1
|
|
2
|
Gao Y, Katyal S, Lee Y, Zhao J, Rehg JE, Russell HR, McKinnon PJ. DNA ligase III is critical for mtDNA integrity but not Xrcc1-mediated nuclear DNA repair. Nature 2011; 471:240-4. [PMID: 21390131 PMCID: PMC3079429 DOI: 10.1038/nature09773] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 12/22/2010] [Indexed: 01/20/2023]
Abstract
DNA replication and repair in mammalian cells involves three distinct DNA ligases: ligase I (Lig1), ligase III (Lig3) and ligase IV (Lig4). Lig3 is considered a key ligase during base excision repair because its stability depends upon its nuclear binding partner Xrcc1, a critical factor for this DNA repair pathway. Lig3 is also present in the mitochondria, where its role in mitochondrial DNA (mtDNA) maintenance is independent of Xrcc1 (ref. 4). However, the biological role of Lig3 is unclear as inactivation of murine Lig3 results in early embryonic lethality. Here we report that Lig3 is essential for mtDNA integrity but dispensable for nuclear DNA repair. Inactivation of Lig3 in the mouse nervous system resulted in mtDNA loss leading to profound mitochondrial dysfunction, disruption of cellular homeostasis and incapacitating ataxia. Similarly, inactivation of Lig3 in cardiac muscle resulted in mitochondrial dysfunction and defective heart-pump function leading to heart failure. However, Lig3 inactivation did not result in nuclear DNA repair deficiency, indicating essential DNA repair functions of Xrcc1 can occur in the absence of Lig3. Instead, we found that Lig1 was critical for DNA repair, but acted in a cooperative manner with Lig3. Additionally, Lig3 deficiency did not recapitulate the hallmark features of neural Xrcc1 inactivation such as DNA damage-induced cerebellar interneuron loss, further underscoring functional separation of these DNA repair factors. Therefore, our data reveal that the critical biological role of Lig3 is to maintain mtDNA integrity and not Xrcc1-dependent DNA repair.
Collapse
Affiliation(s)
- Yankun Gao
- Department of Genetics, , St Jude Children’s Research Hospital, Memphis TN 38105, USA
| | - Sachin Katyal
- Department of Genetics, , St Jude Children’s Research Hospital, Memphis TN 38105, USA
| | - Youngsoo Lee
- Department of Genetics, , St Jude Children’s Research Hospital, Memphis TN 38105, USA
| | - Jingfeng Zhao
- Department of Genetics, , St Jude Children’s Research Hospital, Memphis TN 38105, USA
| | - Jerold E. Rehg
- Department of Pathology, St Jude Children’s Research Hospital, Memphis TN 38105, USA
| | - Helen R. Russell
- Department of Genetics, , St Jude Children’s Research Hospital, Memphis TN 38105, USA
| | - Peter J. McKinnon
- Department of Genetics, , St Jude Children’s Research Hospital, Memphis TN 38105, USA
| |
Collapse
|
3
|
Sharma RA, Dianov GL. Targeting base excision repair to improve cancer therapies. Mol Aspects Med 2007; 28:345-74. [PMID: 17706275 DOI: 10.1016/j.mam.2007.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 05/30/2007] [Accepted: 06/05/2007] [Indexed: 01/05/2023]
Abstract
Most commonly used cancer therapies, particularly ionizing radiation and certain classes of cytotoxic chemotherapies, cause cell death by damaging DNA. Base excision repair (BER) is the major system responsible for the removal of corrupt DNA bases and repair of DNA single strand breaks generated spontaneously and induced by exogenous DNA damaging factors such as certain cancer therapies. In this review, the physico-chemical properties of the proteins involved in BER are discussed with particular emphasis on molecular mechanisms coordinating repair processes. The aim of this review is to apply extensive knowledge that currently exists regarding the biochemical mechanisms involved in human BER to the molecular biology of current therapies for cancer. It is anticipated that the application of this knowledge will translate into the development of novel effective therapies for improving existing treatments such as radiation therapy and oxaliplatin chemotherapy.
Collapse
Affiliation(s)
- Ricky A Sharma
- Radiation Oncology & Biology, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK
| | | |
Collapse
|
4
|
Lerch-Gaggl AF, Sun K, Duncan SA. Light chain 1 of microtubule-associated protein 1B can negatively regulate the action of Pes1. J Biol Chem 2007; 282:11308-16. [PMID: 17308336 DOI: 10.1074/jbc.m610977200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pes1 was first identified as the locus affected in the zebrafish mutant pescadillo, which exhibits severe defects in gut and liver development. It has since been demonstrated that loss of Pes1 expression in mammals and yeast affects ribosome biogenesis, resulting in a block in cell proliferation. Pes1 contains a BRCA1 C-terminal domain, a structural motif that has been shown to facilitate protein-protein interactions, suggesting that Pes1 has binding partners. We used a yeast two-hybrid screen to identify putative interacting proteins. We found that light chain 1 of the microtubule-associated protein 1B (Mtap1b-LC1) could partner with Pes1, and deletion analyses revealed a specific interaction of Mtap1b-LC1 with the Pes1 BRCA1 C-terminal domain. We confirmed the integrity of the interaction between Pes1 and Mtap1b-LC1 by co-immunoprecipitation experiments. Protein localization studies in NIH3T3 cells revealed that exogenously expressed Pes1 was typically restricted to nuclei and nucleoli. However, exogenous Pes1 was found predominantly in the cytoplasm in cells that were forced to express Mtap1b-LC1. We also observed that the expression of endogenous Pes1 protein was significantly reduced or undetectable in nuclei when Mtap1b-LC1 was overexpressed, implying that a dynamic interaction exists between the two proteins and that Mtap1b-LC1 has the potential to negatively impact Pes1 function. Finally, we demonstrated that, as is the case when Pes1 expression is depleted by shRNA, overexpression of Mtap1b-LC1 resulted in diminished proliferation of NIH3T3 cells, suggesting that Mtap1b-LC1 has the potential to repress cell proliferation by modulating the nucleolar levels of Pes1.
Collapse
Affiliation(s)
- Alexandra F Lerch-Gaggl
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
| | | | | |
Collapse
|
5
|
Abstract
Sister-chromatid exchange (SCE) is the process whereby, during DNA replication, two sister chromatids break and rejoin with one another, physically exchanging regions of the parental strands in the duplicated chromosomes. This process is considered to be conservative and error-free, since no information is generally altered during reciprocal interchange by homologous recombination. Upon the advent of non-radiolabel detection methods for SCE, such events were used as genetic indicators for potential genotoxins/mutagens in laboratory toxicology tests, since, as we now know, most forms of DNA damage induce chromatid exchange upon replication fork collapse. Much of our present understanding of the mechanisms of SCE stems from studies involving nonhuman vertebrate cell lines that are defective in processes of DNA repair and/or recombination. In this article, we present a historical perspective of studies spearheaded by Dr. Anthony V. Carrano and colleagues focusing on SCE as a genetic outcome, and the role of the single-strand break DNA repair protein XRCC1 in suppressing SCE. A more general overview of the cellular processes and key protein "effectors" that regulate the manifestation of SCE is also presented.
Collapse
Affiliation(s)
- David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | |
Collapse
|
6
|
Puebla-Osorio N, Lacey DB, Alt FW, Zhu C. Early embryonic lethality due to targeted inactivation of DNA ligase III. Mol Cell Biol 2006; 26:3935-41. [PMID: 16648486 PMCID: PMC1489003 DOI: 10.1128/mcb.26.10.3935-3941.2006] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 12/21/2005] [Accepted: 03/02/2006] [Indexed: 11/20/2022] Open
Abstract
DNA ligases catalyze the joining of strand breaks in the phosphodiester backbone of duplex DNA and play essential roles in DNA replication, recombination, repair, and maintenance of genomic integrity. Three mammalian DNA ligase genes have been identified, and their corresponding ligases play distinct roles in DNA metabolism. DNA ligase III is proposed to be involved in the repairing of DNA single-strand breaks, but its precise role has not yet been demonstrated directly. To determine its role in DNA repair, cellular growth, and embryonic development, we introduced targeted interruption of the DNA ligase III (LIG3) gene into the mouse. Mice homozygous for LIG3 disruption showed early embryonic lethality. We found that the mutant embryonic developmental process stops at 8.5 days postcoitum (dpc), and excessive cell death occurs at 9.5 dpc. LIG3 mutant cells have relatively normal XRCC1 levels but elevated sister chromatid exchange. These findings indicate that DNA ligase III is involved in essential DNA repair activities required for early embryonic development and therefore cannot be replaced by other DNA ligases.
Collapse
Affiliation(s)
- Nahum Puebla-Osorio
- Department of Immunology, Unit 902, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
7
|
|
8
|
Goetz JDM, Motycka TA, Han M, Jasin M, Tomkinson AE. Reduced repair of DNA double-strand breaks by homologous recombination in a DNA ligase I-deficient human cell line. DNA Repair (Amst) 2005; 4:649-54. [PMID: 15907772 DOI: 10.1016/j.dnarep.2005.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 02/10/2005] [Indexed: 11/28/2022]
Abstract
Genetic and biochemical studies of mammalian DNA ligase I indicate that this multifunctional enzyme plays a key role in the completion of DNA replication and certain DNA excision repair pathways. However, the involvement of DNA ligase I in DNA double-strand break repair has not been examined. Here we have determined the effect of DNA ligase I-deficiency on the frequency of homologous recombination initiated by a site-specific DNA double-strand break. We found that expression of wild-type DNA ligase I in a human DNA ligase I mutant cell line significantly increased the frequency of homologous recombination. Notably, the ability of DNA ligase I to promote the recombinational repair of DNA double-strand breaks was dependent upon its interaction with proliferating cell nuclear antigen. Thus, our results demonstrate that DNA ligase I-deficiency reduces recombinational repair of DNA double-strand breaks.
Collapse
Affiliation(s)
- Julie Della-Maria Goetz
- Radiation Oncology Research Laboratory, Department of Radiation Oncology and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
9
|
Wong HK, Wilson DM. XRCC1 and DNA polymerase β interaction contributes to cellular alkylating-agent resistance and single-strand break repair. J Cell Biochem 2005; 95:794-804. [PMID: 15838887 DOI: 10.1002/jcb.20448] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
X-ray cross complementing 1 (XRCC1) protein has been suggested to bind to DNA single-strand breaks (SSBs) and organize protein interactions that facilitate efficient DNA repair. Using four site-specifically modified human XRCC1 mutant expression systems and functional complementation assays in Chinese hamster ovary (CHO) XRCC1-deficient EM9 cells, we evaluated the cellular contributions of XRCC1s proposed N-terminal domain (NTD) DNA binding and DNA polymerase beta (POLbeta) interaction activities. Results within demonstrate that the interaction with POLbeta is biologically important for alkylating agent resistance and SSB repair, whereas the proposed DNA binding function is not critical to these phenotypes. Our data favor a model where the interaction of XRCC1 with POLbeta contributes to efficient DNA repair in vivo, whereas its interactions with target DNA is biologically less relevant.
Collapse
Affiliation(s)
- Heng-Kuan Wong
- Laboratory of Molecular Gerontology, National Institute on Aging, 5600 Nathan Shock Drive, Baltimore, Maryland 21224, USA
| | | |
Collapse
|
10
|
Abstract
DNA single-strand breaks can arise indirectly, as normal intermediates of DNA base excision repair, or directly from damage to deoxyribose. Because single-strand breaks are induced by endogenous reactive molecules such as reactive oxygen species, these lesions pose a continuous threat to genetic integrity. XRCC1 protein plays a major role in facilitating the repair of single-strand breaks in mammalian cells, via an ability to interact with multiple enzymatic components of repair reactions. Here, the protein-protein interactions facilitated by XRCC1, and the repair processes in which these interactions operate, are reviewed. Models for the repair of single-strand breaks during base excision repair and at direct breaks are presented.
Collapse
Affiliation(s)
- Keith W Caldecott
- Genome Damage and Stability Centre, University of Sussex, Science Park Road, BN1 9RQ, Falmer Brighton, UK.
| |
Collapse
|
11
|
Thacker J, Zdzienicka MZ. The mammalian XRCC genes: their roles in DNA repair and genetic stability. DNA Repair (Amst) 2003; 2:655-72. [PMID: 12767346 DOI: 10.1016/s1568-7864(03)00062-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Analysis of the XRCC genes has played an important part in understanding mammalian DNA repair processes, especially those involved in double-strand break (DSB) repair. Most of these genes were identified through their ability to correct DNA damage hypersensitivity in rodent cell lines, and they represent components of several different repair pathways including base-excision repair, non-homologous end joining, and homologous recombination. We document the phenotypic effects of mutation of the XRCC genes, and the current state of our knowledge of their functions. In addition to their continuing importance in discovering mechanisms of DNA repair, analysis of the XRCC genes is making a substantial contribution to the understanding of specific human disorders, including cancer.
Collapse
Affiliation(s)
- John Thacker
- Medical Research Council, Radiation and Genome Stability Unit, Harwell, Oxfordshire OX11 0RD, UK.
| | | |
Collapse
|
12
|
Joo WS, Jeffrey PD, Cantor SB, Finnin MS, Livingston DM, Pavletich NP. Structure of the 53BP1 BRCT region bound to p53 and its comparison to the Brca1 BRCT structure. Genes Dev 2002; 16:583-93. [PMID: 11877378 PMCID: PMC155350 DOI: 10.1101/gad.959202] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Brca1 C-terminal (BRCT) domains are a common protein-protein interaction motif in proteins involved in the DNA damage response and DNA repair. The DNA-damage response protein 53BP1 has two BRCT domains that bind to the DNA-binding domain of p53. The 53BP1 tandem-BRCT region is homologous to the tandem-BRCT region of Brca1, which is involved in double-strand break repair and homologous recombination and which binds BACH1, a member of the DEAH helicase family. Here we report the structures of a human 53BP1-p53 complex and of the rat Brca1 BRCT repeats. The 53BP1-p53 structure shows that the two BRCT repeats are arranged tandemly and pack extensively through an interface that also involves the inter-repeat linker. The first BRCT repeat and the linker together bind p53 on a region that overlaps with the DNA-binding surface of p53 and involves p53 residues that are mutated in cancer and are important for DNA binding. Comparison with the structure of the tandem-BRCT region of Brca1 shows a remarkable conservation of the repeat arrangement and of the inter-BRCT repeat interface. Analysis of human BRCA1 tumor-derived mutations and conservation identifies a potential protein-binding site that we show through mutagenesis is involved in BACH1 binding. The BACH1-binding region of Brca1 consists of a unique insertion in the first BRCT repeat and the inter-repeat linker and is analogous to the region of 53BP1 that binds p53.
Collapse
Affiliation(s)
- Woo S Joo
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
13
|
Tomkinson AE, Chen L, Dong Z, Leppard JB, Levin DS, Mackey ZB, Motycka TA. Completion of base excision repair by mammalian DNA ligases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 68:151-64. [PMID: 11554294 DOI: 10.1016/s0079-6603(01)68097-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Three mammalian genes encoding DNA ligases--LIG1, LIG3, and LIG4--have been identified. Genetic, biochemical, and cell biology studies indicate that the products of each of these genes play a unique role in mammalian DNA metabolism. Interestingly, cell lines deficient in either DNA ligase I (46BR.1G1) or DNA ligase III (EM9) are sensitive to simple alkylating agents. One interpretation of these observations is that DNA ligases I and III participate in functionally distinct base excision repair (BER) subpathways. In support of this idea, extracts from both DNA ligase-deficient cell lines are defective in catalyzing BER in vitro and both DNA ligases interact with other BER proteins. DNA ligase I interacts directly with proliferating cell nuclear antigen (PCNA) and DNA polymerase beta (Pol beta), linking this enzyme with both short-patch and long-patch BER. In somatic cells, DNA ligase III alpha forms a stable complex with the DNA repair protein Xrcc1. Although Xrcc1 has no catalytic activity, it also interacts with Pol beta and poly(ADP-ribose) polymerase (PARP), linking DNA ligase III alpha with BER and single-strand break repair, respectively. Biochemical studies suggest that the majority of short-patch base excision repair events are completed by the DNA ligase III alpha/Xrcc1 complex. Although there is compelling evidence for the participation of PARP in the repair of DNA single-strand breaks, the role of PARP in BER has not been established.
Collapse
Affiliation(s)
- A E Tomkinson
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Thornton KH, Krishnan VV, West MG, Popham J, Ramirez M, Thelen MP, Cosman M. Expression, purification, and biophysical characterization of the BRCT domain of human DNA ligase IIIalpha. Protein Expr Purif 2001; 21:401-11. [PMID: 11281714 DOI: 10.1006/prep.2001.1391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The C-terminal regions of several DNA repair and cell cycle checkpoint proteins are homologous to the breast-cancer-associated BRCA-1 protein C-terminal region. These regions, known as BRCT domains, have been found to mediate important protein-protein interactions. We produced the BRCT domain of DNA ligase IIIalpha (L3[86]) for biophysical and structural characterization. A glutathione S-transferase (GST) fusion with the L3[86] domain (residues 837-922 of ligase IIIalpha) was expressed in Escherichia coli and purified by glutathione affinity chromatography. The GST fusion protein was removed by thrombin digestion and further purification steps. Using this method, (15)N-labeled and (13)C/(15)N-double-labeled L3[86] proteins were prepared to enable a full determination of structure and dynamics using heteronuclear NMR spectroscopy. To obtain evidence of binding activity to the distal BRCT of the repair protein XRCC1 (X1BRCTb), as well as to provide insight into the interaction between these two BRCT binding partners, the corresponding BRCT heterocomplexes were also prepared and studied. Changes in the secondary structures (amount of helix and sheet components) of the two constituents were not observed upon complex formation. However, the melting temperature of the complex was significantly higher relative to the values obtained for the L3[86] or X1BRCTb proteins alone. This increased thermostability imparted by the interaction between the two BRCT domains may explain why cells require XRCC1 to maintain ligase IIIalpha activity.
Collapse
Affiliation(s)
- K H Thornton
- Molecular and Structural Biology Division, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Jozsi AC, Dupont-Versteegden EE, Taylor-Jones JM, Evans WJ, Trappe TA, Campbell WW, Peterson CA. Aged human muscle demonstrates an altered gene expression profile consistent with an impaired response to exercise. Mech Ageing Dev 2000; 120:45-56. [PMID: 11087903 DOI: 10.1016/s0047-6374(00)00178-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The gene expression profile of skeletal muscle from healthy older (62-75 years old) compared with younger (20-34 years old) men demonstrated elevated expression of genes typical of a stress or damage response, and decreased expression of a gene encoding a DNA repair/cell cycle checkpoint protein. Although the expression of these genes was relatively unaffected by a single bout of resistance exercise in older men, acute exercise altered gene expression in younger men such that post-exercise gene expression in younger men was similar to baseline gene expression in older men. The lack of response of muscle from older subjects to resistance exercise was also apparent in the expression of the inflammatory response gene IL-1beta, which did not differ between the age groups at baseline, but increased within 24 h of the exercise bout only in younger subjects. Other genes with potentially important roles in the adaptation of muscle to exercise, specifically in the processes of angiogenesis and cell proliferation, showed a similar response to exercise in older compared with younger subjects. Only one gene encoding the multifunctional, early growth response transcription factor EGR-1, showed an opposite pattern of expression in response to exercise, acutely decreasing in younger and increasing in older subjects. These results may provide a molecular basis for the inherent variability in the response of muscle from older as compared with younger individuals to resistance training.
Collapse
Affiliation(s)
- A C Jozsi
- Reynolds Department of Geriatrics and Center on Aging, University of Arkansas for Medical Sciences, 629 South Elm Street, Little Rock, AR 72205, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Haque J, Boger S, Li J, Duncan SA. The murine Pes1 gene encodes a nuclear protein containing a BRCT domain. Genomics 2000; 70:201-10. [PMID: 11112348 DOI: 10.1006/geno.2000.6375] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pescadillo was originally identified in the zebrafish Danio rerio as a site of a retrovirus-insertion mutation that caused severe defects during embryogenesis. In particular, growth of the fetal zebrafish liver was significantly affected by loss of pescadillo function. To begin to understand the role of pescadillo during mammalian hepatogenesis we identified the murine homologue of pescadillo and named it Pes1. A single gene localized to chromosome 11 on the mouse genome encodes Pes1. Although Pes1 mRNA was detected in all tissues examined it was present at the highest levels in both adult and fetal liver. Analysis of the predicted amino acid sequence of Pes1 found it to contain a BRCT domain, which has previously been found in several proteins involved in cell-cycle checkpoints and DNA repair. Consistent with a putative role in these processes we found that when recombinant Pes1 protein was expressed in HepG2 cells it localized to the nucleus.
Collapse
Affiliation(s)
- J Haque
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
17
|
Lakshmipathy U, Campbell C. Mitochondrial DNA ligase III function is independent of Xrcc1. Nucleic Acids Res 2000; 28:3880-6. [PMID: 11024166 PMCID: PMC110795 DOI: 10.1093/nar/28.20.3880] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hamster EM9 cells, which lack Xrcc1 protein, have reduced levels of DNA ligase III and are defective in nuclear base excision repair. The Xrcc1 protein stabilizes DNA ligase III and may even play a direct role in catalyzing base excision repair. Since DNA ligase III is also thought to function in mitochondrial base excision repair, it seemed likely that mitochondrial DNA ligase III function would also be dependent upon Xrcc1. However, several lines of evidence indicate that this is not the case. First, western blot analysis failed to detect Xrcc1 protein in mitochondrial extracts. Second, DNA ligase III levels present in mitochondrial protein extracts from EM9 cells were indistinguishable from those seen in similar extracts from wild-type (AA8) cells. Third, the mitochondrial DNA content of both cell lines was identical. Fourth, EM9 cells displayed no defect in their ability to repair spontaneous mitochondrial DNA damage. Fifth, while EM9 cells were far more sensitive to the cytotoxic effects of ionizing radiation due to a defect in nuclear DNA repair, there was no apparent difference in the ability of EM9 and AA8 cells to restore their mitochondrial DNA to pre-irradiation levels. Thus, mitochondrial DNA ligase III function is independent of the Xrcc1 protein.
Collapse
Affiliation(s)
- U Lakshmipathy
- University of Minnesota Medical School, Department of Pharmacology, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
| | | |
Collapse
|
18
|
Huyton T, Bates PA, Zhang X, Sternberg MJ, Freemont PS. The BRCA1 C-terminal domain: structure and function. Mutat Res 2000; 460:319-32. [PMID: 10946236 DOI: 10.1016/s0921-8777(00)00034-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The BRCA1 C-terminal region contains a duplicated globular domain termed BRCT that is found within many DNA damage repair and cell cycle checkpoint proteins. The unique diversity of this domain superfamily allows BRCT modules to interact forming homo/hetero BRCT multimers, BRCT-non-BRCT interactions, and interactions with DNA strand breaks. The sequence and functional diversity of the BRCT superfamily suggests that BRCT domains are evolutionarily convenient interaction modules.
Collapse
Affiliation(s)
- T Huyton
- Molecular Structure and Function, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, WC2A 3PX, London, UK
| | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- L H Thompson
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, L-452, P.O. Box 808, Livermore, CA 94551-0808, USA.
| | | |
Collapse
|
20
|
Hayakawa T, Ko R, Okano K, Seong SI, Goto C, Maeda S. Sequence analysis of the Xestia c-nigrum granulovirus genome. Virology 1999; 262:277-97. [PMID: 10502508 DOI: 10.1006/viro.1999.9894] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nucleotide sequence of the Xestia c-nigrum granulovirus (XcGV) genome was determined and found to comprise 178,733 bases with a G+C content of 40.7%. It contained 181 putative genes of 150 nucleotides or greater that showed minimal overlap. Eighty-four of these putative genes, which collectively accounted for 43% of the genome, are homologs of genes previously identified in the Autographa californica multinucleocapsid nucleopolyhedrovirus (AcMNPV) genome. These homologs showed on average 33% amino acid sequence identity to those from AcMNPV. Several genes reported to have major roles in AcMNPV biology including ie-2, gp64, and egt were not found in the XcGV genome. However, open reading frames with homology to DNA ligase, two DNA helicases (one similar to a yeast mitochondrial helicase and the other to a putative AcMNPV helicase), and four enhancins (virus enhancing factors) were found. In addition, several ORFs are repeated; there are 7 genes related to AcMNPV orf2, 4 genes related to AcMNPV orf145/150, and a number of repeated genes unique to XcGV. Eight major repeated sequences (XcGV hrs) that are similar to sequences found in the Trichoplusia ni GV genome (TnGV) were found.
Collapse
Affiliation(s)
- T Hayakawa
- Department of Entomology, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | | | | | | | | | | |
Collapse
|
21
|
Polischouk AG, Cedervall B, Ljungquist S, Flygare J, Hellgren D, Grénman R, Lewensohn R. DNA double-strand break repair, DNA-PK, and DNA ligases in two human squamous carcinoma cell lines with different radiosensitivity. Int J Radiat Oncol Biol Phys 1999; 43:191-8. [PMID: 9989526 DOI: 10.1016/s0360-3016(98)00362-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Variation in sensitivity to radiotherapy among tumors has been related to the capacity of cells to repair radiation-induced DNA double-strand breaks (DSBs). DNA-dependent protein kinase (DNA-PK) and DNA ligases may affect DNA dsb rejoining. This study was performed to compare rate of rejoining of radiation-induced DSBs, DNA-PK, and DNA ligase activities in two human squamous carcinoma cell lines with different sensitivity to ionizing radiation. METHODS AND MATERIALS Cell survival of two human squamous carcinoma cell lines, UM-SCC-1 and UM-SCC-14A, was determined by an in vitro clonogenic assay. DSB rejoining was studied using pulsed field gel electrophoresis (PFGE). DNA-PK activity was determined using BIOTRAK DNA-PK enzyme assay system (Amersham). DNA ligase activity in crude cell extracts was measured using [5'-33P] Poly (dA) x (oligo (dT) as a substrate. Proteolytic degradation of proteins was analyzed by means of Western blotting. RESULTS Applying the commonly used linear-quadratic equation to describe cell survival, S = e-alphaD-betaD2, the two cell lines roughly have the same alpha value (approximately 0.40 Gy(-1)) whereas the beta value was considerably higher in UM-SCC-14A (0.067 Gy(-2)+/-0.007 Gy(-2) [SEM]) as compared to UM-SCC-1 (0.013 Gy(-2)+/-0.004 Gy(-2) [SEM]). Furthermore, UM-SCC-1 was more proficient in rejoining of X-ray-induced DSBs as compared to UM-SCC-14A as quantified by PFGE. The constitutive level of DNA-PK activity was 1.6 times higher in UM-SCC-1 as compared to UM-SCC-14A ( < 0.05). The constitutive level of DNA ligase activity was similar in the two cell lines. CONCLUSIONS The results suggest that the proficiency in rejoining of DSBs is associated with DNA-PK activity but not with total DNA ligase activity.
Collapse
Affiliation(s)
- A G Polischouk
- Biomedicine Unit, Swedish Radiation Protection Institute, Stockholm
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhang X, Moréra S, Bates PA, Whitehead PC, Coffer AI, Hainbucher K, Nash RA, Sternberg MJ, Lindahl T, Freemont PS. Structure of an XRCC1 BRCT domain: a new protein-protein interaction module. EMBO J 1998; 17:6404-11. [PMID: 9799248 PMCID: PMC1170965 DOI: 10.1093/emboj/17.21.6404] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The BRCT domain (BRCA1 C-terminus), first identified in the breast cancer suppressor protein BRCA1, is an evolutionarily conserved protein-protein interaction region of approximately 95 amino acids found in a large number of proteins involved in DNA repair, recombination and cell cycle control. Here we describe the first three-dimensional structure and fold of a BRCT domain determined by X-ray crystallography at 3.2 A resolution. The structure has been obtained from the C-terminal region of the human DNA repair protein XRCC1, and comprises a four-stranded parallel beta-sheet surrounded by three alpha-helices, which form an autonomously folded domain. The compact XRCC1 structure explains the observed sequence homology between different BRCT motifs and provides a framework for modelling other BRCT domains. Furthermore, the established structure of an XRCC1 BRCT homodimer suggests potential protein-protein interaction sites for the complementary BRCT domain in DNA ligase III, since these two domains form a stable heterodimeric complex. Based on the XRCC1 BRCT structure, we have constructed a model for the C-terminal BRCT domain of BRCA1, which frequently is mutated in familial breast and ovarian cancer. The model allows insights into the effects of such mutations on the fold of the BRCT domain.
Collapse
Affiliation(s)
- X Zhang
- Molecular Structure and Function, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yanagisawa T, Urade M, Yamamoto Y, Furuyama J. Increased expression of human DNA repair genes, XRCC1, XRCC3 and RAD51, in radioresistant human KB carcinoma cell line N10. Oral Oncol 1998; 34:524-8. [PMID: 9930366 DOI: 10.1016/s1368-8375(98)00045-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The radioresistant N10 and parental KB cell lines were examined for the expression of human DNA repair genes which were related to the repair of radiation-induced DNA damage by northern blot analysis using five kinds of DNA probes (XRCC1, XRCC3, XRCC5, RAD51, RAD52). In the unirradiated condition, N10 cells showed higher expression of XRCC1, XRCC3 and RAD51 mRNA than did KB cells. The X-irradiation induced a time-dependent increase in the mRNA levels of XRCC3 and RAD51 in both cell lines with a maximum at 2 h postirradiation. The XRCC1 mRNA in N10 was maintained at the same level even after irradiation, whereas that in KB was decreased after irradiation. There was no difference in the expression of XRCC5 and RAD52 mRNA between N10 and KB cells in both unirradiated and irradiated conditions. From these findings, it was suggested that XRCC1, XRCC3 and RAD51 contribute to the radioresistance in cell line N10.
Collapse
Affiliation(s)
- T Yanagisawa
- Department of Dentistry and Oral Surgery, Hyogo College of Medicine, Japan
| | | | | | | |
Collapse
|
24
|
Masson M, Niedergang C, Schreiber V, Muller S, Menissier-de Murcia J, de Murcia G. XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol Cell Biol 1998; 18:3563-71. [PMID: 9584196 PMCID: PMC108937 DOI: 10.1128/mcb.18.6.3563] [Citation(s) in RCA: 694] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Poly(ADP-ribose) polymerase (PARP; EC 2.4.2.30) is a zinc-finger DNA-binding protein that detects and signals DNA strand breaks generated directly or indirectly by genotoxic agents. In response to these breaks, the immediate poly(ADP-ribosyl)ation of nuclear proteins involved in chromatin architecture and DNA metabolism converts DNA damage into intracellular signals that can activate DNA repair programs or cell death options. To have greater insight into the physiological function of this enzyme, we have used the two-hybrid system to find genes encoding proteins putatively interacting with PARP. We have identified a physical association between PARP and the base excision repair (BER) protein XRCC1 (X-ray repair cross-complementing 1) in the Saccharomyces cerevisiae system, which was further confirmed to exist in mammalian cells. XRCC1 interacts with PARP by its central region (amino acids 301 to 402), which contains a BRCT (BRCA1 C terminus) module, a widespread motif in DNA repair and DNA damage-responsive cell cycle checkpoint proteins. Overexpression of XRCC1 in Cos-7 or HeLa cells dramatically decreases PARP activity in vivo, reinforcing the potential protective function of PARP at DNA breaks. Given that XRCC1 is also associated with DNA ligase III via a second BRCT module and with DNA polymerase beta, our results provide strong evidence that PARP is a member of a BER multiprotein complex involved in the detection of DNA interruptions and possibly in the recruitment of XRCC1 and its partners for efficient processing of these breaks in a coordinated manner. The modular organizations of these interactors, associated with small conserved domains, may contribute to increasing the efficiency of the overall pathway.
Collapse
Affiliation(s)
- M Masson
- UPR 9003 du Centre National de la Recherche Scientifique, Cancérogenèse et Mutagenèse Moléculaire et Structurale, Ecole Supérieure de Biotechnologie de Strasbourg, 67400 Illkirch-Graffenstaden, France
| | | | | | | | | | | |
Collapse
|
25
|
Op het Veld CW, Jansen J, Zdzienicka MZ, Vrieling H, van Zeeland AA. Methyl methanesulfonate-induced hprt mutation spectra in the Chinese hamster cell line CHO9 and its xrcc1-deficient derivative EM-C11. Mutat Res 1998; 398:83-92. [PMID: 9626968 DOI: 10.1016/s0027-5107(97)00243-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Chinese hamster cell mutant EM-C11, which is hypersensitive to the cell killing effects of alkylating agents compared to its parental line CHO9, has been used to study the impact of base excision repair on the mutagenic effects of DNA methylation damage. This cell line has a defect in the xrcc1 gene. XRCC1 can interact with DNA polymerase-beta, thereby suppressing strand displacement, and DNA ligase III, both of which have been implicated in base excision repair. XRCC1 may, therefore, allow efficient ligation of single-strand breaks generated during base excision repair. Both EM-C11 and CHO9 cells were treated with methyl methanesulfonate (MMS), a DNA-methylating agent reacting predominantly with nitrogen atoms generating adducts which are substrates for the base excision repair pathway. EM-C11 cells are much more sensitive to the cytotoxic effects of MMS than CHO9: for EM-C11, the dose of MMS inducing 10% survival is 6-fold lower than that for CHO9. In contrast, mutation induction at the hprt locus following MMS is similar in EM-C11 and CHO9. Molecular analysis of hprt gene mutations showed that although the largest class of hprt mutations, both in EM-C11 and CHO9 cells, consisted of GC > AT transitions, most likely caused by O6-methylguanine, the size of this class was smaller in EM-C11. The fraction of deletion mutants in EM-C11, however, was twice as large as that found in CHO9 cells. These results suggest that reduced ligation efficiency of single-strand breaks generated during base excision repair, as result of a defect in XRCC1, may lead to the formation of deletions.
Collapse
Affiliation(s)
- C W Op het Veld
- MGC-Department of Radiation Genetics and Chemical Mutagenesis, Leiden University, AL Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
26
|
Shen MR, Zdzienicka MZ, Mohrenweiser H, Thompson LH, Thelen MP. Mutations in hamster single-strand break repair gene XRCC1 causing defective DNA repair. Nucleic Acids Res 1998; 26:1032-7. [PMID: 9461464 PMCID: PMC147361 DOI: 10.1093/nar/26.4.1032] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The molecular basis for the DNA repair dysfunction observed in mutant Chinese hamster ovary cell lines of X-ray repair cross complementing group 1 (XRCC1) is unknown and the exact role of the XRCC1 protein remains unclear. To help clarify the role of the XRCC1 gene we analyzed four mutant cell lines of this complementation group and a revertant cell line for XRCC1 protein content and for sequence alterations in the XRCC1 coding region. Immunoblot analysis of cellular extracts indicated that each of four mutant lines was lacking XRCC1 protein, whereas the repair-proficient revertant line derived from one of these mutants contained a normal level of XRCC1. Although each of these cell lines expressed XRCC1 mRNA, we found in all cases a distinct point mutation resulting in crucial alterations in the encoded XRCC1 protein sequence of 633 amino acids. Two of the mutations cause non-conservative amino acid changes, Glu102-->Lys and Cys390-->Tyr, at positions that are invariant among hamster, mouse and human XRCC1 sequences and are located in putative functional domains. A third debilitating mutation disrupts RNA splicing, generating multiple transcripts of different length that contain deletions spanning a region of >100 amino acids in the midsection of the XRCC1 coding sequence. A fourth mutation results in a termination codon that shortens the open reading frame to 220 amino acids, however, in the revertant cell line a further mutation in the same codon, Stop221-->Leu, permits translation of a full-length functional variant protein. These mutational data indicate the importance of the putative functional regions in XRCC1, such as the BRCA1 C-terminal (BRCT) domain found in common with BRCA1 and other DNA repair and cell cycle checkpoint proteins, and also regions necessary for interaction with DNA polymerase beta and DNA ligase III.
Collapse
Affiliation(s)
- M R Shen
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, PO Box 808, L-452, Livermore, CA 94550, USA
| | | | | | | | | |
Collapse
|
27
|
Eukaryotic DNA Ligases and DNA Repair. DNA Repair (Amst) 1998. [DOI: 10.1007/978-3-642-48770-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Zhou ZQ, Walter CA. Cloning and characterization of the promoter of baboon XRCC1, a gene involved in DNA strand-break repair. SOMATIC CELL AND MOLECULAR GENETICS 1998; 24:23-39. [PMID: 9776979 DOI: 10.1007/bf02677493] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The DNA repair gene XRCC1 was the first cloned human DNA repair gene involved in resistance to ionizing radiation. Previous studies have shown that rodent and baboon homologs of XRCC1 are expressed in all tested tissues with significantly higher levels in testis. Furthermore, expression of murine XRCC1 is most abundant in pachytene spermatocytes and round spermatids. To begin to study regulation of XRCC1 expression, the 5' region of baboon XRCC1 was cloned and characterized. 400 bp of 5'-flanking region showed the greatest promoter activity, while -194 to -8 bp of the 5'-flanking region displayed core promoter activity in transient transfection assays. A comparison between baboon and human 5'-flanking sequences in the core promoter region revealed a potential CAAT-box, an imperfect CREB-binding site and two putative Sp1-binding sites. Results from transient transfection assays in which each putative binding site was individually mutated, indicated that the distal Sp1-binding site has a functional role in transcription. In comparison, both putative Sp1-binding sites bound protein(s) from HeLa cell nuclear extracts in vitro. In vitro binding was lost when mutated Sp1 sites were used in gel mobility shift assays. Finally, anti-Sp1 antibodies produced mobility supershifts, thereby indicating Sp1 or an Sp1-like protein bound to the DNA fragment in vitro.
Collapse
Affiliation(s)
- Z Q Zhou
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio 78240-7762, USA
| | | |
Collapse
|
29
|
Abstract
DNA joining enzymes play an essential role in the maintenance of genomic integrity and stability. Three mammalian genes encoding DNA ligases, LIG1, LIG3 and LIG4, have been identified. Since DNA ligase II appears to be derived from DNA ligase III by a proteolytic mechanism, the three LIG genes can account for the four biochemically distinct DNA ligase activities, DNA ligases I, II, III and IV, that have been purified from mammalian cell extracts. It is probable that the specific cellular roles of these enzymes are determined by the proteins with which they interact. The specific involvement of DNA ligase I in DNA replication is mediated by the non-catalytic amino-terminal domain of this enzyme. Furthermore, DNA ligase I participates in DNA base excision repair as a component of a multiprotein complex. Two forms of DNA ligase III are produced by an alternative splicing mechanism. The ubiqitously expressed DNA ligase III-alpha forms a complex with the DNA single-strand break repair protein XRCC1. In contrast, DNA ligase III-beta, which does not interact with XRCC1, is only expressed in male meiotic germ cells, suggesting a role for this isoform in meiotic recombination. At present, there is very little information about the cellular functions of DNA ligase IV.
Collapse
Affiliation(s)
- A E Tomkinson
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio 78245, USA.
| | | |
Collapse
|
30
|
Rumbaugh JA, Murante RS, Shi S, Bambara RA. Creation and removal of embedded ribonucleotides in chromosomal DNA during mammalian Okazaki fragment processing. J Biol Chem 1997; 272:22591-9. [PMID: 9278414 DOI: 10.1074/jbc.272.36.22591] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mammalian RNase HI has been shown to specifically cleave the initiator RNA of Okazaki fragments at the RNA-DNA junction, leaving a single ribonucleotide attached to the 5'-end of the downstream DNA segment. This monoribonucleotide can then be removed by the mammalian 5'- to 3'-exo-/endonuclease, a RAD2 homolog-1 (RTH-1) class nuclease, also known as flap endonuclease-1 (FEN-1). Although FEN-1/RTH-1 nuclease often requires an upstream primer for efficient activity, the presence of an upstream primer is usually inhibitory or neutral for removal of this 5'-monoribonucleotide. Using model Okazaki fragment substrates, we found that DNA ligase I can seal a 5'-monoribonucleotide into DNA. When both ligase and FEN-1/RTH-1 were present simultaneously, some of the 5'-monoribonucleotides were ligated into DNA, while others were released. Thus, a 5'-monoribonucleotide, particularly one that is made resistant to FEN-1/RTH-1-directed cleavage by extension of an inhibitory upstream primer, can be ligated into the chromosome, despite the presence of FEN-1/RTH-1 nuclease. DNA ligase I was able to seal different monoribonucleotides into the DNA for all substrates tested, with an efficiency of 1-13% that of ligating DNA. These embedded monoribonucleotides can be removed by the combined action of RNase HI, cutting on the 5'-side, and FEN-1/RTH-1 nuclease, cleaving on the 3'-side. After FEN-1/RTH-1 action and extension by polymerization, DNA ligase I can join the entirely DNA strands to complete repair.
Collapse
Affiliation(s)
- J A Rumbaugh
- Department of Biochemistry, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
31
|
Ramos W, Tappe N, Talamantez J, Friedberg EC, Tomkinson AE. Two distinct DNA ligase activities in mitotic extracts of the yeast Saccharomyces cerevisiae. Nucleic Acids Res 1997; 25:1485-92. [PMID: 9092653 PMCID: PMC146610 DOI: 10.1093/nar/25.8.1485] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Four biochemically distinct DNA ligases have been identified in mammalian cells. One of these enzymes, DNA ligase I, is functionally homologous to the DNA ligase encoded by the Saccharomyces cerevisiae CDC9 gene. Cdc9 DNA ligase has been assumed to be the only species of DNA ligase in this organism. In the present study we have identified a second DNA ligase activity in mitotic extracts of S. cerevisiae with chromatographic properties different from Cdc9 DNA ligase, which is the major DNA joining activity. This minor DNA joining activity, which contributes 5-10% of the total cellular DNA joining activity, forms a 90 kDa enzyme-adenylate intermediate which, unlike the Cdc9 enzyme-adenylate intermediate, reacts with an oligo (pdT)/poly (rA) substrate. The levels of the minor DNA joining activity are not altered by mutation or by overexpression of the CDC9 gene. Furthermore, the 90 kDa polypeptide is not recognized by a Cdc9 antiserum. Since this minor species does not appear to be a modified form of Cdc9 DNA ligase, it has been designated as S. cerevisiae DNA ligase II. Based on the similarities in polynucleotide substrate specificity, this enzyme may be the functional homolog of mammalian DNA ligase III or IV.
Collapse
Affiliation(s)
- W Ramos
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA
| | | | | | | | | |
Collapse
|
32
|
Mackey ZB, Ramos W, Levin DS, Walter CA, McCarrey JR, Tomkinson AE. An alternative splicing event which occurs in mouse pachytene spermatocytes generates a form of DNA ligase III with distinct biochemical properties that may function in meiotic recombination. Mol Cell Biol 1997; 17:989-98. [PMID: 9001252 PMCID: PMC231824 DOI: 10.1128/mcb.17.2.989] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Three mammalian genes encoding DNA ligases have been identified. However, the role of each of these enzymes in mammalian DNA metabolism has not been established. In this study, we show that two forms of mammalian DNA ligase III, alpha and beta, are produced by a conserved tissue-specific alternative splicing mechanism involving exons encoding the C termini of the polypeptides. DNA ligase III-alpha cDNA, which encodes a 103-kDa polypeptide, is expressed in all tissues and cells, whereas DNA ligase III-beta cDNA, which encodes a 96-kDa polypeptide, is expressed only in the testis. During male germ cell differentiation, elevated expression of DNA ligase III-beta mRNA is restricted, beginning only in the latter stages of meiotic prophase and ending in the round spermatid stage. In 96-kDa DNA ligase III-beta, the C-terminal 77 amino acids of DNA ligase III-alpha are replaced by a different 17- to 18-amino acid sequence. As reported previously, the 103-kDa DNA ligase III-alpha interacts with the DNA strand break repair protein encoded by the human XRCC1 gene. In contrast, the 96-kDa DNA ligase III-beta does not interact with XRCC1, indicating that DNA ligase III-beta may play a role in cellular functions distinct from the DNA repair pathways involving the DNA ligase III-alpha x XRCC1 complex. The distinct biochemical properties of DNA ligase III-beta, in combination with the tissue- and cell-type-specific expression of DNA ligase III-beta mRNA, suggest that this form of DNA ligase III is specifically involved in the completion of homologous recombination events that occur during meiotic prophase.
Collapse
Affiliation(s)
- Z B Mackey
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, 78245, USA
| | | | | | | | | | | |
Collapse
|
33
|
Laval F, Wink DA, Laval J. A discussion of mechanisms of NO genotoxicity: implication of inhibition of DNA repair proteins. Rev Physiol Biochem Pharmacol 1997; 131:175-91. [PMID: 9204692 DOI: 10.1007/3-540-61992-5_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- F Laval
- U347 INSERM, Rue du Général Leclerc, Le Kremlin-Bicêtre, France
| | | | | |
Collapse
|
34
|
Caldecott KW, Aoufouchi S, Johnson P, Shall S. XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly (ADP-ribose) polymerase, and DNA ligase III is a novel molecular 'nick-sensor' in vitro. Nucleic Acids Res 1996; 24:4387-94. [PMID: 8948628 PMCID: PMC146288 DOI: 10.1093/nar/24.22.4387] [Citation(s) in RCA: 466] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The DNA repair proteins XRCC1 and DNA ligase III are physically associated in human cells and directly interact in vitro and in vivo. Here, we demonstrate that XRCC1 is additionally associated with DNA polymerase-beta in human cells and that these polypeptides also directly interact. We also present data suggesting that poly (ADP-ribose) polymerase can interact with XRCC1. Finally, we demonstrate that DNA ligase III shares with poly (ADP-ribose) polymerase the novel function of a molecular DNA nick-sensor, and that the DNA ligase can inhibit activity of the latter polypeptide in vitro. Taken together, these data suggest that the activity of the four polypeptides described above may be co-ordinated in human cells within a single multiprotein complex.
Collapse
Affiliation(s)
- K W Caldecott
- Zeneca Laboratory for Cell and Molecular Biology, School of Biological Sciences, University of Manchester, UK.
| | | | | | | |
Collapse
|
35
|
Prasad R, Singhal RK, Srivastava DK, Molina JT, Tomkinson AE, Wilson SH. Specific interaction of DNA polymerase beta and DNA ligase I in a multiprotein base excision repair complex from bovine testis. J Biol Chem 1996; 271:16000-7. [PMID: 8663274 DOI: 10.1074/jbc.271.27.16000] [Citation(s) in RCA: 197] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Base excision repair (BER) is a cellular defense mechanism repairing modified bases in DNA. Recently, a G:U repair reaction has been reconstituted with several purified enzymes from Escherichia coli (Dianov, G., and Lindahl, T.(1994) Curr. Biol. 4, 1069-1076). Using bovine testis crude nuclear extract, we have shown that G:U is repaired efficiently in vitro, and DNA polymerase beta (beta-pol) is responsible for the single nucleotide gap-filling synthesis (Singhal, R. K., Prasad, R., and Wilson, S. H.(1995) J. Biol. Chem. 270, 949-957). To investigate potential interaction of beta-pol with other BER protein(s), we developed affinity chromatography matrices by cross-linking purified rat beta-pol or antibody against beta-pol to solid supports. Crude nuclear extract from bovine testis was applied to these affinity columns, which were then extensively washed. Proteins that bound specifically to the affinity columns were co-eluted in a complex with beta-pol. This complex had a molecular mass of approximately 180 kDa and was able to conduct the complete uracil-initiated BER reaction. The BER complex contained both beta-pol and DNA ligase I. An antibody to beta-pol was able to shift the complex in sucrose gradients to a much larger molecular mass (>300 kDa) that again contained both beta-pol and DNA ligase I. Furthermore, DNA ligase I and beta-pol were co-immunoprecipitated from the testis nuclear extract with anti beta-pol IgG. Thus, we conclude that beta-pol and DNA ligase I are components of a multiprotein complex that performs BER.
Collapse
Affiliation(s)
- R Prasad
- Sealy Center for Molecular Science, University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1068, USA
| | | | | | | | | | | |
Collapse
|
36
|
Matsuda S, Sakaguchi K, Tsukada K, Teraoka H. Characterization of DNA ligase from the fungus Coprinus cinereus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 237:691-7. [PMID: 8647114 DOI: 10.1111/j.1432-1033.1996.0691p.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
DNA ligase was highly purified from the fungus Coprinus cinereus at the miotic recombination stage, pachytene. The pachytene DNA ligase showed three polypeptides with molecular masses of 88, 84 and 80 kDa, as estimated by the [32P]AMP-labeling assay. These three polypeptides were susceptible to reaction with an mAb against a 16-amino-acid sequence in human DNA ligase I, which is conserved in C-terminal regions of mammalian, vaccinia virus and yeast DNA ligases. Since rapidly purified preparations from fresh pachytene cells exhibited a single polypeptide of DNA ligase with a molecular mass of 88 kDa, the smaller polypeptides seemed to be limited-degradation products of the 88-kDa polypeptide during the isolation and purification procedures. K(m) values for ATP and (dT)20 hybridized with (dA)n were 1.5 microM and 90 nM, respectively. This enzyme was capable of joining (dT)20.(rA)n and (rA)12-18 (dT)n as well as (dT)20.(dA)n and able to ligate blunt-ended DNA in the presence of poly(ethylene glycol) 6000. DNA ligases were also partially purified from zygotene cells at the meiotic pairing stage and mitotic mycelium cells. In their molecular mass, immuno-reactivity, K(m) value and substrate specificity, they were indistinguishable from pachytene DNA ligase. These results suggest that the fungus C. cinereus at the pachytene stage contains DNA ligase with a molecular mass of 88 kDa as a main or a single species, which is quite similar to DNA ligases from the zygotene and mycelium cells in molecular and catalytic properties.
Collapse
Affiliation(s)
- S Matsuda
- Department of Applied Biological Science, Faculty of Science and Technology, Science University of Tokyo, Japan
| | | | | | | |
Collapse
|
37
|
Caldecott KW, Tucker JD, Stanker LH, Thompson LH. Characterization of the XRCC1-DNA ligase III complex in vitro and its absence from mutant hamster cells. Nucleic Acids Res 1995; 23:4836-43. [PMID: 8532526 PMCID: PMC307472 DOI: 10.1093/nar/23.23.4836] [Citation(s) in RCA: 226] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The human DNA repair protein XRCC1 was overexpressed as a histidine-tagged polypeptide (denoted XRCC1-His) in Escherichia coli and purified in milligram quantities by affinity chromatography. XRCC1-His complemented the mutant Chinese hamster ovary cell line EM9 when constitutively expressed from a plasmid or when introduced by electroporation. XRCC1-His directly interacted with human DNA ligase III in vitro to form a complex that was resistant to 2 M NaCl. XRCC1-His interacted equally well with DNA ligase III from Bloom syndrome, HeLa and MRC5 cells, indicating that Bloom syndrome DNA ligase III is normal in this respect. Detection of DNA ligase III on far Western blots by radiolabelled XRCC1-His indicated that the level of the DNA ligase polypeptide was reduced approximately 4-fold in the mutant EM9 and also in EM-C11, a second member of the XRCC1 complementation group. Decreased levels of polypeptide thus account for most of the approximately 6-fold reduced DNA ligase III activity observed previously in EM9. Immunodetection of XRCC1 on Western blots revealed that the level of this polypeptide was also decreased in EM9 and EM-C11 (> 10-fold), indicating that the XRCC1-DNA ligase III complex is much reduced in the two CHO mutants.
Collapse
Affiliation(s)
- K W Caldecott
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, UK
| | | | | | | |
Collapse
|
38
|
Abstract
XRCC1 is a DNA repair gene involved in rejoining DNA strand-breaks. We used baboon as an animal model to determine the levels of XRCC1 gene expression in different tissues. Baboons were selected because they are evolutionarily closely related to humans. A single 2.2 kb transcript was detected in all tissues tested by northern blot analysis, with variations in levels of expression among tissues. The expression levels of XRCC1 were measured by quantitative RNase protection assays. XRCC1 mRNA levels were significantly higher in testis than those in other tissues. A mean value of 24.6 x 10(5) XRCC1 transcripts per micrograms DNA was found in testis, while 10.5 x 10(5) in ovary, 9.8 x 10(5) in brain, 8.5 x 10(5) in liver, 6.8 x 10(5) in kidney, 6.5 x 10(5) in heart, 6.4 x 10(5) in lymph nodes, 6.0 x 10(5) in lung and 4.9 x 10(5) in spleen were found.
Collapse
Affiliation(s)
- Z Q Zhou
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio 78284-7762, USA
| | | |
Collapse
|
39
|
Petrini JH, Xiao Y, Weaver DT. DNA ligase I mediates essential functions in mammalian cells. Mol Cell Biol 1995; 15:4303-8. [PMID: 7623824 PMCID: PMC230669 DOI: 10.1128/mcb.15.8.4303] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
DNA replication, repair, and recombination are essential processes in mammalian cells. Hence, the application of gene targeting to the study of these DNA metabolic pathways requires the creation of nonnull mutations. We have developed a method for introducing partially defective mutants in murine embryonic stem cells that circumvents the problem of cellular lethality of targeted mutations at essential loci. Using this approach, we have determined that mammalian DNA ligase I is essential for cell viability. Thus, DNA ligases II and III are not redundant with DNA ligase I for the function(s) associated with cell proliferation. Partial complementation of the lethal DNA ligase I null mutation allowed the creation of deficient embryonic stem cell lines. We found that a wild-type DNA ligase I cDNA, as well as a variant DNA ligase I cDNA, was able to rescue the lethality of the homozygous null mutation, whereas an N-terminal deletion mutant consisting of the minimal DNA ligase I catalytic domain was not. This observation demonstrates that sequences outside the DNA ligase I catalytic domain are essential for DNA ligase I function in vivo.
Collapse
Affiliation(s)
- J H Petrini
- Division of Tumor Immunology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | | |
Collapse
|
40
|
Wei YF, Robins P, Carter K, Caldecott K, Pappin DJ, Yu GL, Wang RP, Shell BK, Nash RA, Schär P. Molecular cloning and expression of human cDNAs encoding a novel DNA ligase IV and DNA ligase III, an enzyme active in DNA repair and recombination. Mol Cell Biol 1995; 15:3206-16. [PMID: 7760816 PMCID: PMC230553 DOI: 10.1128/mcb.15.6.3206] [Citation(s) in RCA: 207] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Three distinct DNA ligases, I to III, have been found previously in mammalian cells, but a cloned cDNA has been identified only for DNA ligase I, an essential enzyme active in DNA replication. A short peptide sequence conserved close to the C terminus of all known eukaryotic DNA ligases was used to search for additional homologous sequences in human cDNA libraries. Two different incomplete cDNA clones that showed partial homology to the conserved peptide were identified. Full-length cDNAs were obtained and expressed by in vitro transcription and translation. The 103-kDa product of one cDNA clone formed a characteristic complex with the XRCC1 DNA repair protein and was identical with the previously described DNA ligase III. DNA ligase III appears closely related to the smaller DNA ligase II. The 96-kDa in vitro translation product of the second cDNA clone was also shown to be an ATP-dependent DNA ligase. A fourth DNA ligase (DNA ligase IV) has been purified from human cells and shown to be identical to the 96-kDa DNA ligase by unique agreement between mass spectrometry data on tryptic peptides from the purified enzyme and the predicted open reading frame of the cloned cDNA. The amino acid sequences of DNA ligases III and IV share a related active-site motif and several short regions of homology with DNA ligase I, other DNA ligases, and RNA capping enzymes. DNA ligases III and IV are encoded by distinct genes located on human chromosomes 17q11.2-12 and 13q33-34, respectively.
Collapse
Affiliation(s)
- Y F Wei
- Human Genome Sciences, Inc., Rockville, Maryland 20850-3338, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Husain I, Tomkinson AE, Burkhart WA, Moyer MB, Ramos W, Mackey ZB, Besterman JM, Chen J. Purification and characterization of DNA ligase III from bovine testes. Homology with DNA ligase II and vaccinia DNA ligase. J Biol Chem 1995; 270:9683-90. [PMID: 7721901 DOI: 10.1074/jbc.270.16.9683] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mammalian cell nuclei contain three biochemically distinct DNA ligases. In the present study we have found high levels of DNA ligase I and DNA ligase III activity in bovine testes and have purified DNA ligase III to near homogeneity. The high level of DNA ligase III suggests a role for this enzyme in meiotic recombination. In assays measuring the fidelity of DNA joining, we detected no significant differences between DNA ligases II and III, whereas DNA ligase I was clearly a more faithful enzyme and was particularly sensitive to 3' mismatches. Amino acid sequences of peptides derived from DNA ligase III demonstrated that this enzyme, like DNA ligase II, is highly homologous with vaccinia DNA ligase. The absence of unambiguous differences between homologous peptides from DNA ligases II and III (10 pairs of peptides, 136 identical amino acids) indicates that these enzymes are either derived from a common precursor polypeptide or are encoded from the same gene by alternative splicing. Based on similarities in amino acid sequence and biochemical properties, we suggest that DNA ligases II and III, Drosophila DNA ligase II, and the DNA ligases encoded by the pox viruses constitute a distinct family of DNA ligases that perform specific roles in DNA repair and genetic recombination.
Collapse
Affiliation(s)
- I Husain
- Department of Cell Biology, Glaxo Research Institute, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Lindahl T, Satoh MS, Dianov G. Enzymes acting at strand interruptions in DNA. Philos Trans R Soc Lond B Biol Sci 1995; 347:57-62. [PMID: 7746855 DOI: 10.1098/rstb.1995.0009] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Endogenous and environmental DNA-damaging agents often generate single-strand interruptions in DNA. The lesions trigger a complex set of cellular reactions. In most eukaryotic cells, cellular poly(ADP-ribose) formation is the most acute response to such damage. Recently, such events have been amenable to study with soluble cell-free extracts of human cells. These investigations clarify the modulating role on DNA repair by poly (ADP-ribose), and suggest that the primary function of this unusual polymer is to act as an antirecombinant agent. Similar biochemical studies of subsequent repair events have revealed a branched pathway for the ubiquitous DNA base excision-repair process. The alternative pathway provides the cell with back-up functions for individual steps in this essential form of DNA repair.
Collapse
Affiliation(s)
- T Lindahl
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Hertfordshire, U.K
| | | | | |
Collapse
|