1
|
Greene ES, Chen PR, Walk C, Bedford M, Dridi S. Mitochondrial dysfunction is a hallmark of woody breast myopathy in broiler chickens. Front Physiol 2025; 16:1543788. [PMID: 40034536 PMCID: PMC11872917 DOI: 10.3389/fphys.2025.1543788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
The woody breast (WB) myopathy poses significant economic and welfare concerns to the poultry industry, however, there is no effective strategy to mitigate this pathology due to its unknown etiology. After showing previously that hypoxia is a key factor in WB progression, we used here various techniques demonstrating dysregulated mitochondria (morphology, biogenesis, tethering, function, and bioenergetics) in WB-affected muscles and in hypoxic myoblasts compared to healthy tissues and normoxic cells, respectively. The increased levels of calcium (Ca2+) in both WB-affected tissues and hypoxic myoblasts suggested that mitochondrial Ca2+ overload is likely a leading cause for mitochondrial dysfunction that merits further in-depth investigation. These findings are the first, to the best of our knowledge, to provide fundamental insights into the underlying molecular mechanisms of WB and open new vistas for understanding the interplay between calcium, mitochondrial (dys)function, and avian muscle health for subsequent development of effective preventative/corrective strategies.
Collapse
Affiliation(s)
- Elizabeth S. Greene
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| | - Paula R. Chen
- USDA-ARS, Plant Genetics Research Unit, Columbia, MO, United States
| | | | | | - Sami Dridi
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
2
|
Drahota Z, Houštěk J, Pecinová A. Czech Footprints in the Bioenergetics Research. Physiol Res 2024; 73:S23-S33. [PMID: 38836463 PMCID: PMC11412348 DOI: 10.33549/physiolres.935395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Life manifests as growth, movement or heat production that occurs thanks to the energy accepted from the outside environment. The basis of energy transduction attracted the Czech researchers since the beginning of the 20th century. It further accelerated after World War II, when the new Institute of Physiology was established in 1954. When it was found that energy is stored in the form of adenosine triphosphate (ATP) that can be used by numerous reactions as energy source and is produced in the process called oxidative phosphorylation localized in mitochondria, the investigation focused on this cellular organelle. Although the Czech scientists had to overcome various obstacles including Communist party leadership, driven by curiosity, boldness, and enthusiasm, they characterized broad spectrum of mitochondrial properties in different tissues in (patho)physiological conditions in collaboration with many world-known laboratories. The current review summarizes the contribution of the Czech scientists to the bioenergetic and mitochondrial research in the global context. Keywords: Mitochondria, Bioenergetics, Chemiosmotic coupling.
Collapse
Affiliation(s)
- Z Drahota
- Laboratory of Bioenergetics, Institute of Physiology, Prague, Czech Republic.
| | | | | |
Collapse
|
3
|
Ueda S, Yagi M, Tomoda E, Matsumoto S, Ueyanagi Y, Do Y, Setoyama D, Matsushima Y, Nagao A, Suzuki T, Ide T, Mori Y, Oyama N, Kang D, Uchiumi T. Mitochondrial haplotype mutation alleviates respiratory defect of MELAS by restoring taurine modification in tRNA with 3243A > G mutation. Nucleic Acids Res 2023; 51:7480-7495. [PMID: 37439353 PMCID: PMC10415116 DOI: 10.1093/nar/gkad591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
The 3243A > G in mtDNA is a representative mutation in mitochondrial diseases. Mitochondrial protein synthesis is impaired due to decoding disorder caused by severe reduction of 5-taurinomethyluridine (τm5U) modification of the mutant mt-tRNALeu(UUR) bearing 3243A > G mutation. The 3243A > G heteroplasmy in peripheral blood reportedly decreases exponentially with age. Here, we found three cases with mild respiratory symptoms despite bearing high rate of 3243A > G mutation (>90%) in blood mtDNA. These patients had the 3290T > C haplotypic mutation in addition to 3243A > G pathogenic mutation in mt-tRNALeu(UUR) gene. We generated cybrid cells of these cases to examine the effects of the 3290T > C mutation on mitochondrial function and found that 3290T > C mutation improved mitochondrial translation, formation of respiratory chain complex, and oxygen consumption rate of pathogenic cells associated with 3243A > G mutation. We measured τm5U frequency of mt-tRNALeu(UUR) with 3243A > G mutation in the cybrids by a primer extension method assisted with chemical derivatization of τm5U, showing that hypomodification of τm5U was significantly restored by the 3290T > C haplotypic mutation. We concluded that the 3290T > C is a haplotypic mutation that suppresses respiratory deficiency of mitochondrial disease by restoring hypomodified τm5U in mt-tRNALeu(UUR) with 3243A > G mutation, implying a potential therapeutic measure for mitochondrial disease associated with pathogenic mutations in mt-tRNAs.
Collapse
Affiliation(s)
- Saori Ueda
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ena Tomoda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinya Matsumoto
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yasushi Ueyanagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yura Do
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuichi Matsushima
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Japan
| | - Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yusuke Mori
- Department of Internal Medicine Kitakyushu City Yahata Hospital, 2-6-2 Ogura, Yahatahigashi-ku, Kitakyushu 805-8534, Japan
| | - Noriko Oyama
- Department of Endocrinology and Metabolism, Fukuoka Children's Hospital, 5-1-1 Kashiiteriha, Higashi-ku, Fukuoka 813-0017, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
4
|
Romero-Lopez M, Oria M, Ferrer-Marquez F, Varela MF, Lampe K, Watanabe-Chailland M, Martinez L, Peiro JL. Fetal lung hypoxia and energetic cell failure in the nitrofen-induced congenital diaphragmatic hernia rat model. Pediatr Surg Int 2023; 39:180. [PMID: 37055635 PMCID: PMC11439903 DOI: 10.1007/s00383-023-05452-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
PURPOSE Congenital diaphragmatic hernia (CDH) pathogenesis is poorly understood. We hypothesize that fetal CDH lungs are chronically hypoxic because of lung hypoplasia and tissue compression, affecting the cell bioenergetics as a possible explanation for abnormal lung development. METHODS To investigate this theory, we conducted a study using the rat nitrofen model of CDH. We evaluated the bioenergetics status using H1 Nuclear magnetic resonance and studied the expression of enzymes involved in energy production, the hypoxia-inducible factor 1α, and the glucose transporter 1. RESULTS The nitrofen-exposed lungs have increased levels of hypoxia-inducible factor 1α and the main fetal glucose transporter, more evident in the CDH lungs. We also found imbalanced AMP:ATP and ADP:ATP ratios, and a depleted energy cellular charge. Subsequent transcription levels and protein expression of the enzymes involved in bioenergetics confirm the attempt to prevent the energy collapse with the increase in lactate dehydrogenase C, pyruvate dehydrogenase kinase 1 and 2, adenosine monophosphate deaminase, AMP-activated protein kinase, calcium/calmodulin-dependent protein kinase 2, and liver kinase B1, while decreasing ATP synthase. CONCLUSION Our study suggests that changes in energy production could play a role in CDH pathogenesis. If confirmed in other animal models and humans, this could lead to the development of novel therapies targeting the mitochondria to improve outcomes.
Collapse
Affiliation(s)
- Mar Romero-Lopez
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Marc Oria
- Division of Pediatric General and Thoracic Surgery, Center for Fetal and Placental Research, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Fernando Ferrer-Marquez
- Division of Pediatric General and Thoracic Surgery, Center for Fetal and Placental Research, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Maria Florencia Varela
- Division of Pediatric General and Thoracic Surgery, Center for Fetal and Placental Research, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Kristin Lampe
- Division of Pediatric General and Thoracic Surgery, Center for Fetal and Placental Research, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Miki Watanabe-Chailland
- NMR-Based Metabolomics Core, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Leopoldo Martinez
- Servicio de Cirugía Pediátrica, Hospital la Paz, Instituto de Investigación La Paz (IdiPAZ), Madrid, Spain
| | - Jose L Peiro
- Division of Pediatric General and Thoracic Surgery, Center for Fetal and Placental Research, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA.
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA.
| |
Collapse
|
5
|
Mackieh R, Al-Bakkar N, Kfoury M, Roufayel R, Sabatier JM, Fajloun Z. Inhibitors of ATP Synthase as New Antibacterial Candidates. Antibiotics (Basel) 2023; 12:antibiotics12040650. [PMID: 37107012 PMCID: PMC10135114 DOI: 10.3390/antibiotics12040650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
ATP, the power of all cellular functions, is constantly used and produced by cells. The enzyme called ATP synthase is the energy factory in all cells, which produces ATP by adding inorganic phosphate (Pi) to ADP. It is found in the inner, thylakoid and plasma membranes of mitochondria, chloroplasts and bacteria, respectively. Bacterial ATP synthases have been the subject of multiple studies for decades, since they can be genetically manipulated. With the emergence of antibiotic resistance, many combinations of antibiotics with other compounds that enhance the effect of these antibiotics have been proposed as approaches to limit the spread of antibiotic-resistant bacteria. ATP synthase inhibitors, such as resveratrol, venturicidin A, bedaquiline, tomatidine, piceatannol, oligomycin A and N,N-dicyclohexylcarbodiimide were the starting point of these combinations. However, each of these inhibitors target ATP synthase differently, and their co-administration with antibiotics increases the susceptibility of pathogenic bacteria. After a brief description of the structure and function of ATP synthase, we aim in this review to highlight therapeutic applications of the major bacterial ATP synthase inhibitors, including animal’s venoms, and to emphasize their importance in decreasing the activity of this enzyme and subsequently eradicating resistant bacteria as ATP synthase is their source of energy.
Collapse
|
6
|
Uzuncakmak SK, Dirican E, Ozcan H, Takim U. Relation of ATPase6 Mutations and Telomere Length in Schizophrenia Patients. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:162-170. [PMID: 36700322 PMCID: PMC9889911 DOI: 10.9758/cpn.2023.21.1.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/26/2021] [Accepted: 01/06/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Schizophrenia is a serious mental disorder. Mutations in mitochondrial genes can change energy metabolism. Telomere is a tandem sequence at the end of chromosomes. Shorter telomere length has been shown in schizophrenia. The aim of this study was to determine the relationship between ATPase6 gene mutations and telomere length in schizophrenia patients. METHODS Blood samples of 34 patients and 34 healthy controls were used. In this study conventional PCR, Sanger sequencing technic and real-time PCR were utilized. RESULTS Five different mutations (A8860G, A8836, G8697A, C8676T, and A8701G) in the ATPase6 gene were identified in schizophrenia patients. The most seen mutation was A8860G (94%). Telomere length analysis indicated the relation of ATPase6 gene mutations and telomere length variations (p = 0.001). Patients carrying the A8860G mutation had shorter telomere lengths than patients carrying other mutations. Comparing telomere length between schizophrenia patients and healthy controls revealed that the mean telomere length of schizophrenia patients was shorter than healthy controls (p = 0.006). The demographic analysis demonstrated a significant relationship between marital status and telomere length (p = 0.011). Besides that, the duration of the illness is another factor that impacts telomere length (p = 0.044). There is no significant relation between telomere length and other clinical and demographic characteristics including education status, age, gender, etc. CONCLUSION In conclusion, telomere length and ATPase6 gene mutations have a significant relation. Studies with larger patient populations and investigation of other mitochondrial gene mutations will make the clearer link between telomere length and mitochondrial mutations.
Collapse
Affiliation(s)
| | - Ebubekir Dirican
- Health Services Vocational School, Bayburt University, Bayburt, Turkey
| | - Halil Ozcan
- Faculty of Medicine, Department of Psychiatry, Atatürk University, Erzurum, Turkey
| | - Ugur Takim
- Faculty of Medicine, Department of Psychiatry, Atatürk University, Erzurum, Turkey
| |
Collapse
|
7
|
Ji C, Liu J, Luo R. Regulatory role of mitochondrial genes in the tenderisation of lamb meat during postmortem ageing. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chen Ji
- School of Agriculture Ningxia University Yinchuan Ningxia 750021 China
| | - Jijuan Liu
- School of Food and Wine Institute Ningxia University Yinchuan Ningxia 750021 China
| | - Ruiming Luo
- School of Agriculture Ningxia University Yinchuan Ningxia 750021 China
| |
Collapse
|
8
|
Kenvin S, Torregrosa-Muñumer R, Reidelbach M, Pennonen J, Turkia JJ, Rannila E, Kvist J, Sainio MT, Huber N, Herukka SK, Haapasalo A, Auranen M, Trokovic R, Sharma V, Ylikallio E, Tyynismaa H. Threshold of heteroplasmic truncating MT-ATP6 mutation in reprogramming, Notch hyperactivation and motor neuron metabolism. Hum Mol Genet 2021; 31:958-974. [PMID: 34635923 PMCID: PMC8947243 DOI: 10.1093/hmg/ddab299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 01/19/2023] Open
Abstract
Mutations in mitochondrial DNA encoded subunit of ATP synthase, MT-ATP6, are frequent causes of neurological mitochondrial diseases with a range of phenotypes from Leigh syndrome and NARP to ataxias and neuropathies. Here we investigated the functional consequences of an unusual heteroplasmic truncating mutation m.9154C>T in MT-ATP6, which caused peripheral neuropathy, ataxia and IgA nephropathy. ATP synthase not only generates cellular ATP, but its dimerization is required for mitochondrial cristae formation. Accordingly, the MT-ATP6 truncating mutation impaired the assembly of ATP synthase and disrupted cristae morphology, supporting our molecular dynamics simulations that predicted destabilized a/c subunit subcomplex. Next, we modeled the effects of the truncating mutation using patient-specific induced pluripotent stem cells. Unexpectedly, depending on mutation heteroplasmy level, the truncation showed multiple threshold effects in cellular reprogramming, neurogenesis and in metabolism of mature motor neurons (MN). Interestingly, MN differentiation beyond progenitor stage was impaired by Notch hyperactivation in the MT-ATP6 mutant, but not by rotenone-induced inhibition of mitochondrial respiration, suggesting that altered mitochondrial morphology contributed to Notch hyperactivation. Finally, we also identified a lower mutation threshold for a metabolic shift in mature MN, affecting lactate utilization, which may be relevant for understanding the mechanisms of mitochondrial involvement in peripheral motor neuropathies. These results establish a critical and disease-relevant role for ATP synthase in human cell fate decisions and neuronal metabolism.
Collapse
Affiliation(s)
- Sebastian Kenvin
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland
| | - Ruben Torregrosa-Muñumer
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland
| | | | - Jana Pennonen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland
| | - Jeremi J Turkia
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland
| | - Erika Rannila
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland
| | - Jouni Kvist
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland
| | - Markus T Sainio
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland
| | - Nadine Huber
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sanna-Kaisa Herukka
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland.,Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mari Auranen
- Clinical Neurosciences, Neurology, Helsinki University Hospital, Finland
| | - Ras Trokovic
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Finland.,HiLIFE Institute of Biotechnology, University of Helsinki, Finland
| | - Emil Ylikallio
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland.,Clinical Neurosciences, Neurology, Helsinki University Hospital, Finland
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Finland.,Neuroscience Center, HiLIFE, University of Helsinki, Finland
| |
Collapse
|
9
|
Zanfardino P, Doccini S, Santorelli FM, Petruzzella V. Tackling Dysfunction of Mitochondrial Bioenergetics in the Brain. Int J Mol Sci 2021; 22:8325. [PMID: 34361091 PMCID: PMC8348117 DOI: 10.3390/ijms22158325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Oxidative phosphorylation (OxPhos) is the basic function of mitochondria, although the landscape of mitochondrial functions is continuously growing to include more aspects of cellular homeostasis. Thanks to the application of -omics technologies to the study of the OxPhos system, novel features emerge from the cataloging of novel proteins as mitochondrial thus adding details to the mitochondrial proteome and defining novel metabolic cellular interrelations, especially in the human brain. We focussed on the diversity of bioenergetics demand and different aspects of mitochondrial structure, functions, and dysfunction in the brain. Definition such as 'mitoexome', 'mitoproteome' and 'mitointeractome' have entered the field of 'mitochondrial medicine'. In this context, we reviewed several genetic defects that hamper the last step of aerobic metabolism, mostly involving the nervous tissue as one of the most prominent energy-dependent tissues and, as consequence, as a primary target of mitochondrial dysfunction. The dual genetic origin of the OxPhos complexes is one of the reasons for the complexity of the genotype-phenotype correlation when facing human diseases associated with mitochondrial defects. Such complexity clinically manifests with extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. Finally, we briefly discuss the future directions of the multi-omics study of human brain disorders.
Collapse
Affiliation(s)
- Paola Zanfardino
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Stefano Doccini
- IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy;
| | | | - Vittoria Petruzzella
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy;
| |
Collapse
|
10
|
Exploring the Ability of LARS2 Carboxy-Terminal Domain in Rescuing the MELAS Phenotype. Life (Basel) 2021; 11:life11070674. [PMID: 34357047 PMCID: PMC8303833 DOI: 10.3390/life11070674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/25/2022] Open
Abstract
The m.3243A>G mutation within the mitochondrial mt-tRNALeu(UUR) gene is the most prevalent variant linked to mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome. This pathogenic mutation causes severe impairment of mitochondrial protein synthesis due to alterations of the mutated tRNA, such as reduced aminoacylation and a lack of post-transcriptional modification. In transmitochondrial cybrids, overexpression of human mitochondrial leucyl-tRNA synthetase (LARS2) has proven effective in rescuing the phenotype associated with m.3243A>G substitution. The rescuing activity resides in the carboxy-terminal domain (Cterm) of the enzyme; however, the precise molecular mechanisms underlying this process have not been fully elucidated. To deepen our knowledge on the rescuing mechanisms, we demonstrated the interactions of the Cterm with mutated mt-tRNALeu(UUR) and its precursor in MELAS cybrids. Further, the effect of Cterm expression on mitochondrial functions was evaluated. We found that Cterm ameliorates de novo mitochondrial protein synthesis, whilst it has no effect on mt-tRNALeu(UUR) steady-state levels and aminoacylation. Despite the complete recovery of cell viability and the increase in mitochondrial translation, Cterm-overexpressing cybrids were not able to recover bioenergetic competence. These data suggest that, in our MELAS cell model, the beneficial effect of Cterm may be mediated by factors that are independent of the mitochondrial bioenergetics.
Collapse
|
11
|
Riyas A, Kumar A, Chandran M, Jaleel A, Biju Kumar A. The venom proteome of three common scyphozoan jellyfishes (Chrysaora caliparea, Cyanea nozakii and Lychnorhiza malayensis) (Cnidaria: Scyphozoa) from the coastal waters of India. Toxicon 2021; 195:93-103. [PMID: 33741399 DOI: 10.1016/j.toxicon.2021.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 01/22/2023]
Abstract
The jellyfish venom stored in nematocysts contains highly toxic compounds comprising of polypeptides, enzymes and other proteins, which form their chemical defence armoury against predators. We have characterized the proteome of crude venom extract from three bloom-forming scyphozoan jellyfish along the south-west coast of India, Chrysaora caliparea, Cyanea nozakii and Lychnorhiza malayensis using a Quadrupole-Time of Flight (Q/TOF) mass spectrometry analysis. The most abundant toxin identified from Chrysaora caliparea and Lychnorhiza malayensis is similar to the pore-forming toxins and metalloproteinases. A protective antioxidant enzyme called peroxiredoxin was found abundantly in Cyanea nozakii. Metalloproteinase identified from the C. caliparea shows similarity with the venom of pit viper (Bothrops pauloensis), while that of L. malayensis was similar to the venom of snakes such as the Bothrops insularis and Bothrops asper. Kininogen-1 is a secreted protein, identified for the first time from the jellyfish L. malayensis. The proteome analysis of Cyanea nozakii, Chrysaora caliparea and Lychnorhiza malayensis contained 20, 12, 8 unique proteins, respectively. Our study characterized the proteome map of crude venom extract from L. malayensis and C. caliparea for the first time, and the venom profile is compared with published information elsewhere. Proteomic data from this study has been made available in the public domain.
Collapse
Affiliation(s)
- Abdul Riyas
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram, 695581, Kerala, India
| | - Aneesh Kumar
- Mass Spectrometry and Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Mahesh Chandran
- Mass Spectrometry and Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Abdul Jaleel
- Mass Spectrometry and Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Appukuttannair Biju Kumar
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram, 695581, Kerala, India.
| |
Collapse
|
12
|
Szczepanowska K, Trifunovic A. Tune instead of destroy: How proteolysis keeps OXPHOS in shape. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148365. [PMID: 33417924 DOI: 10.1016/j.bbabio.2020.148365] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria are highly dynamic and stress-responsive organelles that are renewed, maintained and removed by a number of different mechanisms. Recent findings bring more evidence for the focused, defined, and regulatory function of the intramitochondrial proteases extending far beyond the traditional concepts of damage control and stress responses. Until recently, the macrodegradation processes, such as mitophagy, were promoted as the major regulator of OXPHOS remodelling and turnover. However, the spatiotemporal dynamics of the OXPHOS system can be greatly modulated by the intrinsic mitochondrial mechanisms acting apart from changes in the global mitochondrial dynamics. This, in turn, may substantially contribute to the shaping of the metabolic status of the cell.
Collapse
Affiliation(s)
- Karolina Szczepanowska
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne D-50931 Cologne, Germany; Institute for Mitochondrial Diseases and Ageing, Medical Faculty and Center for Molecular Medicine Cologne (CMMC), D-50931 Cologne, Germany.
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne D-50931 Cologne, Germany; Institute for Mitochondrial Diseases and Ageing, Medical Faculty and Center for Molecular Medicine Cologne (CMMC), D-50931 Cologne, Germany.
| |
Collapse
|
13
|
Bahri H, Buratto J, Rojo M, Dompierre JP, Salin B, Blancard C, Cuvellier S, Rose M, Ben Ammar Elgaaied A, Tetaud E, di Rago JP, Devin A, Duvezin-Caubet S. TMEM70 forms oligomeric scaffolds within mitochondrial cristae promoting in situ assembly of mammalian ATP synthase proton channel. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118942. [PMID: 33359711 DOI: 10.1016/j.bbamcr.2020.118942] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/28/2020] [Accepted: 12/18/2020] [Indexed: 01/14/2023]
Abstract
Mitochondrial ATP-synthesis is catalyzed by a F1Fo-ATP synthase, an enzyme of dual genetic origin enriched at the edge of cristae where it plays a key role in their structure/stability. The enzyme's biogenesis remains poorly understood, both from a mechanistic and a compartmentalization point of view. The present study provides novel molecular insights into this process through investigations on a human protein called TMEM70 with an unclear role in the assembly of ATP synthase. A recent study has revealed the existence of physical interactions between TMEM70 and the subunit c (Su.c), a protein present in 8 identical copies forming a transmembrane oligomeric ring (c-ring) within the ATP synthase proton translocating domain (Fo). Herein we analyzed the ATP-synthase assembly in cells lacking TMEM70, mitochondrial DNA or F1 subunits and observe a direct correlation between TMEM70 and Su.c levels, regardless of the status of other ATP synthase subunits or of mitochondrial bioenergetics. Immunoprecipitation, two-dimensional blue-native/SDS-PAGE, and pulse-chase experiments reveal that TMEM70 forms large oligomers that interact with Su.c not yet incorporated into ATP synthase complexes. Moreover, discrete TMEM70-Su.c complexes with increasing Su.c contents can be detected, suggesting a role for TMEM70 oligomers in the gradual assembly of the c-ring. Furthermore, we demonstrate using expansion super-resolution microscopy the specific localization of TMEM70 at the inner cristae membrane, distinct from the MICOS component MIC60. Taken together, our results show that TMEM70 oligomers provide a scaffold for c-ring assembly and that mammalian ATP synthase is assembled within inner cristae membranes.
Collapse
Affiliation(s)
- Hela Bahri
- Université Bordeaux, IBGC, UMR 5095, F-33000 Bordeaux, France; CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France; Laboratoire de génétique, Immunologie et Pathologie Humaine, Faculté des sciences de Tunis, Université Tunis-El Manar FST, Tunis, Tunisie
| | - Jeremie Buratto
- Université Bordeaux, IBGC, UMR 5095, F-33000 Bordeaux, France; CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France; Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, F-33600 Pessac, France
| | - Manuel Rojo
- Université Bordeaux, IBGC, UMR 5095, F-33000 Bordeaux, France; CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Jim Paul Dompierre
- Université Bordeaux, IBGC, UMR 5095, F-33000 Bordeaux, France; CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Bénédicte Salin
- Université Bordeaux, IBGC, UMR 5095, F-33000 Bordeaux, France; CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Corinne Blancard
- Université Bordeaux, IBGC, UMR 5095, F-33000 Bordeaux, France; CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Sylvain Cuvellier
- Université Bordeaux, IBGC, UMR 5095, F-33000 Bordeaux, France; CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Marie Rose
- Université Bordeaux, IBGC, UMR 5095, F-33000 Bordeaux, France; CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Amel Ben Ammar Elgaaied
- Laboratoire de génétique, Immunologie et Pathologie Humaine, Faculté des sciences de Tunis, Université Tunis-El Manar FST, Tunis, Tunisie
| | - Emmanuel Tetaud
- Université Bordeaux, IBGC, UMR 5095, F-33000 Bordeaux, France; CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France; Laboratoire de Microbiologie Fondamentale et Pathogénicité UMR-CNRS 5234, 146 rue Léo Saignat, CEDEX F-33076 Bordeaux, France
| | - Jean-Paul di Rago
- Université Bordeaux, IBGC, UMR 5095, F-33000 Bordeaux, France; CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Anne Devin
- Université Bordeaux, IBGC, UMR 5095, F-33000 Bordeaux, France; CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Stéphane Duvezin-Caubet
- Université Bordeaux, IBGC, UMR 5095, F-33000 Bordeaux, France; CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France.
| |
Collapse
|
14
|
Fernandez-Vizarra E, Zeviani M. Mitochondrial disorders of the OXPHOS system. FEBS Lett 2020; 595:1062-1106. [PMID: 33159691 DOI: 10.1002/1873-3468.13995] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/21/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
Mitochondrial disorders are among the most frequent inborn errors of metabolism, their primary cause being the dysfunction of the oxidative phosphorylation system (OXPHOS). OXPHOS is composed of the electron transport chain (ETC), formed by four multimeric enzymes and two mobile electron carriers, plus an ATP synthase [also called complex V (cV)]. The ETC performs the redox reactions involved in cellular respiration while generating the proton motive force used by cV to synthesize ATP. OXPHOS biogenesis involves multiple steps, starting from the expression of genes encoded in physically separated genomes, namely the mitochondrial and nuclear DNA, to the coordinated assembly of components and cofactors building each individual complex and eventually the supercomplexes. The genetic cause underlying around half of the diagnosed mitochondrial disease cases is currently known. Many of these cases result from pathogenic variants in genes encoding structural subunits or additional factors directly involved in the assembly of the ETC complexes. Here, we review the historical and most recent findings concerning the clinical phenotypes and the molecular pathological mechanisms underlying this particular group of disorders.
Collapse
Affiliation(s)
- Erika Fernandez-Vizarra
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Massimo Zeviani
- Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Neurosciences, University of Padova, Italy
| |
Collapse
|
15
|
Wen JJ, Cummins CB, Williams TP, Radhakrishnan RS. The Genetic Evidence of Burn-Induced Cardiac Mitochondrial Metabolism Dysfunction. Biomedicines 2020; 8:biomedicines8120566. [PMID: 33287280 PMCID: PMC7761708 DOI: 10.3390/biomedicines8120566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
Burn-induced cardiac dysfunction is thought to involve mitochondrial dysfunction, although the mechanisms responsible are unclear. In this study, we used our established model of in vivo burn injury to understand the genetic evidence of burn-induced mitochondrial confusion dysfunction by describing cardiac mitochondrial metabolism-related gene expression after burn. Cardiac tissue was collected at 24 hours after burn injury. An O2K respirometer system was utilized to measure the cardiac mitochondrial function. Oxidative phosphorylation complex activities were determined using enzyme activity assays. RT Profiler PCR array was used to identify the differential regulation of genes involved in mitochondrial biogenesis and metabolism. The quantitative qPCR and Western blotting were applied to validate the differentially expressed genes. Burn-induced cardiac mitochondrial dysfunction was supported by the finding of decreased state 3 respiration, decreased mitochondrial electron transport chain activity in complex I, III, IV, and V, and decreased mitochondrial DNA-encoded gene expression as well as decreased levels of the corresponding proteins after burn injury. Eighty-four mitochondrial metabolism-related gene profiles were measured. The mitochondrial gene profile showed that 29 genes related to mitochondrial energy and metabolism was differentially expressed. Of these 29 genes, 16 were more than 2-fold upregulated and 13 were more than 2-fold downregulated. All genes were validated using qPCR and partial genes were correlated with their protein levels. This study provides preliminary evidence that a large percentage of mitochondrial metabolism-related genes in cardiomyocytes were significantly affected by burn injury.
Collapse
Affiliation(s)
- Jake J. Wen
- Correspondence: (J.J.W.); (R.S.R.); Tel.: +1-409-772-5666 (J.J.W. & R.S.R.)
| | | | | | | |
Collapse
|
16
|
Mitochondrial OXPHOS Biogenesis: Co-Regulation of Protein Synthesis, Import, and Assembly Pathways. Int J Mol Sci 2020; 21:ijms21113820. [PMID: 32481479 PMCID: PMC7312649 DOI: 10.3390/ijms21113820] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023] Open
Abstract
The assembly of mitochondrial oxidative phosphorylation (OXPHOS) complexes is an intricate process, which—given their dual-genetic control—requires tight co-regulation of two evolutionarily distinct gene expression machineries. Moreover, fine-tuning protein synthesis to the nascent assembly of OXPHOS complexes requires regulatory mechanisms such as translational plasticity and translational activators that can coordinate mitochondrial translation with the import of nuclear-encoded mitochondrial proteins. The intricacy of OXPHOS complex biogenesis is further evidenced by the requirement of many tightly orchestrated steps and ancillary factors. Early-stage ancillary chaperones have essential roles in coordinating OXPHOS assembly, whilst late-stage assembly factors—also known as the LYRM (leucine–tyrosine–arginine motif) proteins—together with the mitochondrial acyl carrier protein (ACP)—regulate the incorporation and activation of late-incorporating OXPHOS subunits and/or co-factors. In this review, we describe recent discoveries providing insights into the mechanisms required for optimal OXPHOS biogenesis, including the coordination of mitochondrial gene expression with the availability of nuclear-encoded factors entering via mitochondrial protein import systems.
Collapse
|
17
|
Mukherjee S, Ghosh A. Molecular mechanism of mitochondrial respiratory chain assembly and its relation to mitochondrial diseases. Mitochondrion 2020; 53:1-20. [PMID: 32304865 DOI: 10.1016/j.mito.2020.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/28/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022]
Abstract
The mitochondrial respiratory chain (MRC) is comprised of ~92 nuclear and mitochondrial DNA-encoded protein subunits that are organized into five different multi-subunit respiratory complexes. These complexes produce 90% of the ATP required for cell sustenance. Specific sets of subunits are assembled in a modular or non-modular fashion to construct the MRC complexes. The complete assembly process is gradually chaperoned by a myriad of assembly factors that must coordinate with several other prosthetic groups to reach maturity, makingthe entire processextensively complicated. Further, the individual respiratory complexes can be integrated intovarious giant super-complexes whose functional roles have yet to be explored. Mutations in the MRC subunits and in the related assembly factors often give rise to defects in the proper assembly of the respiratory chain, which then manifests as a group of disorders called mitochondrial diseases, the most common inborn errors of metabolism. This review summarizes the current understanding of the biogenesis of individual MRC complexes and super-complexes, and explores how mutations in the different subunits and assembly factors contribute to mitochondrial disease pathology.
Collapse
Affiliation(s)
- Soumyajit Mukherjee
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| | - Alok Ghosh
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India.
| |
Collapse
|
18
|
Sánchez-Caballero L, Elurbe DM, Baertling F, Guerrero-Castillo S, van den Brand M, van Strien J, van Dam TJP, Rodenburg R, Brandt U, Huynen MA, Nijtmans LGJ. TMEM70 functions in the assembly of complexes I and V. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148202. [PMID: 32275929 DOI: 10.1016/j.bbabio.2020.148202] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/19/2020] [Accepted: 04/02/2020] [Indexed: 10/24/2022]
Abstract
Protein complexes from the oxidative phosphorylation (OXPHOS) system are assembled with the help of proteins called assembly factors. We here delineate the function of the inner mitochondrial membrane protein TMEM70, in which mutations have been linked to OXPHOS deficiencies, using a combination of BioID, complexome profiling and coevolution analyses. TMEM70 interacts with complex I and V and for both complexes the loss of TMEM70 results in the accumulation of an assembly intermediate followed by a reduction of the next assembly intermediate in the pathway. This indicates that TMEM70 has a role in the stability of membrane-bound subassemblies or in the membrane recruitment of subunits into the forming complex. Independent evidence for a role of TMEM70 in OXPHOS assembly comes from evolutionary analyses. The TMEM70/TMEM186/TMEM223 protein family, of which we show that TMEM186 and TMEM223 are mitochondrial in human as well, only occurs in species with OXPHOS complexes. Our results validate the use of combining complexome profiling with BioID and evolutionary analyses in elucidating congenital defects in protein complex assembly.
Collapse
Affiliation(s)
- Laura Sánchez-Caballero
- Department of Paediatrics, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Dei M Elurbe
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Fabian Baertling
- Department of Paediatrics, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of General Paediatrics, Neonatology and Paediatric Cardiology, University Children's Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Sergio Guerrero-Castillo
- Department of Paediatrics, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Mariel van den Brand
- Department of Paediatrics, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Joeri van Strien
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Teunis J P van Dam
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Richard Rodenburg
- Department of Paediatrics, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Ulrich Brandt
- Department of Paediatrics, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, the Netherlands.
| | - Leo G J Nijtmans
- Department of Paediatrics, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
19
|
Signes A, Fernandez-Vizarra E. Assembly of mammalian oxidative phosphorylation complexes I-V and supercomplexes. Essays Biochem 2018; 62:255-270. [PMID: 30030361 PMCID: PMC6056720 DOI: 10.1042/ebc20170098] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 01/30/2023]
Abstract
The assembly of the five oxidative phosphorylation system (OXPHOS) complexes in the inner mitochondrial membrane is an intricate process. The human enzymes comprise core proteins, performing the catalytic activities, and a large number of 'supernumerary' subunits that play essential roles in assembly, regulation and stability. The correct addition of prosthetic groups as well as chaperoning and incorporation of the structural components require a large number of factors, many of which have been found mutated in cases of mitochondrial disease. Nowadays, the mechanisms of assembly for each of the individual complexes are almost completely understood and the knowledge about the assembly factors involved is constantly increasing. On the other hand, it is now well established that complexes I, III and IV interact with each other, forming the so-called respiratory supercomplexes or 'respirasomes', although the pathways that lead to their formation are still not completely clear. This review is a summary of our current knowledge concerning the assembly of complexes I-V and of the supercomplexes.
Collapse
Affiliation(s)
- Alba Signes
- MRC-Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, U.K
| | - Erika Fernandez-Vizarra
- MRC-Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, U.K.
| |
Collapse
|
20
|
Angural A, Sharma I, Pandoh P, Sharma V, Spolia A, Rai E, Singh V, Razdan S, Pandita KK, Sharma S. A case report on a novel MT-ATP6 gene variation in atypical mitochondrial Leigh syndrome associated with bilateral basal ganglia calcifications. Mitochondrion 2018; 46:209-213. [PMID: 29929013 DOI: 10.1016/j.mito.2018.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/01/2018] [Accepted: 06/15/2018] [Indexed: 01/30/2023]
Abstract
Leigh Syndrome (LS) is a rare, hereditary progressive neurodegenerative disorder of infancy or early childhood associated with a highly variable clinical presentation even among siblings. Further, genetic heterogeneity makes its diagnosis complicated. Its causative genetic variations are notified in some of the mitochondrial and nuclear genes. Here, we report an atypical case of LS in a 9-year-old boy associated with a novel variation in MT-ATP6 gene. The atypical findings were Bilateral Basal Ganglia Calcification (BGC) and late survival age in the patient. Analyses of the Whole Mitochondrial Genome Sequencing (WMGS) results of the recruited patient and his mother at different read coverage, first at 100× and later repeated at 500×, revealed a novel disease-associated variation in the already known disease-associated MT-ATP6 gene. In conclusion, the present study indicates amalgamation of both neuro-imaging and Next Generation Sequencing (NGS) Technologies aiding the proper diagnosis of LS in atypical cases.
Collapse
Affiliation(s)
- Arshia Angural
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir 182320, India
| | - Indu Sharma
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir 182320, India
| | - Pranav Pandoh
- Acharya Shri Chander College of Medical Sciences and Hospital, Sidra, Jammu and Kashmir 180017, India
| | - Varun Sharma
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir 182320, India
| | - Akshi Spolia
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir 182320, India
| | - Ekta Rai
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir 182320, India
| | - Vinod Singh
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir 182320, India
| | - Sushil Razdan
- Neurology Clinic, 7 Bhagwati Nagar, Jammu and Kashmir 180001, India; Shri Mata Vaishno Devi Narayana Superspeciality Hospital, Katra, Jammu and Kashmir 182320, India
| | - Kamal Kishore Pandita
- Shri Mata Vaishno Devi Narayana Superspeciality Hospital, Katra, Jammu and Kashmir 182320, India; Health Clinic, H. No. 62, Lane 11, Swam Vihar, Muthi, Jammu and Kashmir 181205, India.
| | - Swarkar Sharma
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir 182320, India.
| |
Collapse
|
21
|
New insights into mitogenomic phylogeny and copy number in eight indigenous sheep populations based on the ATP synthase and cytochrome c oxidase genes. Animal 2017; 12:1341-1349. [PMID: 29143714 DOI: 10.1017/s175173111700297x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The origins and phylogeny of different sheep breeds has been widely studied using polymorphisms within the mitochondrial hypervariable region. However, little is known about the mitochondrial DNA (mtDNA) content and phylogeny based on mtDNA protein-coding genes. In this study, we assessed the phylogeny and copy number of the mtDNA in eight indigenous (population size, n=184) and three introduced (n=66) sheep breeds in China based on five mitochondrial coding genes (COX1, COX2, ATP8, ATP6 and COX3). The mean haplotype and nucleotide diversities were 0.944 and 0.00322, respectively. We identified a correlation between the lineages distribution and the genetic distance, whereby Valley-type Tibetan sheep had a closer genetic relationship with introduced breeds (Dorper, Poll Dorset and Suffolk) than with other indigenous breeds. Similarly, the Median-joining profile of haplotypes revealed the distribution of clusters according to genetic differences. Moreover, copy number analysis based on the five mitochondrial coding genes was affected by the genetic distance combining with genetic phylogeny; we also identified obvious non-synonymous mutations in ATP6 between the different levels of copy number expressions. These results imply that differences in mitogenomic compositions resulting from geographical separation lead to differences in mitochondrial function.
Collapse
|
22
|
Yi L, Ai Y, Ming L, Hai L, He J, Guo FC, Qiao XY, Ji R. Molecular diversity and phylogenetic analysis of domestic and wild Bactrian camel populations based on the mitochondrial ATP8 and ATP6 genes. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Lu YW, Acoba MG, Selvaraju K, Huang TC, Nirujogi RS, Sathe G, Pandey A, Claypool SM. Human adenine nucleotide translocases physically and functionally interact with respirasomes. Mol Biol Cell 2017; 28:1489-1506. [PMID: 28404750 PMCID: PMC5449148 DOI: 10.1091/mbc.e17-03-0195] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 03/30/2017] [Accepted: 04/04/2017] [Indexed: 11/11/2022] Open
Abstract
A network of interactions for human adenine nucleotide translocases, required for oxidative phosphorylation, is reported. Of particular interest is an evolutionarily conserved and functionally important association with respiratory supercomplexes, which is surprising because the respirasomes of yeast and mammals are different. Members of the adenine nucleotide translocase (ANT) family exchange ADP for ATP across the mitochondrial inner membrane, an activity that is essential for oxidative phosphorylation (OXPHOS). Mutations in or dysregulation of ANTs is associated with progressive external ophthalmoplegia, cardiomyopathy, nonsyndromic intellectual disability, apoptosis, and the Warburg effect. Binding partners of human ANTs have not been systematically identified. The absence of such information has prevented a detailed molecular understanding of the assorted ANT-associated diseases, including insight into their disparate phenotypic manifestations. To fill this void, in this study, we define the interactomes of two human ANT isoforms. Analogous to its yeast counterpart, human ANTs associate with heterologous partner proteins, including the respiratory supercomplex (RSC) and other solute carriers. The evolutionarily conserved ANT–RSC association is particularly noteworthy because the composition, and thereby organization, of RSCs in yeast and human is different. Surprisingly, absence of the major ANT isoform only modestly impairs OXPHOS in HEK293 cells, indicating that the low levels of other isoforms provide functional redundancy. In contrast, pharmacological inhibition of OXPHOS expression and function inhibits ANT-dependent ADP/ATP exchange. Thus ANTs and the OXPHOS machinery physically interact and functionally cooperate to enhance ANT transport capacity and mitochondrial respiration.
Collapse
Affiliation(s)
- Ya-Wen Lu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Michelle Grace Acoba
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Kandasamy Selvaraju
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Tai-Chung Huang
- McKusick-Nathans Institute of Genetic Medicine, Departments of Biological Chemistry, Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185.,Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei 10051, Taiwan
| | - Raja S Nirujogi
- McKusick-Nathans Institute of Genetic Medicine, Departments of Biological Chemistry, Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Gajanan Sathe
- McKusick-Nathans Institute of Genetic Medicine, Departments of Biological Chemistry, Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Departments of Biological Chemistry, Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| |
Collapse
|
24
|
Liu Y, Liu L, Ying XX, Wei WJ, Han C, Liu Y, Han CH, Leng AJ, Ma JY, Liu J. Dried Rehmannia root protects against glutamate-induced cytotoxity to PC12 cells through energy metabolism-related pathways. Neural Regen Res 2017; 12:1338-1346. [PMID: 28966650 PMCID: PMC5607830 DOI: 10.4103/1673-5374.213556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rehmannia has been shown to be clinically effective in treating neurodegenerative diseases; however, the neuroprotective mechanisms remain unclear. In this study, we established a model of neurodegenerative disease using PC12 cytotoxic injury induced by glutamate. The cells were treated with 20 mM glutamate in the absence or presence of water extracts of dried Rehmannia root of varying concentrations (70%, 50% and 30%). The different concentrations of Rehmannia water extract significantly increased the activity of glutamate-injured cells, reduced the release of lactate dehydrogenase, inhibited apoptosis, increased the concentrations of NADH, NAD and ATP in cells, ameliorated mitochondrial membrane potential, and reduced the levels of light chain 3. Taken together, our findings demonstrate that Rehmannia water extracts exert a cytoprotective effect against glutamate-induced PC12 cell injury via energy metabolism-related pathways.
Collapse
Affiliation(s)
- Yong Liu
- Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China.,Department of Traditional Chinese Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Lei Liu
- Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Xi-Xiang Ying
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, China
| | - Wen-Juan Wei
- Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Chao Han
- Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Yang Liu
- Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Chun-Hui Han
- Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China.,Traditional Chinese Medicine Pharmacy, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Ai-Jing Leng
- Traditional Chinese Medicine Pharmacy, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Jing-Yun Ma
- Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Jing Liu
- Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
25
|
Dzien P, Tee S, Kettunen MI, Lyons SK, Larkin TJ, Timm KN, Hu D, Wright A, Rodrigues TB, Serrao EM, Marco‐Rius I, Mannion E, D'Santos P, Kennedy BWC, Brindle KM. (13) C magnetic resonance spectroscopy measurements with hyperpolarized [1-(13) C] pyruvate can be used to detect the expression of transgenic pyruvate decarboxylase activity in vivo. Magn Reson Med 2016; 76:391-401. [PMID: 26388418 PMCID: PMC5025726 DOI: 10.1002/mrm.25879] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 12/03/2022]
Abstract
PURPOSE Dissolution dynamic nuclear polarization can increase the sensitivity of the (13) C magnetic resonance spectroscopy experiment by at least four orders of magnitude and offers a novel approach to the development of MRI gene reporters based on enzymes that metabolize (13) C-labeled tracers. We describe here a gene reporter based on the enzyme pyruvate decarboxylase (EC 4.1.1.1), which catalyzes the decarboxylation of pyruvate to produce acetaldehyde and carbon dioxide. METHODS Pyruvate decarboxylase from Zymomonas mobilis (zmPDC) and a mutant that lacked enzyme activity were expressed using an inducible promoter in human embryonic kidney (HEK293T) cells. Enzyme activity was measured in the cells and in xenografts derived from the cells using (13) C MRS measurements of the conversion of hyperpolarized [1-(13) C] pyruvate to H(13) CO3-. RESULTS Induction of zmPDC expression in the cells and in the xenografts derived from them resulted in an approximately two-fold increase in the H(13) CO3-/[1-(13) C] pyruvate signal ratio following intravenous injection of hyperpolarized [1-(13) C] pyruvate. CONCLUSION We have demonstrated the feasibility of using zmPDC as an in vivo reporter gene for use with hyperpolarized (13) C MRS. Magn Reson Med 76:391-401, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Piotr Dzien
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreCambridgeUK.
| | - Sui‐Seng Tee
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreCambridgeUK.
| | - Mikko I. Kettunen
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreCambridgeUK.
- Present address: A. I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandNeulaniementieKuopioFinland.
| | - Scott K. Lyons
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreCambridgeUK.
| | | | - Kerstin N. Timm
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - De‐En Hu
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreCambridgeUK.
| | - Alan Wright
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreCambridgeUK.
| | - Tiago B. Rodrigues
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreCambridgeUK.
| | - Eva M. Serrao
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreCambridgeUK.
| | | | - Elizabeth Mannion
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreCambridgeUK.
| | - Paula D'Santos
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreCambridgeUK.
| | | | - Kevin M. Brindle
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreCambridgeUK.
| |
Collapse
|
26
|
Ma X, Kang J, Chen W, Zhou C, He S. Biogeographic history and high-elevation adaptations inferred from the mitochondrial genome of Glyptosternoid fishes (Sisoridae, Siluriformes) from the southeastern Tibetan Plateau. BMC Evol Biol 2015; 15:233. [PMID: 26511921 PMCID: PMC4625616 DOI: 10.1186/s12862-015-0516-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/20/2015] [Indexed: 01/19/2023] Open
Abstract
Background The distribution of the Chinese Glyptosternoid catfish is limited to the rivers of the Tibetan Plateau and peripheral regions, especially the drainage areas of southeastern Tibet. Therefore, Glyptosternoid fishes are ideal for reconstructing the geological history of the southeastern Tibet drainage patterns and mitochondrial genetic adaptions to high elevations. Results Our phylogenetic results support the monophyly of the Sisoridae and the Glyptosternoid fishes. The reconstructed ancestral geographical distribution suggests that the ancestral Glyptosternoids was widely distributed throughout the Brahmaputra drainage in the eastern Himalayas and Tibetan area during the Late Miocene (c. 5.5 Ma). We found that the Glyptosternoid fishes lineage had a higher ratio of nonsynonymous to synonymous substitutions than those found in non-Glyptosternoids. In addition, ωpss was estimated to be 10.73, which is significantly higher than 1 (p-value 0.0002), in COX1, which indicates positive selection in the common ancestral branch of Glyptosternoid fishes in China. We also found other signatures of positive selection in the branch of specialized species. These results imply mitochondrial genetic adaptation to high elevations in the Glyptosternoids. Conclusions We reconstructed a possible scenario for the southeastern Tibetan drainage patterns based on the adaptive geographical distribution of the Chinese Glyptosternoids in this drainage. The Glyptosternoids may have experienced accelerated evolutionary rates in mitochondrial genes that were driven by positive selection to better adapt to the high-elevation environment of the Tibetan Plateau. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0516-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiuhui Ma
- School of Life Science, Southwest University, Beibei, Chongqing, 400715, China. .,The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.
| | - Jingliang Kang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China. .,University of Chinese Academy of Sciences, Beijing, 10001, China.
| | - Weitao Chen
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China. .,University of Chinese Academy of Sciences, Beijing, 10001, China.
| | - Chuanjiang Zhou
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.
| | - Shunping He
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.
| |
Collapse
|
27
|
Assembly of human mitochondrial ATP synthase through two separate intermediates, F1-c-ring andb-e-gcomplex. FEBS Lett 2015; 589:2707-12. [DOI: 10.1016/j.febslet.2015.08.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 08/04/2015] [Accepted: 08/09/2015] [Indexed: 12/22/2022]
|
28
|
Alteration of structure and function of ATP synthase and cytochrome c oxidase by lack of Fo-a and Cox3 subunits caused by mitochondrial DNA 9205delTA mutation. Biochem J 2015; 466:601-11. [PMID: 25588698 DOI: 10.1042/bj20141462] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mutations in the MT-ATP6 gene are frequent causes of severe mitochondrial disorders. Typically, these are missense mutations, but another type is represented by the 9205delTA microdeletion, which removes the stop codon of the MT-ATP6 gene and affects the cleavage site in the MT-ATP8/MT-ATP6/MT-CO3 polycistronic transcript. This interferes with the processing of mRNAs for the Atp6 (Fo-a) subunit of ATP synthase and the Cox3 subunit of cytochrome c oxidase (COX). Two cases described so far presented with strikingly different clinical phenotypes-mild transient lactic acidosis or fatal encephalopathy. To gain more insight into the pathogenic mechanism, we prepared 9205delTA cybrids with mutation load ranging between 52 and 99% and investigated changes in the structure and function of ATP synthase and the COX. We found that 9205delTA mutation strongly reduces the levels of both Fo-a and Cox3 proteins. Lack of Fo-a alters the structure but not the content of ATP synthase, which assembles into a labile, ∼60 kDa smaller, complex retaining ATP hydrolytic activity but which is unable to synthesize ATP. In contrast, lack of Cox3 limits the biosynthesis of COX but does not alter the structure of the enzyme. Consequently, the diminished mitochondrial content of COX and non-functional ATP synthase prevent most mitochondrial ATP production. The biochemical effects caused by the 9205delTA microdeletion displayed a pronounced threshold effect above ∼90% mutation heteroplasmy. We observed a linear relationship between the decrease in subunit Fo-a or Cox3 content and the functional presentation of the defect. Therefore we conclude that the threshold effect originated from a gene-protein level.
Collapse
|
29
|
Jia M, Wang M, Yang Y, Chen Y, Liu D, Wang X, Song L, Wu J, Yang Y. rAAV/ABAD-DP-6His attenuates oxidative stress-induced injury of PC12 cells. Neural Regen Res 2014; 9:481-8. [PMID: 25206842 PMCID: PMC4153500 DOI: 10.4103/1673-5374.130065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2014] [Indexed: 11/04/2022] Open
Abstract
Our previous studies have revealed that amyloid β (Aβ)-binding alcohol dehydrogenase (ABAD) decoy peptide antagonizes Aβ42-induced neurotoxicity. However, whether it improves oxidative stress injury remains unclear. In this study, a recombinant adenovirus constitutively secreting and expressing Aβ-ABAD decoy peptide (rAAV/ABAD-DP-6His) was successfully constructed. Our results showed that rAAV/ABAD-DP-6His increased superoxide dismutase activity in hydrogen peroxide-induced oxidative stress-mediated injury of PC12 cells. Moreover, rAAV/ABAD-DP-6His decreased malondialdehyde content, intracellular Ca(2+) concentration, and the level of reactive oxygen species. rAAV/ABAD-DP-6His maintained the stability of the mitochondrial membrane potential. In addition, the ATP level remained constant, and apoptosis was reduced. Overall, the results indicate that rAAV/ABAD-DP-6His generates the fusion peptide, Aβ-ABAD decoy peptide, which effectively protects PC12 cells from oxidative stress injury induced by hydrogen peroxide, thus exerting neuroprotective effects.
Collapse
Affiliation(s)
- Mingyue Jia
- Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Mingyu Wang
- Department of Neurology, People's Hospital of Jilin Province, Changchun, Jilin Province, China
| | - Yi Yang
- Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yixin Chen
- Radioactive Medicine Specialty, College of Public Health in Jilin University, Changchun, Jilin Province, China
| | - Dujuan Liu
- Department of Burn and Plastic Surgery, the General Hospital of CNPC in Jilin, Jilin, Jilin Province, China
| | - Xu Wang
- Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Lei Song
- Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jiang Wu
- Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yu Yang
- Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
30
|
Kratochvílová H, Hejzlarová K, Vrbacký M, Mráček T, Karbanová V, Tesařová M, Gombitová A, Cmarko D, Wittig I, Zeman J, Houštěk J. Mitochondrial membrane assembly of TMEM70 protein. Mitochondrion 2014; 15:1-9. [DOI: 10.1016/j.mito.2014.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/04/2014] [Accepted: 02/18/2014] [Indexed: 01/09/2023]
|
31
|
Torraco A, Verrigni D, Rizza T, Meschini MC, Vazquez-Memije ME, Martinelli D, Bianchi M, Piemonte F, Dionisi-Vici C, Santorelli FM, Bertini E, Carrozzo R. TMEM70: a mutational hot spot in nuclear ATP synthase deficiency with a pivotal role in complex V biogenesis. Neurogenetics 2012; 13:375-86. [DOI: 10.1007/s10048-012-0343-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 09/03/2012] [Indexed: 02/01/2023]
|
32
|
Li L, Carrie C, Nelson C, Whelan J, Millar AH. Accumulation of newly synthesized F1 in vivo in arabidopsis mitochondria provides evidence for modular assembly of the plant F1Fo ATP synthase. J Biol Chem 2012; 287:25749-57. [PMID: 22674576 DOI: 10.1074/jbc.m112.373506] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
F(1) subcomplex in mitochondrial samples is often considered to be a breakage product of the F(1)F(O) ATP synthase during sample handling and electrophoresis. We have used a progressive (15)N incorporation strategy to investigate the plant F(1)F(O) ATP synthase assembly model and the apparently free F(1) in plant mitochondria which is found in both the inner membrane and matrix. We show that subunits within F(1) in the inner membrane and matrix had a relatively higher (15)N incorporation rate than corresponding subunits in intact membrane F(1)F(O). This demonstrates that free F(1) was a newer pool with a faster turnover rate consistent with it being an assembly intermediate in vivo. Import of [(35)S]Met-labeled F(1) subunit precursors into Arabidopsis mitochondria showed the rapid accumulation of F(1) assembly intermediates. The different (15)N incorporation rate in matrix F(1), inner membrane F(1) and intact F(1)F(O) demonstrates these three represent different protein populations and are likely step by step intermediates during the assembly process of plant mitochondrial ATP synthase. The potential biological implications of in vivo accumulation of enzymatically active F(1) in mitochondria are discussed.
Collapse
Affiliation(s)
- Lei Li
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley WA 6009, Western Australia, Australia
| | | | | | | | | |
Collapse
|
33
|
Jonckheere AI, Smeitink JAM, Rodenburg RJT. Mitochondrial ATP synthase: architecture, function and pathology. J Inherit Metab Dis 2012; 35:211-25. [PMID: 21874297 PMCID: PMC3278611 DOI: 10.1007/s10545-011-9382-9] [Citation(s) in RCA: 415] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/22/2011] [Accepted: 07/27/2011] [Indexed: 12/16/2022]
Abstract
Human mitochondrial (mt) ATP synthase, or complex V consists of two functional domains: F(1), situated in the mitochondrial matrix, and F(o), located in the inner mitochondrial membrane. Complex V uses the energy created by the proton electrochemical gradient to phosphorylate ADP to ATP. This review covers the architecture, function and assembly of complex V. The role of complex V di-and oligomerization and its relation with mitochondrial morphology is discussed. Finally, pathology related to complex V deficiency and current therapeutic strategies are highlighted. Despite the huge progress in this research field over the past decades, questions remain to be answered regarding the structure of subunits, the function of the rotary nanomotor at a molecular level, and the human complex V assembly process. The elucidation of more nuclear genetic defects will guide physio(patho)logical studies, paving the way for future therapeutic interventions.
Collapse
Affiliation(s)
- An I. Jonckheere
- Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, 656 Laboratory for Genetic, Endocrine, and Metabolic Disorders, Radboud University Nijmegen Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Jan A. M. Smeitink
- Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, 656 Laboratory for Genetic, Endocrine, and Metabolic Disorders, Radboud University Nijmegen Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Richard J. T. Rodenburg
- Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, 656 Laboratory for Genetic, Endocrine, and Metabolic Disorders, Radboud University Nijmegen Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
34
|
Assembly Factors of Human Mitochondrial Respiratory Chain Complexes: Physiology and Pathophysiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 748:65-106. [DOI: 10.1007/978-1-4614-3573-0_4] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Vantourout P, Radojkovic C, Lichtenstein L, Pons V, Champagne E, Martinez LO. Ecto-F 1-ATPase: A moonlighting protein complex and an unexpected apoA-I receptor. World J Gastroenterol 2010; 16:5925-35. [PMID: 21157968 PMCID: PMC3007107 DOI: 10.3748/wjg.v16.i47.5925] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial ATP synthase has been recently detected at the surface of different cell types, where it is a high affinity receptor for apoA-I, the major protein component in high density lipoproteins (HDL). Cell surface ATP synthase (namely ecto-F1-ATPase) expression is related to different biological effects, such as regulation of HDL uptake by hepatocytes, endothelial cell proliferation or antitumor activity of Vγ9/Vδ2 T lymphocytes. This paper reviews the recently discovered functions and regulations of ecto-F1-ATPase. Particularly, the role of the F1-ATPase pathway(s) in HDL-cholesterol uptake and apoA-I-mediated endothelial protection suggests its potential importance in reverse cholesterol transport and its regulation might represent a potential therapeutic target for HDL-related therapy for cardiovascular diseases. Therefore, it is timely for us to better understand how this ecto-enzyme and downstream pathways are regulated and to develop pharmacologic interventions.
Collapse
|
36
|
Mayr JA, Havlícková V, Zimmermann F, Magler I, Kaplanová V, Jesina P, Pecinová A, Nusková H, Koch J, Sperl W, Houstek J. Mitochondrial ATP synthase deficiency due to a mutation in the ATP5E gene for the F1 epsilon subunit. Hum Mol Genet 2010; 19:3430-9. [PMID: 20566710 DOI: 10.1093/hmg/ddq254] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
F1Fo-ATP synthase is a key enzyme of mitochondrial energy provision producing most of cellular ATP. So far, mitochondrial diseases caused by isolated disorders of the ATP synthase have been shown to result from mutations in mtDNA genes for the subunits ATP6 and ATP8 or in nuclear genes encoding the biogenesis factors TMEM70 and ATPAF2. Here, we describe a patient with a homozygous p.Tyr12Cys mutation in the epsilon subunit encoded by the nuclear gene ATP5E. The 22-year-old woman presented with neonatal onset, lactic acidosis, 3-methylglutaconic aciduria, mild mental retardation and developed peripheral neuropathy. Patient fibroblasts showed 60-70% decrease in both oligomycin-sensitive ATPase activity and mitochondrial ATP synthesis. The mitochondrial content of the ATP synthase complex was equally reduced, but its size was normal and it contained the mutated epsilon subunit. A similar reduction was found in all investigated F1 and Fo subunits with the exception of Fo subunit c, which was found to accumulate in a detergent-insoluble form. This is the first case of a mitochondrial disease due to a mutation in a nuclear encoded structural subunit of the ATP synthase. Our results indicate an essential role of the epsilon subunit in the biosynthesis and assembly of the F1 part of the ATP synthase. Furthermore, the epsilon subunit seems to be involved in the incorporation of subunit c to the rotor structure of the mammalian enzyme.
Collapse
Affiliation(s)
- Johannes A Mayr
- Department of Pediatrics, Paracelsus Medical University, Salzburg A5020, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Havlícková V, Kaplanová V, Nůsková H, Drahota Z, Houstek J. Knockdown of F1 epsilon subunit decreases mitochondrial content of ATP synthase and leads to accumulation of subunit c. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1797:1124-9. [PMID: 20026007 DOI: 10.1016/j.bbabio.2009.12.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/11/2009] [Accepted: 12/13/2009] [Indexed: 10/20/2022]
Abstract
The subunit epsilon of mitochondrial ATP synthase is the only F1 subunit without a homolog in bacteria and chloroplasts and represents the least characterized F1 subunit of the mammalian enzyme. Silencing of the ATP5E gene in HEK293 cells resulted in downregulation of the activity and content of the mitochondrial ATP synthase complex and of ADP-stimulated respiration to approximately 40% of the control. The decreased content of the epsilon subunit was paralleled by a decrease in the F1 subunits alpha and beta and in the Fo subunits a and d while the content of the subunit c was not affected. The subunit c was present in the full-size ATP synthase complex and in subcomplexes of 200-400 kDa that neither contained the F1 subunits, nor the Fo subunits. The results indicate that the epsilon subunit is essential for the assembly of F1 and plays an important role in the incorporation of the hydrophobic subunit c into the F1-c oligomer rotor of the mitochondrial ATP synthase complex.
Collapse
Affiliation(s)
- Vendula Havlícková
- Department of Bioenergetics, Institute of Physiology and Centre for Applied Genomics, Academy of Sciences of the Czech Republic, 142 20 Prague
| | | | | | | | | |
Collapse
|
38
|
Di Rocco F, Zambelli AD, Vidal Rioja LB. Identification of camelid specific residues in mitochondrial ATP synthase subunits. J Bioenerg Biomembr 2009; 41:223-8. [PMID: 19578988 DOI: 10.1007/s10863-009-9221-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 05/28/2009] [Indexed: 10/20/2022]
Abstract
ATP synthase is an enzyme involved in oxidative phosphorylation from prokaryotic to eukaryotic cells. In mammals it comprises at least 16 subunits from which the mitochondrial encoded ATP6 and ATP8 are essential. Mitochondrial genes variations have been suggested to allow rapid human and animal adaptation to new climates and dietary conditions (Mishmar et al. 2003). Camelidae taxa are uniquely adapted to extremely hot and dry climates of African-Asian territories and to cold and hypoxic environments of the South American Andean region. We sequenced and analyzed ATP6 and ATP8 genes in all camelid species. Based on the available structural data and evolutionary conservation of the deduced proteins we identified features proper of the group. In Old World camels the ATP8, important in the assembly of the F0 complex, showed a number of positively charged residues higher than in the other aligned species. In ATP6 we found the camelid specific substitutions Q47H and I106V that occur in sites highly conserved in other species. We speculate that these changes may have functional importance.
Collapse
Affiliation(s)
- F Di Rocco
- Laboratory of Molecular Genetics, Instituto Multidisciplinario de Biología Celular (IMBICE), La Plata, Argentina
| | | | | |
Collapse
|
39
|
TMEM70 protein — A novel ancillary factor of mammalian ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:529-32. [DOI: 10.1016/j.bbabio.2008.11.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 11/21/2008] [Accepted: 11/26/2008] [Indexed: 11/18/2022]
|
40
|
Jonckheere AI, Hogeveen M, Nijtmans L, van den Brand M, Janssen A, Diepstra H, van den Brandt F, van den Heuvel B, Hol F, Hofste T, Kapusta L, Dillmann U, Shamdeen M, Smeitink J, Smeitink J, Rodenburg R. A novel mitochondrial ATP8 gene mutation in a patient with apical hypertrophic cardiomyopathy and neuropathy. BMJ Case Rep 2009; 2009:bcr07.2008.0504. [PMID: 21686774 PMCID: PMC3027703 DOI: 10.1136/bcr.07.2008.0504] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
To identify the biochemical and molecular genetic defect in a 16-year-old patient presenting with apical hypertrophic cardiomyopathy and neuropathy suspected for a mitochondrial disorder.Measurement of the mitochondrial energy-generating system (MEGS) capacity in muscle and enzyme analysis in muscle and fibroblasts were performed. Relevant parts of the mitochondrial DNA were analysed by sequencing.A homoplasmic nonsense mutation m.8529G→A (p.Trp55X) was found in the mitochondrial ATP8 gene in the patient's fibroblasts and muscle tissue. Reduced complex V activity was measured in the patient's fibroblasts and muscle tissue, and was confirmed in cybrid clones containing patient-derived mitochondrial DNAWe describe the first pathogenic mutation in the mitochondrial ATP8 gene, resulting in an improper assembly and reduced activity of the complex V holoenzyme.
Collapse
Affiliation(s)
- An I Jonckheere
- Geert Grooteplein 10 PO Box 9101, 6500 HB Nijmegen, Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Modulation of Mrps12/Sarsm promoter activity in response to mitochondrial stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2352-62. [DOI: 10.1016/j.bbamcr.2008.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 08/01/2008] [Accepted: 08/01/2008] [Indexed: 10/21/2022]
|
42
|
Assembly of the oxidative phosphorylation system in humans: what we have learned by studying its defects. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:200-11. [PMID: 18620006 DOI: 10.1016/j.bbamcr.2008.05.028] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 05/12/2008] [Accepted: 05/17/2008] [Indexed: 02/07/2023]
Abstract
Assembly of the oxidative phosphorylation (OXPHOS) system in the mitochondrial inner membrane is an intricate process in which many factors must interact. The OXPHOS system is composed of four respiratory chain complexes, which are responsible for electron transport and generation of the proton gradient in the mitochondrial intermembrane space, and of the ATP synthase that uses this proton gradient to produce ATP. Mitochondrial human disorders are caused by dysfunction of the OXPHOS system, and many of them are associated with altered assembly of one or more components of the OXPHOS system. The study of assembly defects in patients has been useful in unraveling and/or gaining a complete understanding of the processes by which these large multimeric complexes are formed. We review here current knowledge of the biogenesis of OXPHOS complexes based on investigation of the corresponding disorders.
Collapse
|
43
|
Fornuskova D, Brantova O, Tesarova M, Stiburek L, Honzik T, Wenchich L, Tietzeova E, Hansikova H, Zeman J. The impact of mitochondrial tRNA mutations on the amount of ATP synthase differs in the brain compared to other tissues. Biochim Biophys Acta Mol Basis Dis 2008; 1782:317-25. [PMID: 18319067 DOI: 10.1016/j.bbadis.2008.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 02/01/2008] [Accepted: 02/01/2008] [Indexed: 01/07/2023]
Abstract
The impact of point mutations in mitochondrial tRNA genes on the amount and stability of respiratory chain complexes and ATP synthase (OXPHOS) has been broadly characterized in cultured skin fibroblasts, skeletal muscle samples, and mitochondrial cybrids. However, less is known about how these mutations affect other tissues, especially the brain. We have compared OXPHOS protein deficiency patterns in skeletal muscle mitochondria of patients with Leigh (8363G>A), MERRF (8344A>G), and MELAS (3243A>G) syndromes. Both mutations that affect mt-tRNA(Lys) (8363G>A, 8344A>G) resulted in severe combined deficiency of complexes I and IV, compared to an isolated severe defect of complex I in the 3243A>G sample (mt-tRNA(LeuUUR). Furthermore, we compared obtained patterns with those found in the heart, frontal cortex, and liver of 8363G>A and 3243A>G patients. In the frontal cortex mitochondria of both patients, the patterns of OXPHOS deficiencies differed substantially from those observed in other tissues, and this difference was particularly striking for ATP synthase. Surprisingly, in the frontal cortex of the 3243A>G patient, whose ATP synthase level was below the detection limit, the assembly of complex IV, as inferred from 2D-PAGE immunoblotting, appeared to be hindered by some factor other than the availability of mtDNA-encoded subunits.
Collapse
Affiliation(s)
- Daniela Fornuskova
- Department of Pediatrics and Center of Applied Genomics, First Faculty of Medicine, Charles University in Prague, Ke Karlovu 2, Prague 2, 128 08, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
McKenzie M, Lazarou M, Thorburn DR, Ryan MT. Analysis of mitochondrial subunit assembly into respiratory chain complexes using Blue Native polyacrylamide gel electrophoresis. Anal Biochem 2007; 364:128-37. [PMID: 17391635 DOI: 10.1016/j.ab.2007.02.022] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 02/16/2007] [Accepted: 02/16/2007] [Indexed: 12/01/2022]
Abstract
The mitochondrial respiratory chain consists of multi-subunit protein complexes embedded in the inner membrane. Although the majority of subunits are encoded by nuclear genes and are imported into mitochondria, 13 subunits in humans are encoded by mitochondrial DNA. The coordinated assembly of subunits encoded from two genomes is a poorly understood process, with assembly pathway defects being a major determinant in mitochondrial disease. In this study, we monitored the assembly of human respiratory complexes using radiolabeled, mitochondrially encoded subunits in conjunction with Blue Native polyacrylamide gel electrophoresis. The efficiency of assembly was found to differ markedly between complexes, and intermediate complexes containing newly synthesized mitochondrial DNA-encoded subunits could be observed for complexes I, III, and IV. In particular, we detected human cytochrome b as a monomer and as a component of a novel approximately 120 kDa intermediate complex at early chase times before being totally assembled into mature complex III. Furthermore, we show that this approach is highly suited for the rapid detection of respiratory complex assembly defects in fibroblasts from patients with mitochondrial disease and, thus, has potential diagnostic applications.
Collapse
Affiliation(s)
- Matthew McKenzie
- Department of Biochemistry, La Trobe University, Melbourne, VIC 3086, Australia.
| | | | | | | |
Collapse
|
45
|
Houstek J, Pícková A, Vojtísková A, Mrácek T, Pecina P, Jesina P. Mitochondrial diseases and genetic defects of ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1400-5. [PMID: 16730639 DOI: 10.1016/j.bbabio.2006.04.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 03/31/2006] [Accepted: 04/04/2006] [Indexed: 11/16/2022]
Abstract
ATP synthase is a key enzyme of mitochondrial energy conversion. In mammals, it produces most of cellular ATP. Alteration of ATP synthase biogenesis may cause two types of isolated defects: qualitative when the enzyme is structurally modified and does not function properly, and quantitative when it is present in insufficient amounts. In both cases the cellular energy provision is impaired, and diminished use of mitochondrial DeltamuH+ promotes ROS production by the mitochondrial respiratory chain. The primary genetic defects have so far been localized in mtDNA ATP6 gene and nuclear ATP12 gene, however, involvement of other nuclear genes is highly probable.
Collapse
Affiliation(s)
- Josef Houstek
- Institute of Physiology and Centre for Applied Genomics, Academy of Sciences of the Czech Republic, Vídenská 1083, CZ 142 20 Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
46
|
Krause F. Detection and analysis of protein–protein interactions in organellar and prokaryotic proteomes by native gel electrophoresis: (Membrane) protein complexes and supercomplexes. Electrophoresis 2006; 27:2759-81. [PMID: 16817166 DOI: 10.1002/elps.200600049] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
It is an essential and challenging task to unravel protein-protein interactions in their actual in vivo context. Native gel systems provide a separation platform allowing the analysis of protein complexes on a rather proteome-wide scale in a single experiment. This review focus on blue-native (BN)-PAGE as the most versatile and successful gel-based approach to separate soluble and membrane protein complexes of intricate protein mixtures derived from all biological sources. BN-PAGE is a charge-shift method with a running pH of 7.5 relying on the gentle binding of anionic CBB dye to all membrane and many soluble protein complexes, leading to separation of protein species essentially according to their size and superior resolution than other fractionation techniques can offer. The closely related colorless-native (CN)-PAGE, whose applicability is restricted to protein species with intrinsic negative net charge, proved to provide an especially mild separation capable of preserving weak protein-protein interactions better than BN-PAGE. The essential conditions determining the success of detecting protein-protein interactions are the sample preparations, e.g. the efficiency/mildness of the detergent solubilization of membrane protein complexes. A broad overview about the achievements of BN- and CN-PAGE studies to elucidate protein-protein interactions in organelles and prokaryotes is presented, e.g. the mitochondrial protein import machinery and oxidative phosphorylation supercomplexes. In many cases, solubilization with digitonin was demonstrated to facilitate an efficient and particularly gentle extraction of membrane protein complexes prone to dissociation by treatment with other detergents. In general, analyses of protein interactomes should be carried out by both BN- and CN-PAGE.
Collapse
Affiliation(s)
- Frank Krause
- Department of Chemistry, Physical Biochemistry, Darmstadt University of Technology, Germany.
| |
Collapse
|
47
|
De Vriese AS, Coster RV, Smet J, Seneca S, Lovering A, Van Haute LL, Vanopdenbosch LJ, Martin JJ, Groote CCD, Vandecasteele S, Boelaert JR. Linezolid-Induced Inhibition of Mitochondrial Protein Synthesis. Clin Infect Dis 2006; 42:1111-7. [PMID: 16575728 DOI: 10.1086/501356] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 12/12/2005] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Linezolid is an oxazolidinone antibiotic that is increasingly used to treat drug-resistant, gram-positive pathogens. The mechanism of action is inhibition of bacterial protein synthesis. Optic and/or peripheral neuropathy and lactic acidosis are reported side effects, but the underlying pathophysiological mechanism has not been unravelled. METHODS We studied mitochondrial ultrastructure, mitochondrial respiratory chain enzyme activity, and mitochondrial DNA (mtDNA) in muscle, liver, and kidney samples obtained from a patient who developed optic neuropathy, encephalopathy, skeletal myopathy, lactic acidosis, and renal failure after prolonged use of linezolid. In addition, we evaluated mtDNA, respiratory chain enzyme activity, and protein amount in muscle and liver samples obtained from experimental animals that received linezolid or placebo. RESULTS In the patient, mitochondrial respiratory chain enzyme activity was decreased in affected tissues, without ultrastructural mitochondrial abnormalities and without mutations or depletion of mtDNA. In the experimental animals, linezolid induced a dose- and time-dependent decrease of the activity of respiratory chain complexes containing mtDNA-encoded subunits and a decreased amount of protein of these complexes, whereas the amount of mtDNA was normal. CONCLUSION These results provide direct evidence that linezolid inhibits mitochondrial protein synthesis with potentially severe clinical consequences. Prolonged courses of linezolid should be avoided if alternative treatment options are available.
Collapse
MESH Headings
- Acetamides/pharmacology
- Acetamides/therapeutic use
- Animals
- Anti-Infective Agents/pharmacology
- Anti-Infective Agents/therapeutic use
- DNA, Mitochondrial/drug effects
- DNA, Mitochondrial/genetics
- Drug Therapy, Combination
- Female
- Humans
- Kidney/drug effects
- Kidney/metabolism
- Linezolid
- Male
- Middle Aged
- Mitochondria/drug effects
- Mitochondria/metabolism
- Mitochondria/ultrastructure
- Mitochondria, Liver/drug effects
- Mitochondria, Liver/metabolism
- Mitochondria, Liver/ultrastructure
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/ultrastructure
- Oxazolidinones/pharmacology
- Oxazolidinones/therapeutic use
- Protein Synthesis Inhibitors/pharmacology
- Protein Synthesis Inhibitors/therapeutic use
- Rats
- Rats, Sprague-Dawley
- Rifampin/therapeutic use
- Staphylococcal Infections/drug therapy
Collapse
Affiliation(s)
- An S De Vriese
- Department of Internal Medicine, AZ Sint-Jan AV, Bruges, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The mitochondrial F1Fo adenosine triphosphate (ATP) synthase is one of the most thoroughly studied enzyme complexes known. Yet, a number of new observations suggesting that the enzyme is also located on the cell surface necessitate further investigation. While the mitochondrial synthase utilizes the proton gradient generated by oxidative phosphorylation to power ATP synthesis, the cell surface synthase has instead been implicated in numerous activities, including the mediation of intracellular pH, cellular response to antiangiogenic agents, and cholesterol homeostasis. Intriguingly, a common thread uniting these various models of cell surface ATP synthase functions is the apparently caveolar distribution of the enzyme. Recent studies concerning the cell surface ATP synthase manifest applications in the regulation of serum cholesterol levels, cellular proliferation and antitumor strategies. This review addresses the expression, interactions, functions, and consequences of inhibition of cell surface ATP synthase, an enzyme now displaying a shift in paradigm, as well as of location.
Collapse
Affiliation(s)
- Sulene L Chi
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
49
|
Carrozzo R, Wittig I, Santorelli FM, Bertini E, Hofmann S, Brandt U, Schägger H. Subcomplexes of human ATP synthase mark mitochondrial biosynthesis disorders. Ann Neurol 2005; 59:265-75. [PMID: 16365880 DOI: 10.1002/ana.20729] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE METHODS We describe biochemically and clinically relevant aspects of mitochondrial ATP synthase, the enzyme that supplies most ATP for the cells energy demand. RESULTS Analyzing human Rho zero cells we could identify three subcomplexes of ATP synthase: F1 catalytic domain, F1 domain with bound natural IF1 inhibitor protein, and F1-c subcomplex, an assembly of F1 domain and a ring of F(O)-subunits c. Large amounts of F1 subcomplexes accumulated also in mitochondria of patients with specific mitochondrial disorders. By quantifying the F1 subcomplexes and other oxidative phosphorylation complexes in parallel, we were able to discriminate three classes of defects in mitochondrial biosynthesis, namely, mitochondrial DNA depletion, mitochondrial transfer RNA (tRNA) mutations, and mutations in the mitochondrial ATP6 gene. INTERPRETATION The relatively simple electrophoretic assay used here is a straightforward approach to differentiate between various types of genetic alterations affecting the biosynthesis of oxidative phosphorylation complexes and will be useful to guide molecular genetic diagnostics in the field of mitochondrial neuromuscular disorders.
Collapse
Affiliation(s)
- Rosalba Carrozzo
- Unit of Molecular Medicine, Bambino Gesù Hospital and Research Institute, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
50
|
Ješina P, Tesařová M, Fornůsková D, Vojtíšková A, Pecina P, Kaplanová V, Hansíková H, Zeman J, Houštěk J. Diminished synthesis of subunit a (ATP6) and altered function of ATP synthase and cytochrome c oxidase due to the mtDNA 2 bp microdeletion of TA at positions 9205 and 9206. Biochem J 2005; 383:561-71. [PMID: 15265003 PMCID: PMC1133750 DOI: 10.1042/bj20040407] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dysfunction of mitochondrial ATPase (F1F(o)-ATP synthase) due to missense mutations in ATP6 [mtDNA (mitochondrial DNA)-encoded subunit a] is a frequent cause of severe mitochondrial encephalomyopathies. We have investigated a rare mtDNA mutation, i.e. a 2 bp deletion of TA at positions 9205 and 9206 (9205DeltaTA), which affects the STOP codon of the ATP6 gene and the cleavage site between the RNAs for ATP6 and COX3 (cytochrome c oxidase 3). The mutation was present at increasing load in a three-generation family (in blood: 16%/82%/>98%). In the affected boy with severe encephalopathy, a homoplasmic mutation was present in blood, fibroblasts and muscle. The fibroblasts from the patient showed normal aurovertin-sensitive ATPase hydrolytic activity, a 70% decrease in ATP synthesis and an 85% decrease in COX activity. ADP-stimulated respiration and the ADP-induced decrease in the mitochondrial membrane potential at state 4 were decreased by 50%. The content of subunit a was decreased 10-fold compared with other ATPase subunits, and [35S]-methionine labelling showed a 9-fold decrease in subunit a biosynthesis. The content of COX subunits 1, 4 and 6c was decreased by 30-60%. Northern Blot and quantitative real-time reverse transcription-PCR analysis further demonstrated that the primary ATP6--COX3 transcript is cleaved to the ATP6 and COX3 mRNAs 2-3-fold less efficiently. Structural studies by Blue-Native and two-dimensional electrophoresis revealed an altered pattern of COX assembly and instability of the ATPase complex, which dissociated into subcomplexes. The results indicate that the 9205DeltaTA mutation prevents the synthesis of ATPase subunit a, and causes the formation of incomplete ATPase complexes that are capable of ATP hydrolysis but not ATP synthesis. The mutation also affects the biogenesis of COX, which is present in a decreased amount in cells from affected individuals.
Collapse
Affiliation(s)
- Pavel Ješina
- *Department of Bioenergetics, Institute of Physiology and Centre for Integrated Genomics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Markéta Tesařová
- †Department of Pediatrics and Institute for Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
| | - Daniela Fornůsková
- †Department of Pediatrics and Institute for Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
| | - Alena Vojtíšková
- *Department of Bioenergetics, Institute of Physiology and Centre for Integrated Genomics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Petr Pecina
- *Department of Bioenergetics, Institute of Physiology and Centre for Integrated Genomics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Vilma Kaplanová
- *Department of Bioenergetics, Institute of Physiology and Centre for Integrated Genomics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Hana Hansíková
- †Department of Pediatrics and Institute for Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
| | - Jiří Zeman
- †Department of Pediatrics and Institute for Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
| | - Josef Houštěk
- *Department of Bioenergetics, Institute of Physiology and Centre for Integrated Genomics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
- To whom correspondence should be addressed (email )
| |
Collapse
|