1
|
Beh CY, El-Sharnouby S, Chatzipli A, Russell S, Choo SW, White R. Roles of cofactors and chromatin accessibility in Hox protein target specificity. Epigenetics Chromatin 2016; 9:1. [PMID: 26753000 PMCID: PMC4705621 DOI: 10.1186/s13072-015-0049-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/08/2015] [Indexed: 12/31/2022] Open
Abstract
Background The regulation of specific target genes by transcription factors is central to our understanding of gene network control in developmental and physiological processes yet how target specificity is achieved is still poorly understood. This is well illustrated by the Hox family of transcription factors as their limited in vitro DNA-binding specificity contrasts with their clear in vivo functional specificity. Results We generated genome-wide binding profiles for three Hox proteins, Ubx, Abd-A and Abd-B, following transient expression in Drosophila Kc167 cells, revealing clear target specificity and a striking influence of chromatin accessibility. In the absence of the TALE class homeodomain cofactors Exd and Hth, Ubx and Abd-A bind at a very similar set of target sites in accessible chromatin, whereas Abd-B binds at an additional specific set of targets. Provision of Hox cofactors Exd and Hth considerably modifies the Ubx genome-wide binding profile enabling Ubx to bind at an additional novel set of targets. Both the Abd-B specific targets and the cofactor-dependent Ubx targets are in chromatin that is relatively DNase1 inaccessible prior to the expression of Hox proteins/Hox cofactors. Conclusions Our experiments demonstrate a strong role for chromatin accessibility in Hox protein binding and suggest that Hox protein competition with nucleosomes has a major role in Hox protein target specificity in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s13072-015-0049-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ching Yew Beh
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sherif El-Sharnouby
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY UK
| | - Aikaterini Chatzipli
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH UK
| | - Steven Russell
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH UK.,Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR UK
| | - Siew Woh Choo
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Robert White
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY UK
| |
Collapse
|
2
|
Sambrani N, Pradel J, Graba Y. Distinct genetic requirements for BX-C-mediated specification of abdominal denticles. Dev Dyn 2014; 243:192-200. [DOI: 10.1002/dvdy.24081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 10/09/2013] [Accepted: 10/09/2013] [Indexed: 11/07/2022] Open
Affiliation(s)
| | | | - Yacine Graba
- CNRS; Aix Marseille Université; Marseille France
| |
Collapse
|
3
|
Sánchez-Herrero E. Hox targets and cellular functions. SCIENTIFICA 2013; 2013:738257. [PMID: 24490109 PMCID: PMC3892749 DOI: 10.1155/2013/738257] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/20/2013] [Indexed: 06/03/2023]
Abstract
Hox genes are a group of genes that specify structures along the anteroposterior axis in bilaterians. Although in many cases they do so by modifying a homologous structure with a different (or no) Hox input, there are also examples of Hox genes constructing new organs with no homology in other regions of the body. Hox genes determine structures though the regulation of targets implementing cellular functions and by coordinating cell behavior. The genetic organization to construct or modify a certain organ involves both a genetic cascade through intermediate transcription factors and a direct regulation of targets carrying out cellular functions. In this review I discuss new data from genome-wide techniques, as well as previous genetic and developmental information, to describe some examples of Hox regulation of different cell functions. I also discuss the organization of genetic cascades leading to the development of new organs, mainly using Drosophila melanogaster as the model to analyze Hox function.
Collapse
Affiliation(s)
- Ernesto Sánchez-Herrero
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
4
|
Birkholz O, Vef O, Rogulja-Ortmann A, Berger C, Technau GM. Abdominal-B and caudal inhibit the formation of specific neuroblasts in the Drosophila tail region. Development 2013; 140:3552-64. [PMID: 23903193 PMCID: PMC3915569 DOI: 10.1242/dev.096099] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The central nervous system of Drosophila melanogaster consists of fused segmental units (neuromeres), each generated by a characteristic number of neural stem cells (neuroblasts). In the embryo, thoracic and anterior abdominal neuromeres are almost equally sized and formed by repetitive sets of neuroblasts, whereas the terminal abdominal neuromeres are generated by significantly smaller populations of progenitor cells. Here we investigated the role of the Hox gene Abdominal-B in shaping the terminal neuromeres. We show that the regulatory isoform of Abdominal-B (Abd-B.r) not only confers abdominal fate to specific neuroblasts (e.g. NB6-4) and regulates programmed cell death of several progeny cells within certain neuroblast lineages (e.g. NB3-3) in parasegment 14, but also inhibits the formation of a specific set of neuroblasts in parasegment 15 (including NB7-3). We further show that Abd-B.r requires cooperation of the ParaHox gene caudal to unfold its full competence concerning neuroblast inhibition and specification. Thus, our findings demonstrate that combined action of Abdominal-B and caudal contributes to the size and composition of the terminal neuromeres by regulating both the number and lineages of specific neuroblasts.
Collapse
|
5
|
Rivas ML, Espinosa-Vázquez JM, Sambrani N, Greig S, Merabet S, Graba Y, Castelli-Gair Hombría J. Antagonism versus cooperativity with TALE cofactors at the base of the functional diversification of Hox protein function. PLoS Genet 2013; 9:e1003252. [PMID: 23408901 PMCID: PMC3567137 DOI: 10.1371/journal.pgen.1003252] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 12/03/2012] [Indexed: 11/18/2022] Open
Abstract
Extradenticle (Exd) and Homothorax (Hth) function as positive transcriptional cofactors of Hox proteins, helping them to bind specifically their direct targets. The posterior Hox protein Abdominal-B (Abd-B) does not require Exd/Hth to bind DNA; and, during embryogenesis, Abd-B represses hth and exd transcription. Here we show that this repression is necessary for Abd-B function, as maintained Exd/Hth expression results in transformations similar to those observed in loss-of-function Abd-B mutants. We characterize the cis regulatory module directly regulated by Abd-B in the empty spiracles gene and show that the Exd/Hth complex interferes with Abd-B binding to this enhancer. Our results suggest that this novel Exd/Hth function does not require the complex to bind DNA and may be mediated by direct Exd/Hth binding to the Abd-B homeodomain. Thus, in some instances, the main positive cofactor complex for anterior Hox proteins can act as a negative factor for the posterior Hox protein Abd-B. This antagonistic interaction uncovers an alternative way in which MEIS and PBC cofactors can modulate Abd-B like posterior Hox genes during development.
Collapse
Affiliation(s)
| | | | - Nagraj Sambrani
- IBDML, CNRS/Université de la Méditerranée, Marseille, France
| | - Stephen Greig
- Akam Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Samir Merabet
- IBDML, CNRS/Université de la Méditerranée, Marseille, France
| | - Yacine Graba
- IBDML, CNRS/Université de la Méditerranée, Marseille, France
| | | |
Collapse
|
6
|
Bantignies F, Roure V, Comet I, Leblanc B, Schuettengruber B, Bonnet J, Tixier V, Mas A, Cavalli G. Polycomb-Dependent Regulatory Contacts between Distant Hox Loci in Drosophila. Cell 2011; 144:214-26. [DOI: 10.1016/j.cell.2010.12.026] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 09/22/2010] [Accepted: 12/17/2010] [Indexed: 10/18/2022]
|
7
|
Reed HC, Hoare T, Thomsen S, Weaver TA, White RAH, Akam M, Alonso CR. Alternative splicing modulates Ubx protein function in Drosophila melanogaster. Genetics 2010; 184:745-58. [PMID: 20038634 PMCID: PMC2845342 DOI: 10.1534/genetics.109.112086] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 12/17/2009] [Indexed: 01/02/2023] Open
Abstract
The Drosophila Hox gene Ultrabithorax (Ubx) produces a family of protein isoforms through alternative splicing. Isoforms differ from one another by the presence of optional segments-encoded by individual exons-that modify the distance between the homeodomain and a cofactor-interaction module termed the "YPWM" motif. To investigate the functional implications of Ubx alternative splicing, here we analyze the in vivo effects of the individual Ubx isoforms on the activation of a natural Ubx molecular target, the decapentaplegic (dpp) gene, within the embryonic mesoderm. These experiments show that the Ubx isoforms differ in their abilities to activate dpp in mesodermal tissues during embryogenesis. Furthermore, using a Ubx mutant that reduces the full Ubx protein repertoire to just one single isoform, we obtain specific anomalies affecting the patterning of anterior abdominal muscles, demonstrating that Ubx isoforms are not functionally interchangeable during embryonic mesoderm development. Finally, a series of experiments in vitro reveals that Ubx isoforms also vary in their capacity to bind DNA in presence of the cofactor Extradenticle (Exd). Altogether, our results indicate that the structural changes produced by alternative splicing have functional implications for Ubx protein function in vivo and in vitro. Since other Hox genes also produce splicing isoforms affecting similar protein domains, we suggest that alternative splicing may represent an underestimated regulatory system modulating Hox gene specificity during fly development.
Collapse
Affiliation(s)
- Hilary C. Reed
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Tim Hoare
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Stefan Thomsen
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Thomas A. Weaver
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Robert A. H. White
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Michael Akam
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Claudio R. Alonso
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| |
Collapse
|
8
|
Lin Z, Ma H, Nei M. Ultraconserved coding regions outside the homeobox of mammalian Hox genes. BMC Evol Biol 2008; 8:260. [PMID: 18816392 PMCID: PMC2566984 DOI: 10.1186/1471-2148-8-260] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 09/24/2008] [Indexed: 01/03/2023] Open
Abstract
Background All bilaterian animals share a general genetic framework that controls the formation of their body structures, although their forms are highly diversified. The Hox genes that encode transcription factors play a central role in this framework. All Hox proteins contain a highly conserved homeodomain encoded by the homeobox motif, but the other regions are generally assumed to be less conserved. In this study, we used comparative genomic methods to infer possible functional elements in the coding regions of mammalian Hox genes. Results We identified a set of ultraconserved coding regions (UCRs) outside the homeobox of mammalian Hox genes. Here a UCR is defined as a region of at least 120 nucleotides without synonymous and nonsynonymous nucleotide substitutions among different orders of mammals. Further analysis has indicated that these UCRs occur only in placental mammals and they evolved apparently after the split of placental mammals from marsupials. Analysis of human SNP data suggests that these UCRs are maintained by strong purifying selection. Conclusion Although mammalian genomes are known to contain ultraconserved non-coding elements (UNEs), this paper seems to be the first to report the UCRs in protein coding genes. The extremely high degree of sequence conservation in non-homeobox regions suggests that they might have important roles for the functions of Hox genes. We speculate that UCRs have some gene regulatory functions possibly in relation to the development of the intra-uterus child-bearing system.
Collapse
Affiliation(s)
- Zhenguo Lin
- Department of Biology and Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
9
|
Prince F, Katsuyama T, Oshima Y, Plaza S, Resendez-Perez D, Berry M, Kurata S, Gehring WJ. The YPWM motif links Antennapedia to the basal transcriptional machinery. Development 2008; 135:1669-79. [DOI: 10.1242/dev.018028] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
HOX genes specify segment identity along the anteroposterior axis of the embryo. They code for transcription factors harbouring the highly conserved homeodomain and a YPWM motif, situated amino terminally to it. Despite their highly diverse functions in vivo, HOX proteins display similar biochemical properties in vitro, raising the question of how this specificity is achieved. In our study, we investigated the importance of the Antennapedia(Antp) YPWM motif for homeotic transformations in adult Drosophila. By ectopic overexpression, the head structures of the fly can be transformed into structures of the second thoracic segment, such as antenna into second leg, head capsule into thorax (notum) and eye into wing. We found that the YPWM motif is absolutely required for the eye-to-wing transformation. Using the yeast two-hybrid system, we were able to identify a novel ANTP-interacting protein, Bric-à-brac interacting protein 2(BIP2), that specifically interacts with the YPWM motif of ANTP in vitro, as well as in vivo, transforming eye to wing tissue. BIP2 is a TATA-binding protein associated factor (also known as dTAFII3) that links ANTP to the basal transcriptional machinery.
Collapse
Affiliation(s)
- Frédéric Prince
- Biozentrum, University of Basel, Klingelberstrasse 70, CH-4056 Basel,Switzerland
| | | | - Yoshiteru Oshima
- ETH Zurich, Department of Biosystems, CH-4058 Basel, Switzerland
| | - Serge Plaza
- CNS-Centre de Biologie du Developpement, 118 route de NARBONNE, Bat 4R3, 31062 Toulouse, France
| | | | - Meera Berry
- Micromet AG, Am Klopferspitz 19, 82152 Martinsried/Munich, Germany
| | - Shoichiro Kurata
- ETH Zurich, Department of Biosystems, CH-4058 Basel, Switzerland
| | - Walter J. Gehring
- Biozentrum, University of Basel, Klingelberstrasse 70, CH-4056 Basel,Switzerland
| |
Collapse
|
10
|
Abstract
In recent years researchers have analyzed the expression patterns of the Hox genes in a multitude of arthropod species, with the hope of understanding the mechanisms at work in the evolution of the arthropod body plan. Now, with Hox expression data representing all four major groups of arthropods (chelicerates, myriapods, crustaceans, and insects), it seems appropriate to summarize the results and take stock of what has been learned. In this review we summarize the expression and functional data regarding the 10 arthropod Hox genes: labial proboscipedia, Hox3/zen, Deformed, Sex combs reduced, fushi tarazu, Antennapedia, Ultrabithorax, abdominal-A, and Abdominal-B. In addition, we discuss mechanisms of developmental evolutionary change thought to be important for the emergence of novel morphological features within the arthropods.
Collapse
Affiliation(s)
- Cynthia L Hughes
- Howard Hughes Medical Institute, Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
11
|
Mann RS, Morata G. The developmental and molecular biology of genes that subdivide the body of Drosophila. Annu Rev Cell Dev Biol 2001; 16:243-71. [PMID: 11031237 DOI: 10.1146/annurev.cellbio.16.1.243] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During the past decade, much progress has been made in understanding how the adult fly is built. Some old concepts such as those of compartments and selector genes have been revitalized. In addition, recent work suggests the existence of genes involved in the regionalization of the adult that do not have all the features of selector genes. Nevertheless, they generate morphological distinctions within the body plan. Here we re-examine some of the defining criteria of selector genes and suggest that these newly characterized genes fulfill many, but not all, of these criteria. Further, we propose that these genes can be classified according to the domains in which they function. Finally, we discuss experiments that address the molecular mechanisms by which selector and selector-like gene products function in the fly.
Collapse
Affiliation(s)
- R S Mann
- Department of Biochemistry and Molecular Biophysics, Center for Neurobiology and Behavior, Columbia University, 701 West 168th Street, New York 10032, USA.
| | | |
Collapse
|
12
|
Reinhart BJ, Ruvkun G. Isoform-specific mutations in the Caenorhabditis elegans heterochronic gene lin-14 affect stage-specific patterning. Genetics 2001; 157:199-209. [PMID: 11139502 PMCID: PMC1461488 DOI: 10.1093/genetics/157.1.199] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Caenorhabditis elegans heterochronic gene lin-14 specifies the temporal sequence of postembryonic developmental events. lin-14, which encodes differentially spliced LIN-14A and LIN-14B1/B2 protein isoforms, acts at distinct times during the first larval stage to specify first and second larval stage-specific cell lineages. Proposed models for the molecular basis of these two lin-14 gene activities have included the production of functionally distinct isoforms and the generation of a temporal gradient of LIN-14 protein. We report here that loss of the LIN-14B1/B2 isoforms alone affects one of the two lin-14 temporal patterning functions, the specification of second larval stage lineages. A temporal expression difference between LIN-14A and LIN-14B1/B2 is not responsible for the stage-specific phenotype: protein levels of all LIN-14 isoforms are high in early first larval stage animals and decrease during the first larval stage. However, LIN-14A can partially substitute for LIN-14B1/B2 when expressed at a higher-than-normal level in the late L1 stage. These data indicate that LIN-14B1/B2 isoforms do not provide a distinct function of the lin-14 locus in developmental timing but rather may contribute to an overall level of LIN-14 protein that is the critical determinant of temporal cell fate.
Collapse
Affiliation(s)
- B J Reinhart
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
13
|
Abstract
The murine HOXA-2 protein shares amino acid sequence similarity with Drosophila Proboscipedia (PB). In this paper, we test whether HOXA-2 and PB are functionally equivalent in Drosophila. In Drosophila, PB inhibits SCR activity required for larval T1 beard formation and adult tarsus formation and is required for maxillary palp and proboscis formation. HOXA-2 expressed from a heat-shock promoter weakly suppressed SCR activity required for T1 beard formation. But interestingly neither PB nor HOXA-2 expressed from a heat-shock promoter suppressed murine HOXA-5 activity, the murine SCR homologue, from inducing ectopic T1 beards in T2 and T3, indicating that HOXA-5 does not interact with PB. HOXA-2 activity expressed from the Tubulin alpha 1 promoter modified the pb null phenotype resulting in a proboscis-to-arista transformation, indicating that HOXA-2 was able to suppress SCR activity required for tarsus formation. However, HOXA-2 expressed from a Tubulin alpha 1 promoter was unable to direct maxillary palp determination when either ectopically expressed in the antenna or in the maxillary palp primordia of a pb null mutant. HOXA-2 was also unable to rescue pseudotrachea formation in a pb null mutant. These results indicate that the only activity that PB and HOXA-2 weakly share is the inhibition of SCR activity, and that murine HOXA-5 and Drosophila SCR do not share inhibition by PB activity.
Collapse
Affiliation(s)
- A Percival-Smith
- Department of Zoology, University of Western Ontario, London, Canada.
| | | |
Collapse
|
14
|
Chauvet S, Merabet S, Bilder D, Scott MP, Pradel J, Graba Y. Distinct hox protein sequences determine specificity in different tissues. Proc Natl Acad Sci U S A 2000; 97:4064-9. [PMID: 10737765 PMCID: PMC18149 DOI: 10.1073/pnas.070046997] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hox genes encode evolutionarily conserved transcription factors that control the morphological diversification along the anteroposterior (A/P) body axis. Expressed in precise locations in the ectoderm, mesoderm, and endoderm, Hox proteins have distinct regulatory activities in different tissues. How Hox proteins achieve tissue-specific functions and why cells lying at equivalent A/P positions but in different germ layers have distinctive responses to the same Hox protein remains to be determined. Here, we examine this question by identifying parts of Hox proteins necessary for Hox function in different tissues. Available genetic markers allow the regulatory effects of two Hox proteins, Abdominal-A (AbdA) and Ultrabithorax (Ubx), to be distinguished in the Drosophila embryonic epidermis and visceral mesoderm (VM). Chimeric Ubx/AbdA proteins were tested in both tissues and used to identify protein sequences that endow AbdA with a different target gene specificity from Ubx. We found that distinct protein sequences define AbdA, as opposed to Ubx, function in the epidermis vs. the VM. These sequences lie mostly outside the homeodomain (HD), emphasizing the importance of non-HD residues for specific Hox activities. Hox tissue specificity is therefore achieved by sensing distinct Hox protein structures in different tissues.
Collapse
Affiliation(s)
- S Chauvet
- Laboratoire de Génétique et Biologie du Développement, Institut de Biologie du Développement de Marseille, Centre National de la Recherche Scientifique/Université de la Méditerranée, Parc Scientifique de Luminy, Case 907, 13288 Marseille, France
| | | | | | | | | | | |
Collapse
|
15
|
Hong Y, Lee RC, Ambros V. Structure and function analysis of LIN-14, a temporal regulator of postembryonic developmental events in Caenorhabditis elegans. Mol Cell Biol 2000; 20:2285-95. [PMID: 10688674 PMCID: PMC110844 DOI: 10.1128/mcb.20.6.2285-2295.2000] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During postembryonic development of Caenorhabditis elegans, the heterochronic gene lin-14 controls the timing of developmental events in diverse cell types. Three alternative lin-14 transcripts are predicted to encode isoforms of a novel nuclear protein that differ in their amino-terminal domains. In this paper, we report that the alternative amino-terminal domains of LIN-14 are dispensable and that a carboxy-terminal region within exons 9 to 13 is necessary and sufficient for in vivo LIN-14 function. A transgene capable of expressing only one of the three alternative lin-14 gene products rescues a lin-14 null mutation and is developmentally regulated by lin-4. This shows that the deployment of alternative lin-14 gene products is not critical for the ability of LIN-14 to regulate downstream genes in diverse cell types or for the in vivo regulation of LIN-14 level by lin-4. The carboxy-terminal region of LIN-14 contains an unusual expanded nuclear localization domain which is essential for LIN-14 function. These results support the view that LIN-14 controls developmental timing in C. elegans by regulating gene expression in the nucleus.
Collapse
Affiliation(s)
- Y Hong
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
16
|
Hu N, Castelli-Gair J. Study of the posterior spiracles of Drosophila as a model to understand the genetic and cellular mechanisms controlling morphogenesis. Dev Biol 1999; 214:197-210. [PMID: 10491268 DOI: 10.1006/dbio.1999.9391] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have studied the posterior spiracles of Drosophila as a model to link patterning genes and morphogenesis. A genetic cascade of transcription factors downstream of the Hox gene Abdominal-B subdivides the primordia of the posterior spiracles into two cell populations that develop using two different morphogenetic mechanisms. The inner cells that give rise to the spiracular chamber invaginate by elongating into "bottle-shaped" cells. The surrounding cells give rise to a protruding stigmatophore by changing their relative positions in a process similar to convergent extension. The genetic cascades regulating spiracular chamber, stigmatophore, and trachea morphogenesis are different but coordinated to form a functional tracheal system. In the posterior spiracle, this coordination involves the control of the initiation of cell invagination that starts in the cells closer to the trachea primordium and spreads posteriorly. As a result, the opening of the tracheal system shifts back from the spiracular branch of the trachea into the posterior spiracle cells. We analyze the contribution of the ems gene to this coordination. In ems mutants, invagination of the spiracle cells adjacent to the trachea does not occur, but more posterior cells of the spiracle invaginate normally. This results in a spiracle without a lumen and with the tracheal opening located outside it.
Collapse
Affiliation(s)
- N Hu
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, United Kingdom
| | | |
Collapse
|
17
|
Yao LC, Liaw GJ, Pai CY, Sun YH. A common mechanism for antenna-to-Leg transformation in Drosophila: suppression of homothorax transcription by four HOM-C genes. Dev Biol 1999; 211:268-76. [PMID: 10395787 DOI: 10.1006/dbio.1999.9309] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Drosophila HOM-C genes encode transcription factors containing the DNA-binding homeodomain. Mutations in the HOM-C genes can cause specific homeotic transformation, suggesting that the HOM-C genes determine segmental identities by acting on different target genes. However, misexpression of several HOM-C genes in the antenna disc causes similar antenna-to-leg transformations. Here we show that the Scr, Antp, Ubx, and abd-A HOM-C genes all exert their effects through a common mechanism: suppressing the transcription of the homothorax (hth) homeobox gene and thereby preventing the nuclear localization of the Extradenticle homeodomain protein. We also show that ectopic hth expression can cause duplication of the proximodistal axis of the antenna, suggesting that it is involved in proximodistal development of the antenna.
Collapse
Affiliation(s)
- L C Yao
- Institute of Genetics, Department of Life Science, National Yang-Ming University, Shipai, Taipei, 112, Taiwan, Republic of China
| | | | | | | |
Collapse
|
18
|
Abstract
The homeobox gene extradenticle (exd) acts as a cofactor of Hox function both in Drosophila and vertebrates. It has been shown that the distribution of the Exd protein is developmentally regulated at the post-translational level; in the regions where exd is not functional Exd is present only in the cell cytoplasm, whereas it accumulates in the nuclei of cells requiring exd function. We show that the subcellular localization of Exd is regulated by the BX-C genes and that each BX-C gene can prevent or reduce nuclear translocation of Exd to different extents. In spite of this negative regulation, two BX-C genes, Ultrabithorax and abdominal-A, require exd activity for their maintenance and function. We propose that mutual interactions between Exd and BX-C proteins ensure the correct amounts of interacting molecules. As the Hoxd10 gene has the same properties as Drosophila BX-C genes, we suggest that the control mechanism of subcellular distribution of Exd found in Drosophila probably operates in other organisms as well.
Collapse
Affiliation(s)
- N Azpiazu
- Centro de Biologia Molecular Centro Superior de Investigaciones Cientificas-Universidad Autońoma de Madrid, Madrid, Spain
| | | |
Collapse
|
19
|
Mack JA, Smith RD, Kuhn DT. Mobile element 297 in the Abd-B gene of Drosophila melanogaster, not Delta 88, is responsible for the tuh-3 mutation. Genetics 1997; 147:679-88. [PMID: 9335604 PMCID: PMC1208189 DOI: 10.1093/genetics/147.2.679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The tumorous-head-3 (tuh-3) mutation has been associated with the insertion of mobile element Delta 88 at +200 on the bithorax complex (BX-C) DNA map, 5' of all Abdominal-B (Abd-B) transcripts. Different phenotypes of tuh-3 are regulated by the tumorous-head-1 (tuh-1) maternal effect locus. In the presence of the recessive tuh-1h maternal effect, tuh-3 offspring produce homeotic abdominal and genital tissue in the head. In the presence of the dominant tuh-1g maternal effect, tuh-3 offspring have normal heads but now show genital defects. One other mutant, I127B, produces flies with identical defects to that of tuh-3 in the presence of both maternal effects. Molecular analysis of I127B revealed the insertion of mobile element 297 in the Abd-B gene, approximately 25 kb downstream of the Delta 88 insertion in tuh-3. No other abnormalities were detected. Reexamination of our tuh-3 strain revealed a 297 insertion in an identical region to that of I127B, in addition to the Delta 88 insertion. Recombinants of tuh-3, carrying 297 only, produced homeotic head defects and genital defects in the presence of the tuh-1h and tuh-1g maternal effects, respectively. Recombinants of tuh-3, carrying Delta 88 only, failed to produce any defects in the presence of either maternal effect. Based upon these results, we propose that it is the 297 insertion in the Abd-B gene, not Delta 88, that is responsible for the tuh-3 mutation.
Collapse
Affiliation(s)
- J A Mack
- Department of Biology, University of Central Florida, Orlando 32816, USA.
| | | | | |
Collapse
|
20
|
Stage, tissue, and cell specific distribution of alternative Ultrabithorax mRNAs and protein isoforms in the Drosophila embryo. ACTA ACUST UNITED AC 1996; 205:450-459. [PMID: 28306097 DOI: 10.1007/bf00377226] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/1995] [Accepted: 08/30/1995] [Indexed: 10/26/2022]
Abstract
The homeotic gene Ultrabithorax encodes a family of six homeoproteins translated from alternatively spliced mRNAs. The structures of these UBX isoforms have been conserved among anciently diverged Drosoph-ila species and functional distinctions between some isoforms have been reported that suggest subtle but important roles in Ubx action. We present a detailed analysis of the expression patterns of Ubx mRNAs and proteins during embryogenesis, using isoform-specific monoclonal antibodies and synthetic oligonucleotide probes. These patterns are remarkably complex, each mRNA and corresponding protein isoform being expressed in a partially overlapping but distinct stage and tissue-specific pattern. The complexity is greatest in the central nervous system, where different isoforms predominate during successive developmental stages and where their relative proportions differ from one metamere to another and even among individual neurons within a given metamere. The distributions of UBX isoforms are consistent with those functional distinctions that have been described; they also suggest that different isoforms may be specialized or optimized to control different aspects of central nervous system development. The close correspondence between the mRNA and protein patterns indicates that the mRNAs do not differ strongly in translatability, despite the abundance of rare codons in the optional exons. There is a delay between the detection of particular splicing events in the nucleus and the detection of the 3' end of the message or the appearance of the corresponding mRNAs and proteins in the cytoplasm. This delay is consistent with the size of the Ubx introns and indicates a cotranscriptional mechanism of splicing.
Collapse
|
21
|
Abstract
A chimeric protein consisting of Deformed with a substituted Abdominal-B homeodomain (Dfd/Abd-B) is used to identify protein domains outside the homeodomain that are required for regulatory activity in vivo. A series of deletion proteins were generated based on regions showing amino acid composition similar to known regulatory domains. Each mutant protein can influence regulation of homeotic genes in a manner distinct from the intact protein. Activity was also tested using promoter elements from empty spiracles and Distal-less, two genes known to be directly regulated by Abdominal-B. Removal of the acidic region and the C-tail region convert the chimera from a strong activator to a repressor of the Distal-less element, but had comparatively little effect on the activation of the empty spiracles element. Constructs without a third domain, the N domain, fail to show any regulatory activity. The N domain is the only domain of the Dfd/Abd-B protein which exhibits significant activation activity when fused to a heterologous DNA binding domain. Our results suggest transcriptional activity of the N domain can be modulated by the acidic and C-tail domains.
Collapse
Affiliation(s)
- A Zhu
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA
| | | |
Collapse
|
22
|
Abstract
Each of the homeotic genes of the bithorax complex of Drosophila defines the identities of more than one body segment. The mechanisms by which this occurs have been elusive. In a recent report, Castelli-Gair and Akam analyze in detail the control of parasegment 5 and parasegment 6 identities by the bithorax complex gene Ubx. Their results indicate that differences in the spatial and temporal expression patterns of Ubx are critical in determining differences between these parasegments. However, dose effects observed by others indicate that parasegment-specific differences in the level of Ubx expression are also important. For the other BX-C genes, parasegment-specific expression of protein isoforms, or combinatorial control dependent on the expression patterns of other spatially restricted regulators, may also play a role.
Collapse
Affiliation(s)
- I Duncan
- Department of Biology, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
23
|
Castelli-Gair J, Greig S, Micklem G, Akam M. Dissecting the temporal requirements for homeotic gene function. Development 1994; 120:1983-95. [PMID: 7925003 DOI: 10.1242/dev.120.7.1983] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Homeotic genes confer identity to the different segments of Drosophila. These genes are expressed in many cell types over long periods of time. To determine when the homeotic genes are required for specific developmental events we have expressed the Ultrabithorax, abdominal-A and Abdominal-Bm proteins at different times during development using the GAL4 targeting technique. We find that early transient homeotic gene expression has no lasting effects on the differentiation of the larval epidermis, but it switches the fate of other cell types irreversibly (e.g. the spiracle primordia). We describe one cell type in the peripheral nervous system that makes sequential, independent responses to homeotic gene expression. We also provide evidence that supports the hypothesis of in vivo competition between the bithorax complex proteins for the regulation of their down-stream targets.
Collapse
|