1
|
Abstract
Deregulation of cyclin expression has been found in many tumors. In this report, we studied expression of cyclin DI in three human prostate cancer cell lines: the androgen-dependent LNCaP and the androgen-independent PC3 and DU 145 cell lines. Northern blot analysis showed that DU145 and PC3 cells expressed more abundant cyclin DI than LNCaP cells. Southern blot analysis showed no evident gene amplification or rearrangement of cyclin DI in any of these cell lines. Serum starvation and replenishment were used in the cell culture to study the regulation of expression of cyclin DI. Cyclin DI mRNA expression was detected by Northern blot analysis when LNCaP cells grew in medium with serum but was not detected after serum withdrawal; however, cyclin DI mRNA was induced after serum was added. Cyclin DI mRNA expression by PC3 and DU 145 cells was detected both when they grew in medium with serum and after serum withdrawal, although expression decreased greatly after 24 hours in the PC3 cell line. Immunoprecipitation and immunohistochemical staining also showed that cyclin D I protein was always expressed in PC3 and DU 145 cells under different growth factor environment, whereas it decreased significantly in LNCaP cells deprived of serum and the level resumed again when serum was re-added. This suggests that expression of cyclin DI is regulated by exogenous growth factors in LNCaP cell line and becomes constitutive in PC3 and DU 145 cell lines.
Collapse
Affiliation(s)
- Y Chen
- From the University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas, USA
| | | | | |
Collapse
|
2
|
Vlad-Fiegen A, Langerak A, Eberth S, Müller O. The Wnt pathway destabilizes adherens junctions and promotes cell migration via β-catenin and its target gene cyclin D1. FEBS Open Bio 2012; 2:26-31. [PMID: 23650577 PMCID: PMC3642111 DOI: 10.1016/j.fob.2012.02.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 01/21/2023] Open
Abstract
The Wnt pathway regulates cell proliferation, mobility and differentiation. Among the many Wnt target genes is CCND1 which codes for cyclin D1. Cyclin D1, in complex with cdk4 and cdk6, regulates G1/S phase transition during cell cycle. Independently of CDK, cyclin D1 also regulates the migration of macrophages. Here we analyzed the effects of cyclin D1 on the migration of cancer cell lines using the transwell migration and scratch assays. We also tested the effect of cyclin D1 and β-catenin on E-cadherin-mediated cell–cell contacts. Our results show that the Wnt pathway promotes cellular migration via its target gene cyclin D1. Moreover we show that cyclin D1 influences the actin cytoskeleton and destabilizes adherens junctions.
Collapse
Affiliation(s)
- Annica Vlad-Fiegen
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Projektträger im DLR, Bonn, Germany
| | | | | | | |
Collapse
|
3
|
Marcote MJ, Pagano M, Draetta G. cdc2 protein kinase: structure-function relationships. CIBA FOUNDATION SYMPOSIUM 2007; 170:30-41; discussion 41-9. [PMID: 1483349 DOI: 10.1002/9780470514320.ch4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Activation of the cdc2 kinase in the cell cycle occurs upon binding to a regulatory subunit called cyclin. Cyclin A associates with both Cdc2 and its homologue Cdk2. The two complexes appear in S phase but cyclin A/Cdk2 is activated earlier than cyclin A/Cdc2. Several regions in Cdc2 are involved in binding cyclins A and B. Phosphorylation of cyclin/Cdk complexes ensures that the kinase activity peaks at a specific time in the cell cycle. Phosphorylation of Thr161 in Cdc2 is required for strong cyclin binding and kinase activity in vitro; its dephosphorylation is necessary for cells to exit mitosis. We have identified a novel 'Activating factor' that stimulates binding between cyclin and Cdc2 by inducing phosphorylation of Cdc2 on Thr161. We propose that Thr161 is targeted by an additional cell cycle regulatory pathway.
Collapse
Affiliation(s)
- M J Marcote
- Differentiation Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
4
|
Malumbres M, Barbacid M. Mammalian cyclin-dependent kinases. Trends Biochem Sci 2005; 30:630-41. [PMID: 16236519 DOI: 10.1016/j.tibs.2005.09.005] [Citation(s) in RCA: 890] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2005] [Revised: 08/11/2005] [Accepted: 09/15/2005] [Indexed: 02/02/2023]
Abstract
Cyclin-dependent kinases (Cdks) are the catalytic subunits of a family of mammalian heterodimeric serine/threonine kinases that have been implicated in the control of cell-cycle progression, transcription and neuronal function. Recent genetic evidence obtained with gene-targeted mice has shown that Cdk4 and Cdk6 are not needed for entry into the cell cycle after mitogenic stimuli and organogenesis; however, they are essential for the proliferation of some endocrine and hematopoietic cells. Cdk2 is also dispensable for the mitotic cell cycle. Indeed, mice without Cdk2 are normal except for their complete sterility: unexpectedly, Cdk2 is crucial for the first meiotic division of male and female germ cells. These findings have important implications both for our current understanding of the role of Cdks in regulating the mammalian cell cycle and for their potential use as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Marcos Malumbres
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, Melchor Fernández Almagro 3, E-28029 Madrid, Spain.
| | | |
Collapse
|
5
|
Sağsöz N, Yücel A, Noyan V, Bozdoğan O. The effects of hormone therapy, estrogen therapy and tibolone on apoptosis and cyclin D1 expression in postmenopausal vaginal epithelium. Eur J Obstet Gynecol Reprod Biol 2005; 121:61-6. [PMID: 15955616 DOI: 10.1016/j.ejogrb.2004.11.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 09/16/2004] [Accepted: 11/25/2004] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate the effects of hormone therapy, estrogen therapy and tibolone on markers of apoptosis including bcl-2, and bax and cyclin D(1) expression in postmenopausal vaginal epithelium. STUDY DESIGN Thirty postmenopausal women were randomized to the treatment protocols (0.625 mg conjugated equine estrogen (CEE) + 2.5 mg medroxyprogesterone acetate (MPA); 2mg estradiol valerate; 2.5mg tibolone). After baseline vaginal biopsy, control biopsies were performed after 70 days following the initiation of the therapy. Bcl-2, bax, Bcl-2/bax ratio, cyclin D(1) measurements were performed immunohistochemically. Data were analyzed by Kruskal-Wallis, Mann-Whitney U and Wilcoxon tests. RESULTS After the treatment period the above-mentioned parameters were not different among the groups except for cyclin D(1) levels. Cyclin D(1) expression was found to be strong in patients with treated estradiol valerate. CONCLUSIONS The effects of estrogen on cyclin D(1) expression were not detected with tibolone or with the addition of progesterone to estrogen in the vaginal epithelium. Cyclin D(1) appeared to have stronger effects on the estrogen related proliferation compared to apoptotic markers in vaginal epithelial cells.
Collapse
Affiliation(s)
- Nevin Sağsöz
- Kirikkale University, Faculty of Medicine, Department of Obstetrics and Gynecology, Turkey.
| | | | | | | |
Collapse
|
6
|
Abstract
Cyclins are regulatory subunits of the serine/threonine protein kinases that play key roles in cell cycle control. The roster of known cyclins has expanded significantly in the past year, revealing a large and very diverse family of proteins. Although cyclins were originally characterized by their periodic accumulation during interphase and destruction in mitosis (these were the 'mitotic' cyclins that control entry into mitosis), the newly identified cyclins do not conform to this pattern. Here we review what is known about the functions of the nonmitotic cyclins in yeast and in mammalian cells.
Collapse
Affiliation(s)
- D J Lew
- Department of Molecular Biology, MB7, Scripps Research Institute, 10666 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | | |
Collapse
|
7
|
Xiong Y, Kuppuswamy D, Li Y, Livanos EM, Hixon M, White A, Beach D, Tlsty TD. Alteration of cell cycle kinase complexes in human papillomavirus E6- and E7-expressing fibroblasts precedes neoplastic transformation. J Virol 1996; 70:999-1008. [PMID: 8551641 PMCID: PMC189905 DOI: 10.1128/jvi.70.2.999-1008.1996] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Expression of viral oncoproteins results in the loss of cell cycle checkpoint control and the accumulation of chromosomal abnormalities. Expression of both human papillomavirus type 16 oncoproteins, E6 and E7, in normal human fibroblasts completely dissociates p21 and proliferating cell nuclear antigen from the quarternary cyclin-cyclin-dependent kinase (CDK) complexes present in normal cells, causes disruption of the cyclin D-CDK4 complex and replacement with a CDK4-p16 complex, and leaves binary complexes of cyclin B1-CDC2 and cyclin A-CDK2 intact. These results are identical to those observed in fully transformed cells. The expression of the individual oncoproteins dramatically affects the association of proliferating cell nuclear antigen into the complexes while leaving the total cellular levels unaltered. Expression of low-risk human papillomavirus has no effect on cyclin complexes. These findings provide evidence for the gross alteration of cyclin-CDK complexes in preneoplastic cells and links this alteration to the loss of genomic stability.
Collapse
Affiliation(s)
- Y Xiong
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
The smooth progression of the eukaryotic cell cycle relies on the periodic activation of members of a family of cell cycle kinases by regulatory proteins called cyclins. Outside of the cell cycle, cyclin homologs play important roles in regulating the assembly of transcription complexes; distant structural relatives of the conserved cyclin core or "box" can also function as general transcription factors (like TFIIB) or survive embedded in the chain of the tumor suppressor, retinoblastoma protein. The present work attempts the prediction of the canonical secondary, supersecondary, and tertiary fold of the minimal cyclin box domain using a combination of techniques that make use of the evolutionary information captured in a multiple alignment of homolog sequences. A tandem set of closely packed, helical modules are predicted to form the cyclin box domain.
Collapse
Affiliation(s)
- J F Bazan
- Protein Machine Group, Department of Molecular Biology, DNAX Research Institute, Palo Alto, California 94304-1104, USA
| |
Collapse
|
9
|
Sicinski P, Donaher JL, Parker SB, Li T, Fazeli A, Gardner H, Haslam SZ, Bronson RT, Elledge SJ, Weinberg RA. Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 1995; 82:621-30. [PMID: 7664341 DOI: 10.1016/0092-8674(95)90034-9] [Citation(s) in RCA: 783] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mice lacking cyclin D1 have been generated by gene targeting in embryonic stem cells. Cyclin D1-deficient animals develop to term but show reduced body size, reduced viability, and symptoms of neurological impairment. Their retinas display a striking reduction in cell number due to proliferative failure during embryonic development. In situ hybridization studies of normal mouse embryos revealed an extremely high level of cyclin D1 in the retina, suggesting a special dependence of this tissue on cyclin D1. In adult mutant females, the breast epithelial compartment fails to undergo the massive proliferative changes associated with pregnancy despite normal levels of ovarian steroid hormones. Thus, steroid-induced proliferation of mammary epithelium during pregnancy may be driven through cyclin D1.
Collapse
Affiliation(s)
- P Sicinski
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Resnitzky D, Hengst L, Reed SI. Cyclin A-associated kinase activity is rate limiting for entrance into S phase and is negatively regulated in G1 by p27Kip1. Mol Cell Biol 1995; 15:4347-52. [PMID: 7623829 PMCID: PMC230674 DOI: 10.1128/mcb.15.8.4347] [Citation(s) in RCA: 201] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have created fibroblast cell lines that express cyclin A under the control of a tetracycline-repressible promoter. When stimulated to reenter the cell cycle after serum withdrawal, these cells were advanced prematurely into S phase by induction of cyclin A. In an asynchronous population, induction of cyclin A caused a decrease in the percentage of cells in G1. These results demonstrate that expression of cyclin A is rate limiting for the G1-to-S transition and suggest that cyclin A can function as a G1 cyclin. Although the level of exogenous cyclin A was constant throughout the cell cycle, its associated kinase activity increased as cells approached S phase. Low kinase activity in early G1 was found to correlate with the presence of p27Kip1 in cyclin A-associated complexes, while high kinase activity in late G1 was correlated with its absence. These results suggest that a function of p27Kip1 in G1 is to prevent premature activation of cyclin A-associated kinase. Cyclin A expression in early G1 led to phosphorylation of the product of the retinoblastoma susceptibility gene (pRb). Thus, cyclin A expression can be rate limiting for pRb phosphorylation, implicating pRb as a physiological substrate of the cyclin A-dependent kinase. Taken together, these results demonstrate that deregulated expression of cyclin A can perturb the normal regulation of the G1-to-S transition.
Collapse
Affiliation(s)
- D Resnitzky
- Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
11
|
Vojta PJ, Barrett JC. Genetic analysis of cellular senescence. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1242:29-41. [PMID: 7626653 DOI: 10.1016/0304-419x(95)00002-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- P J Vojta
- National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
12
|
Resnitzky D, Reed SI. Different roles for cyclins D1 and E in regulation of the G1-to-S transition. Mol Cell Biol 1995; 15:3463-9. [PMID: 7791752 PMCID: PMC230582 DOI: 10.1128/mcb.15.7.3463] [Citation(s) in RCA: 368] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Ectopic expression of cyclins D1 and E was previously shown to accelerate the G1/S-phase transition, indicating that both classes of G1 cyclin control an event(s) that is rate limiting for entry into S phase. In order to determine whether cyclins D1 and E control the same or two different rate-limiting events, we have created cell lines that express both cyclins in an inducible manner. We show here that ectopic expression of both cyclins E and D1 in the same cell has an additive effect on shortening of the G1 interval relative to expression of any single cyclin. In order to further explore the molecular basis for G1 cyclin action, we used cell lines capable of expressing cyclin D1, E, or both prematurely and measured the effect of cyclin expression in early G1 on phosphorylation of the retinoblastoma susceptibility gene product (pRb). We show here that while premature expression of either cyclin alone advances the G1/S-phase transition to the same extent, premature expression of cyclin D1 leads to immediate appearance of hyperphosphorylated pRb, while premature expression of cyclin E does not. Ectopic expression of both cyclins E and D1 in the same cell has an additive effect on shortening of the G1 interval, while the effect on pRb phosphorylation is similar to the effect of cyclin D1 alone. These results suggest that cyclins E and D1 control two different events, both rate limiting for the G1/S-phase transition, and that pRb phosphorylation might be the rate-limiting event controlled by cyclin D1.
Collapse
Affiliation(s)
- D Resnitzky
- Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
13
|
de Toledo SM, Azzam EI, Gasmann MK, Mitchel RE. Use of semiquantitative reverse transcription-polymerase chain reaction to study gene expression in normal human skin fibroblasts following low dose-rate irradiation. Int J Radiat Biol 1995; 67:135-43. [PMID: 7884281 DOI: 10.1080/09553009514550171] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
One way to study the effect of radiation on gene expression is to monitor changes in the levels of specific messenger RNAs. We describe the use of reverse transcription-polymerase chain reaction (RT-PCR) analysis, a faster and more sensitive procedure than the traditional techniques to monitor RNA levels. Using RT-PCR, we confirmed previous results showing increased levels of GADD45 transcripts after high dose-rate X-irradiation in normal human fibroblasts. No differences were observed in the transcript levels of beta-ACTIN, beta-MICROGLOBULIN, Cu-Zn SUPEROXIDE DISMUTASE (SOD-1) and CATALASE. In cells exposed to 3-6 Gy low dose-rate gamma-irradiation we observed increased levels of the GADD45 transcript and lower transcript levels of the genes TOPOISOMERASE II alpha, FACC, CYCLIN A and CYCLIN B. No differences were detected in the transcript levels of beta-ACTIN, beta-MICROGLOBULIN, SOD-1, URACYL-DNA GLYCOSYLASE, CYCLIN C, CYCLIN E, CYCLIN D1, CYCLIN D2, CYCLIN D3, TOPOISOMERASE I and TOPOISOMERASE II beta.
Collapse
Affiliation(s)
- S M de Toledo
- Radiation Biology and Health Physics Branch, AECL Research, ON, Canada
| | | | | | | |
Collapse
|
14
|
Kurzrock R, Ku S, Talpaz M. Abnormalities in the PRAD1 (CYCLIN D1/BCL-1) oncogene are frequent in cervical and vulvar squamous cell carcinoma cell lines. Cancer 1995; 75:584-90. [PMID: 7812927 DOI: 10.1002/1097-0142(19950115)75:2<584::aid-cncr2820750223>3.0.co;2-p] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND CYCLIN D1, a cell-cycle control gene, recently has been shown to be identical to an oncogene alternatively known as BCL-1 and PRAD1 and implicated in centrocytic lymphomas and parathyroid adenomas, respectively. PRAD1 complexes to the product of the retinoblastoma (Rb) tumor suppressor gene, an event followed by Rb inactivation. Squamous cell carcinomas of the cervix and vulva are gynecologic tumors in which human papillomaviruses have been implicated as an initiating event, and proteins derived from these viruses also complex with an inactivate Rb. Because of the overlap in some of the molecular processes mediated by human papillomaviruses and by the PRAD1 oncogene, the authors analyzed the PRAD1 (CYCLIN D1/BCL-1) genomic structure and expression in vulvar and cervical squamous cell carcinoma cell lines. METHODS PRAD1 DNA and PRAD1 mRNA expression were assessed by Southern and Northern blotting, respectively, in 13 squamous cell carcinoma cell lines of gynecologic origin (10, cervical cancer; 3, vulvar cancer). RESULTS We found low baseline levels of a 4.5-kb PRAD1 transcript in a series of control cell lines, which were derived from normal fibroblasts, various hematologic malignancies, and a choriocarcinoma. PRAD1 mRNA overexpression (> or = 10-fold greater than that in control lines) was seen in all three vulvar carcinoma cell lines, two of which also showed amplification (5-fold and > 10-fold) of PRAD1 genomic sequences. Abnormalities of PRAD1 also were seen in 4 of the 10 cervical cancer cell lines and included overexpression of PRAD1 transcripts (3-9-fold) in 3 lines and rearrangement of PRAD1 DNA in an additional line that, however, did not shown any aberration in PRAD1 mRNA as discernible by Northern blotting. PRAD1 abnormalities were observed in three of the four cervical cell lines derived from metastatic sites and in one of the six cervical lines derived from primary tissue. CONCLUSIONS Seven of 13 squamous cell lines of gynecologic origin showed abnormalities of PRAD1. These abnormalities included amplification and rearrangement of DNA and overexpression of mRNA. The role of PRAD1 as a cell-cycle regulatory gene and its interactions with the Rb tumor suppressor gene suggests that PRAD1 deregulation may be a significant molecular event in the evolution of these tumors.
Collapse
Affiliation(s)
- R Kurzrock
- Department of Clinical Investigation, University of Texas, M.D. Anderson Cancer Center, Houston
| | | | | |
Collapse
|
15
|
|
16
|
Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system. Mol Cell Biol 1994. [PMID: 8114703 DOI: 10.1128/mcb.14.3.1669] [Citation(s) in RCA: 601] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conditional overexpression of human cyclins B1, D1, and E was accomplished by using a synthetic cDNA expression system based on the Escherichia coli tetracycline repressor. After induction of these cyclins in asynchronous Rat-1 fibroblasts, a decrease in the length of the G1 interval was observed for cyclins D1 and E, consistent with an acceleration of the G1/S phase transition. We observed, in addition, a compensatory lengthening of S phase and G2 so that the mean cell cycle length in populations constitutively expressing these cyclins was unchanged relative to those of their uninduced counterparts. We found that expression of cyclin B1 had no effect on cell cycle dynamics, despite elevated levels of cyclin B-associated histone H1 kinase activity. Induction of cyclins D1 and E also accelerated entry into S phase for synchronized cultures emerging from quiescence. However, whereas cyclin E exerted a greater effect than cyclin D1 in asynchronous cycling cells, cyclin D1 conferred a greater effect upon stimulation from quiescence, suggesting a specific role for cyclin D1 in the G0-to-G1 transition. Overexpression of cyclins did not prevent cells from entering into quiescence upon serum starvation, although a slight delay in attainment of quiescence was observed for cells expressing either cyclin D1 or cyclin E. These results suggest that cyclins D1 and E are rate-limiting activators of the G1-to-S phase transition and that cyclin D1 might play a specialized role in facilitating emergence from quiescence.
Collapse
|
17
|
Dulić V, Kaufmann WK, Wilson SJ, Tlsty TD, Lees E, Harper JW, Elledge SJ, Reed SI. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 1994; 76:1013-23. [PMID: 8137420 DOI: 10.1016/0092-8674(94)90379-4] [Citation(s) in RCA: 1061] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
gamma-Irradiation of human diploid fibroblasts in the G1 interval caused arrest of the cell cycle prior to S phase. This cell cycle block was correlated with a lack of activation of both cyclin E-Cyclin-dependent kinase 2 (Cdk2) and cyclin A-Cdk2 kinases and depended on wild-type p53. Although the accumulation of cyclin A was strongly inhibited in gamma-irradiated cells, cyclin E accumulated and bound Cdk2 at normal levels but remained in an inactive state. We found that both whole-cell lysates and inactive cyclin E-Cdk2 complexes prepared from irradiated cells contained an activity capable of inactivating cyclin E-Cdk2 complexes. The protein responsible for this activity was shown to be p21CIP1/WAF1, recently described as a p53-inducible Cdk inhibitor. Our data suggest a model in which ionizing radiation confers G1 arrest via the p53-mediated induction of a Cdk inhibitor protein.
Collapse
Affiliation(s)
- V Dulić
- Department of Molecular Biology MB-7, Scripps Research Institute, La Jolla, California 92037
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Resnitzky D, Gossen M, Bujard H, Reed SI. Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system. Mol Cell Biol 1994; 14:1669-79. [PMID: 8114703 PMCID: PMC358525 DOI: 10.1128/mcb.14.3.1669-1679.1994] [Citation(s) in RCA: 310] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Conditional overexpression of human cyclins B1, D1, and E was accomplished by using a synthetic cDNA expression system based on the Escherichia coli tetracycline repressor. After induction of these cyclins in asynchronous Rat-1 fibroblasts, a decrease in the length of the G1 interval was observed for cyclins D1 and E, consistent with an acceleration of the G1/S phase transition. We observed, in addition, a compensatory lengthening of S phase and G2 so that the mean cell cycle length in populations constitutively expressing these cyclins was unchanged relative to those of their uninduced counterparts. We found that expression of cyclin B1 had no effect on cell cycle dynamics, despite elevated levels of cyclin B-associated histone H1 kinase activity. Induction of cyclins D1 and E also accelerated entry into S phase for synchronized cultures emerging from quiescence. However, whereas cyclin E exerted a greater effect than cyclin D1 in asynchronous cycling cells, cyclin D1 conferred a greater effect upon stimulation from quiescence, suggesting a specific role for cyclin D1 in the G0-to-G1 transition. Overexpression of cyclins did not prevent cells from entering into quiescence upon serum starvation, although a slight delay in attainment of quiescence was observed for cells expressing either cyclin D1 or cyclin E. These results suggest that cyclins D1 and E are rate-limiting activators of the G1-to-S phase transition and that cyclin D1 might play a specialized role in facilitating emergence from quiescence.
Collapse
Affiliation(s)
- D Resnitzky
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037
| | | | | | | |
Collapse
|
19
|
Forsburg S, Nurse P. Analysis of the Schizosaccharomyces pombe cyclin puc1: evidence for a role in cell cycle exit. J Cell Sci 1994. [DOI: 10.1242/jcs.107.3.601] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The puc1+ gene, encoding a G1-type cyclin from the fission yeast Schizosaccharomyces pombe, was originally isolated by complementation in the budding yeast Saccharomyces cerevisiae. Here, we report the molecular characterization of this gene and analyse its role in S. pombe. We fail to identify any function of this cyclin at the mitotic G1/S transition in S. pombe, but demonstrate that it does function in exit from the mitotic cycle. Expression of the puc1+ gene is increased during nitrogen starvation, and puc1 affects the timing of sexual development in response to starvation. Overexpression of the puc1 protein blocks sexual development, and rescues pat1ts cells, which would otherwise undergo a lethal meiosis. We conclude that puc1 contributes to negative regulation of the timing of sexual development in fission yeast, and functions at the transition between cycling and non-cycling cells.
Collapse
Affiliation(s)
| | - P. Nurse
- Biochemistry Department, Oxford University, UK
| |
Collapse
|
20
|
Affiliation(s)
- K H Vousden
- Ludwig Institute for Cancer Research, St. Mary's Hospital Medical School, London, England
| |
Collapse
|
21
|
Jessus C, Ozon R. Regulation of cell divisions during oogenesis of vertebrates: The Xenopus oocyte paradigm. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/0300-9629(93)90236-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Richardson HE, O'Keefe LV, Reed SI, Saint R. A Drosophila G1-specific cyclin E homolog exhibits different modes of expression during embryogenesis. Development 1993; 119:673-90. [PMID: 8187637 DOI: 10.1242/dev.119.3.673] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have isolated a Drosophila homolog of the human G1-specific cyclin E gene. Cyclin E proteins thus constitute an evolutionarily conserved subfamily of metazoan cyclins. The Drosophila cyclin E gene, DmcycE, encodes two proteins with a common C-terminal region and unique N-terminal regions. Unlike other Drosophila cyclins, DmcycE exhibits a dynamic pattern of expression during development. DmcycE is supplied maternally, but at the completion of the cleavage divisions and prior to mitosis 14, the maternal transcripts are rapidly degraded in all cells except the pole (germ) cells. Two modes of DmcycE expression are observed in the subsequent divisions. During cycles 14, 15 and 16 in non-neural cells, DmcycE mRNA levels show no cell-cycle-associated variation. DmcycE expression in these cells is therefore independent of the cell cycle phase. In contrast, expression in proliferating embryonic peripheral nervous system cells occurs during interphase as a brief pulse that initiates before and overlaps with S phase, demonstrating the presence of a G1 phase in these embryonic neural cell cycles. DmcycE appears not to be expressed in cells that undergo endoreplication cycles during polytenization. The structural homology to human cyclin E, the ability of DmcycE to rescue a G1 cyclin-deficient yeast strain, the presence of multiple PEST sequences characteristic of G1-specific cyclins and expression during G1 phase in proliferating peripheral nervous system cells all argue that Drosophila cyclin E is a G1 cyclin. Constitutive DmcycE expression in embryonic cycles lacking a G1 phase, in contrast to expression during the G1-S phase transition in cycles exhibiting a G1 phase, implicates DmcycE expression in the regulation of the G1 to S phase transition during Drosophila embryogenesis.
Collapse
Affiliation(s)
- H E Richardson
- Department of Biochemistry, University of Adelaide, Australia
| | | | | | | |
Collapse
|
23
|
Masel AM, Struijk N, McIntyre CL, Irwin JA, Manners JM. A strain-specific cyclin homolog in the fungal phytopathogen Colletotrichum gloeosporioides. Gene X 1993; 133:141-5. [PMID: 8224888 DOI: 10.1016/0378-1119(93)90239-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The fungus, Colletotrichum gloeosporioides, which infects the tropical pasture legume, Stylosanthes guianensis, contains highly variable mini-chromosomes. The transcription of strain-specific genomic DNA clones previously isolated from one variable mini-chromosome was investigated by using these clones to screen a cDNA library prepared from the fungus grown in liquid medium. A cDNA clone was obtained with one of the genomic clones and was sequenced. A single long open reading frame of 259 amino acids (aa) was detected with significant homology to cyclin proteins in other organisms. Northern blot analysis indicated that the cDNA corresponded to a low-abundance mRNA (approximately 0.001% of poly(A)+RNA). Southern blot analysis indicated that genes encoding this mRNA were discontinuously distributed in this fungal species, indicating it encodes a dispensable function. This result suggests that natural populations of fungi may have variable complements of cyclin-encoding genes.
Collapse
Affiliation(s)
- A M Masel
- Cooperative Research Centre for Tropical Plant Pathology, University of Queensland, Brisbane, Australia
| | | | | | | | | |
Collapse
|
24
|
Xiong Y, Zhang H, Beach D. Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation. Genes Dev 1993; 7:1572-83. [PMID: 8101826 DOI: 10.1101/gad.7.8.1572] [Citation(s) in RCA: 389] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In normal human diploid fibroblasts, cyclins of the A, B, and D classes each associate with cyclin-dependent kinases (CDKs), proliferating cell nuclear antigen (PCNA), and p21, thereby forming multiple independent quaternary complexes. Upon transformation of diploid fibroblasts with the DNA tumor virus SV40, or its transforming tumor antigen (T), the cyclin D/p21/CDK/PCNA complexes are disrupted. In transformed cells, CDK4 totally dissociates from cyclin D, PCNA, and p21 and, instead, associates exclusively with a polypeptide of 16 kD (p16). Quaternary complexes containing cyclins A or B1 and p21/CDK/PCNA also undergo subunit rearrangement in transformed cells. Both PCNA and p21 are no longer associated with CDC2-cyclin B1 binary complexes. Cyclin A complexes no longer contain p21, and a new 19-kD polypeptide (p19) is found in association with cyclin A. The pattern of subunit rearrangement of cyclin-CDK complexes in SV40-transformed cells is also shared in those containing adeno- or papilloma viral oncoproteins. Rearrangement also occurs in p53-deficient cells derived from Li-Fraumeni patients that carry no known DNA tumor virus. These findings suggest a mechanism by which oncogenic proteins alter the cell cycle of transformed cells.
Collapse
Affiliation(s)
- Y Xiong
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, New York 11724
| | | | | |
Collapse
|
25
|
Affiliation(s)
- J Pines
- Wellcome Trust/CRC Institute, Cambridge, UK
| |
Collapse
|
26
|
Davies R, Hicks R, Crook T, Morris J, Vousden K. Human papillomavirus type 16 E7 associates with a histone H1 kinase and with p107 through sequences necessary for transformation. J Virol 1993; 67:2521-8. [PMID: 8386265 PMCID: PMC237571 DOI: 10.1128/jvi.67.5.2521-2528.1993] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The transforming function of human papillomavirus type 16 (HPV16) E7 has been shown to depend on activities additional to the ability to bind RB. In this paper we describe two further properties of E7 which may also contribute to transformation, an association with a histone H1 kinase at the G2/M phase of the cell cycle and an ability to bind the RB-related protein p107. The region of E7 identified previously as important for RB binding was found to be involved in the association with the kinase and complex formation with p107, although analysis of E7 point mutants within this region revealed a difference in the precise sequence requirement for RB and p107 binding. Association with the kinase activity correlated with the ability to bind RB, but the restriction of the kinase association to the G2/M phase of the cell cycle implies that this activity might not be directly mediated by RB binding. Since kinase-binding-deficient E7 mutants are also transformation defective, this may represent an independent function of E7 which plays a role in the G2/M phase of the cell cycle.
Collapse
Affiliation(s)
- R Davies
- Ludwig Institute for Cancer Research, St. Mary's Hospital Medical School, London, England
| | | | | | | | | |
Collapse
|
27
|
Tang Y, Reed SI. The Cdk-associated protein Cks1 functions both in G1 and G2 in Saccharomyces cerevisiae. Genes Dev 1993; 7:822-32. [PMID: 8491379 DOI: 10.1101/gad.7.5.822] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The CKS1 gene of Saccharomyces cerevisiae encodes a small essential protein shown to interact genetically and physically with the Cdc28 protein kinase. To investigate the specific functions of the CKS1 gene product, conditional temperature-sensitive mutant alleles were generated. The mutations were found to impair the ability of cells to undergo both the G1/S-phase and G2/M-phase transitions of the cell cycle, as well as the ability to bud. Mutants were not defective, however, in their ability to activate Cdc28 kinase as assayed in vitro on the substrate histone H1. It is likely, therefore, that Cks1 mediates a more specialized function of the Cdc28 kinase such as its ability to form specific multimeric complexes or to localize properly in cellular compartments.
Collapse
Affiliation(s)
- Y Tang
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037
| | | |
Collapse
|
28
|
Differential function and expression of Saccharomyces cerevisiae B-type cyclins in mitosis and meiosis. Mol Cell Biol 1993. [PMID: 8455600 DOI: 10.1128/mcb.13.4.2113] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have studied the patterns of expression of four B-type cyclins (Clbs), Clb1, Clb2, Clb3, and Clb4, and their ability to activate p34cdc28 during the mitotic and meiotic cell cycles of Saccharomyces cerevisiae. During the mitotic cell cycle, Clb3 and Clb4 were expressed and induced a kinase activity in association with p34cdc28 from early S phase up to mitosis. On the other hand, Clb1 and Clb2 were expressed and activated p34cdc28 later in the mitotic cell cycle, starting in late S phase and continuing up to mitosis. The pattern of expression of Clb3 and Clb4 suggests a possible role in the regulation of DNA replication as well as mitosis. Clb1 and Clb2, whose pattern of expression is similar to that of other known Clbs, are likely to have a role predominantly in the regulation of M phase. During the meiotic cell cycle, Clb1, Clb3, and Clb4 were expressed and induced a p34cdc28-associated kinase activity just before the first meiotic division. The fact that Clb3 and Clb4 were not synthesized earlier, in S phase, suggests that these cyclins, which probably have a role in S phase during the mitotic cell cycle, are not implicated in premeiotic S phase. Clb2, the primary mitotic cyclin in S. cerevisiae, was not detectable during meiosis. Sporulation experiments on strains deleted for one, two, or three Clbs indicate, in agreement with the biochemical data, that Clb1 is the primary cyclin for the regulation of meiosis, while Clb2 is not involved at all.
Collapse
|
29
|
Grandin N, Reed SI. Differential function and expression of Saccharomyces cerevisiae B-type cyclins in mitosis and meiosis. Mol Cell Biol 1993; 13:2113-25. [PMID: 8455600 PMCID: PMC359532 DOI: 10.1128/mcb.13.4.2113-2125.1993] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We have studied the patterns of expression of four B-type cyclins (Clbs), Clb1, Clb2, Clb3, and Clb4, and their ability to activate p34cdc28 during the mitotic and meiotic cell cycles of Saccharomyces cerevisiae. During the mitotic cell cycle, Clb3 and Clb4 were expressed and induced a kinase activity in association with p34cdc28 from early S phase up to mitosis. On the other hand, Clb1 and Clb2 were expressed and activated p34cdc28 later in the mitotic cell cycle, starting in late S phase and continuing up to mitosis. The pattern of expression of Clb3 and Clb4 suggests a possible role in the regulation of DNA replication as well as mitosis. Clb1 and Clb2, whose pattern of expression is similar to that of other known Clbs, are likely to have a role predominantly in the regulation of M phase. During the meiotic cell cycle, Clb1, Clb3, and Clb4 were expressed and induced a p34cdc28-associated kinase activity just before the first meiotic division. The fact that Clb3 and Clb4 were not synthesized earlier, in S phase, suggests that these cyclins, which probably have a role in S phase during the mitotic cell cycle, are not implicated in premeiotic S phase. Clb2, the primary mitotic cyclin in S. cerevisiae, was not detectable during meiosis. Sporulation experiments on strains deleted for one, two, or three Clbs indicate, in agreement with the biochemical data, that Clb1 is the primary cyclin for the regulation of meiosis, while Clb2 is not involved at all.
Collapse
Affiliation(s)
- N Grandin
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037
| | | |
Collapse
|
30
|
Abstract
Analysis of cell cycle regulation in the budding yeast Saccharomyces cerevisiae has shown that a central regulatory protein kinase, Cdc28, undergoes changes in activity through the cell cycle by associating with distinct groups of cyclins that accumulate at different times. The various cyclin/Cdc28 complexes control different aspects of cell cycle progression, including the commitment step known as START and mitosis. We found that altering the activity of Cdc28 had profound effects on morphogenesis during the yeast cell cycle. Our results suggest that activation of Cdc28 by G1 cyclins (Cln1, Cln2, or Cln3) in unbudded G1 cells triggers polarization of the cortical actin cytoskeleton to a specialized pre-bud site at one end of the cell, while activation of Cdc28 by mitotic cyclins (Clb1 or Clb2) in budded G2 cells causes depolarization of the cortical actin cytoskeleton and secretory apparatus. Inactivation of Cdc28 following cyclin destruction in mitosis triggers redistribution of cortical actin structures to the neck region for cytokinesis. In the case of pre-bud site assembly following START, we found that the actin rearrangement could be triggered by Cln/Cdc28 activation in the absence of de novo protein synthesis, suggesting that the kinase may directly phosphorylate substrates (such as actin-binding proteins) that regulate actin distribution in cells.
Collapse
Affiliation(s)
- D J Lew
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037
| | | |
Collapse
|
31
|
Keyomarsi K, Pardee AB. Redundant cyclin overexpression and gene amplification in breast cancer cells. Proc Natl Acad Sci U S A 1993; 90:1112-6. [PMID: 8430082 PMCID: PMC45821 DOI: 10.1073/pnas.90.3.1112] [Citation(s) in RCA: 383] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cyclins are prime cell cycle regulators and are central to the control of major check points in eukaryotic cells. The aberrant expressions of two cyclins (i.e., cyclins A and D1) have been observed in some cancers, suggesting they may be involved in loss of growth control. However, in spite of these occasional changes involving only two cyclins, there are no clear connections between general derangements of other cyclins or their dependent kinases in a single tumor type. We detected general cyclin overexpression in 3 of 3 breast tumor tissue samples. In addition, using proliferating normal vs. human tumor breast cells as a model system, we observed a number of alterations in cyclin expression: (i) an 8-fold amplification of cyclin E gene in one tumor line, a 64-fold overexpression of its mRNA, and altered expression of its protein; (ii) deranged expression of cyclin E protein in all (10 of 10) tumor cell lines studied; (iii) increased cyclin mRNA stability, resulting in (iv) general overexpression of RNAs and proteins for cyclins A and B and CDC2 in 9 of 10 tumor lines and (v) deranged order of appearance of cyclins in synchronized tumor vs. normal cells, with mitotic cyclins appearing prior to G1 cyclins. These multiple general derangements in cyclin expression in human breast cancer cells provide evidence linking aberrant cyclin expression to tumorigenesis.
Collapse
Affiliation(s)
- K Keyomarsi
- Division of Cell Growth and Regulation, Dana-Farber Cancer Institute, Boston, MA
| | | |
Collapse
|
32
|
Xiong Y, Zhang H, Beach D. D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 1992; 71:505-14. [PMID: 1358458 DOI: 10.1016/0092-8674(92)90518-h] [Citation(s) in RCA: 747] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Human cyclin D1 has been associated with a wide variety of proliferative diseases but its biochemical role is unknown. In diploid fibroblasts we find that cyclin D1 is complexed with many other cellular proteins. Among them are protein kinase catalytic subunits CDK2, CDK4 (previously called PSK-J3), and CDK5 (also called PSSALRE). In addition, polypeptides of 21 kd and 36 kd are identified in association with cyclin D1. We show that the 36 kd protein is the proliferating cell nuclear antigen, PCNA. Cyclin D3 also associates with multiple protein kinases, p21 and PCNA. It is proposed that there exists a quaternary complex of D cyclin, CDK, PCNA, and p21 and that many combinatorial variations (cyclin D1, D3, CDK2, 4, and 5) may assemble in vivo. These findings link a human putative G1 cyclin that is associated with oncogenesis with a well-characterized DNA replication and repair factor.
Collapse
Affiliation(s)
- Y Xiong
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, New York 11724
| | | | | |
Collapse
|
33
|
Richardson H, Lew DJ, Henze M, Sugimoto K, Reed SI. Cyclin-B homologs in Saccharomyces cerevisiae function in S phase and in G2. Genes Dev 1992; 6:2021-34. [PMID: 1427070 DOI: 10.1101/gad.6.11.2021] [Citation(s) in RCA: 215] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have cloned four cyclin-B homologs from Saccharomyces cerevisiae, CLB1-CLB4, using the polymerase chain reaction and low stringency hybridization approaches. These genes form two classes based on sequence relatedness: CLB1 and CLB2 show highest homology to the Schizosaccharomyces pombe cyclin-B homolog cdc13 involved in the initiation of mitosis, whereas CLB3 and CLB4 are more highly related to the S. pombe cyclin-B homolog cig1, which appears to play a role in G1 or S phase. CLB1 and CLB2 mRNA levels peak late in the cell cycle, whereas CLB3 and CLB4 are expressed earlier in the cell cycle but peak later than the G1-specific cyclin, CLN1. Analysis of null mutations suggested that the CLB genes exhibit some degree of redundancy, but clb1,2 and clb2,3 cells were inviable. Using clb1,2,3,4 cells rescued by conditional overproduction of CLB1, we showed that the CLB genes perform an essential role at the G2/M-phase transition, and also a role in S phase. CLB genes also appear to share a role in the assembly and maintenance of the mitotic spindle. Taken together, these analyses suggest that CLB1 and CLB2 are crucial for mitotic induction, whereas CLB3 and CLB4 might participate additionally in DNA replication and spindle assembly.
Collapse
Affiliation(s)
- H Richardson
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037
| | | | | | | | | |
Collapse
|
34
|
Abstract
Cell division is arguably the most fundamental developmental process for single-celled and multicellular organisms alike. The pathway from one cell division to the next is known as the cell cycle. A conserved biochemical regulatory network controls progress along this pathway in plants, animals, and yeasts. This review is intended to serve as a primer on the current state of the eukaryotic cell cycle regulatory model, an introduction to the special roles of cell division and its control in plant development, and a review of recent progress in applying the universal mitotic control paradigm to higher plant systems.
Collapse
Affiliation(s)
- T Jacobs
- Department of Plant Biology, University of Illinois, Urbana 61801
| |
Collapse
|
35
|
Xiong Y, Menninger J, Beach D, Ward DC. Molecular cloning and chromosomal mapping of CCND genes encoding human D-type cyclins. Genomics 1992; 13:575-84. [PMID: 1386336 DOI: 10.1016/0888-7543(92)90127-e] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A human D-type cyclin gene (CCND1/cyclin D1/PRAD1) was previously isolated by virtue of its ability to complement a triple G1 cyclin (Cln) deficiency of Saccharomyces cerevisiae and was also identified as a candidate BCL1 oncogene. We now report the molecular cloning of two additional human D-type cyclin genes, CCND2 (cyclin D2) and CCND3 (cyclin D3). All three human D-type cyclin genes encode small (33-34 kDa) proteins that share an average of 57% identity over the entire coding region and 78% in the cyclin box. The D-type cyclins are most closely related to cyclin A (39% identity) and cyclin E (36%), followed by cyclin B (29%) and cyclin C (21%). Isolation and characterization of genomic clones revealed two pseudogenes corresponding to CCND2 and CCND3, respectively. All three cyclin D genes are interrupted by an intron at the same position. CCND2 has been mapped to chromosome 12p13, and CCND3 has been mapped to chromosome 6p21.
Collapse
Affiliation(s)
- Y Xiong
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, New York 11724
| | | | | | | |
Collapse
|