron survival, reducing scar formation and maximising overall nerve regeneration.
Collapse
Affiliation(s)
- Andreea Benga
- Department of Plastic Surgery, Dr. Carol Davila Central Military Emergency University Hospital, Bucharest, Romania
| | - Fatih Zor
- Department of Plastic and Reconstructive Surgery, School of Medicine, Gülhane Military Medical Academy, Ankara, Turkey
| | - Ahmet Korkmaz
- Department of Physiology, School of Medicine, Gülhane Military Medical Academy, Ankara, Turkey
| | - Bogdan Marinescu
- Department of Plastic Surgery, Dr. Carol Davila Central Military Emergency University Hospital, Bucharest, Romania
| | - Vijay Gorantla
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Luoma AM, Kuo F, Cakici O, Crowther MN, Denninger AR, Avila RL, Brites P, Kirschner DA. Plasmalogen phospholipids protect internodal myelin from oxidative damage. Free Radic Biol Med 2015; 84:296-310. [PMID: 25801291 DOI: 10.1016/j.freeradbiomed.2015.03.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 02/25/2015] [Accepted: 03/12/2015] [Indexed: 12/16/2022]
Abstract
Reactive oxygen species (ROS) are implicated in a range of degenerative conditions, including aging, neurodegenerative diseases, and neurological disorders. Myelin is a lipid-rich multilamellar sheath that facilitates rapid nerve conduction in vertebrates. Given the high energetic demands and low antioxidant capacity of the cells that elaborate the sheaths, myelin is considered intrinsically vulnerable to oxidative damage, raising the question whether additional mechanisms prevent structural damage. We characterized the structural and biochemical basis of ROS-mediated myelin damage in murine tissues from both central nervous system (CNS) and peripheral nervous system (PNS). To determine whether ROS can cause structural damage to the internodal myelin, whole sciatic and optic nerves were incubated ex vivo with a hydroxyl radical-generating system consisting of copper (Cu), hydrogen peroxide (HP), and ortho-phenanthroline (OP). Quantitative assessment of unfixed tissue by X-ray diffraction revealed irreversible compaction of myelin membrane stacking in both sciatic and optic nerves. Incubation in the presence of the hydroxyl radical scavenger sodium formate prevented this damage, implicating hydroxyl radical species. Myelin membranes are particularly enriched in plasmalogens, a class of ether-linked phospholipids proposed to have antioxidant properties. Myelin in sciatic nerve from plasmalogen-deficient (Pex7 knockout) mice was significantly more vulnerable to Cu/OP/HP-mediated ROS-induced compaction than myelin from WT mice. Our results directly support the role of plasmalogens as endogenous antioxidants providing a defense that protects ROS-vulnerable myelin.
Collapse
Affiliation(s)
- Adrienne M Luoma
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3811, USA
| | - Fonghsu Kuo
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3811, USA
| | - Ozgur Cakici
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3811, USA
| | - Michelle N Crowther
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3811, USA
| | - Andrew R Denninger
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3811, USA
| | - Robin L Avila
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3811, USA
| | - Pedro Brites
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Daniel A Kirschner
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3811, USA.
| |
Collapse
|
7
|
Ziegler D, Buchholz S, Sohr C, Nourooz-Zadeh J, Roden M. Oxidative stress predicts progression of peripheral and cardiac autonomic nerve dysfunction over 6 years in diabetic patients. Acta Diabetol 2015; 52:65-72. [PMID: 24898524 DOI: 10.1007/s00592-014-0601-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/17/2014] [Indexed: 12/11/2022]
Abstract
Oxidative stress is implicated in the pathogenesis of experimental diabetic neuropathy, but prospective studies in diabetic patients are lacking. We aimed to evaluate whether the plasma levels of various biomarkers of oxidative stress predict the progression of diabetic neuropathy and mortality over 6 years. We followed 89 diabetic patients aged 54 ± 14 years (59 % with polyneuropathy), 72 of whom underwent nerve function reassessment after 6.2 ± 0.8 years, whereas 17 died after 4.2 ± 1.0 years. Plasma markers of oxidative stress at baseline included superoxide anion, hypochlorous acid, peroxynitrite, 8-iso-prostaglandin F2α, vitamin E/lipid ratio, and vitamin C. Neuropathy was assessed by symptoms and deficits, motor and sensory nerve conduction velocity (MNCV, SNCV), vibration perception thresholds (VPT), thermal detection thresholds, and heart rate variability (HRV). Despite a reduction in HbA1c by 1.4 ± 1.6 % (p < 0.001), median SNCV, sural SNCV, peroneal MNCV, malleolar VPT, and warm TDT deteriorated after 6 years (all p < 0.05). In multivariate models, increased superoxide generation was associated with a decline in median SNCV (β = -0.997; p = 0.036) and deterioration in HRV at rest (OR 1.63 [95 % CI 1.09-2.44]; p = 0.017) over 6 years. Low vitamin E/lipid ratio tended to predict a decrease in peroneal MNCV (β = 0.781; p = 0.057) and an increase in malleolar VPT (β = -0.725; p = 0.077). Plasma superoxide generation was associated with an increased risk of mortality (HR 23.2 [95 % CI 1.05-513]; p = 0.047). In conclusion, increased plasma superoxide generation predicted the decline in sensory and cardiac autonomic nerve function and mortality over 6 years in diabetic patients, but larger studies are required for confirmation.
Collapse
Affiliation(s)
- Dan Ziegler
- Institute for Clinical Diabetology, Leibniz Center for Diabetes Research, German Diabetes Center at Heinrich Heine University, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany,
| | | | | | | | | |
Collapse
|
8
|
Pereira RVF, de Miranda-Neto MH, da Silva Souza ID, Zanoni JN. Vitamin E supplementation in rats with experimental diabetes mellitus: analysis of myosin-V and nNOS immunoreactive myenteric neurons from terminal ileum. J Mol Histol 2008; 39:595-603. [PMID: 18953659 DOI: 10.1007/s10735-008-9200-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Accepted: 10/09/2008] [Indexed: 12/16/2022]
Abstract
The effect of vitamin E (1 g/kg body weight) supplementation on myosin-V and neuronal nitric oxide synthase (nNOS) immunoreactive myenteric neurons from the ileum of diabetic rats was investigated in the present study. Forty animals were divided into the following groups: normoglycemics (N), normoglycemics treated with vitamin E (NE), diabetics (D), and diabetics treated with vitamin E (DE). Quantitative and morphometric analyses were performed. The area of the tertiary plexus was also determined. Diabetes produced a 24% reduction in the number of myosin-V neurons in group D compared with group N, an effect that was accompanied by an increase in the tertiary plexus area (P < 0.05). Neuronal density was 27% higher in group NE than group N (P < 0.05). Nitrergic neuronal density was not altered as a consequence of either diabetes or vitamin E treatment. Myosin-V and nNOS immunoreactive neuronal cell body area increased significantly in group NE. The area of myosin-V and nNOS myenteric neurons also increased in group D. Vitamin E treatment (group DE) increased only the size of nitrergic neurons. The present results suggest that vitamin E elicited a neuroprotective and neurotrophic effect on the natural aging process, but with regard to diabetes, vitamin E supplementation exerted a neurotrophic effect only on nitrergic neurons.
Collapse
Affiliation(s)
- Renata Virginia Fernandes Pereira
- Department of Morphophysiological Sciences, Universidade Estadual de Maringá, Avenida Colombo, no. 5790 Bloco H-79, CEP 87020-900 Maringá, PR, Brazil
| | | | | | | |
Collapse
|
9
|
Fatma N, Kubo E, Sen M, Agarwal N, Thoreson WB, Camras CB, Singh DP. Peroxiredoxin 6 delivery attenuates TNF-alpha-and glutamate-induced retinal ganglion cell death by limiting ROS levels and maintaining Ca2+ homeostasis. Brain Res 2008; 1233:63-78. [PMID: 18694738 DOI: 10.1016/j.brainres.2008.07.076] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 07/11/2008] [Accepted: 07/14/2008] [Indexed: 01/01/2023]
Abstract
Higher expression of reactive oxygen species (ROS) is implicated in neurological disorders. A major event in glaucoma, the death of retinal ganglion cells (RGCs), has been associated with elevated levels of glutamate and TNF-alpha in the RGCs' local microenvironment. Herein we show that the transduction of Peroxiredoxin 6 (PRDX6) attenuates TNF-alpha- and glutamate-induced RGC death, by limiting ROS and maintaining Ca2+ homeostasis. Immunohistochemical staining of rat retina disclosed the presence of PRDX6 in RGCs, and Western and real-time PCR analysis revealed an abundance of PRDX6 protein and mRNA. RGCs treated with glutamate and/or TNF-alpha displayed elevated levels of ROS and reduced expression of PRDX6, and underwent apoptosis. A supply of PRDX6 protected RGCs from glutamate and TNF-alpha induced cytotoxicity by reducing ROS level and NF-kappaB activation, and limiting increased intracellular Ca2+ influx. Results provide a rationale for use of PRDX6 for blocking ROS-mediated pathophysiology in glaucoma and other neuronal disorders.
Collapse
Affiliation(s)
- Nigar Fatma
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Kaya F, Belin S, Bourgeois P, Micaleff J, Blin O, Fontés M. Ascorbic acid inhibits PMP22 expression by reducing cAMP levels. Neuromuscul Disord 2007; 17:248-53. [PMID: 17303424 DOI: 10.1016/j.nmd.2006.12.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 11/27/2006] [Accepted: 12/16/2006] [Indexed: 10/23/2022]
Abstract
Charcot-Marie-Tooth [CMT] syndrome is the most common hereditary peripheral neuropathy. CMT1A, which accounts for 50% of all CMT cases, usually results from triploidy of the PMP22 gene. Preclinical trials using an animal model show that disabled mice force-fed with high doses of ascorbic acid partially recover muscular strength after a few months of treatment, and suggest that high doses of ascorbic acid repress PMP22 expression. In this study, we demonstrated that ascorbic acid represses PMP22 gene expression by acting on intracellular cAMP levels and adenylate cyclase activity. This action is dose dependent and specific to ascorbic acid, since repression is not observed after treatment with other antioxidants. The new properties of ascorbic acid are discussed, along with the implications of these findings for CMT disease treatment.
Collapse
Affiliation(s)
- Ferdinand Kaya
- INSERM UMR491, Centre de Thérapie Génique, Génomique et de Biothérapies (CTGGB), IPHM-IFR125, Faculté de Médecine de la Timone, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | | | | | | | | | | |
Collapse
|
11
|
Lu JL, Vallat JM, Pollard JD, Knoops B, Ouvrier R. Expression of the antioxidant enzyme peroxiredoxin 5 in the human peripheral nervous system. J Peripher Nerv Syst 2007; 11:318-24. [PMID: 17117940 DOI: 10.1111/j.1529-8027.2006.00104.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peroxiredoxins (PRDXs) belong to a family of peroxidases that are highly expressed in mammalian tissues. Comparatively, little is known about their expression in the nervous system. In this study, we examined in human sural nerve, the expression of PRDX5, the most recently defined peroxiredoxin family member. Immunohistochemical staining of paraffin sections showed that PRDX5 expression was mainly localised to the axon and, to a lesser extent, to the Schwann cells. Immunogold labelling electron microscopy further revealed that PRDX5 is widely distributed in multiple cellular compartments, most importantly in mitochondria but also in axoplasm, Schwann cell cytosol, nucleus, and myelin. A progressive decline in PRDX5 expression with advancing age was identified in human nerves at different ages. The wide distribution of PRDX5 in cellular and sub-cellular structures indicates that it may play important roles in a wide range of tissue components in normal peripheral nerves.
Collapse
Affiliation(s)
- Jun Lan Lu
- Institute for Neuromuscular Research, The Children's Hospital at Westmead, Sydney, Australia.
| | | | | | | | | |
Collapse
|
12
|
Aycicek A, Iscan A. Oxidative and antioxidative capacity in children with cerebral palsy. Brain Res Bull 2006; 69:666-8. [PMID: 16716836 DOI: 10.1016/j.brainresbull.2006.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2005] [Revised: 11/07/2005] [Accepted: 03/22/2006] [Indexed: 10/24/2022]
Abstract
The superiority of oxidative stress and/or the inadequacy of antioxidant capacity have an important role in disease. Decreased antioxidant availability has been observed in the pathogenesis of many different diseases affecting the brain, such as mitochondrial disorders, cerebral ischaemia and epilepsy. Oxidative and antioxidative status in children with cerebral palsy aged 1-12 years was investigated in this study and compared with healthy controls. Sixty-nine patients with cerebral palsy and 42 controls were enrolled in the study. Lipid peroxidation in the cerebral palsy group was significantly higher than that in the controls (7.54+/-3.64 micromol H(2)O(2)/L and 5.84+/-1.25 micromol H(2)O(2)/L, respectively) (P=0.02). Serum total antioxidant capacity levels were also markedly lower in the CP group than in the control group (1.42+/-0.22 mmol Trolox equiv./L and 1.64+/-0.17 mmol Trolox equiv./L, respectively) (P=0.003). Uric acid and albumin concentrations were lower in the study group than in the control group. Based on these results, we concluded that oxidants were increased and antioxidants were decreased in the cerebral palsy group, and, as a result, the oxidative/antioxidative balance shifted to the oxidative side in children with cerebral palsy.
Collapse
Affiliation(s)
- Ali Aycicek
- Sanliurfa Children's Hospital, Department of Pediatrics, 63080 Sanliurfa, Turkey.
| | | |
Collapse
|
13
|
Ziegler D, Sohr CGH, Nourooz-Zadeh J. Oxidative stress and antioxidant defense in relation to the severity of diabetic polyneuropathy and cardiovascular autonomic neuropathy. Diabetes Care 2004; 27:2178-83. [PMID: 15333481 DOI: 10.2337/diacare.27.9.2178] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Oxidative stress resulting from enhanced free-radical formation and/or a defect in antioxidant defenses has been implicated in the pathogenesis of experimental diabetic neuropathy. The objective of this study was to evaluate plasma levels of various biomarkers of oxidative stress in diabetic subjects in relation to the presence or absence of polyneuropathy (PN) and/or cardiovascular autonomic neuropathy (CAN). RESEARCH DESIGN AND METHODS Plasma 8-iso-prostaglandin F(2alpha) (8-iso-PGF(2alpha)), superoxide anion (O(2)(.-)) generation, lag phase to peroxidation by peroxynitrite (ONOO(-)), vitamin E-to-lipid ratio, and vitamin C were measured in nonsmoking diabetic patients without PN and CAN (PN(-)/CAN(-) group; n = 62), in a group with PN but without CAN (PN(+)/CAN(-) group; n = 105), in those with both PN and CAN (PN(+)/CAN(+) group; n = 22), and in healthy control subjects (n = 85). RESULTS All three markers of oxidative stress were significantly increased, and both markers of antioxidant defense were decreased in the PN(+)/CAN(-) group compared with the control group (all P < 0.05). PN(-)/CAN(-) subjects showed a significant increase compared with control subjects for 8-iso-PGF(2alpha), O(2)(.-), and ONOO(-) and a decrease for the vitamin E-to-lipid ratio (all P < 0.05). In the PN(+)/CAN(-) group, a significant increase compared with the PN(-)/CAN(-) group was noted for O(2)(.-), whereas the vitamin E-to-lipid ratio and vitamin C were reduced (all P < 0.05). No significant differences were noted between the PN(+)/CAN(-) and PN(+)/CAN(+) groups for each of the five markers of oxidative stress. In multivariate models, O(2)(.-) and ONOO(-) were independently associated with neuropathic deficits, but diabetes duration and triglyceride levels were also independent determinants. CONCLUSIONS Oxidative stress is enhanced in diabetic patients before the development of PN but to an even higher degree in those with PN, without further significant increase in relation to superimposed autonomic neuropathy. However, apart from oxidative stress, diabetes duration and triglyceride levels are also related to the severity of PN.
Collapse
Affiliation(s)
- Dan Ziegler
- German Diabetes Research Institute, Heinrich Heine University, Düsseldorf, Germany.
| | | | | |
Collapse
|
14
|
Watkins LR, Maier SF. Beyond neurons: evidence that immune and glial cells contribute to pathological pain states. Physiol Rev 2002; 82:981-1011. [PMID: 12270950 DOI: 10.1152/physrev.00011.2002] [Citation(s) in RCA: 514] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Chronic pain can occur after peripheral nerve injury, infection, or inflammation. Under such neuropathic pain conditions, sensory processing in the affected body region becomes grossly abnormal. Despite decades of research, currently available drugs largely fail to control such pain. This review explores the possibility that the reason for this failure lies in the fact that such drugs were designed to target neurons rather than immune or glial cells. It describes how immune cells are a natural and inextricable part of skin, peripheral nerves, dorsal root ganglia, and spinal cord. It then examines how immune and glial activation may participate in the etiology and symptomatology of diverse pathological pain states in both humans and laboratory animals. Of the variety of substances released by activated immune and glial cells, proinflammatory cytokines (tumor necrosis factor, interleukin-1, interleukin-6) appear to be of special importance in the creation of peripheral nerve and neuronal hyperexcitability. Although this review focuses on immune modulation of pain, the implications are pervasive. Indeed, all nerves and neurons regardless of modality or function are likely affected by immune and glial activation in the ways described for pain.
Collapse
Affiliation(s)
- Linda R Watkins
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado.
| | | |
Collapse
|
15
|
Aydin S, Ozaras R, Uzun H, Belce A, Uslu E, Tahan V, Altug T, Dumen E, Senturk H. N-acetylcysteine reduced the effect of ethanol on antioxidant system in rat plasma and brain tissue. TOHOKU J EXP MED 2002; 198:71-77. [PMID: 12512991 DOI: 10.1620/tjem.198.71] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Chronic ethanol administration is able to induce an oxidative stress in the central nervous system. N-Acetylcysteine (NAC) has antioxidant properties; as a sulphydryl donor, it contributes to the regeneration of glutathione and it acts through a direct reaction with hydroxyl radicals. In this study we investigated a possible beneficial effect of NAC on some of the free radical related parameters. Twenty four male Wistar rats were divided in to three groups and were given ethanol (Group 1), ethanol and NAC (Group 2) and isocaloric dextrose (Group 3). Ethanol and NAC were given intragastrically at doses of 6 g/kg/day and 1 g/kg/day, respectively. Our results show that chronic ethanol intake elicits statistically significant increase in MDA and NO levels and decrease in SOD and GSH levels in both plasma and brain (p < 0.001). GPx levels decreased in erythrocytes (p < 0.001). CAT activity showed significant decrease only in brain samples (p < 0.001). NAC administration effectively restores the above results to nearly normal levels. Therefore we suggest that reactive free radicals are, at least partly, involved in the ethanol-induced injury of brain cells and NAC mitigate the toxic effects of ethanol on the oxidant-antioxidant system of rat plasma and brain.
Collapse
Affiliation(s)
- Seval Aydin
- Department of Biochemistry, Cerrahpaşa Medical School, Istanbul, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
van Dam PS. Oxidative stress and diabetic neuropathy: pathophysiological mechanisms and treatment perspectives. Diabetes Metab Res Rev 2002; 18:176-84. [PMID: 12112935 DOI: 10.1002/dmrr.287] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Increased oxidative stress is a mechanism that probably plays a major role in the development of diabetic complications, including peripheral neuropathy. This review summarises recent data from in vitro and in vivo studies that have been performed both to understand this aspect of the pathophysiology of diabetic neuropathy and to develop therapeutic modalities for its prevention or treatment. Extensive animal studies have demonstrated that oxidative stress may be a final common pathway in the development of diabetic neuropathy, and that antioxidants can prevent or reverse hyperglycaemia-induced nerve dysfunction. Most probably, the effects of antioxidants are mediated by correction of nutritive blood flow, although direct effects on endoneurial oxidative state are not excluded. In a limited number of clinical studies, antioxidant drugs including alpha-lipoic acid and vitamin E were found to reduce neuropathic symptoms or to correct nerve conduction velocity. These data are promising, and additional larger studies with alpha-lipoic acid are currently being performed.
Collapse
Affiliation(s)
- P Sytze van Dam
- Department of Internal Medicine and Endocrinology, University Medical Center, Utrecht, The Netherlands.
| |
Collapse
|
17
|
Gazda LS, Milligan ED, Hansen MK, Twining CM, Poulos NM, Chacur M, O'Connor KA, Armstrong C, Maier SF, Watkins LR, Myers RR. Sciatic inflammatory neuritis (SIN): behavioral allodynia is paralleled by peri-sciatic proinflammatory cytokine and superoxide production. J Peripher Nerv Syst 2001; 6:111-29. [PMID: 11817330 DOI: 10.1046/j.1529-8027.2001.006001111.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have recently developed a model of sciatic inflammatory neuritis (SIN) to assess how immune activation near peripheral nerves influences somatosensory processing. Administration of zymosan (yeast cell walls) around a single sciatic nerve produces dose-dependent low-threshold mechanical allodynia without thermal hyperalgesia. Low (4 microg) doses produce both territorial and extraterritorial allodynia restricted to the injected hindleg. In contrast, higher (40 microg) doses produce territorial and extraterritorial allodynias of both hindlegs, an effect not accounted for by systemic spread of the zymosan. The aim of these experiments was to determine whether these behavioral allodynias were correlated with immunological and/or anatomical changes in or around the sciatic nerve. These experiments reveal that zymosan-induced bilateral allodynia was associated with the following: (a) increased release of both interleukin-1beta and tumor necrosis factor-alpha from peri-sciatic immune cells; (b) increased release of reactive oxygen species from perisciatic immune cells; (c) no change in circulating levels of proinflammatory cytokine; (d) no apparent zymosan-induced influx of immune cells into the sciatic nerve from the endoneurial blood vessels; (e) mild edema of the sciatic, which was predominantly restricted to superficial regions closest to the peri-sciatic immune cells; and (f) no anatomic evidence of changes in either the ipsilateral saphenous nerve or contralateral sciatic nerve that could account for the appearance of extraterritorial or contralateral ("mirror") allodynia, respectively. No reliable differences were found when the low-dose zymosan was compared with vehicle controls. Taken together, these data suggest that substances released by peri-sciatic immune cells may induce changes in the sciatic nerve, leading to the appearance of bilateral allodynia.
Collapse
Affiliation(s)
- L S Gazda
- Department of Psychology and the Center for Neurosciences, University of Colorado at Boulder, 80309-0345, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Altered glutathione metabolism in association with increased oxidative stress has been implicated in the pathogenesis of many diseases. However, whether strategies aimed at restoring glutathione concentration and homeostasis are effective in ameliorating or modifying the natural history of these states is unknown. In this review we discuss the pathogenic role for altered glutathione metabolism in such diseases as protein energy malnutrition, seizures, Alzheimer's disease, Parkinson's disease, sickle cell anaemia, chronic diseases associated with ageing and the infected state. In addition, we discuss the efficacy of glutathione precursors in restoring glutathione homeostasis both in vitro and in vivo.
Collapse
Affiliation(s)
- M Reid
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
19
|
Bosch-Morell F, Flohé L, Marín N, Romero FJ. 4-Hydroxynonenal inhibits glutathione peroxidase: protection by glutathione. Free Radic Biol Med 1999; 26:1383-7. [PMID: 10401601 DOI: 10.1016/s0891-5849(98)00335-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
4-Hydroxy-2,3-trans-nonenal, a lipid peroxidation product, inhibits glutathione peroxidase in a concentration-dependent manner. The concentration providing 50% inhibition is 0.12 mM. This inhibition can be almost completely (89%) prevented by 1 mM glutathione added to the incubation mixture 30 min before 4-hydroxy-2,3-trans-nonenal or 2,3-trans-nonenal, but not by other thiol-containing antioxidants such as 0.5 mM dithiothreitol or beta-mercaptoethanol. Again the addition of 1 mM glutathione, and not of 0.5 mM dithiothreitol or beta-mercaptoethanol, to the enzyme 30 min after incubation with 4-hydroxy-2,3-trans-nonenal restores activity to the same extent as does the preincubation with GSH. In view of the known reactivity of 4-hydroxy-2,3-trans-nonenal with lysine residues and the reversibility of the inhibition, the involvement of a lysine residue in GSH binding to glutathione peroxidase is proposed. The potential relevance of the inhibition of glutathione peroxidase by 4-hydroxy-nonenal to oxidative tissue damage is discussed with particular emphasis on neurological disorders.
Collapse
Affiliation(s)
- F Bosch-Morell
- Department of Physiology, School of Medicine & Dentistry, University of Valencia, Spain
| | | | | | | |
Collapse
|
20
|
Sass JO, Skladal D, Brunner-Krainz M. Normal ascorbic acid in cerebrospinal fluid of patients with infantile neuronal ceroid-lipofuscinosis. Metab Brain Dis 1999; 14:67-70. [PMID: 10348315 DOI: 10.1023/a:1020613631353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Neuronal ceroid-lipofuscinoses (NCL) are a group of neurodegenerative disorders. There is much evidence for a role of peroxidation processes in the pathogenesis of NCL, although this would certainly be indirect. Reduced total antioxidant activity of cerebrospinal fluid (CSF) has been reported in NCL. Since ascorbic acid represents a major antioxidant in CSF, we have now determined this parameter in CSF of two patients with the infantile form of NCL (Santavuori-Haltia disease). However, the ascorbic acid values obtained (103.6 and 181.3 microM) are comparable with control values from the literature as well as with those measured in groups of children with neurologic/psychiatric diseases other than NCL (mean +/- standard deviation: 137.1+/-41.3 microM), with suspected (but excluded) meningitis (124.1+/-34.0 microM) and acute lymphoblastic leukemia (131.7+/-17.0 microM). Our results indicate that CSF ascorbic acid concentrations are not affected by peroxidation processes in infantile NCL, but reveal a sharply decreased ascorbic acid concentration in one of the non-NCL patients, possibly associated with his convulsions and/or his anticonvulsant therapy.
Collapse
Affiliation(s)
- J O Sass
- Universitätsklinik für Kinder-und Jugendheilkunde, Innsbruck, Austria.
| | | | | |
Collapse
|
21
|
Abstract
This review summarises the role that reactive oxygen and nitrogen species play in demyelination, such as that occurring in the inflammatory demyelinating disorders multiple sclerosis and Guillain-Barré syndrome. The concentrations of reactive oxygen and nitrogen species (e.g. superoxide, nitric oxide and peroxynitrite) can increase dramatically under conditions such as inflammation, and this can overwhelm the inherent antioxidant defences within lesions. Such oxidative and/or nitrative stress can damage the lipids, proteins and nucleic acids of cells and mitochondria, potentially causing cell death. Oligodendrocytes are more sensitive to oxidative and nitrative stress in vitro than are astrocytes and microglia, seemingly due to a diminished capacity for antioxidant defence, and the presence of raised risk factors, including a high iron content. Oxidative and nitrative stress might therefore result in vivo in selective oligodendrocyte death, and thereby demyelination. The reactive species may also damage the myelin sheath, promoting its attack by macrophages. Damage can occur directly by lipid peroxidation, and indirectly by the activation of proteases and phospholipase A2. Evidence for the existence of oxidative and nitrative stress within inflammatory demyelinating lesions includes the presence of both lipid and protein peroxides, and nitrotyrosine (a marker for peroxynitrite formation). The neurological deficit resulting from experimental autoimmune demyelinating disease has generally been reduced by trial therapies intended to diminish the concentration of reactive oxygen species. However, therapies aimed at diminishing reactive nitrogen species have had a more variable outcome, sometimes exacerbating disease.
Collapse
Affiliation(s)
- K J Smith
- Department of Clinical Neurological Sciences, Guy's, King's and St. Thomas' School of Medicine, London.
| | | | | |
Collapse
|
22
|
Romero FJ, Bosch-Morell F, Romero MJ, Jareño EJ, Romero B, Marín N, Romá J. Lipid peroxidation products and antioxidants in human disease. ENVIRONMENTAL HEALTH PERSPECTIVES 1998; 106 Suppl 5:1229-34. [PMID: 9788902 PMCID: PMC1533372 DOI: 10.1289/ehp.98106s51229] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Lipid peroxidation (LPO) is a free radical-related process that in biologic systems may occur under enzymatic control, e.g., for the generation of lipid-derived inflammatory mediators, or nonenzymatically. This latter form is associated mostly with cellular damage as a result of oxidative stress, which also involves cellular antioxidants in this process. This article focuses on the relevance of two LPO products, malondialdehyde (MDA) and 4-hydroxynonenal (HNE), to the pathophysiology of human disease. The former has been studied in human serum samples of hepatitis C virus-infected adults and human immunodeficiency virus-infected children. In these two cases it is shown that the specific assay of serum MDA is useful for the clinical management of these patients. The presence of MDA in subretinal fluid of patients with retinal detachment suggests the involvement of oxidative stress in this process. Moreover, we were able to report the dependence of this involvement on the degree of myopia in these patients. The assay of MDA contents in the peripheral nerves of rats fed a chronic alcohol-containing diet or diabetic mice also confirms the pathophysiologic role of oxidative stress in these experimental models. In these two cases, associated with an increase in tissue LPO products content, we detected a decrease of glutathione peroxidase (GSHPx) activity in peripheral nerve, among other modifications. We have demonstrated that in vitro HNE is able to inhibit GSHPx activity in an apparent competitive manner, and that glutathione may partially protect and/or prevent this inactivation. The accumulation of LPO products in the brain of patients with Alzheimer's disease has also been described, and it is on the basis of this observation that we have tried to elucidate the role of oxidative stress and cellular antioxidants in beta-amyloid-induced apoptotic cell death of rat embryo neurons. Finally, we discuss the possible role of the observed vascular effects of HNE on human arteries.
Collapse
Affiliation(s)
- F J Romero
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, Spain.
| | | | | | | | | | | | | |
Collapse
|
23
|
Bosch-Morell F, Martínez-Soriano F, Colell A, Fernández-Checa JC, Romero FJ. Chronic ethanol feeding induces cellular antioxidants decrease and oxidative stress in rat peripheral nerves. Effect of S-adenosyl-L-methionine and N-acetyl-L-cysteine. Free Radic Biol Med 1998; 25:365-8. [PMID: 9680183 DOI: 10.1016/s0891-5849(98)00036-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic ethanol feeding promotes oxidative stress in rat peripheral nerve. Malondialdehyde, a lipid peroxidation product, content increases in sciatic nerves of rats fed an ethanol-containing diet, when compared with pair-fed animals. Moreover, glutathione content and glutathione peroxidase activity in this same tissue decrease in ethanol-fed vs. pair-fed rats. S-Adenosyl-L-methionine and N-acetyl-L-cysteine, both with possible therapeutic action on alcoholism, were tested in this animal model. Only N-acetyl-L-cysteine was able to normalize malondialdehyde content and to restore glutathione content and glutathione peroxidase activity, to values not significantly different from those of sciatic nerves from pair-fed animals. The reasons for the different effect of both substances tested is also discussed.
Collapse
Affiliation(s)
- F Bosch-Morell
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, Spain
| | | | | | | | | |
Collapse
|
24
|
Hall KE, Wiley JW. Neural injury, repair and adaptation in the GI tract. I. New insights into neuronal injury: a cautionary tale. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:G978-83. [PMID: 9696720 DOI: 10.1152/ajpgi.1998.274.6.g978] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Understanding of the pathophysiology of neuronal injury has advanced remarkably in the last decade. This largely reflects the burgeoning application of molecular techniques to neuronal cell biology. Although there is certainly no consensus hypothesis that explains all aspects of neuronal injury, a number of interesting observations have been published. In this brief review, we examine mechanisms that appear to contribute to the pathophysiology of neuronal injury, including altered Ca2+ signaling, activation of the protease cascades coupled to apoptosis, and mitochondrial deenergization associated with release of cytochrome c, production of free radicals, and oxidative injury. Finally, evidence for neuroprotective mechanisms that may ameliorate cell injury and/or death are reviewed. Little information has been published regarding the mechanisms that mediate injury in the enteric nervous system, necessitating a focus on models outside the gastrointestinal (GI) tract, which may provide insights into enteric nervous system injury.
Collapse
Affiliation(s)
- K E Hall
- Department of Internal Medicine, University of Michigan, Ann Arbor 48109, USA
| | | |
Collapse
|
25
|
Martínez-Blasco A, Bosch-Morell F, Trenor C, Romero FJ. Experimental diabetic neuropathy: role of oxidative stress and mechanisms involved. Biofactors 1998; 8:41-3. [PMID: 9699007 DOI: 10.1002/biof.5520080108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oxidative stress has been related to the development of diabetic neuropathy. Experimental diabetes (alloxan injection of mice) promotes early biochemical changes in peripheral nervous tissue, e.g. decrease in Na,K-ATPase activity and glutathione (GSH) peroxidase (GSHPx) activity. The former decrease can be reverted by inhibiting protein kinase C (PKC), since it has been reported that PKC is activated in these experimental conditions. Here we present data demonstrating that the inhibition of PKC, as early as 4 days after alloxan administration, is not able to return to normal values GSHPx activity in sciatic nerve of diabetes mice. Thus, it would fit with our previous proposal of the possible glycation of this protein as an early event in experimental diabetes, and apparently rules out the control of GSHPx activity by PKC in this tissue.
Collapse
Affiliation(s)
- A Martínez-Blasco
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, Spain
| | | | | | | |
Collapse
|