1
|
Huang Y, Chen Z, Lan J, Zhang L, Chen H, Jiang L, Yu H, Liu N, Liao C, Han Q. MDR49 coding for both P-glycoprotein and TMOF transporter functions in ivermectin resistance, trypsin activity inhibition, and fertility in the yellow fever mosquito, Aedes aegypti. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105899. [PMID: 38685208 DOI: 10.1016/j.pestbp.2024.105899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/30/2024] [Accepted: 04/06/2024] [Indexed: 05/02/2024]
Abstract
This study investigated the function of the MDR49 gene in Aedes aegypti. MDR49 mutants were constructed using CRISPR/Cas9 technology; the mutation led to increased sensitivity to ivermectin (LC50: from 1.3090 mg L-1 to 0.5904 mg L-1), and a reduction in midgut trypsin activity. These findings suggest that the P-gp encoded by MDR49 confers resistance to ivermectin and impacts the reproductive function in Ae. aegypti. RNA interference technology showed that knockdown of MDR49 gene resulted in a significant decrease in the expression of VGA1 after a blood meal, as well as a decrease in the number of eggs laid and their hatching rate. LC-MS revealed that following ivermectin treatment, the MDR493d+2s/3d+2s strain larvae exhibited significantly higher drug concentrations in the head and fat body compared to the wild type. Modeling of inward-facing P-gp and molecular docking found almost no difference in the affinity of P-gp for ivermectin before and after the mutation. However, modeling of the outward-facing conformation demonstrated that the flexible linker loop between TM5 and TM6 of P-gp undergoes changes after the mutation, resulting in a decrease in trypsin activity and an increase in sensitivity to ivermectin. These results provide useful insights into ivermectin resistance and the other roles played by the MDR49 gene.
Collapse
Affiliation(s)
- Yuqi Huang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Zhaohui Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Jianqiang Lan
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Lei Zhang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Huaqing Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Linlong Jiang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Hongxiao Yu
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36830, USA
| | - Chenghong Liao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China.
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
2
|
Borovsky D, Rougé P. Heliothis virescens chymotrypsin is translationally controlled by AeaTMOF binding ABC putative receptor. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:1-24. [PMID: 37526204 DOI: 10.1002/arch.22042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023]
Abstract
Heliothis virescens larval chymotrypsin (GenBank accession number AF43709) was cloned, sequenced and its three dimensional (3D) conformation modeled. The enzyme's transcript was first detected 6 days after larval emergence and the transcript level was shown to fall between larval ecdysis periods. Comparisons between the activities of larval gut chymotrypsin and trypsin shows that chymotrypsin activity is only 16% of the total trypsin activity and the pH optimum of the larval chymotrypsin is between pH 9-10, however the enzyme also exhibited a broad activity between pH 4-6. Injections of AeaTMOF and several shorter analogues into 3rd instar larvae followed by Northern blot analyses showed that although the chymotrypsins activities were inhibited by 60%-80% the transcript level of the sequenced chymotrypsin was not reduced and was similar to controls in which the chymotrypsin activity was not inhibited, indicating that AeaTMOF and its analogues exert a translational control. Based on these observations a putative AeaTMOF receptor (ABCC4) homologous to the Ae. aegypti ABC receptor sequence was found in the H. virescens genome. 3D molecular modeling and docking of the AeaTMOF and several of its analogues to the ABCC4 receptor showed that it can bind AeaTMOF and its analogues as was shown before for the Ae. aegypti receptor.
Collapse
Affiliation(s)
- Dov Borovsky
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
| | - Pierre Rougé
- UMR 152 Pharma-Dev, Faculté des Sciences Pharmaceutiques, Institut de Recherche et Développement, Université Toulouse 3, Toulouse, France
| |
Collapse
|
3
|
Borovsky D, Rougé P, Shatters RG. Bactericidal Properties of Proline-Rich Aedes aegypti Trypsin Modulating Oostatic Factor ( AeaTMOF). LIFE (BASEL, SWITZERLAND) 2022; 13:life13010019. [PMID: 36675967 PMCID: PMC9862690 DOI: 10.3390/life13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The antimicrobial properties of proline-rich Aedes aegypti decapeptide TMOF (AeaTMOF) and oncocin112 (1-13) were compared. Incubations with multidrug-resistant Escherichia coli cells showed that AeaTMOF (5 mM) was able to completely inhibit bacterial cell growth, whereas oncocin112 (1-13) (20 mM) partially inhibited bacterial growth as compared with bacterial cells that were not multidrug-resistant cells. AeaTMOF (5 mM) was very effective against Acinetobacter baumannii and Pseudomonas aeruginosa, completely inhibiting cell growth during 15 h incubations. AeaTMOF (5 mM) completely inhibited the Gram-positive bacteria Staphylococcus aureus and Bacillus thurengiensis sups. Israelensis cell growth, whereas oncocin112 (1-13) (10 and 20 mM) failed to affect bacterial cell growth. E. coli cells that lack the SbmA transporter were inhibited by AeaTMOF (5 mM) and not by oncocin112 (1-13) (10 to 20 mM), indicating that AeaTMOF can use other bacterial transporters than SbmA that is mainly used by proline-rich antimicrobial peptides. Incubation of E. coli cells with NaAzide showed that AeaTMOF does not use ABC-like transporters that use ATP hydrolysis to import molecules into bacterial cells. Three-dimensional modeling and docking of AeaTMOF to SbmA and MdtM transporters showed that AeaTMOF can bind these proteins, and the binding location of AeaTMOF inside these protein transporters allows AeaTMOF to be transported into the bacterial cytosol. These results show that AeaTMOF can be used as a future antibacterial agent against both multidrug-resistant Gram-positive and -negative bacteria.
Collapse
Affiliation(s)
- Dov Borovsky
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Correspondence:
| | - Pierre Rougé
- Faculte des Sciences Pharmaceutiques, 3106 Toulouse, France
| | | |
Collapse
|
4
|
Borovsky D, Rougé P, Shatters RG. The Ribosome Is the Ultimate Receptor for Trypsin Modulating Oostatic Factor (TMOF). Biomolecules 2022; 12:biom12040577. [PMID: 35454167 PMCID: PMC9028786 DOI: 10.3390/biom12040577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
Aedes aegypti Trypsin Modulating Oostatic Factor (AeaTMOF). a mosquito decapeptide that controls trypsin biosynthesis in female and larval mosquitoes. enters the gut epithelial cells of female mosquitoes using ABC-tmfA receptor/importer. To study the ultimate targeted receptor after AeaTMOF enters the cell, AeaTMOF was incubated in vitro with either Escherichia coli or Spodoptera frugiperda protein-expressing extracts containing 70S and 80S ribosomes, respectively. The effect of AeaTMOF on luciferase biosynthesis in vitro using 70S ribosomes was compared with that of oncocin112 (1–13), a ribosome-binding antibacterial peptide. The IC50 of 1 μM and 2 μM, respectively, for both peptides was determined. Incubation with a protein-expressing system and S. frugiperda 80S ribosomes determined an IC50 of 1.8 μM for Aedes aegypti larval late trypsin biosynthesis. Incubation of purified E. coli ribosome with increasing concentration of AeaTMOF shows that the binding of AeaTMOF to the bacterial ribosome exhibits a high affinity (KD = 23 ± 3.4 nM, Bmax = 0.553 ± 0.023 pmol/μg ribosome and Kassoc = 4.3 × 107 M−1). Molecular modeling and docking experiments show that AeaTMOF binds bacterial and Drosophila ribosome (50S and 60S, respectively) at the entrance of the ribosome exit tunnel, blocking the tRNA entrance and preventing protein biosynthesis. Recombinant E. coli cells that express only ABC-tmfA importer are inhibited by AeaTMOF but not by oncocin112 (1–13). These results suggest that the ribosome is the ultimate targeted receptor of AeaTMOF.
Collapse
Affiliation(s)
- Dov Borovsky
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz, Aurora, CO 80045, USA
- Correspondence:
| | - Pierre Rougé
- UMR 152 Pharma-Dev, Faculté des Sciences Pharmaceutiques, Université Toulouse 3, CEDEX 09, F-31062 Toulouse, France;
| | - Robert G. Shatters
- USDA ARS, U.S. Horticultural Research Laboratory, Subtropical Insects and Horticulture Research Unit, 2001 Rock Road, Fort Pierce, FL 34945, USA;
| |
Collapse
|
5
|
Borovsky D, Verhaert P, Rougé P, Powell CA, De Loof A. Culex quinquefasciatus Late Trypsin Biosynthesis Is Translationally Regulated by Trypsin Modulating Oostatic Factor. Front Physiol 2021; 12:764061. [PMID: 34867469 PMCID: PMC8637831 DOI: 10.3389/fphys.2021.764061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/12/2021] [Indexed: 12/02/2022] Open
Abstract
Trypsin is a serine protease that is synthesized by the gut epithelial cells of female mosquitoes; it is the enzyme that digests the blood meal. To study its molecular regulation, Culex quinquefasciatus late trypsin was purified by diethylaminoethyl (DEAE), affinity, and C18 reverse-phase high performance liquid chromatography (HPLC) steps, and the N-terminal amino acid sequence was determined for molecular cloning. Five overlapping segments of the late trypsin cDNA were amplified by PCR, cloned, and the full sequence (855 bp) was characterized. Three-dimensional models of the pro-trypsin and activated trypsin were built and compared with other trypsin models. Trypsin modulating oostatic factor (TMOF) concentrations in the hemolymph were determined by ELISA and compared with trypsin activity in the gut after the blood meal. The results showed that there was an increase in TMOF concentrations circulating in the hemolymph which has correlated to the reduction of trypsin activity in the mosquito gut. Northern blot analysis of the trypsin transcripts after the blood meal indicated that trypsin activity also followed the increase and decrease of the trypsin transcript. Injections of different amounts of TMOF (0.025 to 50 μg) decreased the amounts of trypsin in the gut. However, Northern blot analysis showed that TMOF injections did not cause a decrease in trypsin transcript abundance, indicating that TMOF probably affected trypsin translation.
Collapse
Affiliation(s)
- Dov Borovsky
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | - Pierre Rougé
- UMR 152 Pharma-Dev, Institut de Recherche et Développement, Université Toulouse 3, Faculté des Sciences Pharmaceutiques, Toulouse, France
| | - Charles A Powell
- UF-IFAS Indian River Research and Education Center, Fort Pierce, FL, United States
| | | |
Collapse
|
6
|
Borovsky D, Deckers K, Vanhove AC, Verstraete M, Rougé P, Shatters RG, Powell CA. Cloning and Characterization of Aedes aegypti Trypsin Modulating Oostatic Factor (TMOF) Gut Receptor. Biomolecules 2021; 11:biom11070934. [PMID: 34201823 PMCID: PMC8301768 DOI: 10.3390/biom11070934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 12/17/2022] Open
Abstract
Trypsin Modulating Oostatic Factor (TMOF) receptor was solubilized from the guts of female Ae. Aegypti and cross linked to His6-TMOF and purified by Ni affinity chromatography. SDS PAGE identified two protein bands (45 and 61 kDa). The bands were cut digested and analyzed using MS/MS identifying a protein sequence (1306 amino acids) in the genome of Ae. aegypti. The mRNA of the receptor was extracted, the cDNA sequenced and cloned into pTAC-MAT-2. E. coli SbmA− was transformed with the recombinant plasmid and the receptor was expressed in the inner membrane of the bacterial cell. The binding kinetics of TMOF-FITC was then followed showing that the cloned receptor exhibits high affinity to TMOF (KD = 113.7 ± 18 nM ± SEM and Bmax = 28.7 ± 1.8 pmol ± SEM). Incubation of TMOF-FITC with E. coli cells that express the receptor show that the receptor binds TMOF and imports it into the bacterial cells, indicating that in mosquitoes the receptor imports TMOF into the gut epithelial cells. A 3D modeling of the receptor indicates that the receptor has ATP binding sites and TMOF transport into recombinant E. coli cells is inhibited with ATPase inhibitors Na Arsenate and Na Azide.
Collapse
Affiliation(s)
- Dov Borovsky
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz School of Medicine, Aurora, CO 80045, USA
- Correspondence:
| | - Kato Deckers
- Zoological Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (K.D.); (A.C.V.); (M.V.)
| | - Anne Catherine Vanhove
- Zoological Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (K.D.); (A.C.V.); (M.V.)
| | - Maud Verstraete
- Zoological Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (K.D.); (A.C.V.); (M.V.)
| | - Pierre Rougé
- UMR 152 Pharma-Dev, Faculté des Sciences Pharmaceutiques, Institut de Recherche et Développement, Université Toulouse 3, F-31062 Toulouse, France;
| | - Robert G. Shatters
- USDA ARS, Subtropical Horticultural Laboratory, 2001 Rock Road, Ft. Pierce, FL 34945, USA;
| | - Charles A. Powell
- UF-IFAS Indian River Research and Education Center, Fort Pierce, FL 34945, USA;
| |
Collapse
|
7
|
Borovsky D, Nauwelaers S, Shatters R. Biochemical and Molecular Characterization of Pichia pastoris Cells Expressing Multiple TMOF Genes ( tmfA) for Mosquito Larval Control. Front Physiol 2020; 11:527. [PMID: 32528316 PMCID: PMC7265970 DOI: 10.3389/fphys.2020.00527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/29/2020] [Indexed: 11/21/2022] Open
Abstract
Trypsin modulating oostatic factor (TMOF), a decapeptide hormone synthesized by female mosquito ovaries, ganglia and the central nervous system of Aedes aegypti, terminates trypsin biosynthesis in larvae, and blood-fed female mosquitoes. Earlier, TMOF was cloned and expressed as a single copy in Chlorella dessicata and in Saccharomyces cerevisiae cells as a potential larvicide. Here we report the use of a methylotrophic yeast cells, Pichia pastoris, that efficiently express multi copies of heterologous proteins, that are readily ingested by mosquito larvae. P. pastoris was engineered using pPICZB (Invitrogen, CA, United States), and 2 genes: gfp-tmfA and tmfA inserted between KpnI and XbaI in the multiple cloning site. The plasmid carries a strong AOXI promoter and P. pastoris KM71 and KM71H cells were transformed by homologous recombination. The synthesis of GFP-TMOF was followed using UV and clones were analyzed using southern and Northern blot analyses. Cloning tmfA into KM71H and selection on high Zeocin concentration (2.0 mg/mL) identified a clone that carried 10 copies of tmfA. A comparison between a single and high copy (10 genes) insertions using Northern blot analyses showed that a tmfA transcript was highly expressed even after 120 h. SDS-PAGE analysis of KM71 cells transformed with gfp-tmfA identified a protein band that ran at the expected Mr of 31 kDa. Enzyme Linked Immunoadsorbant Assay (ELISA) analysis of the recombinant cells showed that 1.65 × 108 and 8.27 × 107 cells produce 229 and 114 μM of TMOF, respectively, and caused 100% larval mortality when fed to groups of 5 larvae in 25 mL water. These results indicate that the recombinant P. pastoris cells could be used in the future in the marsh to control mosquito populations.
Collapse
Affiliation(s)
- Dov Borovsky
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz School of Medicine, Aurora, CO, United States
| | | | - Robert Shatters
- USDA ARS, Subtropical Horticultural Laboratory, Fort Pierce, FL, United States
| |
Collapse
|
8
|
Borovsky D, Nauewelaers S, Powell CA, Shatters RG. Cloning, genetic engineering and characterization of TMOF expressed in Saccharomyces cerevisiae to control larval mosquitoes. JOURNAL OF INSECT PHYSIOLOGY 2018; 106:134-146. [PMID: 28109905 DOI: 10.1016/j.jinsphys.2017.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 06/06/2023]
Abstract
Trypsin modulating oostatic factor, a decapaptide isolated from the ovaries of A. aegypti, is the physiological factor that terminates the trypsin biosynthesis after the blood meal. Earlier results obtained from feeding mosquito larvae and injecting female mosquitoes with TMOF show that trypsin biosynthesis and egg development are inhibited, indicating that TMOF traverses the gut epithelial cells and modulates trypsin biosynthesis, making it a potential larvacidal peptide hormone. Therefore, TMOF and TMOF green fluorescent protein (GFP) fusion protein with a trypsin cleavage site, allowing TMOF release in the larval gut, were expressed in S. cerevisiae cells that were transformed using homologous recombination at ura3-52 with an engineered plasmid (pYDB2) carrying tmfA and gfp-tmfA and a strong galactose promoter (PGAL1). Southern blot analyses showed that each cell incorporated a single tmfA or gfp-tmfA. Western blot analyses of cells that were fermented up to 48h showed that the engineered S. cerevisiae cells synthesized both TMOF and GFP-TMOF and heat treatment did not affect the recombinant proteins. Engineered S. cerevisiae (3×108cells) that were fermented for 4h produced (2.1±0.2μg±S.E.M) of TMOF. Feeding the engineered cells producing TMOF and GFP-TMOF to larval mosquito caused high mortalities (66±12% and 83±8%, respectively). S. cerevisiae cells transfected with pYEX-BX carrying gfp-tmfA and (DPAR)4 or transformed by homologous recombination of pYDB2-gfp-tmfA carrying a heat shock promoter (PHP) were ineffective. Engineered heat treated yeast cells are consumed by mosquito larvae, and could be used to control mosquitoes.
Collapse
Affiliation(s)
- Dov Borovsky
- USDA-ARS, Horticultural Research Laboratory, Ft. Pierce, FL 34945, USA.
| | | | - Charles A Powell
- Indian River Research and Education Center University of Florida, FL 34945, USA
| | - Robert G Shatters
- USDA-ARS, Horticultural Research Laboratory, Ft. Pierce, FL 34945, USA
| |
Collapse
|
9
|
Dauda AB, Teh JC, Amin SMN, Kamarudin MS, Romano N. Trypsin-modulating oostatic factor (TMOF) decreased the survival, growth and digestion enzymes of Macrobrachium rosenbergii. JOURNAL OF PESTICIDE SCIENCE 2016; 41:83-86. [PMID: 30363129 PMCID: PMC6140684 DOI: 10.1584/jpestics.d16-055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 06/21/2016] [Indexed: 06/08/2023]
Abstract
Trypsin-modulating oostatic factor (TMOF) is an effective mosquito larvicide, but information on its potential toxicity to non-target organisms is limited. To investigate this, triplicate groups of 10 Macrobrachium rosenbergii were exposed to 0, 10, 50 or 100 mg/L nominal TMOF concentrations for 12 days. Tail moisture, crude protein, and hepatopancreatic glycogen/histopathology were unaffected, but increasing TMOF linearly decreased survival and growth. TMOF at the lowest concentration employed significantly decreased trypsin and chymotrypsin activities.
Collapse
Affiliation(s)
- Akeem Babatunde Dauda
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Department of Fisheries and Aquaculture, Federal University, Dutsin-ma PMB 5001, Dutsin-ma Katsina State, Nigeria
| | - Jun Chin Teh
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - S. M. Nurul Amin
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Salleh Kamarudin
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nicholas Romano
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
10
|
Borovsky D, Sterner A, Powell CA. CLONING AND EXPRESSING TRYPSIN MODULATING OOSTATIC FACTOR IN Chlorella desiccata TO CONTROL MOSQUITO LARVAE. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 91:17-36. [PMID: 26440910 DOI: 10.1002/arch.21306] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The insect peptide hormone trypsin modulating oostatic factor (TMOF), a decapeptide that is synthesized by the mosquito ovary and controls the translation of the gut's trypsin mRNA was cloned and expressed in the marine alga Chlorella desiccata. To express Aedes aegypti TMOF gene (tmfA) in C. desiccata cells, two plasmids (pYES2/TMOF and pYDB4-tmfA) were engineered with pKYLX71 DNA (5 Kb) carrying the cauliflower mosaic virus (CaMV) promoter 35S(2) and the kanamycin resistant gene (neo), as well as, a 8 Kb nitrate reductase gene (nit) from Chlorella vulgaris. Transforming C. desiccata with pYES2/TMOF and pYDB4-tmfA show that the engineered algal cells express TMOF (20 ± 4 μg ± SEM and 17 ± 3 μg ± SEM, respectively in 3 × 10(8) cells) and feeding the cells to mosquito larvae kill 75 and 60% of Ae. aegypti larvae in 4 days, respectively. Southern and Northern blots analyses show that tmfA integrated into the genome of C. desiccata by homologous recombination using the yeast 2 μ circle of replication and the nit in pYES2/TMOF and pYDB4-tmfA, respectively, and the transformed algal cells express tmfA transcript. Using these algal cells it will be possible in the future to control mosquito larvae in the marsh.
Collapse
Affiliation(s)
- Dov Borovsky
- USDA ARS, Subtropical Horticultural Laboratory, Ft. Pierce, Florida, USA
| | | | - Charles A Powell
- Citrus Research and Education Center, University of Florida-IFAS, Ft. Pierce, Florida, USA
| |
Collapse
|
11
|
Kamareddine L, Fan Y, Osta MA, Keyhani NO. Expression of trypsin modulating oostatic factor (TMOF) in an entomopathogenic fungus increases its virulence towards Anopheles gambiae and reduces fecundity in the target mosquito. Parasit Vectors 2013; 6:22. [PMID: 23336669 PMCID: PMC3571938 DOI: 10.1186/1756-3305-6-22] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 01/14/2013] [Indexed: 12/03/2022] Open
Abstract
Background Adult and larval mosquitoes regulate food digestion in their gut with trypsin modulating oostatic factor (TMOF), a decapeptide hormone synthesized by the ovaries and the neuroendocrine system. TMOF is currently being developed as a mosquitocide, however, delivery of the peptide to the mosquito remains a significant challenge. Entomopathogenic fungi offer a means for targeting mosquitoes with TMOF. Findings The efficacy of wild type and transgenic Beauveria bassiana strains expressing Aedes aegypti TMOF (Bb-Aa1) were evaluated against larvae and sugar- and blood-fed adult Anopheles gambiae mosquitoes using insect bioassays. Bb-Aa1 displayed increased virulence against larvae, and sugar and blood fed adult A. gambiae when compared to the wild type parent strain. Median lethal dose (LD50) values decreased by ~20% for larvae, and ~40% for both sugar and blood-fed mosquitoes using Bb-Aa1 relative to the wild type parent. Median lethal time (LT50) values were lower for blood-fed compared to sugar-fed mosquitoes in infections with both wild type and Bb-Aa1. However, infection using Bb-Aa1 resulted in 15% to 25% reduction in LT50 values for sugar- and blood fed mosquitoes, and ~27% for larvae, respectively, relative to the wild type parent. In addition, infection with Bb-Aa1 resulted in a dramatic reduction in fecundity of the target mosquitoes. Conclusions B. bassiana expressing Ae. aegypti TMOF exhibited increased virulence against A. gambiae compared to the wild type strain. These data expand the range and utility of entomopathogenic fungi expressing mosquito-specific molecules to improve their biological control activities against mosquito vectors of disease.
Collapse
Affiliation(s)
- Layla Kamareddine
- Department of Biology, American University of Beirut, Bliss Street, Beirut, 11072020, Lebanon
| | | | | | | |
Collapse
|
12
|
Abstract
Oostatic peptides are organic molecules, which influence an insect reproduction due to a regulation of the eggs development. It was proved that decapeptide-H-Tyr-Asp-Pro-Ala-Pro-Pro-Pro-Pro-Pro-Pro-OH (YDPAPPPPPP)-isolated from mosquito Aedes aegypti, inhibits trypsin activity in the midgut of the mosquito. Therefore, it was named trypsin-modulating oostatic factor (Aea-TMOF). Feeding the recombinant cells with cloned and expressed TMOF on the coat protein of tobacco mosaic virus (TMV) to mosquito larvae, caused larval mortality. The TMOF was therefore designed for usage as a new biorational insecticide against mosquito. Similarly, a hexapeptide-H-Asn-Pro-Thr-Asn-Leu-His-OH (NPTNLH)-was isolated from the grey flesh fly Neobellieria bullata. This peptide and some of its analogs inhibited trypsin-like synthesis by the midgut in female flies and was therefore entitled Neb-TMOF. Interestingly, the synthetic Aea-TMOF and mainly its C-terminus shorten analogs, including those containing D-amino acids or methylene-oxy isosteric bond, quickly and strongly inhibited the hatchability and egg development in the flesh fly N. bullata.
Collapse
Affiliation(s)
- Jan Hlaváček
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610, Prague 6, Czech Republic.
| |
Collapse
|
13
|
Kamareddine L. The biological control of the malaria vector. Toxins (Basel) 2012; 4:748-67. [PMID: 23105979 PMCID: PMC3475227 DOI: 10.3390/toxins4090748] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/29/2012] [Accepted: 09/03/2012] [Indexed: 02/05/2023] Open
Abstract
The call for malaria control, over the last century, marked a new epoch in the history of this disease. Many control strategies targeting either the Plasmodium parasite or the Anopheles vector were shown to be effective. Yet, the emergence of drug resistant parasites and insecticide resistant mosquito strains, along with numerous health, environmental, and ecological side effects of many chemical agents, highlighted the need to develop alternative tools that either complement or substitute conventional malaria control approaches. The use of biological means is considered a fundamental part of the recently launched malaria eradication program and has so far shown promising results, although this approach is still in its infancy. This review presents an overview of the most promising biological control tools for malaria eradication, namely fungi, bacteria, larvivorous fish, parasites, viruses and nematodes.
Collapse
Affiliation(s)
- Layla Kamareddine
- Department of Biology, American University of Beirut, Bliss Street, Beirut 11072020, Lebanon.
| |
Collapse
|
14
|
Jeffers LA, Shen H, Khalil S, Bissinger BW, Brandt A, Gunnoe TB, Roe RM. Enhanced activity of an insecticidal protein, trypsin modulating oostatic factor (TMOF), through conjugation with aliphatic polyethylene glycol. PEST MANAGEMENT SCIENCE 2012; 68:49-59. [PMID: 21710555 DOI: 10.1002/ps.2219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 04/25/2011] [Accepted: 05/02/2011] [Indexed: 05/31/2023]
Abstract
BACKGROUND Trypsin modulating oostatic factor (TMOF), a decapeptide (Tyr-Asp-Pro-Ala-Pro(6)) isolated from the ovaries of the adult yellow fever mosquito, Aedes aegypti, regulates trypsin biosynthesis. TMOF per os is insecticidal to larval mosquitoes and a good model for the development of technologies to enhance protein insecticide activity by reduced catabolism and/or enhanced delivery to the target. RESULTS TFA-TMOF-K (TFA = trifluoro acetyl) allowed the specific conjugation of monodispersed, aliphatic polyethylene glycol (PEG) to the amino group of lysine-producing TMOF-K-methyl(ethyleneglycol)(7)-O-propionyl (TMOF-K-PEG(7) P). The addition of lysine to TMOF reduced its per os larval mosquitocidal activity relative to the parent TMOF, but conjugation of TMOF-K with methyl(ethyleneglycol)(7)-O-propionyl increased its toxicity 5.8- and 10.1-fold above that of TMOF and TMOF-K for Ae. aegypti. Enhanced insecticidal activity was also found for larval Ae. albopictus and for neonates of Heliothis virescens and Heliocoverpa zea. Only TMOF-K was found by MS/MS in the hemolymph for H. virescens fed on TMOF-K-PEG(7) P. No TMOF, TMOF-K or PEGylated TMOF-K was detected in the hemolymph after topical applications. CONCLUSIONS This research suggests that aliphatic PEG polymers can be used as a new method for increasing the activity of insecticidal proteins.
Collapse
Affiliation(s)
- Laura A Jeffers
- Department of Entomology, North Carolina State University, Raleigh, NC, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Kuczer M, Rosiński G, Konopińska D. Insect gonadotropic peptide hormones: some recent developments. J Pept Sci 2007; 13:16-26. [PMID: 17031875 DOI: 10.1002/psc.792] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gonadotropic peptides are a new generation of peptide hormone regulators of insect reproduction. They have been isolated from ovaries, oviducts, or brains of insects. The subject of this paper is insect peptides that exert stimulatory or inhibitory effects on ovarian development and oocyte maturation. On the basis of the literature data and the results of our investigations, the structure and biological properties of different groups of peptides are presented.
Collapse
Affiliation(s)
- Mariola Kuczer
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie Street, 50-383 Wrocław, Poland
| | | | | |
Collapse
|
17
|
Rocco A, Aturki Z, D'Orazio G, Fanali S, Solínová V, Hlavácek J, Kasicka V. CEC separation of insect oostatic peptides using a strong-cation-exchange stationary phase. Electrophoresis 2007; 28:1689-95. [PMID: 17476717 DOI: 10.1002/elps.200600452] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The separation of several insect oostatic peptides (IOPs) was achieved by using CEC with a strong-cation-exchange (SCX) stationary phase in the fused-silica capillary column of 75 microm id. The effect of organic modifier, ionic strength, buffer pH, applied voltage, and temperature on peptides' resolution was evaluated. Baseline separation of the studied IOPs was achieved using a mobile phase containing 100 mM pH 2.3 sodium phosphate buffer/water/ACN (10:20:70 v/v/v). In order to reduce the analysis time, experiments were performed in the short side mode where the stationary phase was packed for 7 cm only. The selection of the experimental parameters strongly influenced the retention time, resolution, and retention factor. An acidic pH was selected in order to positively charge the analyzed peptides, the pI's of which are about 3 in water buffer solutions. A good selectivity and resolution was achieved at pH <2.8; at higher pH the three parameters decreased due to reduced or even zero charge of peptides. The increase in the ionic strength of the buffer present in the mobile phase caused a decrease in retention factor for all the studied compounds due to the decreased interaction between analytes and stationary phase. Raising the ACN concentration in the mobile phase in the range 40-80% v/v caused an increase in both retention factor, retention time, and resolution due to the hydrophilic interactions of IOPs with free silanols and sulfonic groups of the stationary phase.
Collapse
Affiliation(s)
- Anna Rocco
- Institute of Chemical Methodologies, National Council of Research, Monterotondo Scalo, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Wasielewski O, Rosiński G. Gonadoinhibitory effects of Neb-colloostatin and Neb-TMOF on ovarian development in the mealworm, Tenebrio molitor L. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2007; 64:131-41. [PMID: 17294425 DOI: 10.1002/arch.20165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The gonadostatic action of the peptides Neb-colloostatin (SIVPLGLPVPIGPIVVGPR) and Neb-TMOF (NPTNLH) from Neobellieria bullata was studied in female mealworm Tenebrio molitor. Both peptides potently inhibit ovarian development and terminal oocyte maturation of mated females during their first reproductive cycle. Injection of 4 mug of Neb-colloostatin or Neb-TMOFNeb-TMOF reduced, at day 4 of the cycle, the size of the terminal oocytes to about half or one third of the normal size in saline-injected controls. In addition, follicular patency was arrested. The injections of Neb-colloostatin and Neb-TMOF also caused a delay to the first ovulation and oviposition as well as a reduction of the number of eggs by about 50% in the first 3 days of the oviposition period. At 4 days after adult emergence, none of the peptides had caused significant changes in protein concentration or composition of the haemolymph. However, both peptides reduced total protein content in ovaries and induced qualitative changes in ovarian protein patterns. Electrophoretic analyses indicated that Neb-colloostatin and Neb-TMOF caused a loss of two proteins (150, 180 kDa) and a drastic reduction of 4 others (39, 43, 47, 130 kDa), which are the most abundant ones in ovaries of control females. On the other hand, they increased the concentration of 2 other polypeptides (65, 70 kDa), which normally occur in insignificant quantities in ovaries. Our results indicate that both peptides have a very similar mode of action despite the differences in their amino acid sequence. They seem to interfere with vitellogenin production by the fat body as well as with vitellogen uptake by the oocytes through modification of patency.
Collapse
Affiliation(s)
- O Wasielewski
- Department of Zoology, Agricultural University, Poznań, Poland.
| | | |
Collapse
|
19
|
Abstract
Since the introduction of DDT in the 1940s, arthropod pest control has relied heavily upon chemical insecticides. However, the development of insect resistance, an increased awareness of the real and perceived environmental and health impacts of these chemicals, and the need for systems with a smaller environmental footprint has stimulated the search for new insecticidal compounds, novel molecular targets, and alternative control methods. In recent decades a variety of biocontrol methods employing peptidic or proteinaceous insect-specific toxins derived from microbes, plants and animals have been examined in the laboratory and field with varying results. Among the many interdependent factors involved with the production of a cost-effective pesticide--production expense, kill efficiency, environmental persistence, pest-specificity, pest resistance-development, public perception and ease of delivery--sprayable biopesticides have not yet found equal competitive footing with chemical counterparts. However, while protein/peptide-based biopesticides continue to have limitations, advances in the technology, particularly of genetically modified organisms as biopesticidal delivery systems, has continually progressed. This review highlights the varieties of delivery methods currently practiced, examining the strengths and weaknesses of each method.
Collapse
|
20
|
Borovsky D, Rabindran S, Dawson WO, Powell CA, Iannotti DA, Morris TJ, Shabanowitz J, Hunt DF, DeBondt HL, DeLoof A. Expression of Aedes trypsin-modulating oostatic factor on the virion of TMV: A potential larvicide. Proc Natl Acad Sci U S A 2006; 103:18963-8. [PMID: 17148608 PMCID: PMC1748160 DOI: 10.1073/pnas.0606146103] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2005] [Indexed: 11/18/2022] Open
Abstract
We report the engineering of the surface of the tobacco mosaic virus (TMV) virion with a mosquito decapeptide hormone, trypsin-modulating oostatic factor (TMOF). The TMV coat protein (CP) was fused to TMOF at the C terminus by using a read-through, leaky stop codon that facilitated expression of CP and chimeric CP-TMOF (20:1 ratio) that were coassembled into virus particles in infected Nicotiana tabacum. Plants that were infected with the hybrid TMV RNA accumulated TMOF to levels of 1.3% of total soluble protein. Infected tobacco leaf discs that were fed to Heliothis virescens fourth-instar larvae stunted their growth and inhibited trypsin and chymotrypsin activity in their midgut. Purified CP-TMOF virions fed to mosquito larvae stopped larval growth and caused death. Because TMV has a wide host range, expressing TMV-TMOF in plants can be used as a general method to protect them against agricultural insect pests and to control vector mosquitoes.
Collapse
Affiliation(s)
- Dov Borovsky
- Florida Medical Entomology Laboratory, University of Florida-Institute of Food and Agricultural Sciences (IFAS), 200 Ninth Street Southeast, Vero Beach, FL 32962-4699, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Begum M, Breuer M, Kodrik D, M Rahman M, De Loof A. The NMDA receptor antagonist MK-801 inhibits vitellogenesis in the flesh fly Neobellieria bullata and in the desert locust Schistocerca gregaria. JOURNAL OF INSECT PHYSIOLOGY 2004; 50:927-934. [PMID: 15518660 DOI: 10.1016/j.jinsphys.2004.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 07/08/2004] [Accepted: 07/08/2004] [Indexed: 05/24/2023]
Abstract
We found that in the flesh fly Neobellieria bullata, vitellogenesis can be inhibited in a dose-dependent way by two injections of 60 microg MK-801/g body mass. In the desert locust Schistocerca gregaria, vitellogenesis can also be fully inhibited but only by repeated injections of 200-400 microg/g body mass. In this species, the inhibition can be overruled by coapplication of juvenile hormone. Vitellogenin bands remained visible in electropherograms of hemolymph of MK-801-treated female locusts, but vitellogenin did not accumulate as might be expected when only its uptake by the oocytes, and not its synthesis by the fat body, would be affected. Whether MK-801 acts by inhibiting juvenile hormone synthesis by the corpora allata remains to be investigated.
Collapse
Affiliation(s)
- Murshida Begum
- Zoological Institute, Katholieke Universiteit Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
22
|
Slaninová J, Bennettová B, Nazarov ES, Simek P, Holík J, Vlasáková V, Hlavácek J, Cerný B, Tykva R. Activity and mechanism of action of insect oostatic peptides in flesh fly. Bioorg Chem 2004; 32:263-73. [PMID: 15210340 DOI: 10.1016/j.bioorg.2004.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Indexed: 12/01/2022]
Abstract
The relationship between structure and activity of insect oostatic decapeptide (Aed-TMOF) analogues in flesh fly was analyzed. The highest oostatic activity was exhibited by the pentapetide and tetrapeptide analogues, H-Tyr-Asp-Pro-Ala-Pro-OH and H-Tyr-Asp-Pro-Ala-OH, respectively. The tetrapeptide, either native or tritiated, was used to study its metabolism in the ovaries and hemolymph and to detect putative binding sites in the flesh fly ovaries and head. A high metabolism of the tetrapeptide with a half-life in the hemolymph and ovaries less than 1h was determined. The initial limiting step in the degradation is tyrosine(1) cleavage. Other degradation products were detected only transiently in low quantities. Using tritiated tetrapeptide, we found that only very low specific binding was detected in the homogenates of ovaries and in the rough membrane preparation in the presence and absence of protease inhibitors.
Collapse
Affiliation(s)
- Jirina Slaninová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo 2, 166 10 Prague 6, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Borovsky D, Meola SM. Biochemical and cytoimmunological evidence for the control of Aedes aegypti larval trypsin with Aea-TMOF. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2004; 55:124-139. [PMID: 14981657 DOI: 10.1002/arch.10132] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Trypsin and chymotrypsin-like enzymes were detected in the gut of Aedes aegypti in the four larval instar and pupal developmental stages. Although overall the amount of trypsin synthesized in the larval gut was 2-fold higher than chymotrypsin, both enzymes are important in food digestion. Feeding Aea-Trypsin Modulating Oostatic Factor (TMOF) to Ae. aegypti and Culex quinquefasciatus larvae inhibited trypsin biosynthesis in the larval gut, stunted larval growth and development, and caused mortality. Aea-TMOF induced mortality in Ae. aegypti, Cx. quinquefasciatus, Culex nigripalpus, Anopheles quadrimaculatus, and Aedes taeniorhynchus larvae, indicating that many mosquito species have a TMOF-like hormone. The differences in potency of TMOF on different mosquito species suggest that analogues in other species are similar but may differ in amino acid sequence or are transported differently through the gut. Feeding of 29 different Aea-TMOF analogues to mosquito larvae indicated that full biological activity of the hormone is achieved with the tetrapeptide YDPA. Using cytoimmunochemical analysis, intrinsic TMOF was localized to ganglia of the central nervous system in larvae and male and female Ae. aegypti adults. The subesophageal, thoracic, and abdominal ganglia of both larval and adult mosquitoes contained immunoreactive cells. Immunoreactive cells were absent in the corpus cardiacum of newly molted 4th instar larvae but were found in late 4th instar larvae. In both males and females, the intrinsic neurosecretory cells of the corpus cardiacum were filled with densely stained immunoreactive material. These results indicate that TMOF-immunoreactive material is synthesized in sugar-fed male and female adults and larvae by the central nervous system cells.
Collapse
Affiliation(s)
- Dov Borovsky
- University of Florida-IFAS, Florida Medical Entomology Laboratory, Vero Beach, 32962, USA.
| | | |
Collapse
|
24
|
Borovsky D. Trypsin-modulating oostatic factor: a potential new larvicide for mosquito control. J Exp Biol 2003; 206:3869-75. [PMID: 14506222 DOI: 10.1242/jeb.00602] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Trypsin-modulating oostatic factor (TMOF), a mosquito decapeptide,terminates trypsin biosynthesis in the mosquito gut. The hormone is secreted from the ovary, starting 18 h after the blood meal, circulates in the hemolymph, binds to a gut receptor and stops trypsin biosynthesis by exerting a translational control on trypsin mRNA. Because of the unique primary amino acid sequence of the hormone (YDPAPPPPPP) and its stable three-dimensional conformation, TMOF is not degraded by gut proteolytic enzymes and can traverse the gut epithelial cells into the hemolymph of adults and larvae. Using this unique property, hormone fed to different species of mosquito larvae stops food digestion and causes larval mortality. To determine the shortest amino acid sequence that can bind to the gut receptor and still cause high larval mortality, 25 analogues of TMOF were synthesized and tested. The tetrapeptide(YDPA) was as effective as the decapeptide, indicating that the binding to the gut receptor is at the N-terminus of the molecule. Cloning and expressing the hormone on the coat protein of tobacco mosaic virus (TMV) in Chlorella sp. and Saccharomyces cerevisiae cells and feeding the recombinant cells to mosquito larvae caused larval mortality. These results indicate that TMOF can be used as a new biorational insecticide against mosquito larvae.
Collapse
Affiliation(s)
- D Borovsky
- University of Florida-IFAS, Florida Medical Entomology Laboratory, 200 9th Street, SE Vero Beach, FL 332962, USA.
| |
Collapse
|
25
|
Federici BA, Park HW, Bideshi DK, Wirth MC, Johnson JJ. Recombinant bacteria for mosquito control. J Exp Biol 2003; 206:3877-85. [PMID: 14506223 DOI: 10.1242/jeb.00643] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Bacterial insecticides have been used for the control of nuisance and vector mosquitoes for more than two decades. Nevertheless, due primarily to their high cost and often only moderate efficacy, these insecticides remain of limited use in tropical countries where mosquito-borne diseases are prevalent. Recently, however, recombinant DNA techniques have been used to improve bacterial insecticide efficacy by markedly increasing the synthesis of mosquitocidal proteins and by enabling new endotoxin combinations from different bacteria to be produced within single strains. These new strains combine mosquitocidal Cry and Cyt proteins of Bacillus thuringiensiswith the binary toxin of Bacillus sphaericus, improving efficacy against Culex species by 10-fold and greatly reducing the potential for resistance through the presence of Cyt1A. Moreover, although intensive use of B. sphaericus against Culex populations in the field can result in high levels of resistance, most of this can be suppressed by combining this bacterial species with Cyt1A; the latter enables the binary toxin of this species to enter midgut epithelial cells via the microvillar membrane in the absence of a midgut receptor. The availability of these novel strains and newly discovered mosquitocidal proteins, such as the Mtx toxins of B. sphaericus, offers the potential for constructing a range of recombinant bacterial insecticides for more effective control of the mosquito vectors of filariasis, Dengue fever and malaria.
Collapse
Affiliation(s)
- B A Federici
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA.
| | | | | | | | | |
Collapse
|
26
|
Gäde G, Goldsworthy GJ. Insect peptide hormones: a selective review of their physiology and potential application for pest control. PEST MANAGEMENT SCIENCE 2003; 59:1063-75. [PMID: 14561063 DOI: 10.1002/ps.755] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Our knowledge on primary structure, synthesis, release, receptor binding, structure-activity relationships, mode of action and degradation of, mainly, neuropeptides from insects has increased dramatically during the last 10 years or so. Here, five case studies are presented, which deal selectively with effects on: reproduction (trypsin modulating oostatic factor in mosquito); energy metabolism, locomotion and the immune system (adipokinetic hormones); water and ion balance, and feeding behaviour (diuretic hormones, kinins, sulfakinins); sex attraction (pheromone biosynthesis activating neuropeptide); and growth and development, and muscle activity (allatostatins). The literature is reviewed in the context of how the knowledge on neuropeptides has been and can be used for the design of novel, safe and selective compounds to control pest insects in the foreseeable future.
Collapse
Affiliation(s)
- Gerd Gäde
- Zoology Department, University of Cape Town, Rondebosch, South Africa.
| | | |
Collapse
|
27
|
Maloň P, Dlouhá H, Bennettová B, Tykva R, Hlaváček J. Circular Dichroism and Conformation of Oostatic Peptides: The Carrier-Like Role of C-Terminal Oligoproline Sequence. ACTA ACUST UNITED AC 2003. [DOI: 10.1135/cccc20031309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Circular dichroism spectra of the peptides H-Tyr-Asp-Pro-OH, H-Tyr-Asp-Pro-Ala-OH, H-Tyr-Asp-Pro-Ala-(Pro)n-OH (n = 1-6) and of their two methyleneoxy isosters were measured and analyzed in terms of possible interactions between the N-terminal (mostly tetrapeptide) part that is responsible for the oostatic activity and the C-terminal oligoproline sequence. The results indicate that the two parts are largely independent and that the C-terminal (Pro)n sequence serves another purpose, possibly as a carrier.
Collapse
|
28
|
Slaninová J, Bennettová B, Hlavácek J, Tykva R. Insect oostatic peptide: absence of effect on mice ovaries. CHEMOSPHERE 2002; 48:591-595. [PMID: 12143933 DOI: 10.1016/s0045-6535(02)00153-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An analogue of insect oostatic peptide, the pentapeptide H-Tyr-Asp-Pro-Ala-Pro-OH (H-YDPAP-OH), was administered to female mice and its effects on reproduction and development of the ovaries were studied. Up to 0.5 mg of the peptide per mice (25 g b.w.) injected intraperitoneally did not change the rate of pregnancy, number of offsprings and histological findings in ovaries and uterus in comparison to saline treated controls.
Collapse
Affiliation(s)
- Jirina Slaninová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague.
| | | | | | | |
Collapse
|
29
|
Vandingenen A, Hens K, Macours N, Schoofs L, De Loof A, Huybrechts R. Presence of angiotensin converting enzyme (ACE) interactive factors in ovaries of the grey fleshfly Neobellieria bullata. Comp Biochem Physiol B Biochem Mol Biol 2002; 132:27-35. [PMID: 11997207 DOI: 10.1016/s1096-4959(01)00529-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Angiotensin converting enzyme (ACE) activity, defined as a captopril-inhibitable dipeptidyl carboxypeptidase activity towards 3H-hippurylglycylglycine, was demonstrated in haemolymph, testes and ovaries of the grey fleshfly Neobellieria bullata, hereby suggesting a physiological role for ACE in these particular tissues. While the ACE activity in haemolymph and testes reached relatively high levels, only minute ACE activity could be detected in ovaries throughout the entire vitellogenic cycle. Ovarian extracts of Neobellieria bullata do contain, however, in addition to Neb-TMOF, the Neobellieria bullata trypsin modulating oostatic factor which is an in vitro and a putative in vivo substrate of ACE in circulation, several other heat-stable molecules which individually function either as an ACE substrate or ACE inhibitor. Presumably these ACE interactive factors mask ACE activity in the fly ovaries, as measured by a classic substrate-binding assay. Purification and characterisation of these ACE substrates/inhibitors is in progress and is likely to facilitate the elucidation of the enigmatic physiological relevance of ACE in insects.
Collapse
Affiliation(s)
- Anick Vandingenen
- Zoological Institute of the KU Leuven, Laboratory for Developmental Physiology and Molecular Biology, Naamsestraat 59, 3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
30
|
Nauen R, Sorge D, Sterner A, Borovsky D. TMOF-like factor controls the biosynthesis of serine proteases in the larval gut of Heliothis virescens. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2001; 47:169-180. [PMID: 11462221 DOI: 10.1002/arch.1049] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Proteolytic enzyme biosynthesis in the midgut of the 4th instar larva of Heliothis virescens is cyclical. Protease activity increases immediately after the molt from the 3rd to the 4th instar larvae and declines just before the molt into the 5th instar. Characterization of the midgut proteases using soybean tryspin inhibitor (SBTI) Bowman Birk Inhibitor (BBI) 4-(2-aminoethyl)benzensulfonylfluoride (AEBSF) and N-tosyl-L-phenylalanine chloromethylketone (TPCK) indicate that protease activity is mostly trypsinlike (80%) with a small amount of chymotrypsinlike activity (20%). Injections of late 3rd and 4th instar larval hemolymph into H. virescens larvae inhibited tryspin biosynthesis in the larval midgut. Similar results were obtained when highly purified 4th instar larval hemolymph that crossreacted with Aea-TMOF antisurm using ELISA was injected into 2nd instar larvae. Injections of Aea-TMOF and its analogues into 2nd instar, and Aea-TMOF alone into 4th instar larvae stopped trypsin biosynthesis 24 and 48 h after the injections, respectively. Injections of 4th instar H. virescens larval hemolymph into female Aedes aegypti that took a blood meal stopped trypsin biosynthesis and egg development. These results show that the biosynthesis of trypsin-like enzymes in the midgut of a lepidoptera is modulated with a hemolymph circulating TMOF-like factor that is closely related to Aea-TMOF. Arch.
Collapse
Affiliation(s)
- R Nauen
- Bayer AG, Agrochemicals Division, Research Insecticides, Leverkusen, Germany
| | | | | | | |
Collapse
|
31
|
Vandingenen A, Hens K, Macours N, Zhu W, Janssen I, Breuer M, De Loof A, Huybrechts R. Captopril, a specific inhibitor of angiotensin converting enzyme, enhances both trypsin and vitellogenin titers in the grey fleshfly Neobellieria bullata. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2001; 47:161-167. [PMID: 11418934 DOI: 10.1002/arch.1047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A strong and constitutive angiotensin converting enzyme- or ACE-like activity was demonstrated in the hemolymph of the adult grey fleshfly Neobellieria bullata. In a competition assay, the N. bullata trypsin modulating oostatic factor (Neb-TMOF) was confirmed to be an in vitro substrate for this circulating Neb-ACE. Oral uptake of captopril, a selective and specific inhibitor of ACE, resulted in a complete phenotypic knockout of circulating ACE activity. When compared with control animals, captopril-fed female flies showed an increase in the liver meal-induced trypsin peak in the midgut and elevated levels of protein meal-induced yolk polypeptides in the hemolymph. The latter effect was not due to a slower vitellogenin uptake by the ovaries, because oocyte growth was not affected by the captopril treatment. The apparent synergism between the demonstrated ACE functionality and the previously reported effects of the oostatic peptide Neb-TMOF are discussed in the context of our recent finding that Neb-TMOF represents a prime candidate for being the first known in vivo substrate for circulating insect ACE. Arch.
Collapse
Affiliation(s)
- A Vandingenen
- Zoological Institute of the K.U. Leuven, Laboratory of Developmental Physiology and Molecular Biology, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Yan XH, De Bondt HL, Powell CC, Bullock RC, Borovsky D. Sequencing and characterization of the citrus weevil, Diaprepes abbreviatus, trypsin cDNA. Effect of Aedes trypsin modulating oostatic factor on trypsin biosynthesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 262:627-36. [PMID: 10411621 DOI: 10.1046/j.1432-1327.1999.00411.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Trypsin mRNA from the citrus weevil, Diaprepes abbreviatus, was reverse transcribed and amplified by PCR. A cDNA species of 513 bp was cloned and sequenced. The 3' and 5' ends of the gene (262 bp and 237 bp, respectively) were amplified by rapid amplification of cDNA ends, cloned and sequenced. The deduced sequence of the trypsin cDNA (860 bp) encodes for 250 amino acids including 11 amino acids of activation and signal peptides and exhibited 16.8% identity to trypsin genes of selected Lepidoptera and Diptera. A three-dimensional model of Diaprepes trypsin contained two domains of beta-barrel sheets as has been found in Drosophila and Neobellieria. The catalytic active site is composed of the canonical triad of His41, Asp92 and Ser185 and a specificity pocket occupied by Asp179 with maximal activity at pH 10.4. Southern blot analysis indicated that at least two copies of the gene are encoded by Diaprepes midgut. Northern blot analysis detected a single RNA band below 1.35 kb at different larval ages (28-100 days old). The message increased with age and was most abundant at 100 days. Trypsin activity, on the other hand, reached a peak at 50 days and fell rapidly afterwards indicating that the trypsin message is probably regulated translationally. Feeding of soybean trypsin inhibitor and Aedes aegypti trypsin modulating oostatic factor affected trypsin activity and trypsin biosynthesis, respectively. These results indicate that Diaprepes regulates trypsin biosynthesis with a trypsin modulating oostatic factor-like signal.
Collapse
Affiliation(s)
- X H Yan
- University of Florida-IFAS, Florida Medical Entomology Laboratory, Vero Beach 32962, USA
| | | | | | | | | |
Collapse
|
34
|
Cerstiaens A, Benfekih L, Zouiten H, Verhaert P, De Loof A, Schoofs L. Led-NPF-1 stimulates ovarian development in locusts. Peptides 1999; 20:39-44. [PMID: 10098622 DOI: 10.1016/s0196-9781(98)00152-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
For more than a decade, immunohistochemical results on FMRFamide related peptides (FaRP's) have been reported extensively, suggesting many possible roles for these peptides associated with behavioural and physiological events as well as reproduction. This study provides a clear effect in vivo of members of this family of insect neuropeptides. The effect of two neuropeptide F-related peptides from the Colorado potato beetle, Leptinotarsa decemlineata, Led-NPF-1 and Led-NPF-2 as well as the locusts myotropins, Lom-PK-1, Lom-PK-2 and Lom-SK, was screened in an ovarian development assay in the African migratory locust and the grey fleshfly, Neobellieria bullata. Led-NPF-1 (Ala-Arg-Gly-Pro-Gln-Leu-Arg-Leu-Arg-Phe-NH2) was shown to be a potent gonadostimulin in Locusta migratoria, but not in Neobellieria bullata. A minimal dose of 0.05 microg of Led-NPF-1 per animal, every 12 h, during 5 consecutive injections into 6 day old virgin females, could accelerate egg development. Higher doses of prolonged injections were demonstrated to be even more potent in the ovarian development assay. Led-NPF-2 (Ala-Pro-Ser-Leu-Arg-Leu-Arg-Phe-NH2) was far less active. The other tested peptides scored no reproducible effect what so ever on ovarian growth, in locusts, nor in flies. The gonadotropic action of a NPF-like peptide on oocyte growth implies a complex regulation of oogenesis in the locust and adds to our knowledge of insect neuroendocrinology in general. The results also suggest that a peptide of similar sequence also resides in the locust.
Collapse
Affiliation(s)
- A Cerstiaens
- Zoological Institute of the University, Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Mammals have two genes (SRY and DMT1) for testis formation-androgenesis, an anti-testis gene, DAX1, an anti-Müllerian duct hormone, and steroid sex hormones. Drosophila uses the sex-lethal, transformer, and doublesex genes for sexual differentation and is supposed to lack sex hormones. However, the statement that insects do not have sex hormones loses much of its credibility if one considers (1) the classical endocrinological work on sexual differentiation in the firefly Lampyris and in the hevea tussock moth Orgyia; (2) the recent identification of an androgenic hormone and its role in sex determination in the isopod Armadillidium; (3) the similarity between steroidogenic factor 1 (SF-1) of mammals and fushi tarazu factor 1 (FTZ-F1) of Drosophila; and (4) the steroidogenic effect of gonadotropins secreted by the brain of female locusts and mosquitoes and of male gypsy moth. In our model, based on data from the literature, ecdysone, when present in high concentrations, might function as an androgenic sex steroid. It is also the precursor of 20-OH-ecdysone, which is the moulting hormone of insects, and in vitellogenic females of many species, the counterpart of estrogens as well. Other gender-specific hormones are likely to exist in the brain-gonad axis.
Collapse
Affiliation(s)
- A De Loof
- Zoological Institute, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | |
Collapse
|
36
|
|
37
|
Janssen I, Koolman J, Konopinska D, Bartosz-Bechowski H, Schoofs L, De Loof A. Biological activity of structural analogs and effect of oil as a carrier of trypsin modulating oostatic factor of the gray fleshfly Neobellieria bullata. Peptides 1998; 19:627-34. [PMID: 9622016 DOI: 10.1016/s0196-9781(97)00478-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The trypsin modulating oostatic factor from the gray fleshfly Neobellieria bullata (Neb-TMOF) is released from the ovary at the end of vitellogenesis and inhibits trypsin biosynthesis in the midgut. This inhibition indirectly results in an arrest of oocyte growth. Additional experiments with N. bullata were performed to characterize its trypsin modulating and oostatic properties in more detail. After suspending the peptide in wheat germ oil, the threshold dose for oostatic activity was lowered one thousand times (2.10(-5) in oil versus 2.10(-2) pmoles per fly in Ringer). By use of the Neobellieria trypsin biosynthesis assay, 17 analogs of the hexapeptide were tested for inhibitory activity. The following structural elements were demonstrated to be critical for biological activity: the alcohol function at position 3 (Thr residue); a positively charged basic group at the C terminus (His residue); and the Asn side chain at positions 1 and 4.
Collapse
Affiliation(s)
- I Janssen
- Laboratory for Developmental Physiology & Molecular Biology, Zoological Institute K. U. Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
38
|
Gade G. The Explosion of Structural Information on Insect Neuropeptides. FORTSCHRITTE DER CHEMIE ORGANISCHER NATURSTOFFE / PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 1997. [DOI: 10.1007/978-3-7091-6529-4_1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
39
|
Borovsky D, Janssen I, Vanden Broeck J, Huybrechts R, Verhaert P, De Bondt HL, Bylemans D, De Loof A. Molecular sequencing and modeling of Neobellieria bullata trypsin. Evidence for translational control by Neobellieria trypsin-modulating oostatic factor. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 237:279-87. [PMID: 8620885 DOI: 10.1111/j.1432-1033.1996.0279n.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Trypsin mRNA from the grey fleshfly (Neobellieria bullata) was reversed transcribed and amplified by means of PCR. Two cDNA species of 600 bp and 800 bp were cloned and sequenced. The 3' end of the gene (300 bp) was amplified by means of the rapid-amplification-of-cDNA-ends method, cloned and sequenced. The deduced protein sequence of 254 amino acids exhibited 46% identity to Drosophila trypsin and 32% identity to Anophiline trypsin and Aedes trypsin. Three-dimensional models of Neobellieria trypsin and Drosophilia trypsin were built and compared. Both models contain two domains of beta-barrel sheets as was shown by means of X-ray crystallography of mammalian trypsin. The catalytic active site is composed of the canonical triad of His42, Asp87 and Ser182 whereas Asp176 sits as the bottom of the specificity pocket. Southern blot analysis suggested that Neobellieria trypsin is encoded by one gene. Northern blot analysis showed that an early trypsin transcript is found in the midgut of sugar-fed females. This message disappeared after a liver meal, and was replaced by a late transcript. Injection of trypsin-modulating oostatic factor (TMOF) at 10(-9) M prevented the disappearance and the translation of the early transcript. TMOF did not prevent the appearance of the late transcript. However, in the presence of the hormone the late transcript was not translated. Thus, TMOF is the biological signal that terminates the translation of trypsin mRNA in the fleshfly gut and probably in the mosquito gut.
Collapse
Affiliation(s)
- D Borovsky
- University of Florida-IFAS, Vero Beach 32962, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Borovsky D, Mahmood F. Feeding the mosquito Aedes aegypti with TMOF and its analogs; effect on trypsin biosynthesis and egg development. REGULATORY PEPTIDES 1995; 57:273-81. [PMID: 7480877 DOI: 10.1016/0167-0115(95)00041-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Female Aedes aegypti that were given a blood meal by enema deposited yolk in their oocytes and synthesized trypsinlike enzymes in their midgut. When females were given an enema of Aea-TMOF (Trypsin Modulating Oostatic Factor) (NH2-YDPAPPPPPP-COOH) and blood both egg development and trypsin biosynthesis were inhibited. Similar results were observed if TMOF was mixed with the blood meal and fed to female mosquitoes through a membrane. Renin inhibitor (NH2-PHPFHFFVYK-COOH) or poly proline given by enema with the blood meal did not affect egg development or trypsin biosynthesis. Feeding of TMOF analogs P1 (NH2-YDPAP-COOH) or P4 (NH2-YDPAPPPP-COOH) inhibited trypsin biosynthesis in the midgut. Injecting or giving an enema of an amidated peptide (NH2-WRPGPPPPPP-CONH2) of HIV-2 X-ORF protein also inhibited egg development and trypsin biosynthesis in the mosquito gut. When [3H]TMOF was purified by high performance liquid chromatography (HPLC) and fed with the blood meal through a membrane to female mosquitoes, [3H]TMOF outside the gut increased linearly for the first 24 h and 28% of the hormone was found outside the gut at 72 h. These results suggest that TMOF and its active analogs traverse the gut epithelial cells into the hemolymph, bind TMOF gut receptor(s) and modulate trypsin biosynthesis.
Collapse
Affiliation(s)
- D Borovsky
- University of Florida, IFAS, Florida Medical Entomology Laboratory, Vero Beach 32962, USA
| | | |
Collapse
|
41
|
De Loof A, Bylemans D, Schoofs L, Janssen I, Spittaels K, Vanden Broeck J, Huybrechts R, Borovsky D, Hua YJ, Koolman J. Folliculostatins, gonadotropins and a model for control of growth in the grey fleshfly, Neobellieria (sarcophaga) bullata. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1995; 25:661-667. [PMID: 7627197 DOI: 10.1016/0965-1748(95)00005-g] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The sequences of two folliculostatic peptides of the fleshfly Neobellieria bullata have been determined recently. The first peptide (Neb-TMOF: H-NPTNLH-OH), originates from a 75 kDa precursor protein found in vitellogenic oocytes. The hexapeptide directly inhibits the synthesis of trypsin-like enzymes in the gut, and thus lowers the concentration of yolk polypeptides in the hemolymph. It also inhibits the biosynthesis of ecdysone in the larval ring gland. Therefore, it could also be named prothoracicostatic hormone (Neb-PTSH). The second peptide (Neb-colloostatin: H-SIV-PLGLPVPIGPIVVGPR-OH) acts on previtellogenic follicles and is a cleaved product of a collagen-like precursor molecule. Our results indicate that peptides that are cleaved from matrix proteins could act as growth-inhibiting factors. Gonadotropin releasing hormone (GnRH)-immunolike peptides were not identified, but progress is being made in the isolation and characterization of factors which stimulate cAMP production by the ovary. Using these results, a novel model of growth control in which matrix proteins play an important role as a potential source of growth regulators has been developed.
Collapse
Affiliation(s)
- A De Loof
- Zoological Institute of the University, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bylemans D, Proost P, Samijn B, Borovsky D, Grauwels L, Huybrechts R, Van Damme J, Van Beeumen J, De Loof A. Neb-colloostatin, a second folliculostatin of the grey fleshfly, Neobellieria bullata. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 228:45-9. [PMID: 7883009 DOI: 10.1111/j.1432-1033.1995.tb20226.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
During the purification of trypsin-modulating oostatic factor (TMOF) of the grey fleshfly Neobellieria bullata, a new factor with oostatic activity was discovered. We report herein its purification, primary structure and effects on oocyte development. Its amino acid sequence was determined as H-SIVPLGLPVPIGPIVVGPR-OH. Due to structural sequence similarities with parts of several known collagens and its oostatic activity, we named it Neb-colloostatin. The synthetic peptide inhibits yolk uptake by previtellogenic oocytes and might have a role in the absence of yolk deposition in penultimate oocytes. Neb-colloostatin does not inhibit trypsin biosynthesis in the gut or ecdysone biosynthesis by larval ring glands. It decreases vitellogenin concentrations in the hemolymph by an unknown mode of action. The role of extracellular matrix proteins in the feedback control of growth is discussed.
Collapse
Affiliation(s)
- D Bylemans
- Zoological Institute of the K. U. Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Bylemans D, Borovsky D, Hunt DF, Shabanowitz J, Grauwels L, De Loof A. Sequencing and characterization of trypsin modulating oostatic factor (TMOF) from the ovaries of the grey fleshfly, Neobellieria (Sarcophaga) bullata. REGULATORY PEPTIDES 1994; 50:61-72. [PMID: 8159807 DOI: 10.1016/0167-0115(94)90192-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Injection of crude extracts of late vitellogenic ovaries into staged females of the grey fleshfly Neobellieria (Sarcophaga) bullata inhibited oocyte development and biosynthesis of trypsin-like enzymes in the gut. Trypsin synthesis in N. bullata is cyclic and is correlated with egg development, which is discontinuous. A trypsin modulating oostatic factor (Neb-TMOF) was purified from 10,000 vitellogenic ovaries and sequenced by mass spectrometry. Neb-TMOF is a hexapeptide (NH2-NPTNLH-COOH). Injection of the hormone at physiological concentrations (10(-9) M), inhibited trypsin-like synthesis by the midgut of liver-fed female flies, and caused a reduction of the vitellogenin concentration in the hemolymph and of oocyte growth. The role of Neb-TMOF in controlling egg development and the physiological similarities with Aedes-TMOF are discussed.
Collapse
Affiliation(s)
- D Bylemans
- Zoological Institute, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | | | |
Collapse
|