1
|
Zimmer B, Tenbusch L, Klymiuk MC, Dezhkam Y, Schuler G. SULFATION PATHWAYS: Expression of SULT2A1, SULT2B1 and HSD3B1 in the porcine testis and epididymis. J Mol Endocrinol 2018; 61:M41-M55. [PMID: 29588428 DOI: 10.1530/jme-17-0277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 03/27/2018] [Indexed: 01/01/2023]
Abstract
In the porcine testis, in addition to estrogen sulfates, the formation of numerous sulfonated neutral hydroxysteroids has been observed. However, their functions and the underlying synthetic pathways are still widely unclear. To obtain further information on their formation in postpubertal boars, the expression of sulfotransferases considered relevant for neutral hydroxysteroids (SULT2A1, SULT2B1) was investigated in the testis and defined segments of the epididymis applying real-time RT-qPCR, Western blot and immunohistochemistry (IHC). Sulfotransferase activities were assessed in tissue homogenates or cytosolic preparations applying dehydroepiandrosterone and pregnenolone as substrates. A high SULT2A1 expression was confirmed in the testis and localized in Leydig cells by IHC. In the epididymis, SULT2A1 expression was virtually confined to the body. SULT2B1 expression was absent or low in the testis but increased significantly along the epididymis. Immunohistochemical observations indicate that both enzymes are secreted into the ductal lumen via an apocrine mechanism. The results from the characterization of expression patterns and activity measurements suggest that SULT2A1 is the prevailing enzyme for the sulfonation of hydroxysteroids in the testis, whereas SULT2B1 may catalyze the formation of sterol sulfates in the epididymis. In order to obtain information on the overall steroidogenic capacity of the porcine epididymis, the expression of important steroidogenic enzymes (CYP11A1, CYP17A1, CYP19, HSD3B1, HSD17B3, SRD5A2) was monitored in the defined epididymal segments applying real-time RT-qPCR. Surprisingly, in addition to a high expression of SRD5A2 in the epididymal head, a substantial expression of HSD3B1 was detected, which increased along the organ.
Collapse
Affiliation(s)
- B Zimmer
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus-Liebig-University, Giessen, Germany
| | - L Tenbusch
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus-Liebig-University, Giessen, Germany
| | - M C Klymiuk
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus-Liebig-University, Giessen, Germany
| | - Y Dezhkam
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus-Liebig-University, Giessen, Germany
| | - G Schuler
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
2
|
Steroid profiling in H295R cells to identify chemicals potentially disrupting the production of adrenal steroids. Toxicology 2017; 381:51-63. [DOI: 10.1016/j.tox.2017.02.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/09/2017] [Accepted: 02/16/2017] [Indexed: 12/16/2022]
|
3
|
Hussein MMA, Ali HA, Saadeldin IM, Ahmed MM. Querectin Alleviates Zinc Oxide Nanoreprotoxicity in Male Albino Rats. J Biochem Mol Toxicol 2016; 30:489-496. [DOI: 10.1002/jbt.21812] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 03/15/2016] [Accepted: 03/22/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Mohamed M. A. Hussein
- Department of Biochemistry, Faculty of Veterinary Medicine; Zagazig University; Zagazig 44519 Egypt
| | - Haytham A. Ali
- Department of Biochemistry, Faculty of Veterinary Medicine; Zagazig University; Zagazig 44519 Egypt
| | - Islam M. Saadeldin
- Department of Physiology, Faculty of Veterinary Medicine; Zagazig University; Zagazig 44519 Egypt
- Department of Animal Production; College of Food and Agriculture Sciences, King Saud University; KSA
| | - Mona M. Ahmed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine; Zagazig University; Zagazig 44519 Egypt
| |
Collapse
|
4
|
Rice SPL, Zhang L, Grennan-Jones F, Agarwal N, Lewis MD, Rees DA, Ludgate M. Dehydroepiandrosterone (DHEA) treatment in vitro inhibits adipogenesis in human omental but not subcutaneous adipose tissue. Mol Cell Endocrinol 2010; 320:51-7. [PMID: 20176080 DOI: 10.1016/j.mce.2010.02.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 01/07/2010] [Accepted: 02/10/2010] [Indexed: 01/26/2023]
Abstract
Dehydroepiandrosterone (DHEA), a precursor sex steroid, circulates in sulphated form (DHEAS). Serum DHEAS concentrations are inversely correlated with metabolic syndrome components and in vivo/in vitro studies suggest a role in modulating adipose mass. To investigate further, we assessed the in vitro biological effect of DHEA in white (3T3-L1) and brown (PAZ6) preadipocyte cell lines and human primary preadipocytes. DHEA (from 10(-8)M) caused concentration-dependent proliferation inhibition of 3T3-L1 and PAZ6 preadipocytes. Cell cycle analysis demonstrated unaltered apoptosis but indicated blockade at G1/S or G2/M in 3T3-L1 and PAZ6, respectively. Preadipocyte cell-line adipogenesis was not affected. In human primary subcutaneous and omental preadipocytes, DHEA significantly inhibited proliferation from 10(-8)M. DHEA 10(-7)M had opposing effects on adipogenesis in the two fat depots. Subcutaneous preadipocyte differentiation was unaffected or increased whereas omental preadipocytes showed significantly reduced adipogenesis. We conclude that DHEA exerts fat depot-specific differences which modulate body composition by limiting omental fat production.
Collapse
Affiliation(s)
- S P L Rice
- Centre for Endocrine and Diabetes Sciences, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | | | | | | | | | | | | |
Collapse
|
5
|
Need EF, O'Loughlin PD, Armstrong DT, Haren MT, Martin SA, Tilley WD, Wittert GA, Buchanan G. Serum testosterone bioassay evaluation in a large male cohort. Clin Endocrinol (Oxf) 2010; 72:87-98. [PMID: 19508600 DOI: 10.1111/j.1365-2265.2009.03595.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To assess if a cell-based readout of androgen action in serum demonstrates a closer association with recognized classical parameters of androgen action in men than current measures of serum testosterone (T). DESIGN To develop, validate and utilize a mammalian cell-based assay to measure specifically bioactive T and determine if this measure is a physiologically relevant fraction of serum T. MEASUREMENTS AND PARTICIPANTS: We have developed a specific serum T bioassay using human prostate cancer cells. A rapid 5-min exposure to 100% serum followed by serum withdrawal confers specificity of the assay to serum T and provides sufficient sensitivity to measure T in male serum samples. Matrix effects were experimentally discounted as a confounding issue. A total of 960 male serum samples from the Florey Adelaide Male Ageing Study (FAMAS) with previous comprehensive cohort data and serum measurements were utilized. RESULTS Bioassay T measurement in the 960 FAMAS serum samples returned a median of 10.7 nmol/l (1.7-45.4), and was most closely related to immunoassayed total T, but not immunoassayed bioavailable T or calculated free T. Immunoassayed total T demonstrated a positive association with isometric grip-strength (R(2) = 0.127, P < 0.001), self-reported sexual desire (R(2) = 0.113, P < 0.001) and erectile function (R(2) = 0.085, P < 0.05) while bioassay T did not. CONCLUSIONS While cellular bioassays offer a rapid and sensitive means of identifying the androgenic potential of complex environmental compounds, the utility of such assays in defining a clinically relevant fraction of serum T distinct from total T needs further investigation.
Collapse
Affiliation(s)
- Eleanor F Need
- Molecular Ageing Laboratory, The Freemasons Foundation Centre for Mens Health, The University of Adelaide, Adelaide, Australia
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Espallergues J, Givalois L, Temsamani J, Laruelle C, Maurice T. The 3beta-hydroxysteroid dehydrogenase inhibitor trilostane shows antidepressant properties in mice. Psychoneuroendocrinology 2009; 34:644-59. [PMID: 19117688 DOI: 10.1016/j.psyneuen.2008.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 10/29/2008] [Accepted: 11/15/2008] [Indexed: 10/21/2022]
Abstract
Changes in neuro(active)steroid levels are involved in depressive states and mood disorders. For instance, dehydroepiandrosterone or pregnenolone sulfate showed anti-stress and antidepressant activity in rodents and regulation of allopregnanolone levels appeared to be one of the consequence of an effective antidepressant therapy in patients. 4alpha,5-Epoxy-17beta-hydroxy-3-oxo-5alpha-androstane-2alpha-carbonitrile (trilostane) inhibits the activity of 3beta-hydroxysteroid dehydrogenase (3beta-HSD) that, in particular, converts pregnenolone into progesterone. We examined whether systemic administration of trilostane affects the response to stress and depression. An acute treatment with trilostane (6.3-50mg/kg SC injected twice -16 and -2h before the measure) increased 3beta-HSD mRNA levels in the hippocampus and adrenals, but had little effect on protein levels. The trilostane treatment failed to affect open-field, locomotor or exploratory behaviors, but significantly reduced the immobility duration in the forced swimming test, measuring antidepressant-like activity, and increased the time spent in open arm in the elevated plus-maze, measuring anxiety response. The antidepressant-like effect of trilostane was effective after a repeated treatment (2.5-20mg/kgSC twice-a-day during 7 days) or in mice submitted to a restraint stress during 21 days and showing several behavioral and physiological parameters of depression (decreased body weight, increased adrenal glands weight and anhaedonia). Trilostane also reduced stress-induced increase in plasma corticosterone and ACTH levels, showing direct effect on HPA axis activity. These observations suggest that the 3beta-HSD inhibitor trilostane present antidepressant-like activity, putatively by regulating brain and peripheral levels of neuroactive steroids.
Collapse
|
7
|
Slominski AT, Zmijewski MA, Semak I, Sweatman T, Janjetovic Z, Li W, Zjawiony JK, Tuckey RC. Sequential metabolism of 7-dehydrocholesterol to steroidal 5,7-dienes in adrenal glands and its biological implication in the skin. PLoS One 2009; 4:e4309. [PMID: 19190754 PMCID: PMC2629546 DOI: 10.1371/journal.pone.0004309] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 12/10/2008] [Indexed: 11/19/2022] Open
Abstract
Since P450scc transforms 7-dehydrocholesterol (7DHC) to 7-dehydropregnenolone (7DHP) in vitro, we investigated sequential 7DHC metabolism by adrenal glands ex vivo. There was a rapid, time- and dose-dependent metabolism of 7DHC by adrenals from rats, pigs, rabbits and dogs with production of more polar 5,7-dienes as detected by RP-HPLC. Based on retention time (RT), UV spectra and mass spectrometry, we identified the major products common to all tested species as 7DHP, 22-hydroxy-7DHC and 20,22-dihydroxy-7DHC. The involvement of P450scc in adrenal metabolic transformation was confirmed by the inhibition of this process by DL-aminoglutethimide. The metabolism of 7DHC with subsequent production of 7DHP was stimulated by forscolin indicating involvement of cAMP dependent pathways. Additional minor products of 7DHC metabolism that were more polar than 7DHP were identified as 17-hydroxy-7DHP (in pig adrenals but not those of rats) and as pregna-4,7-diene-3,20-dione (7-dehydroprogesterone). Both products represented the major identifiable products of 7DHP metabolism in adrenal glands. Studies with purified enzymes show that StAR protein likely transports 7DHC to the inner mitochondrial membrane, that 7DHC can compete effectively with cholesterol for the substrate binding site on P450scc and that the catalytic efficiency of 3betaHSD for 7DHP (V(m)/K(m)) is 40% of that for pregnenolone. Skin mitochondria are capable of transforming 7DHC to 7DHP and the 7DHP is metabolized further by skin extracts. Finally, 7DHP, its photoderivative 20-oxopregnacalciferol, and pregnenolone exhibited biological activity in skin cells including inhibition of proliferation of epidermal keratinocytes and melanocytes, and melanoma cells. These findings define a novel steroidogenic pathway: 7DHC-->22(OH)7DHC-->20,22(OH)(2)7DHC-->7DHP, with potential further metabolism of 7DHP mediated by 3betaHSD or CYP17, depending on mammalian species. The 5-7 dienal intermediates of the pathway can be a source of biologically active vitamin D3 derivatives after delivery to or production in the skin, an organ intermittently exposed to solar radiation.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Nicolau-Solano SI, McGivan JD, Whittington FM, Nieuwhof GJ, Wood JD, Doran O. Relationship between the expression of hepatic but not testicular 3beta-hydroxysteroid dehydrogenase with androstenone deposition in pig adipose tissue. J Anim Sci 2006; 84:2809-17. [PMID: 16971583 DOI: 10.2527/jas.2005-595] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study investigated the relationship between expression of hepatic and testicular 3beta-hydroxysteroid dehydrogenase (3beta-HSD) and accumulation of androstenone in adipose tissue because of its relation to boar taint. The experiments were performed on 13 Large White (50%) x Landrace (50%) and Meishan (25%) x Large White (25%) x Landrace (50%), pigs, which differed in the level of backfat androstenone. Our previous work showed that the major product of the hepatic androstenone metabolism is 3beta-androstenol. In this study, the formation of 3beta-androstenol was inhibited by the specific 3beta-HSD inhibitor trilostane. These results are the first direct confirmation that 3beta-HSD is the enzyme responsible for androstenone metabolism in the pig. The expression of the hepatic but not testicular 3beta-HSD protein showed a negative relationship with the level of backfat androstenone (r2 = 0.64; P < 0.001) and was accompanied by a reduced rate of the hepatic androstenone clearance. Low expression of 3beta-HSD protein in the liver of high androstenone pigs was also accompanied by a reduced level of 3beta-HSD mRNA (P < 0.001), which suggests a defective regulation of the hepatic 3beta-HSD expression at the level of transcription. In contrast, expression of the testicular 3beta-HSD protein did not differ between animals with high and low androstenone levels (P > 0.05) and was lower compared with the hepatic 3beta-HSD expression. Cloning and sequencing of the 3beta-HSD coding regions established that the hepatic and testicular 3beta-HSD cDNA have identical sequences, which were 98% similar to the human 3beta-HSD isoform I. It is suggested that expression of a single 3beta-HSD gene is regulated by different mechanisms in pig liver and testis. The liver-specific regulation of 3beta-HSD expression contributes to the low rate of hepatic androstenone metabolism and therefore can be considered as one of the factors regulating deposition of androstenone in pig adipose tissue and subsequent development of boar taint.
Collapse
Affiliation(s)
- S I Nicolau-Solano
- Department of Clinical Veterinary Science, University of Bristol, Langford, Bristol, BS40 5DU, UK
| | | | | | | | | | | |
Collapse
|
9
|
Ptak A, Gregoraszczuk EL, Rzasa J. Growth hormone and insulin-like growth factor-I action on progesterone secretion by porcine corpora lutea isolated at various periods of the luteal phase. Acta Vet Hung 2003; 51:197-208. [PMID: 12737047 DOI: 10.1556/avet.51.2003.2.8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study was conducted to investigate the interactions between growth hormone (GH) and insulin-like growth factor-I (IGF-I) on progesterone (P4) secretion by porcine luteal cells cultured in vitro. Cells isolated from corpora lutea (CL) collected at three different periods of the luteal phase (CL1--early luteal phase; CL2--middle luteal phase and CL3--late luteal phase) were incubated with different doses of GH (10, 100 or 200 ng/ml). After 48 h cultures were terminated and the media were frozen until further P4 concentration analysis. GH (100 ng/ml) increased P4 secretion by CL1 and CL2 and had no effect on CL3. In separate studies these cells were treated for 48 h with IGF-I alone or with GH combined with IGF-I. IGF-I alone increased basal P4 secretion only by cells collected from CL1 while concurrent treatment with GH had no effect on P4 secretion by any type of CL. To investigate the possible mechanism of GH and IGF-I mediated induction of P4 secretion, an inhibitory study was conducted. In this experiment, luteal cells collected from CL1 were cultured in the absence or presence of cycloheximide (an inhibitor of protein synthesis) or actinomycin D (an inhibitor of DNA transcription). Cycloheximide or actinomycin D completely blocked the stimulatory effect of both GH and IGF-I on P4 production but did not reduce basal progesterone secretion suggesting involvement of gene transcription and translation in the GH and IGF-I action on luteal cells. Additionally, the activity of 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) under the influence of GH added alone or together with IGF was measured by the conversion of pregnenolone to progesterone. Stimulation of P4 secretion in P5-treated cells in GH-stimulated cultures was not observed, however, high stimulatory effect was noted in IGF-I treated cultures. In conclusion, the present studies indicate that there is direct and cycle stage dependent influence of GH and IGF-I on steroidogenesis in procine luteal cells. It is suggested that both IGF and GH may exert some regulatory action during CL development in the pig.
Collapse
Affiliation(s)
- Anna Ptak
- Laboratory of Physiology and Toxicology of Reproduction, Department of Animal Physiology, Institute of Zoology, Jagiellonian University, Ingardena 6, 30-060 Cracow, Poland
| | | | | |
Collapse
|
10
|
Coirini H, Gouézou M, Delespierre B, Schumacher M, Guennoun R. 3 beta-hydroxysteroid dehydrogenase isomerase (3beta-HSD) activity in the rat sciatic nerve: kinetic analysis and regulation by steroids. J Steroid Biochem Mol Biol 2003; 85:89-94. [PMID: 12798361 DOI: 10.1016/s0960-0760(03)00133-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have shown that progesterone (PROG) has a stimulatory effect on myelin formation after sciatic nerve injury. PROG is synthesized from pregnenolone (PREG) by the enzyme 3 beta-hydroxysteroid dehydrogenase isomerase (3beta-HSD). At the occasion of the 15th International Symposium of the Journal of the Steroid Biochemistry and Molecular Biology, we presented some of our recent results demonstrating, expression and activity of the enzyme 3beta-HSD in the rat sciatic nerve. We determined the kinetic properties of 3beta-HSD and its regulation by PROG and estradiol. The expression of 3beta-HSD protein was assessed by Western-blot analysis, and the 3beta-HSD activity was evaluated by incubating homogenates with [3H]-PREG as substrate and NAD(+) as cofactor. Levels of steroids formed were calculated either by extrapolation of the relationship between the tritiated peaks obtained by thin layer chromatography (TLC) and the initial amount of PREG, or by gas chromatography-mass spectrometry (GC-MS) determination. A rapid increase in PROG formation was found between 0 and 50min of incubation and no significant change was observed between 1 and 4h. The calculated K(m) value was close to the values obtained for the 3beta-HSD types I and IV isoforms. Trilostane caused a potent inhibition of the rate of conversion of PREG to PROG. When we tested the effects of progesterone and estradiol on 3beta-HSD activity, a significant inhibition was obtained.
Collapse
Affiliation(s)
- H Coirini
- INSERM U488, 80 rue du Général Leclerc, 94276 Bicêtre, France
| | | | | | | | | |
Collapse
|
11
|
Morán FM, Lohstroh P, VandeVoort CA, Chen J, Overstreet JW, Conley AJ, Lasley BL. Exogenous steroid substrate modifies the effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on estradiol production of human luteinized granulosa cells in vitro. Biol Reprod 2003; 68:244-51. [PMID: 12493720 DOI: 10.1095/biolreprod.102.007161] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The in vitro effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on steroid metabolism in human luteinized granulosa cells (hLGC) have been summarized as a decreased estradiol (E(2)) production without altering either E(2) metabolism or cytochrome P450 aromatase activity. In the present study, hLGC were used to analyze the fate of different substrates for cytochrome P450 17alpha-hydroxylase/17,20-lyase (P450(c17)) in the presence or absence of TCDD. Human LGCs were plated directly on plastic culture dishes in medium supplemented with 2 IU/ml of hCG. TCDD (10 nM) or its solvent was added directly to the cells at the time of medium change, every 48 h for 8 days. The objective of the experiment was to test the hypothesis that exogenous steroid, substrate for P450(c17), would reduce the TCDD effects on E(2) synthesis. With dehydroepiandrosterone (DHEA) (a P450(c17) product), a dose-related increase in E(2) production was observed and the effect of TCDD on lowering E(2) production disappeared. In contrast, with increasing doses, up to 10 micro M, of pregnenolone (P(5)), no change in E(2) production was observed. However, 17alpha-hydroxypregnenolone (17P(5)) at 10 micro M produced a modest but significant increase in the E(2) production. Treatments with P(5) and 17P(5) did not alter the effect of TCDD on E(2) production. Radiolabeled substrate utilization by hLGC suggests that the principal metabolic pathway for Delta5 substrates is the conversion to a Delta4 product probably by a very active 3beta-hydroxysteroid dehydrogenase. We conclude that estrogen production by hLGC is limited at the level of lyase activity. Thus, these data suggest that the most likely target for the TCDD-induced inhibition of estrogen synthesis by hLGC is the 17,20-lyase activity of the P450(c17) enzyme complex.
Collapse
Affiliation(s)
- F M Morán
- Population Health and Reproduction, University of California, Davis, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Coirini H, Gouézou M, Delespierre B, Liere P, Pianos A, Eychenne B, Schumacher M, Guennoun R. Characterization and regulation of the 3beta-hydroxysteroid dehydrogenase isomerase enzyme in the rat sciatic nerve. J Neurochem 2003; 84:119-26. [PMID: 12485408 DOI: 10.1046/j.1471-4159.2003.01512.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the peripheral nervous system, progesterone (PROG) has a stimulatory effect on myelination. It could be derived from local synthesis, as Schwann cells in culture express the 3beta-hydroxysteroid dehydrogenase (3beta-HSD) and convert pregnenolone (PREG) to PROG. Although 3beta-HSD mRNA can be detected by RT-PCR in peripheral nerves, the activity of the enzyme has so far not been demonstrated and characterized in nerve tissue. In this study, we show that homogenates prepared from rat sciatic nerves contain a functional 3beta-HSD enzyme and we have analysed its kinetic properties and its regulation by steroids. The activity of 3beta-HSD in homogenates was evaluated using 3H-labelled PREG as a substrate and NAD+ as a cofactor, the levels of steroids formed were calculated either by extrapolating the relationship between tritiated peaks obtained by TLC to the initial amount of PREG, or by gas chromatography/mass spectrometry determination. A rapid increase in PROG formation was found between 0 and 50 min of incubation and no further significant changes were observed between 1 and 4 h. The calculated Km value (1.06 +/- 0.19 microm) was close to the values described for the 3beta-HSD type-I and type-IV isoforms. Trilostane, a competitive inhibitor of the 3beta-HSD caused a potent inhibition of the rate of conversion of PREG to PROG (IC50 = 4.06 +/- 2.58 microm). When the effects of different steroids were tested, both oestradiol and PROG significantly inhibited the conversion of PREG to PROG.
Collapse
|
13
|
Chen W, Thiboutot D, Zouboulis CC. Cutaneous androgen metabolism: basic research and clinical perspectives. J Invest Dermatol 2002; 119:992-1007. [PMID: 12445184 DOI: 10.1046/j.1523-1747.2002.00613.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The skin, especially the pilosebaceous unit composed of sebaceous glands and hair follicles, can synthesize androgens de novo from cholesterol or by locally converting circulating weaker androgens to more potent ones. As in other classical steroidogenic organs, the same six major enzyme systems are involved in cutaneous androgen metabolism, namely steroid sulfatase, 3beta-hydroxy-steroid dehydrogenase, 17beta-hydroxysteroid dehydrogenase, steroid 5alpha-reductase, 3alpha-hydroxysteroid dehydrogenase, and aromatase. Steroid sulfatase, together with P450 side chain cleavage enzyme and P450 17-hydroxylase, was found to reside in the cytoplasm of sebocytes and keratinocytes. Strong steroid sulfatase immunoreactivity was observed in the lesional skin but not in unaffected skin of acne patients. 3beta-hydroxysteroid dehydrogenase has been mainly immunolocalized to sebaceous glands, with the type 1 being the key cutaneous isoenzyme. The type 2 17beta-hydroxysteroid dehydrogenase isoenzyme predominates in sebaceous glands and exhibits greater reductive activity in glands from facial areas compared with acne nonprone areas. In hair follicles, 17beta-hydroxysteroid dehydrogenase was identified mainly in outer root sheath cells. The type 1 5alpha-reductase mainly occurs in the sebaceous glands, whereby the type II isoenzyme seems to be localized in the hair follicles. 3alpha-hydroxysteroid dehydrogenase converts dihydrotestosterone to 3alpha-androstanediol, and the use of 3alpha-androstanediol glucuronide serum level to reflect the hyperandrogenic state in hirsute women may be a reliable parameter, especially for idiopathic hirsutism. In acne patients it is still controversial if 3alpha-androstanediol glucuronide or androsterone glucuronide could serve as suitable serum markers for measuring androgenicity. Aromatase, localized to sebaceous glands and to both outer as well as inner root sheath cells of anagen terminal hair follicles, may play a "detoxifying" role by removing excess androgens. Pharmacologic development of more potent specific isoenzyme antagonists may lead to better clinical treatment or even prevention of androgen-dependent dermatoses.
Collapse
Affiliation(s)
- WenChieh Chen
- Department of Dermatology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | |
Collapse
|
14
|
Abstract
Dehydroepiandrosterone (DHEA) is abundantly found in brain tissues of several species, including human. However, the cellular origin and pathway by which DHEA is synthesized in brain are not yet known. We have, therefore, initiated pilot experiments to explore gene expression of cytochrome P450 17alpha-hydroxylase (P450c17), the key steroidogenic enzyme for androgen synthesis, and evaluate DHEA production by highly purified astrocytes, oligodendrocytes, and neurons. Using RT-PCR, we have demonstrated for the first time that astrocytes and neurons in the cerebral cortex of neonatal rat brain express P450c17. The presence of P450c17 in astrocytes and neurons was supported by the ability of these cells to metabolize pregnenolone to DHEA in a dose-dependent manner as determined by RIA. These data were further confirmed by production of androstenedione by astrocytes using progesterone as a substrate. However, cortical neurons express a low transcript of P450c17 messenger RNA and produce low levels of DHEA and androstenedione compared with astrocytes. Oligodendrocytes neither express the messenger RNA nor produce DHEA. The production of DHEA by astrocytes is not limited to cerebral cortex, as hypothalamic astrocytes produce DHEA at a level 3 times higher than that produced by cortical astrocytes. Cortical and hypothalamic astrocytes also have the capacity to metabolize DHEA to testosterone and estradiol in a dose-dependent manner. However, hypothalamic astrocytes were 3 times more active than cortical astrocytes in the metabolism of DHEA to estradiol. In conclusion, our data presented evidence that astrocytes and neurons express P450c17 and synthesize DHEA from pregnenolone. Astrocytes also have the capacity to metabolize DHEA into sex steroid hormones. These data suggest that as in gonads and adrenal, DHEA is biosynthesized in the brain by a P450c17-dependent mechanism.
Collapse
Affiliation(s)
- I H Zwain
- Department of Reproductive Medicine, University of California-San Diego School of Medicine, La Jolla 92093-0633, USA.
| | | |
Collapse
|
15
|
|