1
|
The RNA-Binding Protein YBX3 Controls Amino Acid Levels by Regulating SLC mRNA Abundance. Cell Rep 2019; 27:3097-3106.e5. [DOI: 10.1016/j.celrep.2019.05.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/29/2019] [Accepted: 05/10/2019] [Indexed: 01/23/2023] Open
|
2
|
Espinar L, Schikora Tamarit MÀ, Domingo J, Carey LB. Promoter architecture determines cotranslational regulation of mRNA. Genome Res 2018; 28:509-518. [PMID: 29567675 PMCID: PMC5880241 DOI: 10.1101/gr.230458.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/27/2018] [Indexed: 01/08/2023]
Abstract
Information that regulates gene expression is encoded throughout each gene but if different regulatory regions can be understood in isolation, or if they interact, is unknown. Here we measure mRNA levels for 10,000 open reading frames (ORFs) transcribed from either an inducible or constitutive promoter. We find that the strength of cotranslational regulation on mRNA levels is determined by promoter architecture. By using a novel computational genetic screen of 6402 RNA-seq experiments, we identify the RNA helicase Dbp2 as the mechanism by which cotranslational regulation is reduced specifically for inducible promoters. Finally, we find that for constitutive genes, but not inducible genes, most of the information encoding regulation of mRNA levels in response to changes in growth rate is encoded in the ORF and not in the promoter. Thus, the ORF sequence is a major regulator of gene expression, and a nonlinear interaction between promoters and ORFs determines mRNA levels.
Collapse
Affiliation(s)
- Lorena Espinar
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
| | | | - Júlia Domingo
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.,EMBL-CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Lucas B Carey
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| |
Collapse
|
3
|
Zhu C, Sauter E, Schreiter A, van Roeyen CRC, Ostendorf T, Floege J, Gembardt F, Hugo CP, Isermann B, Lindquist JA, Mertens PR. Cold Shock Proteins Mediate GN with Mesangioproliferation. J Am Soc Nephrol 2016; 27:3678-3689. [PMID: 27151923 DOI: 10.1681/asn.2015121367] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/09/2016] [Indexed: 11/03/2022] Open
Abstract
DNA binding protein A (DbpA) is a member of the human cold shock domain-containing protein superfamily, with known functions in cell proliferation, differentiation, and stress responses. DbpA mediates tight junction-associated activities in tubular epithelial cells, but the function of DbpA in mesangial cells is unknown. Here, we found DbpA protein expression restricted to vascular smooth muscle cells in healthy human kidney tissue but profound induction of DbpA protein expression within the glomerular mesangial compartment in mesangioproliferative nephritis. In vitro, depletion or overexpression of DbpA using lentiviral constructs led to inhibition or promotion, respectively, of mesangial cell proliferation. Because platelet-derived growth factor B (PDGF-B) signaling has a pivotal role in mesangial cell proliferation, we examined the regulatory effect of PDGF-B on DbpA. In vitro studies of human and rat mesangial cells confirmed a stimulatory effect of PDGF-B on DbpA transcript numbers and protein levels. Additional in vivo investigations showed DbpA upregulation in experimental rat anti-Thy1.1 nephritis and murine mesangioproliferative nephritis models. To interfere with PDGF-B signaling, we injected nephritic rats with PDGF-B neutralizing aptamers or the MEK/ERK inhibitor U0126. Both interventions markedly decreased DbpA protein expression. Conversely, continuous PDGF-B infusion in healthy rats induced DbpA expression predominantly within the mesangial compartment. Taken together, these results indicate that DbpA is a novel target of PDGF-B signaling and a key mediator of mesangial cell proliferation.
Collapse
Affiliation(s)
- Cheng Zhu
- Department of Nephrology, Hypertension, Diabetes and Endocrinology and
| | - Eva Sauter
- Department of Nephrology, Hypertension, Diabetes and Endocrinology and
| | - Anja Schreiter
- Department of Nephrology, Hypertension, Diabetes and Endocrinology and
| | - Claudia R C van Roeyen
- Department of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; and
| | - Tammo Ostendorf
- Department of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; and
| | - Jürgen Floege
- Department of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; and
| | - Florian Gembardt
- Division of Nephrology, Department of Internal Medicine III, Dresden University of Technology, Dresden, Germany
| | - Christian P Hugo
- Division of Nephrology, Department of Internal Medicine III, Dresden University of Technology, Dresden, Germany
| | - Berend Isermann
- Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | | | - Peter R Mertens
- Department of Nephrology, Hypertension, Diabetes and Endocrinology and
| |
Collapse
|
4
|
Snyder E, Soundararajan R, Sharma M, Dearth A, Smith B, Braun RE. Compound Heterozygosity for Y Box Proteins Causes Sterility Due to Loss of Translational Repression. PLoS Genet 2015; 11:e1005690. [PMID: 26646932 PMCID: PMC4672889 DOI: 10.1371/journal.pgen.1005690] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 10/30/2015] [Indexed: 11/18/2022] Open
Abstract
The Y-box proteins YBX2 and YBX3 bind RNA and DNA and are required for metazoan development and fertility. However, possible functional redundancy between YBX2 and YBX3 has prevented elucidation of their molecular function as RNA masking proteins and identification of their target RNAs. To investigate possible functional redundancy between YBX2 and YBX3, we attempted to construct Ybx2-/-;Ybx3-/- double mutants using a previously reported Ybx2-/- model and a newly generated global Ybx3-/- model. Loss of YBX3 resulted in reduced male fertility and defects in spermatid differentiation. However, homozygous double mutants could not be generated as haploinsufficiency of both Ybx2 and Ybx3 caused sterility characterized by extensive defects in spermatid differentiation. RNA sequence analysis of mRNP and polysome occupancy in single and compound Ybx2/3 heterozygotes revealed loss of translational repression almost exclusively in the compound Ybx2/3 heterozygotes. RNAseq analysis also demonstrated that Y-box protein dose-dependent loss of translational regulation was inversely correlated with the presence of a Y box recognition target sequence, suggesting that Y box proteins bind RNA hierarchically to modulate translation in a range of targets. The Y-box proteins are evolutionary conserved across eukaryotes. This study focused on two Y-box proteins, YBX2 and YBX3, expressed in testis and known be important for male fertility. Previous studies in male germ cells link YBX2 and YBX3 proteins to RNA masking, however, whether they function in translational repression or mRNA stability during spermatogenesis has not been resolved. Ybx2-null mice are known to be infertile due to post-meiotic spermatid defects. To assess the functional role of YBX3 during spermatogenesis, we generated Ybx3-null mice. These mice displayed reduced fertility and spermatid differentiation defects. To test if YBX2 and YBX3 are functionally redundant, we attempted to generate double knockout mice. Double mutants could not be generated due to unexpected infertility in the compound Ybx2/3 heterozygotes. Compound heterozygotes displayed multiple sperm defects indicative of failed post-meiotic germ cell differentiation. Analysis of translational repression in compound Ybx2/3 heterozygous testes demonstrated a loss of translation repression in mRNAs lacking the Y box recognition sequence. These findings suggest YBX2 and YBX3 function to repress translation through both sequence-specific and non-specific mechanisms in a hierarchical manner.
Collapse
Affiliation(s)
- Elizabeth Snyder
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Manju Sharma
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Andrea Dearth
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Benjamin Smith
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Robert E. Braun
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail:
| |
Collapse
|
5
|
Tebaldi T, Re A, Viero G, Pegoretti I, Passerini A, Blanzieri E, Quattrone A. Widespread uncoupling between transcriptome and translatome variations after a stimulus in mammalian cells. BMC Genomics 2012; 13:220. [PMID: 22672192 PMCID: PMC3441405 DOI: 10.1186/1471-2164-13-220] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 06/06/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The classical view on eukaryotic gene expression proposes the scheme of a forward flow for which fluctuations in mRNA levels upon a stimulus contribute to determine variations in mRNA availability for translation. Here we address this issue by simultaneously profiling with microarrays the total mRNAs (the transcriptome) and the polysome-associated mRNAs (the translatome) after EGF treatment of human cells, and extending the analysis to other 19 different transcriptome/translatome comparisons in mammalian cells following different stimuli or undergoing cell programs. RESULTS Triggering of the EGF pathway results in an early induction of transcriptome and translatome changes, but 90% of the significant variation is limited to the translatome and the degree of concordant changes is less than 5%. The survey of other 19 different transcriptome/translatome comparisons shows that extensive uncoupling is a general rule, in terms of both RNA movements and inferred cell activities, with a strong tendency of translation-related genes to be controlled purely at the translational level. By different statistical approaches, we finally provide evidence of the lack of dependence between changes at the transcriptome and translatome levels. CONCLUSIONS We propose a model of diffused independency between variation in transcript abundances and variation in their engagement on polysomes, which implies the existence of specific mechanisms to couple these two ways of regulating gene expression.
Collapse
Affiliation(s)
- Toma Tebaldi
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, 38123 Trento, Italy
| | | | | | | | | | | | | |
Collapse
|
6
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 4: intercellular bridges, mitochondria, nuclear envelope, apoptosis, ubiquitination, membrane/voltage-gated channels, methylation/acetylation, and transcription factors. Microsc Res Tech 2010; 73:364-408. [PMID: 19941288 DOI: 10.1002/jemt.20785] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
As germ cells divide and differentiate from spermatogonia to spermatozoa, they share a number of structural and functional features that are common to all generations of germ cells and these features are discussed herein. Germ cells are linked to one another by large intercellular bridges which serve to move molecules and even large organelles from the cytoplasm of one cell to another. Mitochondria take on different shapes and features and topographical arrangements to accommodate their specific needs during spermatogenesis. The nuclear envelope and pore complex also undergo extensive modifications concomitant with the development of germ cell generations. Apoptosis is an event that is normally triggered by germ cells and involves many proteins. It occurs to limit the germ cell pool and acts as a quality control mechanism. The ubiquitin pathway comprises enzymes that ubiquitinate as well as deubiquitinate target proteins and this pathway is present and functional in germ cells. Germ cells express many proteins involved in water balance and pH control as well as voltage-gated ion channel movement. In the nucleus, proteins undergo epigenetic modifications which include methylation, acetylation, and phosphorylation, with each of these modifications signaling changes in chromatin structure. Germ cells contain specialized transcription complexes that coordinate the differentiation program of spermatogenesis, and there are many male germ cell-specific differences in the components of this machinery. All of the above features of germ cells will be discussed along with the specific proteins/genes and abnormalities to fertility related to each topic.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, 3640 University Street, Montreal, QC Canada H3A 2B2.
| | | | | | | |
Collapse
|
7
|
Komili S, Silver PA. Coupling and coordination in gene expression processes: a systems biology view. Nat Rev Genet 2008; 9:38-48. [PMID: 18071322 DOI: 10.1038/nrg2223] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genome-scale analyses have allowed us to progress beyond studying gene expression at the level of individual components of a given process by providing global information about functional connections between genes, mRNAs and their regulatory proteins. Such analyses have greatly increased our understanding of the interplay between different events in gene regulation and have highlighted previously unappreciated functional connections, including coupling between nuclear and cytoplasmic processes. Genome-wide approaches have also revealed extensive coordination within regulatory levels, such as the organization of transcription factors into regulatory motifs. Overall, these studies enhance our understanding of how the many components of the eukaryotic cell function as a system to allow both coordination and versatility in gene expression.
Collapse
Affiliation(s)
- Suzanne Komili
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02119, USA
| | | |
Collapse
|
8
|
Bono E, Compagno V, Proia P, Raimondi L, Schiera G, Favaloro V, Campo V, Donatelli M, Di Liegro I. Thyroid hormones induce sumoylation of the cold shock domain-containing protein PIPPin in developing rat brain and in cultured neurons. Endocrinology 2007; 148:252-7. [PMID: 17053029 DOI: 10.1210/en.2006-0660] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously identified a cold shock domain (CSD)-containing protein (PIPPin), expressed at high level in brain cells. PIPPin has the potential to undergo different posttranslational modifications and might be a good candidate to regulate the synthesis of specific proteins in response to extracellular stimuli. Here we report the effects of T(3) on PIPPin expression in developing rat brain. We found that a significant difference among euthyroid and hypothyroid newborn rats concerns sumoylation of nuclear PIPPin, which is abolished by hypothyroidism. Moreover, T(3) dependence of PIPPin sumoylation has been confirmed in cortical neurons purified from brain cortices and cultured in a chemically defined medium (Maat medium), with or without T(3). We also report that about one half of unmodified as well as all the sumoylated form of PIPPin could be extracted from nuclei with HCl, together with histones. Moreover, this HCl-soluble fraction remains in the nucleus even after treatment with 0.6 M KCl, thus suggesting strong interaction of PIPPin with nuclear structures and perhaps chromatin.
Collapse
Affiliation(s)
- Epifania Bono
- Dipartimento di Biologia Cellulare e dello Sviluppo Alberto Monroy, University of Palermo, 90127 Palermo, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Auboeuf D, Dowhan DH, Dutertre M, Martin N, Berget SM, O'Malley BW. A subset of nuclear receptor coregulators act as coupling proteins during synthesis and maturation of RNA transcripts. Mol Cell Biol 2005; 25:5307-16. [PMID: 15964789 PMCID: PMC1156981 DOI: 10.1128/mcb.25.13.5307-5316.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Didier Auboeuf
- INSERM U685/AVENIR, Centre G. Hayem, Hôpital Saint Louis, Paris, France.
| | | | | | | | | | | |
Collapse
|
10
|
Matsumoto K, Tanaka KJ, Tsujimoto M. An acidic protein, YBAP1, mediates the release of YB-1 from mRNA and relieves the translational repression activity of YB-1. Mol Cell Biol 2005; 25:1779-92. [PMID: 15713634 PMCID: PMC549371 DOI: 10.1128/mcb.25.5.1779-1792.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Eukaryotic Y-box proteins are nucleic acid-binding proteins implicated in a wide range of gene regulatory mechanisms. They contain the cold shock domain, which is a nucleic acid-binding structure also found in bacterial cold shock proteins. The Y-box protein YB-1 is known to be a core component of messenger ribonucleoprotein particles (mRNPs) in the cytoplasm. Here we disrupted the YB-1 gene in chicken DT40 cells. Through the immunoprecipitation of an epitope-tagged YB-1 protein, which complemented the slow-growth phenotype of YB-1-depleted cells, we isolated YB-1-associated complexes that likely represented general mRNPs in somatic cells. RNase treatment prior to immunoprecipitation led to the identification of a Y-box protein-associated acidic protein (YBAP1). The specific association of YB-1 with YBAP1 resulted in the release of YB-1 from reconstituted YB-1-mRNA complexes, thereby reducing the translational repression caused by YB-1 in the in vitro system. Our data suggest that YBAP1 induces the remodeling of YB-1-mRNA complexes.
Collapse
Affiliation(s)
- Ken Matsumoto
- Laboratory of Cellular Biochemistry, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | |
Collapse
|
11
|
Kawaguchi R, Bailey-Serres J. mRNA sequence features that contribute to translational regulation in Arabidopsis. Nucleic Acids Res 2005; 33:955-65. [PMID: 15716313 PMCID: PMC549406 DOI: 10.1093/nar/gki240] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA microarrays were used to evaluate the regulation of the proportion of individual mRNA species in polysomal complexes in leaves of Arabidopsis thaliana under control growth conditions and following a mild dehydration stress (DS). The analysis determined that the percentage of an individual gene transcript in polysomes (ribosome loading) ranged from over 95 to <5%. DS caused a decrease in ribosome loading from 82 to 72%, with maintained polysome association for over 60% of the mRNAs with an increased abundance. To identify sequence features responsible for translational regulation, ribosome loading values and features of full-length mRNA sequences were compared. mRNAs with extreme length or high GU content in the 5′-untranslated regions (5′-UTRs) were generally poorly translated. Under DS, mRNAs with both a high GC content in the 5′-UTR and long open reading frame showed a significant impairment in ribosome loading. Evaluation of initiation A+1UG codon context revealed distinctions in the frequency of adenine in nucleotides −10 to −1 (especially at −4 and −3) in mRNAs with different ribosome loading values. Notably, the mRNA features that contribute to translational regulation could not fully explain the variation in ribosome loading, indicating that additional factors contribute to translational regulation in Arabidopsis.
Collapse
Affiliation(s)
| | - Julia Bailey-Serres
- To whom correspondence should be addressed. Tel: +1 951 827 3738; Fax: +1 951 827 4437;
| |
Collapse
|
12
|
Chen CYA, Xu N, Zhu W, Shyu AB. Functional dissection of hnRNP D suggests that nuclear import is required before hnRNP D can modulate mRNA turnover in the cytoplasm. RNA (NEW YORK, N.Y.) 2004; 10:669-680. [PMID: 15037776 PMCID: PMC1370557 DOI: 10.1261/rna.5269304] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Accepted: 12/30/2003] [Indexed: 05/24/2023]
Abstract
Many shuttling proteins not only function in the nucleus but also control mRNA fates in the cytoplasm. We test whether a link exists between their nuclear association with mRNPs and their cytoplasmic functions using the p37 isoform of hnRNP D, which inhibits the rapid cytoplasmic mRNA decay in NIH3T3 cells. We showed that p37 shuttles between nucleus and cytoplasm, and narrowed down the nuclear import signal to a 50-amino-acid C-terminal domain. A p37 mutant missing this domain, still capable of associating with target mRNAs in vitro, was confined to the cytoplasm, where it was unable to block cytoplasmic mRNA turnover. Introducing heterologous shuttling domains to this mutant, thereby restoring its ability to enter the nucleus, concomitantly restored its cytoplasmic function. Association of p37 with its target mRNAs can only be detected when it can enter the nucleus. Our results suggest that nuclear import of hnRNP D is a prerequisite for it to exert its cytoplasmic function. This study provides a useful model system to elucidate the mechanisms by which "nuclear history" affects cytoplasmic mRNA fates.
Collapse
Affiliation(s)
- Chyi-Ying A Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
13
|
Raimondi L, D'Asaro M, Proia P, Nastasi T, Di Liegro I. RNA-binding ability of PIPPin requires the entire protein. J Cell Mol Med 2003; 7:35-42. [PMID: 12767259 PMCID: PMC6740078 DOI: 10.1111/j.1582-4934.2003.tb00200.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Post-transcriptional fate of eukaryotic mRNAs depends on association with different classes of RNA-binding proteins (RBPs). Among these proteins, the cold-shock domain (CSD)-containing proteins, also called Y-box proteins, play a key role in controlling the recruitment of mRNA to the translational machinery, in response to environmental cues, both in development and in differentiated cells. We recently cloned a rat cDNA encoding a new CSD-protein that we called PIPPin. This protein also contains two putative double-stranded RNA-binding motifs (PIP(1) and PIP(2)) flanking the central CSD, and is able to bind mRNAs encoding H1 degrees and H3.3 histone variants. In order to clarify the role of each domain in the RNA-binding activity of PIPPin, we constructed a number of different recombinant vectors, encoding different regions of the protein. Here we report that only recombinant proteins that contain all the putative PIPPin domains show RNA-binding ability.
Collapse
Affiliation(s)
- Lavinia Raimondi
- Dipartimento di Biologia Cellulare e dello Sviluppo Alberto Monroy, Palermo, Italy
| | | | | | | | | |
Collapse
|
14
|
Giorgini F, Davies HG, Braun RE. Translational repression by MSY4 inhibits spermatid differentiation in mice. Development 2002; 129:3669-79. [PMID: 12117816 DOI: 10.1242/dev.129.15.3669] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In developing male germ cells, newly synthesized protamine mRNAs are stored for up to 7 days before translational activation. Translational repression of protamine 1 (Prm1) mRNA requires sequences present in its 3′ untranslated region (UTR) and substantial evidence suggests a role for the murine Y-box protein MSY4 in this process. To determine if MSY4 can mediate translational repression in vivo, we generated transgenic mice in which the temporal window of MSY4 expression was extended during spermatogenesis. Expression of MSY4 disrupted the normal completion of spermatogenesis and caused dominant sterility. Immunocytochemical analysis of several markers, including the protamines, indicated that MSY4 prevented normal activation of translation. mRNAs whose translation was inhibited contained at least one MSY4 RNA recognition site, suggesting sequence-dependent translational repression. Altered translational activation resulted in defective processing of protamine 2 and severe defects in sperm morphogenesis. These results suggest that MSY4 plays an active role in translational repression of several mRNAs in differentiating spermatids.
Collapse
Affiliation(s)
- Flaviano Giorgini
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|
15
|
Wright CF, Oswald BW, Dellis S. Vaccinia virus late transcription is activated in vitro by cellular heterogeneous nuclear ribonucleoproteins. J Biol Chem 2001; 276:40680-6. [PMID: 11546759 DOI: 10.1074/jbc.m102399200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vaccinia virus gene expression is temporally regulated, and three gene classes have been identified: early, intermediate, and late. Several virus-encoded proteins and an activity designated VLTF-X are required for maximum transcription in vitro of a template containing a late promoter. VLTF-X is present in both cytoplasmic and nuclear extracts prepared from uninfected mammalian cells and co-purifies with a late promoter DNA-binding activity. Here, extensive purification of VLTF-X has revealed that heterogeneous nuclear ribonucleoproteins A2/B1 and RBM3 co-purified with in vitro late transcription stimulation. Overexpression and purification of these proteins from Escherichia coli demonstrated that they both complemented for VLTF-X activity in in vitro transcription reactions. These studies identify two host cell factors potentially contributing to poxvirus replication in vivo.
Collapse
Affiliation(s)
- C F Wright
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | |
Collapse
|
16
|
Wilkinson MF, Shyu AB. Multifunctional regulatory proteins that control gene expression in both the nucleus and the cytoplasm. Bioessays 2001; 23:775-87. [PMID: 11536290 DOI: 10.1002/bies.1113] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The multistep pathway of eukaryotic gene expression involves a series of highly regulated events in the nucleus and cytoplasm. In the nucleus, genes are transcribed into pre-messenger RNAs which undergo a series of nuclear processing steps. Mature mRNAs are then transported to the cytoplasm, where they are translated into protein and degraded at a rate dictated by transcript- and cell-type-specific cues. Until recently, these individual nuclear and cytoplasmic events were thought to be primarily regulated by different RNA- and DNA-binding proteins that are localized either only in the nucleus or only the cytoplasm. Here, we describe multifunctional proteins that control both nuclear and cytoplasmic steps of gene expression. One such class of multifunctional proteins (e.g., Bicoid and Y-box proteins) regulates both transcription and translation whereas another class (e.g., Sex-lethal) regulates both nuclear RNA processing and translation. Other events controlled by multifunctional proteins include assembly of spliceosome components, spliceosome recycling, RNA editing, cytoplasmic mRNA localization, and cytoplasmic RNA stability. The existence of multifunctional proteins may explain the paradoxical involvement of the nucleus in an RNA surveillance pathway (nonsense-mediated decay) that detects cytoplasmic signals (premature termination codons). We speculate that shuttling multifunctional proteins serve to efficiently link RNA metabolism in the cytoplasmic and nuclear compartments.
Collapse
Affiliation(s)
- M F Wilkinson
- Department of Immunology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.
| | | |
Collapse
|
17
|
Arranz V, Dreuillet C, Crisanti P, Tillit J, Kress M, Ernoult-Lange M. The zinc finger transcription factor, MOK2, negatively modulates expression of the interphotoreceptor retinoid-binding protein gene, IRBP. J Biol Chem 2001; 276:11963-9. [PMID: 11278819 DOI: 10.1074/jbc.m011036200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human and murine MOK2 orthologue genes encode Krüppel/TFIIIA-related zinc finger proteins, which are factors able to recognize both DNA and RNA through their zinc finger motifs. MOK2 proteins have been shown to bind to the same 18-base pair (bp)-specific sequence in duplex DNA. This MOK2-binding site was found within introns 7 and 2 of human PAX3 and interphotoreceptor retinoid-binding protein (IRBP) genes, respectively. As these two genes are expressed in the brain as MOK2, we have suggested that PAX3 and IRBP genes are two potentially important target genes for the MOK2 protein. In this study, we focused our attention on IRBP as a potential MOK2 target gene. Sequence comparison and binding studies of the 18-bp MOK2-binding sites present in intron 2 of human, bovine, and mouse IRBP genes show that the 3'-half sequence is the essential core element for MOK2 binding. Very interestingly, 8-bp of this core sequence are found in a reverse orientation, in the IRBP promoter. We demonstrate that MOK2 can bind to the 8-bp sequence present in the IRBP promoter and repress its transcription when transiently overexpressed in retinoblastoma Weri-RB1 cells. In the IRBP promoter, it appears that the TAAAGGCT MOK2-binding site overlaps with the photoreceptor-specific CRX-binding element. We suggest that MOK2 represses transcription by competing with the cone-rod homeobox protein (CRX) for DNA binding, thereby decreasing transcriptional activation by CRX. Furthermore, we show that Mok2 expression in the developing mouse and in the adult retina seems to be concordant with IRBP expression.
Collapse
Affiliation(s)
- V Arranz
- CNRS-UPR1983, Institut André Lwolf, 7 rue Guy Moquet, 94801 Villejuif, France
| | | | | | | | | | | |
Collapse
|
18
|
Chernukhin IV, Shamsuddin S, Robinson AF, Carne AF, Paul A, El-Kady AI, Lobanenkov VV, Klenova EM. Physical and functional interaction between two pluripotent proteins, the Y-box DNA/RNA-binding factor, YB-1, and the multivalent zinc finger factor, CTCF. J Biol Chem 2000; 275:29915-21. [PMID: 10906122 DOI: 10.1074/jbc.m001538200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CTCF is a unique, highly conserved, and ubiquitously expressed 11 zinc finger (ZF) transcriptional factor with multiple DNA site specificities. It is able to bind to varying target sequences to perform different regulatory roles, including promoter activation or repression, creating hormone-responsive gene silencing elements, and functional block of enhancer-promoter interactions. Because different sets of ZFs are utilized to recognize different CTCF target DNA sites, each of the diverse DNA.CTCF complexes might engage different essential protein partners to define distinct functional readouts. To identify such proteins, we developed an affinity chromatography method based on matrix-immobilized purified recombinant CTCF. This approach resulted in isolation of several CTCF protein partners. One of these was identified as the multifunctional Y-box DNA/RNA-binding factor, YB-1, known to be involved in transcription, replication, and RNA processing. We examined CTCF/YB-1 interaction by reciprocal immunoprecipitation experiments with anti-CTCF and anti-YB-1 antibodies, and found that CTCF and YB-1 form complexes in vivo. We show that the bacterially expressed ZF domain of CTCF is fully sufficient to retain YB-1 in vitro. To assess possible functional significance of CTCF/YB-1 binding, we employed the very first identified by us, negatively regulated, target for CTCF (c-myc oncogene promoter) as a model in co-transfection assays with both CTCF and YB-1 expression vectors. Although expression of YB-1 alone had no effect, co-expression with CTCF resulted in a marked enhancement of CTCF-driven c-myc transcriptional repression. Thus our findings demonstrate, for the first time, the biological relevance of the CTCF/YB-1 interaction.
Collapse
Affiliation(s)
- I V Chernukhin
- Genetics Laboratory, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Shnyreva M, Schullery DS, Suzuki H, Higaki Y, Bomsztyk K. Interaction of two multifunctional proteins. Heterogeneous nuclear ribonucleoprotein K and Y-box-binding protein. J Biol Chem 2000; 275:15498-503. [PMID: 10809782 DOI: 10.1074/jbc.275.20.15498] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The heterogeneous nuclear ribonucleoprotein (hnRNP) K, a component of the hnRNP particles, appears to be involved in several steps of regulation of gene expression. To gain insight into mechanisms of K protein action, we performed two-hybrid screens using full-length hnRNP K as a bait. Several novel protein partners were identified, including Y-box-binding protein (YB-1), splicing factors 9G8 and SRp20, DNA-methyltransferase, hnRNP L, and hnRNP U. In vitro binding studies and co-immunoprecipitation from cellular extracts provided evidence for direct interaction between hnRNP K and YB-1. Two distinct domains in YB-1 were responsible for binding to K protein. Each protein was able to transactivate transcription from a polypyrimidine-rich promoter; however, this effect was reduced when K and YB-1 proteins were coexpressed suggesting a functional interaction between these two proteins.
Collapse
Affiliation(s)
- M Shnyreva
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
20
|
Warrington JA, Nair A, Mahadevappa M, Tsyganskaya M. Comparison of human adult and fetal expression and identification of 535 housekeeping/maintenance genes. Physiol Genomics 2000; 2:143-7. [PMID: 11015593 DOI: 10.1152/physiolgenomics.2000.2.3.143] [Citation(s) in RCA: 399] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gene expression levels of about 7,000 genes were measured in 11 different human adult and fetal tissues using high-density oligonucleotide arrays to identify genes involved in cellular maintenance. The tissues share a set of 535 transcripts that are turned on early in fetal development and stay on throughout adulthood. Because our goal was to identify genes that are involved in maintaining cellular function in normal individuals, we minimized the effect of individual variation by screening mRNA pooled from many individuals. This information is useful for establishing average expression levels in normal individuals. Additionally, we identified transcripts uniquely expressed in each of the 11 tissues.
Collapse
|
21
|
Ladomery MR, Slight J, Mc Ghee S, Hastie ND. Presence of WT1, the Wilm's tumor suppressor gene product, in nuclear poly(A)(+) ribonucleoprotein. J Biol Chem 1999; 274:36520-6. [PMID: 10593950 DOI: 10.1074/jbc.274.51.36520] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor suppressor gene WT1 encodes a zinc finger protein, which consists of four C-terminal C(2)-H(2) zinc fingers of the Krüppel type, and at the N terminus a Q/P-rich trans-regulatory domain, both characteristic of transcription factors. However, recent findings suggest that WT1 may also be involved in a post-transcriptional process. Specifically, WT1 isoforms containing the alternatively spliced exon 9 (+lysine-threonine-serine (KTS)) preferentially associate with nuclear speckles and co-immunoprecipitate splicing antigens (Larsson, S. H., Charlieu, J.-P., Miyagawa, K., Engelkamp, D., Rassoulzadegan, M., Ross, A., Cuzin, F., van Heyningen, V., and Hastie, N. D. (1995) Cell 81, 391-401); furthermore, WT1 has been shown to interact with the ubiquitous splicing factor U2AF65 (Davies, R. C., Calvo, C., Larsson, S. H., Lamond, A. I., and Hastie, N. D. (1998) Genes Dev. 12, 3217-3225) and binds to RNA in vitro (Caricasole, A., Duarte, A., Larsson, S. H., Hastie, N. D., Little, M., Holmes, G., Todorov, I., and Ward, A. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 7562-7566; Bardeesy, N., and Pelletier, J. (1998) Nucleic Acids Res. 26, 1784-1792). To extend these findings, we have fractionated nuclear extracts to see if particles containing WT1 have the properties of ribonucleoprotein (RNP). In summary, WT1 is enriched by oligo(dT) chromatography, as are U2AF65, the U5 small nuclear RNP-associated protein p116 and hnRNP A1. Gel filtration and sedimentation profiles suggest that WT1 is present in RNase-sensitive particles, >2 MDa in size, peaking at approximately 60 S, and approximately 1.27 g/cm(3) on Nycodenz. Similar results were obtained from two cell lines expressing WT1, fetal kidneys (day E17), and transiently transfected cells, suggesting that the presence of WT1 protein in nuclear poly(A)(+) RNP is a general aspect of WT1 function.
Collapse
Affiliation(s)
- M R Ladomery
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, Scotland, United Kingdom
| | | | | | | |
Collapse
|
22
|
Ruzanov PV, Evdokimova VM, Korneeva NL, Hershey JW, Ovchinnikov LP. Interaction of the universal mRNA-binding protein, p50, with actin: a possible link between mRNA and microfilaments. J Cell Sci 1999; 112 ( Pt 20):3487-96. [PMID: 10504297 DOI: 10.1242/jcs.112.20.3487] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have shown previously that p50 is the most abundant protein associated with a variety of eukaryotic mRNAs and exhibits about 98% amino acid sequence identity to mammalian Y-box binding transcription factors. The dual function of p50 in the cell as a regulator of both transcription and translation has been suggested. To gain insight into the role of p50 in these processes, we performed the yeast two-hybrid screen to identify p50 molecular partners. Here we report the identification of actin as a p50-interacting protein. Coimmunoprecipitation of p50 and actin from HeLa extracts as well as in vitro binding studies indicate specificity and a high affinity for the interaction between p50 and actin. Interestingly, p50 binding to actin is affected by mRNA; binding was observed at a low p50/mRNA ratio and was greatly reduced at higher ratios. Since the p50/mRNA ratio appears to be important for mRNA translatability, we speculate that p50 can regulate the attachment of mRNA to the actin network depending on its translational activity. Using immunofluorescence, we show that p50 binds to actin filaments in permeabilized cells and causes actin fibers to bundle in vitro. Together, these findings support the view that p50 may play an important role in mRNA transport, anchoring, and localization on actin filaments in the cell.
Collapse
Affiliation(s)
- P V Ruzanov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation.
| | | | | | | | | |
Collapse
|
23
|
Abstract
Regulation of translation initiation is a central control point in animal cells. We review our current understanding of the mechanisms of regulation, drawing particularly on examples in which the biological consequences of the regulation are clear. Specific mRNAs can be controlled via sequences in their 5' and 3' untranslated regions (UTRs) and by alterations in the translation machinery. The 5'UTR sequence can determine which initiation pathway is used to bring the ribosome to the initiation codon, how efficiently initiation occurs, and which initiation site is selected. 5'UTR-mediated control can also be accomplished via sequence-specific mRNA-binding proteins. Sequences in the 3' untranslated region and the poly(A) tail can have dramatic effects on initiation frequency, with particularly profound effects in oogenesis and early development. The mechanism by which 3'UTRs and poly(A) regulate initiation may involve contacts between proteins bound to these regions and the basal translation apparatus. mRNA localization signals in the 3'UTR can also dramatically influence translational activation and repression. Modulations of the initiation machinery, including phosphorylation of initiation factors and their regulated association with other proteins, can regulate both specific mRNAs and overall translation rates and thereby affect cell growth and phenotype.
Collapse
Affiliation(s)
- N K Gray
- Department of Biochemistry, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
24
|
Evdokimova VM, Ovchinnikov LP. Translational regulation by Y-box transcription factor: involvement of the major mRNA-associated protein, p50. Int J Biochem Cell Biol 1999; 31:139-49. [PMID: 10216949 DOI: 10.1016/s1357-2725(98)00137-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
p50, the major core protein of messenger ribonucleoprotein particles (mRNPs), is a universal protein found exclusively in association with different mRNA species in the cytoplasm of somatic mammalian cells. Furthermore, p50 is the most abundant and tightly bound protein within both inactive mRNPs and active mRNPs derived from polysomes, although the latter contain a lower level of p50. Recent experiments have revealed that, depending on the p50 to mRNA ratio, p50 may either act as a repressor or an activator of protein synthesis. On the other hand, p50 exhibits about 98% amino acid sequence identity to mammalian transcription factors that bind specifically to Y-box containing DNA. Thus, it is a counterpart of the Y-box binding proteins which are found in bacteria, plants and animals, exhibiting multiple biological activities ranging from transcriptional regulation of a wide variety of genes to 'masking' mRNA activity in germinal cells. This review summarizes our current knowledge of p50 structure and function. It also discusses the biological roles of p50 and related proteins in gene expression and describes the likely mechanisms of their action.
Collapse
Affiliation(s)
- V M Evdokimova
- Institute of Protein Research, Russian Academy of Sciences, Moscow Region, Russia
| | | |
Collapse
|
25
|
Abstract
Studies of the budding yeast Saccharomyces cerevisiae have greatly advanced our understanding of the posttranscriptional steps of eukaryotic gene expression. Given the wide range of experimental tools applicable to S. cerevisiae and the recent determination of its complete genomic sequence, many of the key challenges of the posttranscriptional control field can be tackled particularly effectively by using this organism. This article reviews the current knowledge of the cellular components and mechanisms related to translation and mRNA decay, with the emphasis on the molecular basis for rate control and gene regulation. Recent progress in characterizing translation factors and their protein-protein and RNA-protein interactions has been rapid. Against the background of a growing body of structural information, the review discusses the thermodynamic and kinetic principles that govern the translation process. As in prokaryotic systems, translational initiation is a key point of control. Modulation of the activities of translational initiation factors imposes global regulation in the cell, while structural features of particular 5' untranslated regions, such as upstream open reading frames and effector binding sites, allow for gene-specific regulation. Recent data have revealed many new details of the molecular mechanisms involved while providing insight into the functional overlaps and molecular networking that are apparently a key feature of evolving cellular systems. An overall picture of the mechanisms governing mRNA decay has only very recently begun to develop. The latest work has revealed new information about the mRNA decay pathways, the components of the mRNA degradation machinery, and the way in which these might relate to the translation apparatus. Overall, major challenges still to be addressed include the task of relating principles of posttranscriptional control to cellular compartmentalization and polysome structure and the role of molecular channelling in these highly complex expression systems.
Collapse
Affiliation(s)
- J E McCarthy
- Posttranscriptional Control Group, Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), Manchester M60 1QD, United Kingdom.
| |
Collapse
|
26
|
Salvetti A, Batistoni R, Deri P, Rossi L, Sommerville J. Expression of DjY1, a protein containing a cold shock domain and RG repeat motifs, is targeted to sites of regeneration in planarians. Dev Biol 1998; 201:217-29. [PMID: 9740660 DOI: 10.1006/dbio.1998.8996] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Planarians are well-known for their exceptional regenerative abilities. This investigation focuses on the involvement of a Y-box protein, defined by the presence of a cold-shock domain, in regeneration-specific processes. Previous studies have shown that developmentally expressed Y-box proteins bind to mRNA molecules and regulate the timing of their translation. We have isolated and characterized a planarian Y-box gene, DjY1, which is specifically expressed at the site of regeneration, the blastema. DjY1 transcripts appear rapidly at the site of cutting and increase in number as the blastema grows. The timing and level of expression is similar irrespective of the orientation of the cut: in anterior, posterior, and lateral regenerative tissue. As regeneration nears completion, there is a general decrease in transcript level except in structures which are still differentiating, specifically in the auricles where new DjY1 transcripts are produced. A similarly modulated temporal pattern of expression throughout regeneration is seen in assaying the DjY1 protein. Within the population of blastemal cells, a subset of differentiating cells is specifically immunostained using antibodies to DjY1. The DjY1 protein contains a cold-shock domain and RG-repeat motifs, both of which are associated with RNA-binding properties: in vitro binding studies using recombinant DjY1 show that the preferred template is single-stranded RNA of heterogeneous sequence. These data provide the first direct evidence that a Y-box protein is involved in the regeneration process in planarians and implicate DjY1 in the translational regulation of differentiation-specific mRNAs.
Collapse
Affiliation(s)
- A Salvetti
- Dipartimento di Fisiologia e Biochimica, Universitàdi Pisa, Via Carducci 13, Pisa, 56010 Ghezzano, Italy
| | | | | | | | | |
Collapse
|
27
|
Matsumoto K, Wassarman KM, Wolffe AP. Nuclear history of a pre-mRNA determines the translational activity of cytoplasmic mRNA. EMBO J 1998; 17:2107-21. [PMID: 9524132 PMCID: PMC1170555 DOI: 10.1093/emboj/17.7.2107] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pathways of synthesis and maturation of pre-messenger RNA in the nucleus have a direct effect on the translational efficiency of mRNA in the cytoplasm. The transcription of intron-less mRNA in vivo directs this mRNA towards translational silencing. The presence of an intron at the 5' end of the transcript relieves this silencing, whereas an intron at the 3' end further represses translation. These regulatory events are strongly dependent on the transcription of pre-mRNA in the nucleus. The impact of nuclear history on regulatory events in the cytoplasm provides a novel mechanism for the control of gene expression.
Collapse
Affiliation(s)
- K Matsumoto
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, NIH, Building 18T, Room 106, Bethesda, MD 20892-5431, USA
| | | | | |
Collapse
|
28
|
Ladomery M. Multifunctional proteins suggest connections between transcriptional and post-transcriptional processes. Bioessays 1997; 19:903-9. [PMID: 9363684 DOI: 10.1002/bies.950191010] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent findings indicate that substantial cross-talk may exist between transcriptional and post-transcriptional processes. Firstly, there are suggestions that specific promoters influence the post-transcriptional fate of transcripts, pointing to communication between protein complexes assembled on DNA and nascent pre-mRNA. Secondly, an increasing number of proteins appear to be multifunctional, participating in transcriptional and post-transcriptional events. The classic example is TFIIIA, required for both the transcription of 5S rRNA genes and the packaging of 5S rRNA. TFIIIA is now joined by the Y-box proteins, which bind DNA (transcription activation and repression) and RNA (mRNA packaging). Furthermore, the tumour suppressor WT1, at first thought to be a typical transcription factor, may also be involved in splicing; conversely, hnRNP K, a bona fide pre-mRNA-binding protein, appears to be a transcription factor. Other examples of multifunctional proteins are mentioned: notably PTB, Sxl, La and PU.1. It is now reasonable to assert that some proteins, which were first identified as transcription factors, could just as easily have been identified as splicing factors, hnRNP, mRNP proteins and vice versa. It is no longer appropriate to view gene expression as a series of compartmentalised processes; instead, multifunctional proteins are likely to co-ordinate different steps of gene expression.
Collapse
Affiliation(s)
- M Ladomery
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, Scotland.
| |
Collapse
|
29
|
Abstract
Overexpression of chimeric transgenes in plants can trigger post-transcriptional gene silencing that is dependent on epigenetic information and physiological conditions. The current view is that unproductive RNA serves as a crucial signal for gene silencing, although direct evidence is lacking for this theory. A signalling cascade then leads to strongly enhanced turnover of all RNAs that share a critical degree of sequence similarity. The molecular details of the mechanism are, however, insufficiently understood to explain the phenomenon completely and to comprehend its biological significance.
Collapse
Affiliation(s)
- A Depicker
- Laboratorium voor Genetica, Department of Genetics, Flanders Interuniversity Institute for Biotechnology (VIB), Universiteit Gent, KL Ledeganckstraat 35, B-9000, Gent, Belgium
| | | |
Collapse
|
30
|
Meric F, Searfoss AM, Wormington M, Wolffe AP. Masking and unmasking maternal mRNA. The role of polyadenylation, transcription, splicing, and nuclear history. J Biol Chem 1996; 271:30804-10. [PMID: 8940061 DOI: 10.1074/jbc.271.48.30804] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We establish that masked mRNAs synthesized from exogenous plasmid templates microinjected into the nuclei of Xenopus oocytes are translationally activated (unmasked) on oocyte maturation concomitant with polyadenylation. Synthetic mRNA injected into the cytoplasm of the oocyte is translated over an order of magnitude more efficiently than is the cognate mRNA synthesized in vivo. Both mRNA synthesized in vivo and mRNA microinjected into the oocyte cytoplasm require a cytoplasmic polyadenylation element in the 3'-untranslated region to activate translation on maturation. Although polyadenylation upon oocyte maturation can relieve the translational repression of mRNA synthesized in vivo, the excision of an intron within the nucleus does not relieve repression. We suggest that the translational repression coupled to the transcription process will more effectively repress inappropriate gene expression in the oocyte and offer the potential to achieve a wider range of gene regulation.
Collapse
Affiliation(s)
- F Meric
- Laboratory of Molecular Embryology, NICHD, National Institutes of Health, Bethesda, Maryland 20892-5431, USA.
| | | | | | | |
Collapse
|
31
|
Abstract
Oocytes accumulate a dowry of maternal mRNAs in preparation for embryogenesis. These maternal transcripts are kept dormant until late oogenesis or early embryogenesis when their translation is activated. In recent years, three types of translational control acting on maternal mRNAs have emerged: translational activation by cytoplasmic polyadenylation, translational activation by RNA localization, and regulated translational repression. In each case, translational control depends on the binding of trans-acting factors to sequences in the 3' untranslated region (3'UTR). Identification of these trans-acting factors is beginning to shed light on the molecular mechanisms that mediate translational control.
Collapse
Affiliation(s)
- G Seydoux
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185, USA.
| |
Collapse
|
32
|
Matsumoto K, Meric F, Wolffe AP. Translational repression dependent on the interaction of the Xenopus Y-box protein FRGY2 with mRNA. Role of the cold shock domain, tail domain, and selective RNA sequence recognition. J Biol Chem 1996; 271:22706-12. [PMID: 8798444 DOI: 10.1074/jbc.271.37.22706] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have examined the determinants of the translational repression of mRNA by the Xenopus oocyte-specific Y-box protein FRGY2 using in vitro and in vivo assays. In vitro reconstitution of messenger ribonucleoprotein (mRNP) complexes demonstrates that the sequence-specific RNA-binding cold shock domain is not required for translational repression, whereas the RNA-binding C-terminal tail domain is essential. However, microinjection of reconstituted mRNPs into Xenopus oocytes demonstrates that although translational repression occurs in the absence of consensus RNA binding sequences for FRGY2, the presence of FRGY2 recognition elements within mRNA potentiates translational repression. Analysis of the in vivo assembly of mRNP shows that the cold shock domain alone is not stably incorporated into mRNP, whereas the C-terminal tail domain is sufficient for stable incorporation. We suggest that translational repression of mRNA by FRGY2 is favored by sequence-selective recognition of RNA sequences by the cold shock domain. However, translational repression in vitro and the assembly of mRNP in vivo requires the relatively nonspecific interaction of the C-terminal tail domain with mRNA. Thus two distinct domains of FRGY2 are likely to contribute to translational control.
Collapse
Affiliation(s)
- K Matsumoto
- Laboratory of Molecular Embryology, NICHD, National Institutes of Health, Bethesda, Maryland 20892-2710, USA
| | | | | |
Collapse
|