1
|
Mallikarjun V, Yin B, Caggiano LR, Blimbaum S, Pavelec CM, Holmes JW, Ewald SE. Automated spatially targeted optical micro proteomics identifies fibroblast- and macrophage-specific regulation of myocardial infarction scar maturation in rats. J Mol Cell Cardiol 2024; 186:1-15. [PMID: 37951204 DOI: 10.1016/j.yjmcc.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/13/2023]
Abstract
Myocardial infarction (MI) results from occlusion of blood supply to the heart muscle causing death of cardiac muscle cells. Following myocardial infarction (MI), extracellular matrix deposition and scar formation mechanically stabilize the injured heart as damaged myocytes undergo necrosis and removal. Fibroblasts and macrophages are key drivers of post-MI scar formation, maturation, and ongoing long-term remodelling; however, their individual contributions are difficult to assess from bulk analyses of infarct scar. Here, we employ state-of-the-art automated spatially targeted optical micro proteomics (autoSTOMP) to photochemically tag and isolate proteomes associated with subpopulations of fibroblasts (SMA+) and macrophages (CD68+) in the context of the native, MI tissue environment. Over a time course of 6-weeks post-MI, we captured dynamic changes in the whole-infarct proteome and determined that some of these protein composition signatures were differentially localized near SMA+ fibroblasts or CD68+ macrophages within the scar region. These results link specific cell populations to within-infarct protein remodelling and illustrate the distinct metabolic and structural processes underlying the observed physiology of each cell type.
Collapse
Affiliation(s)
- Venkatesh Mallikarjun
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Bocheng Yin
- Department of Microbiology, Immunology and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Laura R Caggiano
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Sydney Blimbaum
- Department of Microbiology, Immunology and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Caitlin M Pavelec
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Jeffrey W Holmes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA; School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Sarah E Ewald
- Department of Microbiology, Immunology and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
2
|
Rapp AE, Zaucke F. Cartilage extracellular matrix-derived matrikines in osteoarthritis. Am J Physiol Cell Physiol 2023; 324:C377-C394. [PMID: 36571440 DOI: 10.1152/ajpcell.00464.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Osteoarthritis (OA) is among the most frequent diseases of the musculoskeletal system. Degradation of cartilage extracellular matrix (ECM) is a hallmark of OA. During the degradation process, intact/full-length proteins and proteolytic fragments are released which then might induce different downstream responses via diverse receptors, therefore leading to different biological consequences. Collagen type II and the proteoglycan aggrecan are the most abundant components of the cartilage ECM. However, over the last decades, a large number of minor components have been identified and for some of those, a role in the manifold processes associated with OA has already been demonstrated. To date, there is still no therapy able to halt or cure OA. A better understanding of the matrikine landscape occurring with or even preceding obvious degenerative changes in joint tissues is needed and might help to identify molecules that could serve as biomarkers, druggable targets, or even be blueprints for disease modifying drug OA drugs. For this narrative review, we screened PubMed for relevant literature in the English language and summarized the current knowledge regarding the function of selected ECM molecules and the derived matrikines in the context of cartilage and OA.
Collapse
Affiliation(s)
- Anna E Rapp
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Mierke CT. Mechanical Cues Affect Migration and Invasion of Cells From Three Different Directions. Front Cell Dev Biol 2020; 8:583226. [PMID: 33043017 PMCID: PMC7527720 DOI: 10.3389/fcell.2020.583226] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Cell migration and invasion is a key driving factor for providing essential cellular functions under physiological conditions or the malignant progression of tumors following downward the metastatic cascade. Although there has been plentiful of molecules identified to support the migration and invasion of cells, the mechanical aspects have not yet been explored in a combined and systematic manner. In addition, the cellular environment has been classically and frequently assumed to be homogeneous for reasons of simplicity. However, motility assays have led to various models for migration covering only some aspects and supporting factors that in some cases also include mechanical factors. Instead of specific models, in this review, a more or less holistic model for cell motility in 3D is envisioned covering all these different aspects with a special emphasis on the mechanical cues from a biophysical perspective. After introducing the mechanical aspects of cell migration and invasion and presenting the heterogeneity of extracellular matrices, the three distinct directions of cell motility focusing on the mechanical aspects are presented. These three different directions are as follows: firstly, the commonly used invasion tests using structural and structure-based mechanical environmental signals; secondly, the mechano-invasion assay, in which cells are studied by mechanical forces to migrate and invade; and thirdly, cell mechanics, including cytoskeletal and nuclear mechanics, to influence cell migration and invasion. Since the interaction between the cell and the microenvironment is bi-directional in these assays, these should be accounted in migration and invasion approaches focusing on the mechanical aspects. Beyond this, there is also the interaction between the cytoskeleton of the cell and its other compartments, such as the cell nucleus. In specific, a three-element approach is presented for addressing the effect of mechanics on cell migration and invasion by including the effect of the mechano-phenotype of the cytoskeleton, nucleus and the cell's microenvironment into the analysis. In precise terms, the combination of these three research approaches including experimental techniques seems to be promising for revealing bi-directional impacts of mechanical alterations of the cellular microenvironment on cells and internal mechanical fluctuations or changes of cells on the surroundings. Finally, different approaches are discussed and thereby a model for the broad impact of mechanics on cell migration and invasion is evolved.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
4
|
Schnellmann R, Sack R, Hess D, Annis DS, Mosher DF, Apte SS, Chiquet-Ehrismann R. A Selective Extracellular Matrix Proteomics Approach Identifies Fibronectin Proteolysis by A Disintegrin-like and Metalloprotease Domain with Thrombospondin Type 1 Motifs (ADAMTS16) and Its Impact on Spheroid Morphogenesis. Mol Cell Proteomics 2018; 17:1410-1425. [PMID: 29669734 PMCID: PMC6030725 DOI: 10.1074/mcp.ra118.000676] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/21/2018] [Indexed: 01/28/2023] Open
Abstract
Secreted and cell-surface proteases are major mediators of extracellular matrix (ECM) turnover, but their mechanisms and regulatory impact are poorly understood. We developed a mass spectrometry approach using a cell-free ECM produced in vitro to identify fibronectin (FN) as a novel substrate of the secreted metalloprotease ADAMTS16. ADAMTS16 cleaves FN between its (I)5 and (I)6 modules, releasing the N-terminal 30 kDa heparin-binding domain essential for FN self-assembly. ADAMTS16 impairs FN fibrillogenesis as well as fibrillin-1 and tenascin-C assembly, thus inhibiting formation of a mature ECM by cultured fibroblasts. Furthermore ADAMTS16 has a marked morphogenetic impact on spheroid formation by renal tubule-derived MDCKI cells. The N-terminal FN domain released by ADAMTS16 up-regulates MMP3, which cleaves the (I)5-(I)6 linker of FN similar to ADAMTS16, therefore creating a proteolytic feed-forward mechanism. Thus, FN proteolysis not only regulates FN turnover, but also FN assembly, with potential long-term consequences for ECM assembly and morphogenesis.
Collapse
Affiliation(s)
- Rahel Schnellmann
- From the ‡Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;
- §Faculty of Science, University of Basel, Basel, Switzerland
- ¶Department of Biomedical Engineering (ND20), Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio 44195
| | - Ragna Sack
- From the ‡Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Daniel Hess
- From the ‡Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Douglas S Annis
- ‖Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin
| | - Deane F Mosher
- ‖Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin
| | - Suneel S Apte
- ¶Department of Biomedical Engineering (ND20), Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio 44195;
| | - Ruth Chiquet-Ehrismann
- From the ‡Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- §Faculty of Science, University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Yang X, Scott HA, Monickaraj F, Xu J, Ardekani S, Nitta CF, Cabrera A, McGuire PG, Mohideen U, Das A, Ghosh K. Basement membrane stiffening promotes retinal endothelial activation associated with diabetes. FASEB J 2016; 30:601-11. [PMID: 26443820 PMCID: PMC6188223 DOI: 10.1096/fj.15-277962] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/21/2015] [Indexed: 12/21/2022]
Abstract
Endothelial activation is a hallmark of the high-glucose (HG)-induced retinal inflammation associated with diabetic retinopathy (DR). However, precisely how HG induces retinal endothelial activation is not fully understood. We hypothesized that HG-induced up-regulation of lysyl oxidase (LOX), a collagen-cross-linking enzyme, in retinal capillary endothelial cells (ECs) enhances subendothelial basement membrane (BM) stiffness, which, in turn, promotes retinal EC activation. Diabetic C57BL/6 mice exhibiting a 70 and 50% increase in retinal intercellular adhesion molecule (ICAM)-1 expression and leukocyte accumulation, respectively, demonstrated a 2-fold increase in the levels of BM collagen IV and LOX, key determinants of capillary BM stiffness. Using atomic force microscopy, we confirmed that HG significantly enhances LOX-dependent subendothelial matrix stiffness in vitro, which correlated with an ∼2.5-fold increase in endothelial ICAM-1 expression, a 4-fold greater monocyte-EC adhesion, and an ∼2-fold alteration in endothelial NO (decrease) and NF-κB activation (increase). Inhibition of LOX-dependent subendothelial matrix stiffening alone suppressed HG-induced retinal EC activation. Finally, using synthetic matrices of tunable stiffness, we demonstrated that subendothelial matrix stiffening is necessary and sufficient to promote EC activation. These findings implicate BM stiffening as a critical determinant of HG-induced retinal EC activation and provide a rationale for examining BM stiffness and underlying mechanotransduction pathways as therapeutic targets for diabetic retinopathy.
Collapse
Affiliation(s)
- Xiao Yang
- *Department of Bioengineering and Department of Physics and Astronomy, University of California, Riverside, Riverside, California, USA; Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA; and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| | - Harry A Scott
- *Department of Bioengineering and Department of Physics and Astronomy, University of California, Riverside, Riverside, California, USA; Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA; and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| | - Finny Monickaraj
- *Department of Bioengineering and Department of Physics and Astronomy, University of California, Riverside, Riverside, California, USA; Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA; and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| | - Jun Xu
- *Department of Bioengineering and Department of Physics and Astronomy, University of California, Riverside, Riverside, California, USA; Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA; and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| | - Soroush Ardekani
- *Department of Bioengineering and Department of Physics and Astronomy, University of California, Riverside, Riverside, California, USA; Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA; and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| | - Carolina F Nitta
- *Department of Bioengineering and Department of Physics and Astronomy, University of California, Riverside, Riverside, California, USA; Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA; and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| | - Andrea Cabrera
- *Department of Bioengineering and Department of Physics and Astronomy, University of California, Riverside, Riverside, California, USA; Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA; and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| | - Paul G McGuire
- *Department of Bioengineering and Department of Physics and Astronomy, University of California, Riverside, Riverside, California, USA; Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA; and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| | - Umar Mohideen
- *Department of Bioengineering and Department of Physics and Astronomy, University of California, Riverside, Riverside, California, USA; Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA; and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| | - Arup Das
- *Department of Bioengineering and Department of Physics and Astronomy, University of California, Riverside, Riverside, California, USA; Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA; and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| | - Kaustabh Ghosh
- *Department of Bioengineering and Department of Physics and Astronomy, University of California, Riverside, Riverside, California, USA; Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA; and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| |
Collapse
|
6
|
Suzuki Y, Nagai N, Umemura K. A Review of the Mechanisms of Blood-Brain Barrier Permeability by Tissue-Type Plasminogen Activator Treatment for Cerebral Ischemia. Front Cell Neurosci 2016; 10:2. [PMID: 26834557 PMCID: PMC4724711 DOI: 10.3389/fncel.2016.00002] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/04/2016] [Indexed: 11/13/2022] Open
Abstract
Cerebrovascular homeostasis is maintained by the blood-brain barrier (BBB), which forms a mechanical and functional barrier between systemic circulation and the central nervous system (CNS). In patients with ischemic stroke, the recombinant tissue-type plasminogen activator (rt-PA) is used to accelerate recanalization of the occluded vessels. However, rt-PA is associated with a risk of increasing intracranial bleeding (ICB). This effect is thought to be caused by the increase in cerebrovascular permeability though various factors such as ischemic reperfusion injury and the activation of matrix metalloproteinases (MMPs), but the detailed mechanisms are unknown. It was recently found that rt-PA treatment enhances BBB permeability not by disrupting the BBB, but by activating the vascular endothelial growth factor (VEGF) system. The VEGF regulates both the dissociation of endothelial cell (EC) junctions and endothelial endocytosis, and causes a subsequent increase in vessel permeability through the VEGF receptor-2 (VEGFR-2) activation in ECs. Here, we review the possibility that rt-PA increases the penetration of toxic molecules derived from the bloodstream including rt-PA itself, without disrupting the BBB, and contributes to these detrimental processes in the cerebral parenchyma.
Collapse
Affiliation(s)
- Yasuhiro Suzuki
- Department of Pharmacology, Hamamatsu University School of MedicineHamamatsu, Japan; School of Pharmaceutical Sciences, Ohu UniversityKoriyama, Japan
| | - Nobuo Nagai
- Faculty of Bioscience, Department of Animal Bioscience, Nagahama Institute of Bio-Science and Technology Nagahama, Japan
| | - Kazuo Umemura
- Department of Pharmacology, Hamamatsu University School of Medicine Hamamatsu, Japan
| |
Collapse
|
7
|
Sato M, Kawana K, Adachi K, Fujimoto A, Yoshida M, Nakamura H, Nishida H, Inoue T, Taguchi A, Takahashi J, Kojima S, Yamashita A, Tomio K, Nagamatsu T, Wada-Hiraike O, Oda K, Osuga Y, Fujii T. Decreased expression of the plasminogen activator inhibitor type 1 is involved in degradation of extracellular matrix surrounding cervical cancer stem cells. Int J Oncol 2015; 48:829-35. [PMID: 26676222 DOI: 10.3892/ijo.2015.3283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/22/2015] [Indexed: 11/06/2022] Open
Abstract
The plasminogen activator (PA) system consists of plasminogen activator inhibitor type 1 (PAI-1), urokinase-type plasminogen activator and its receptor (uPA and uPAR). PAI-1 inhibits the activation of uPA (which converts plasminogen to plasmin), and is involved in cancer invasion and metastasis, by remodeling the extracellular matrix (ECM) through regulating plasmin. Cancer stem cells (CSCs) are a small subset of cells within tumors, and are thought to be involved in tumor recurrence and metastasis. Considering these facts, we investigated the relationship between PAI-1 and cervical CSCs. We used ALDH1 as a marker of cervical CSCs. First, we demonstrated that culturing ALDH1-high cells and ALDH-low cells on collagen IV-coted plates increased their expression of active PAI-1 (ELISA), and these increases were suggested to be at mRNA expression levels (RT-qPCR). Secondly, we demonstrated PAI-1 was indeed involved in the ECM maintenance. With gelatin zymography assays, we found that ALDH1-high cells and ALDH-low cells expressed pro-matrix metalloproteinase-2 (pro-MMP-2) irrespective of their coatings. With gelatinase/collagenase assay kit, we confirmed that collagenase activity was increased when ALDH1-low cells were exposed to TM5275, a small molecule inhibitor of PAI-1. Putting the data together, we hypothesized that cancer cells adhered to basal membrane secrete abundant PAI-1, on the other hand, cancer cells (especially CSCs rather than non-CSCs) distant from basal membrane secrete less PAI-1, which makes the ECM surrounding CSCs more susceptible to degradation. Our study could be an explanation of conflicting reports, where some researchers found negative impacts of PAI-1 expression on clinical outcomes and others not, by considering the concept of CSCs.
Collapse
Affiliation(s)
- Masakazu Sato
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Katsuyuki Adachi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Asaha Fujimoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Mitsuyo Yoshida
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hiroe Nakamura
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Haruka Nishida
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tomoko Inoue
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Juri Takahashi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Satoko Kojima
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Aki Yamashita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kensuke Tomio
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Katsutoshi Oda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
8
|
Choi SI, Maeng YS, Kim TI, Lee Y, Kim YS, Kim EK. Lysosomal trafficking of TGFBIp via caveolae-mediated endocytosis. PLoS One 2015; 10:e0119561. [PMID: 25853243 PMCID: PMC4390356 DOI: 10.1371/journal.pone.0119561] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/10/2015] [Indexed: 11/18/2022] Open
Abstract
Transforming growth factor-beta-induced protein (TGFBIp) is ubiquitously expressed in the extracellular matrix (ECM) of various tissues and cell lines. Progressive accumulation of mutant TGFBIp is directly involved in the pathogenesis of TGFBI-linked corneal dystrophy. Recent studies reported that mutant TGFBIp accumulates in cells; however, the trafficking of TGFBIp is poorly understood. Therefore, we investigated TGFBIp trafficking to determine the route of its internalization and secretion and to elucidate its roles in the pathogenesis of granular corneal dystrophy type 2 (GCD2). Our data indicate that newly synthesized TGFBIp was secreted via the endoplasmic reticulum/Golgi-dependent secretory pathway, and this secretion was delayed in the corneal fibroblasts of patients with GCD2. We also found that TGFBIp was internalized by caveolae-mediated endocytosis, and the internalized TGFBIp accumulated after treatment with bafilomycin A1, an inhibitor of lysosomal degradation. In addition, the proteasome inhibitor MG132 inhibits the endocytosis of TGFBIp. Co-immunoprecipitation revealed that TGFBIp interacted with integrin αVβ3. Moreover, treatment with arginine-glycine-aspartic acid (RGD) tripeptide suppressed the internalization of TGFBIp. These insights on TGFBIp trafficking could lead to the identification of novel targets and the development of new therapies for TGFBI-linked corneal dystrophy.
Collapse
Affiliation(s)
- Seung-il Choi
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong-Sun Maeng
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Tae-im Kim
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Vision Research, Severance Biomedical Science Institute, Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Yangsin Lee
- Department of Integrated Omics for Biomedical Science, Graduate School, Yonsei University, Seoul, South Korea
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, South Korea
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Eung Kweon Kim
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Vision Research, Severance Biomedical Science Institute, Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- * E-mail:
| |
Collapse
|
9
|
da Rocha-Azevedo B, Ho CH, Grinnell F. PDGF‑stimulated dispersal of cell clusters and disruption of fibronectin matrix on three-dimensional collagen matrices requires matrix metalloproteinase-2. Mol Biol Cell 2015; 26:1098-105. [PMID: 25589674 PMCID: PMC4357509 DOI: 10.1091/mbc.e14-09-1396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Previous studies showed that morphogenic cell clustering depends on fibronectin fibrillar matrix assembly under procontractile conditions. The present study shows that disruption of fibronectin matrix necessary for dispersal of cell clusters under promigratory conditions requires matrix metalloproteinases, especially MMP-2. Formation of cell clusters is a common morphogenic cell behavior observed during tissue and organ development and homeostasis, as well as during pathological disorders. Dynamic regulation of cell clustering depends on the balance between contraction of cells into clusters and migration of cells as dispersed individuals. Previously we reported that under procontractile culture conditions, fibronectin fibrillar matrix assembly by human fibroblasts functioned as a nucleation center for cell clustering on three-dimensional collagen matrices. Here we report that switching preformed cell clusters from procontractile to promigratory culture conditions results in cell dispersal out of clusters and disruption of FN matrix. Experiments using small interfering RNA silencing and pharmacological inhibition demonstrated that matrix metalloproteinase activity involving MMP-2 was necessary for fibronectin matrix disruption and dispersal of cell clusters.
Collapse
Affiliation(s)
| | - Chin-Han Ho
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390-9039
| | - Frederick Grinnell
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390-9039
| |
Collapse
|
10
|
Plasmin-dependent modulation of the blood-brain barrier: a major consideration during tPA-induced thrombolysis? J Cereb Blood Flow Metab 2014; 34:1283-96. [PMID: 24896566 PMCID: PMC4126105 DOI: 10.1038/jcbfm.2014.99] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 05/09/2014] [Accepted: 05/09/2014] [Indexed: 01/16/2023]
Abstract
Plasmin, the principal downstream product of tissue-type plasminogen activator (tPA), is known for its potent fibrin-degrading capacity but is also recognized for many non-fibrinolytic activities. Curiously, plasmin has not been conclusively linked to blood-brain barrier (BBB) disruption during recombinant tPA (rtPA)-induced thrombolysis in ischemic stroke. This is surprising given the substantial involvement of tPA in the modulation of BBB permeability and the co-existence of tPA and plasminogen in both blood and brain throughout the ischemic event. Here, we review the work that argues a role for plasmin together with endogenous tPA or rtPA in BBB alteration, presenting the overall controversy around the topic yet creating a rational case for an involvement of plasmin in this process.
Collapse
|
11
|
Sejima T, Holtappels G, Kikuchi H, Imayoshi S, Ichimura K, Bachert C. Cytokine profiles in Japanese patients with chronic rhinosinusitis. Allergol Int 2012; 61:115-22. [PMID: 22377524 DOI: 10.2332/allergolint.10-oa-0290] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 07/17/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is classified in CRS without nasal polyp (CRSsNP) and CRS with nasal polyp (CRSwNP) in western countries, whereas this classification was not common so far in Japan. Studying inflammatory mediators in clearly defined disease subgroups may lead to a better differentiation of chronic sinus diseases. METHODS Homogenates of sinonasal mucosal tissue from 14 controls, 9 CRSsNP patients, and 19 CRSwNP patients were assayed for transforming growth factor (TGF)-β, interleukin (IL)-5, immunoglobulin E (IgE), Staphylococcus enterotoxin (SAE)-IgE, eosinophil-catioic protein (ECP), myeloperoxidase (MPO), IL-1β, IL-6, and IL-8 by enzyme-linked immunosorbent assay or UNICAP system. RESULTS CRSwNP had significantly higher levels of IL-5, IgE, SAE-IgE, and ECP compared with CRSsNP and controls. CRSsNP was characterized by high levels of TGF-β, while CRSwNP showed a Th2 polarization and lower levels of TGF-β. Especially, in CRSwNP samples, 68.4% were eosinophilic (ECP/MPO ratio >1), and 52.6% were SAE-IgE positive. On the other hand, in 9 CRSsNP patients, eosinophilic or SAE-IgE positive sample was only one sample respectively. Additionally, 31.6% of CRSwNP were asthmatic patients, while none of CRSsNP patient was suffering from bronchial asthma. CONCLUSIONS This study is thought to be the first one that showed the cytokine profiles in Japanese CRSs/wNP similar to those of European CRS. Based on mediator profiles, we suggest that CRSsNP and CRSwNP are distinct disease entities within the group of chronic sinus diseases.
Collapse
Affiliation(s)
- Takayuki Sejima
- Upper Airway Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium. t−
| | | | | | | | | | | |
Collapse
|
12
|
Shi F, Sottile J. MT1-MMP regulates the turnover and endocytosis of extracellular matrix fibronectin. J Cell Sci 2011; 124:4039-50. [PMID: 22159414 DOI: 10.1242/jcs.087858] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix (ECM) is dynamically remodeled by cells during development, normal tissue homeostasis and in a variety of disease processes. We previously showed that fibronectin is an important regulator of ECM remodeling. The deposition and/or polymerization of fibronectin into the ECM controls the deposition and stability of other ECM molecules. In addition, agents that inhibit fibronectin polymerization promote the turnover of fibronectin fibrils and enhance ECM fibronectin endocytosis and intracellular degradation. Endocytosis of ECM fibronectin is regulated by β1 integrins, including α5β1 integrin. We have examined the role of extracellular proteases in regulating ECM fibronectin turnover. Our data show that membrane type matrix metalloproteinase 1 (MT1-MMP; also known as MMP14) is a crucial regulator of fibronectin turnover. Cells lacking MT1-MMP show reduced turnover and endocytosis of ECM fibronectin. MT1-MMP regulates ECM fibronectin remodeling by promoting extracellular cleavage of fibronectin and by regulating α5β1-integrin endocytosis. Our data also show that fibronectin polymerization stabilizes fibronectin fibrils and inhibits ECM fibronectin endocytosis by inhibiting α5β1-integrin endocytosis. These data are the first to show that an ECM protein and its modifying enzyme can regulate integrin endocytosis. These data also show that integrin trafficking plays a major role in modulating ECM fibronectin remodeling. The dual dependence of ECM fibronectin turnover on extracellular proteolysis and endocytosis highlights the complex regulatory mechanisms that control ECM remodeling to ensure maintenance of proper tissue function.
Collapse
Affiliation(s)
- Feng Shi
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Box CVRI, Rochester, NY 14642, USA
| | | |
Collapse
|
13
|
Sejima T, Holtappels G, Bachert C. The Expression of Fibrinolytic Components in Chronic Paranasal Sinus Disease. Am J Rhinol Allergy 2011; 25:1-6. [DOI: 10.2500/ajra.2011.25.3537] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Fibrinolytic components, their receptors, and inhibitors are considered to play an important role in inflammation and tissue remodeling including chronic rhinosinusitis (CRS). To clarify the relationship between these components and the pathology of CRS, we analyzed fibrinolytic components in sinonasal mucosa of CRS. Methods Sinonasal mucosa samples from 12 patients with CRS without nasal polyp (CRSsNP), 14 patients with CRS with nasal polyp (CRSwNP), and 12 control patients were prepared. By immunohistochemistry and ELISA, samples were studied with respect to urokinase-type plasminogen activator (uPA), uPA receptor (uPAR), plasminogen activator inhibitor-1 (PAI-1) and key mediators in sinus disease, TGF-beta1 and eosinophil cationic protein (ECP). Results uPA- or uPAR-positive inflammatory cells were increased in CRSwNP compared to controls and CRSsNP, whereas PAI-1-positive cells were increased in CRSsNP compared to CRSwNP and controls. ELISA measurements revealed that uPAR concentrations were increased in both CRSsNP (16.1 ng/mL; 10.4–22.9; p < 0.05) and CRSwNP (20.8 ng/mL; 9.62–25.9; p < 0.01) compared to controls (8.7 ng/mL; 7.9–12.9), and PAI-1 concentrations were increased in CRSsNP (198.8 ng/mL; 147.4–234.1) compared to controls (107.3 ng/mL; 92.6–175.3; p < 0.01) and CRSwNP (113.5 ng/mL; 105.1–193.5; p < 0.05). Moreover, the concentrations of TGF-beta1 correlated with PAI-1 in CRSsNP, and ECP correlated with uPAR protein in CRSwNP. Conclusion Fibrinolytic components were highly expressed in CRSwNP compared to normal controls, whereas the inhibiting protein was up-regulated in CRSsNP. Furthermore, correlations between the expressions of fibrinolytic components and key mediators in CRS were found.
Collapse
Affiliation(s)
- Takayuki Sejima
- Upper Airway Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
- Department of Otorhinolaryngology–Head & Neck Surgery, Jichi Medical School, Tochigi, Japan
| | - Gabriele Holtappels
- Upper Airway Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Claus Bachert
- Upper Airway Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
14
|
del Zoppo GJ. Plasminogen activators in ischemic stroke: introduction. Stroke 2010; 41:S39-41. [PMID: 20876502 PMCID: PMC3677704 DOI: 10.1161/strokeaha.110.595769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 07/16/2010] [Indexed: 11/16/2022]
Affiliation(s)
- Gregory J del Zoppo
- Department of Medicine, University of Washington School of Medicine, Box 359756, Harborview Medical Center, 325 Ninth Avenue, Seattle, WA 98104, USA.
| |
Collapse
|
15
|
Ubiquitination of alpha 5 beta 1 integrin controls fibroblast migration through lysosomal degradation of fibronectin-integrin complexes. Dev Cell 2010; 19:148-59. [PMID: 20643357 DOI: 10.1016/j.devcel.2010.06.010] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 02/05/2010] [Accepted: 04/23/2010] [Indexed: 01/02/2023]
Abstract
Cell migration requires endocytosis and recycling of integrins, but it is not known whether degradation of these membrane proteins is involved. Here we demonstrate that in migrating cells, a fraction of the endocytosed fibronectin receptor, alpha 5 beta 1 integrin, is sorted into multivesicular endosomes together with fibronectin and degraded in lysosomes. This sorting requires fibronectin-induced ubiquitination of the alpha 5 subunit, and the activity of the endosomal sorting complex required for transport (ESCRT) machinery, which interacts with alpha 5 beta 1 integrin. Importantly, we demonstrate that both alpha 5 ubiquitination and ESCRT functions are required for proper migration of fibroblasts. We propose that ligand-mediated degradation of alpha 5 beta 1 integrin via the ESCRT pathway is required in order to prevent endosomal accumulation of ligand-bound integrins that might otherwise form nonproductive adhesion sites. Fibronectin and alpha 5 beta 1 integrin therefore are trafficked to lysosomes in a similar way to growth factors and their receptors.
Collapse
|
16
|
Shi F, Sottile J. Caveolin-1-dependent beta1 integrin endocytosis is a critical regulator of fibronectin turnover. J Cell Sci 2008; 121:2360-71. [PMID: 18577581 DOI: 10.1242/jcs.014977] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
beta1 integrins are major cell surface receptors for fibronectin. Some integrins, including beta1 integrins, are known to undergo constitutive endocytosis and recycling. Integrin endocytosis/recycling has been implicated in the regulation of cell migration. However, the mechanisms by which integrin endocytosis/recycling regulates cell migration, and other biological consequences of integrin trafficking are not completely understood. We previously showed that turnover of extracellular matrix (ECM) fibronectin occurs via receptor-mediated endocytosis. Here, we investigate the biological relevance of beta1 integrin endocytosis to fibronectin matrix turnover. First, we demonstrate that beta1 integrins, including alpha5beta1 play an important role in endocytosis and turnover of matrix fibronectin. Second, we show that caveolin-1 constitutively regulates endocytosis of alpha5beta1 integrins, and that alpha5beta1 integrin endocytosis can occur in the absence of fibronectin and fibronectin matrix. We also show that downregulation of caveolin-1 expression by siRNA results in marked reduction of beta1 integrin and fibronectin endocytosis. Hence, caveolin-1-dependent beta1 integrin and fibronectin endocytosis plays a critical role in fibronectin matrix turnover, and may contribute to abnormal ECM remodeling that occurs in fibrotic disorders.
Collapse
Affiliation(s)
- Feng Shi
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, West Henrietta, NY 14586, USA
| | | |
Collapse
|
17
|
Salvi A, Arici B, Alghisi A, Barlati S, De Petro G. RNA interference against urokinase in hepatocellular carcinoma xenografts in nude mice. Tumour Biol 2006; 28:16-26. [PMID: 17159381 DOI: 10.1159/000097699] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 05/16/2006] [Indexed: 11/19/2022] Open
Abstract
The serine protease urokinase-type plasminogen activator (u-PA) is overexpressed in hepatocellular carcinoma (HCC) and its expression level is inversely correlated with the patients' survival. The purpose of this study was to examine the effects of vector-based RNA interference (RNAi) of u-PA on the growth of human HCC xenografts in nude mice in order to investigate the role of u-PA in human HCC. Our results showed that the subcutaneous injection of small interfering RNAs (siRNA) u-PA SKHep1C3 stable transfected cells (pS siRNA u-PA) led to a growth delay in xenograft development, compared to those generated from empty vector; the molecular characterization of nodules (carried out by PCR, RT-PCR and immunohistochemical analysis) revealed the presence of plasmid DNA, the u-PA gene expression knockdown, at both mRNA and protein levels, giving evidence of a long-term and target-specific inhibition by vector-based RNAi 11 weeks after cell inoculation. We further studied the effects of u-PA down modulation on extracellular matrix (ECM) proteins evaluating the expression and organization of fibronectin (FN; one of the main ECM proteins). Immunohistochemical and immunofluorescence analysis of FN revealed FN fibrils in pS siRNA u-PA xenografts and in pS siRNA u-PA cells, thus identifying the FN fibril organization as a downstream effect of u-PA knockdown in this system.
Collapse
Affiliation(s)
- A Salvi
- Biology and Genetics Division, Department of Biomedical Sciences and Biotechnology, IDET Centre of Excellence, University of Brescia, Brescia, Italy
| | | | | | | | | |
Collapse
|
18
|
Abstract
The urokinase plasminogen activator (uPA) system is central to a spectrum of biologic processes including fibrinoloysis, inflammation, atherosclerotic plaque formation, matrix remodeling during wound healing, tumor invasion, angiogenesis, and metastasis. Binding of uPA with its receptor (uPAR) initiates a proteolytic cascade that results in the conversion of plasminogen to plasmin. Plasmin through its own proteolytic function degrades a range of extracellular basement membrane components and activates others such as the metalloproteinases. Independent of catalytic activity, uPAR also is involved in cell signaling, interactions with integrins, cell motility, adhesion and invasion, and angiogenesis. Over expression of uPA or uPAR is a feature of malignancy and is correlated with tumor progression and metastasis. In contrast, inhibition of expression of these components leads to a reduction in the invasive and metastatic capacity of many tumors. Strategies that target uPA or its receptor with the aim of disrupting the interaction between the two or the ligand independent actions of uPAR include antisense technology, monoclonal antibodies, cytotoxic antibiotics, and synthetic inhibitors of uPA. Targeted therapy is a goal of future cancer treatment and the uPA system is a likely candidate for manipulation.
Collapse
|
19
|
Sottile J, Hocking DC. Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. Mol Biol Cell 2002; 13:3546-59. [PMID: 12388756 PMCID: PMC129965 DOI: 10.1091/mbc.e02-01-0048] [Citation(s) in RCA: 466] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2002] [Revised: 06/14/2002] [Accepted: 07/08/2002] [Indexed: 12/11/2022] Open
Abstract
Remodeling of extracellular matrices occurs during development, wound healing, and in a variety of pathological processes including atherosclerosis, ischemic injury, and angiogenesis. Thus, identifying factors that control the balance between matrix deposition and degradation during tissue remodeling is essential for understanding mechanisms that regulate a variety of normal and pathological processes. Using fibronectin-null cells, we found that fibronectin polymerization into the extracellular matrix is required for the deposition of collagen-I and thrombospondin-1 and that the maintenance of extracellular matrix fibronectin fibrils requires the continual polymerization of a fibronectin matrix. Further, integrin ligation alone is not sufficient to maintain extracellular matrix fibronectin in the absence of fibronectin deposition. Our data also demonstrate that the retention of thrombospondin-1 and collagen I into fibrillar structures within the extracellular matrix depends on an intact fibronectin matrix. An intact fibronectin matrix is also critical for maintaining the composition of cell-matrix adhesion sites; in the absence of fibronectin and fibronectin polymerization, neither alpha5beta1 integrin nor tensin localize to fibrillar cell-matrix adhesion sites. These data indicate that fibronectin polymerization is a critical regulator of extracellular matrix organization and stability. The ability of fibronectin polymerization to act as a switch that controls the organization and composition of the extracellular matrix and cell-matrix adhesion sites provides cells with a means of precisely controlling cell-extracellular matrix signaling events that regulate many aspects of cell behavior including cell proliferation, migration, and differentiation.
Collapse
Affiliation(s)
- Jane Sottile
- Department of Medicine, Center for Cardiovascular Research, Rochester, New York 14642, USA.
| | | |
Collapse
|
20
|
Luikart S, Masri M, Wahl D, Hinkel T, Beck JM, Gyetko MR, Gupta P, Oegema T. Urokinase is required for the formation of mactinin, an alpha-actinin fragment that promotes monocyte/macrophage maturation. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1591:99-107. [PMID: 12183060 DOI: 10.1016/s0167-4889(02)00255-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have previously shown that lysates from HL-60 myeloid leukemia cells or from peripheral blood monocytes are able to degrade alpha-actinin to form a 31-kDa amino-terminal fragment with monocyte/macrophage maturation promoting activity. In contrast, intact alpha-actinin, which is a 100-kDa actin-binding protein, has no differentiating activity. The aim of this study was to investigate the enzyme responsible for the degradation of alpha-actinin to form this fragment, named mactinin. The ability of cell lysates to degrade [125I]alpha-actinin in the presence of various enzyme inhibitors, including inhibitors of metalloproteinases, cysteine proteinases, and serine proteases, was measured. Phenylmethylsulfonyl fluoride (PMSF) was the only inhibitor able to prevent formation of mactinin by cell lysate degradation of alpha-actinin, suggesting that a serine protease is responsible for the digestion. Of the various serine proteases tested (thrombin, plasmin, and urokinase), only urokinase was able to produce a 31-kDa band. The urokinase-generated 31-kDa band promoted maturation in HL-60 cells. Amiloride, a specific inhibitor of urokinase, inhibited production of the 31-kDa alpha-actinin fragment by HL-60 cell lysates. For in vivo tests, inflammatory fluid (from bronchoalvelolar lavage) was collected from uPA (urokinase) knockout mice and their wild-type counterparts after intratracheal challenge with Pneumocystis carinii. Although most (6 of 8) wild-type mice had mactinin in their inflammatory fluid samples, none (0 of 8) of the uPA knockout mice had mactinin present (P<0.01). These results demonstrate that urokinase is necessary and sufficient for the formation of the monocyte/macrophage maturation promoting fragment, mactinin, in vitro and in vivo. These findings support the role of urokinase in the regulation of monocyte/macrophage functions, such as that occurring in inflammatory reactions.
Collapse
|
21
|
Abstract
Fibronectin (Fn) was the first 'structural' glycoprotein intensively studied as an ubiquitous matrix component of early phylogenetic appearance. Its age-dependent increase in plasma and tissues may be accompanied in pathological states, especially in tumor growth, by its proteolytic breakdown by a number of neutral proteases. It was also shown that several of its proteolytic breakdown products exhibit unexpected and mostly harmful biological activities. The first of these effects was a potentiation of malignant transformation. Some fragments had proteolytic activity, others behaved as proinflammatory agents stimulating IL-1 and collagenolytic MMP up-regulation. This matricryptic potential of Fn was followed by several other examples of proteolytic production of biologically active peptides. The study of solid human tumors showed among the early signs of malignant transformation the fragmentation of pericellular Fn, concommitent with the increase of its production by the peritumoral stroma. These results should encourage further investigations concerning the potential importance of Fn production and breakdown during cancer progression.
Collapse
Affiliation(s)
- J Labat-Robert
- Laboratoire de Recherche Ophtalmologique, Université Paris 6, Hôtel-Dieu, 1 place du parvis Notre Dame,75181 Paris Cedex 04, France.
| |
Collapse
|
22
|
Nezi L, Greco D, Nitsch L, Garbi C. The role of proteases in fibronectin matrix remodeling in thyroid epithelial cell monolayer cultures. Biol Chem 2002; 383:167-76. [PMID: 11928811 DOI: 10.1515/bc.2002.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fischer rat thyroid (FRT) cells organize a matrix of extracellular fibronectin (FN) fibrils, which undergoes extensive remodeling according to cell culture confluence. In non-confluent cells FN forms a fibrillar array associated with the ventral cell surface. However, basal FN is progressively removed in confluent cultures and substituted by non-fibrillar FN deposits at lateral cell domains in regions of cell-cell contacts. FRT cells secrete and expose on the plasma membrane the tissue-type plasminogen activator and, in serum-free cultures, plasminogen induces a rapid loss of FN fibrils. Incubation with plasmin inhibitors greatly reduces this effect. FRT cells also express annexin II, a plasminogen receptor, suggesting that plasmin activity is associated with the pericellular enviroment. This is in agreement with the observation that a great reduction in FN degradation is observed if the cells are pre-incubated with carboxypeptidase B, which prevents plasminogen binding to the cells. A gelatinolytic activity with a molecular weigth equivalent to MMP-2 has been demonstrated by zymography of culture media, and the presence of MMP-2 and MT1-MMP on the cell plasma membrane has been detected by immunofluorescence. These results indicate that in the FN remodeling process, occurring during FRT epithelium maturation, both plasmin-dependent (tPA activated) and plasmin-independent proteolytic activities are involved.
Collapse
Affiliation(s)
- Luigi Nezi
- Centro di Endocrinologia ed Oncologia Sperimentale, CNR, Dpt. Biologia e Patologia Cellulare e Molecolare, Napoli, Italy
| | | | | | | |
Collapse
|
23
|
De Petro G, Tavian D, Marchina E, Barlati S. Induction of fibronectin mRNA by urokinase- and tissue-type plasminogen activator in human skin fibroblasts: differential role of u-PA and t-PA at the fibronectin protein level. Biol Chem 2002; 383:177-87. [PMID: 11928812 DOI: 10.1515/bc.2002.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Plasminogen activators of the urokinase- and tissue-type and fetal calf serum (u-PA, t-PA, FCS) exert their mitogenic effect on quiescent human dermal fibroblasts and modulate the mRNA expression of cell-cycle related genes. The present study deals with the effects of PAs on the expression of fibronectin (FN), a heterodimeric extracellular matrix (ECM) protein that can be modulated in different ways by various mitogens. The kinetics of FN gene response was examined in quiescent fibroblasts upon PA stimulation (30 min -24 h). The results obtained evidenced that: (i) all mitogens tested (u-PA, t-PA and FCS) led to an increase of FN mRNA expression in early G1, as shown by the analysis of two sequences, III-9, common to all FN mRNAs, and EDA+, present only in the EDA+FN isoform; (ii) the kinetic profiles of FN mRNA stimulation were comparable for the three mitogens, although the effects on the FN-ECM assembly were distinct; (iii) t-PA and FCS led to FN assembly in the ECM, which was absent or decreased in u-PA-treated cultures. Immunobiochemical analysis of total FN and EDA+ FN showed that FN induced by t-PA was mainly dimeric (450-500 kDa), whereas FN induced by u-PA was mainly monomeric (230-250 kDa). These differences are probably due to the differential enzymatic action of t-PA and u-PA on FN, which might be related to a differential role of the two PAs in several physiopathological conditions.
Collapse
Affiliation(s)
- Giuseppina De Petro
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Italy
| | | | | | | |
Collapse
|
24
|
Merzkirch C, Davies N, Zilla P. Engineering of vascular ingrowth matrices: are protein domains an alternative to peptides? THE ANATOMICAL RECORD 2001; 263:379-87. [PMID: 11500815 DOI: 10.1002/ar.1118] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anastomotic intimal hyperplasia and surface thrombogenicity are the main reasons for the high failure rate of prosthetic small-diameter vascular grafts. While anastomotic intimal hyperplasia is a multifactorial event, ongoing surface thrombogenicity is primarily caused by the lack of an endothelium, even after years of clinical implantation. After decades of poorly performing synthetic artery-grafts, tissue engineering has emerged as a promising approach to generate biologically functional bio-synthetic hybrid grafts mimicking native arteries regarding the presence of an endothelial lining on the blood surface. "In vitro endothelialization" represented the first generation of such tissue-engineered vascular grafts, utilising cell culture techniques for the creation of a confluent autologous endothelium on ePTFE grafts. The clinical long-term results with this method in almost 200 patients are highly encouraging, showing patencies equal to vein grafts. Since "in vitro endothelialization" requires cell culture facilities, it will always be confined to large centres. Therefore, research of the 1990s turned to the development of spontaneously endothelializing implants, to make tissue-engineered grafts amenable to the entire vascular-surgical community. Apart from scaffold designs allowing transmural ingrowth, biological signalling through a facilitating ingrowth matrix holds a key to spontaneous endothelialization. In biological signalling, the increasingly deeper understanding of bio-active molecules and the discovery of domains and peptide sequences during the 1980s created the expectation in the 1990s that peptide signalling may be all that is needed. This present review highlights the possible problems associated with such a reductionist approach. Using the fibronectin molecule, we demonstrated that domains may be more suitable modules in tissue engineering than peptide sequences.
Collapse
Affiliation(s)
- C Merzkirch
- Cardiovascular Research Unit, Department of Cardiothoracic Surgery, University of Cape Town Medical School, Cape Town, South Africa
| | | | | |
Collapse
|
25
|
Rabbani SA, Mazar AP. The Role of the Plasminogen Activation System in Angiogenesis and Metastasis. Surg Oncol Clin N Am 2001. [DOI: 10.1016/s1055-3207(18)30072-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Copeta A, Tavian D, Marchina E, De Petro G, Barlati S. Gene response of human skin fibroblasts to urokinase- and tissue-type plasminogen activators. Growth Factors 2000; 17:249-68. [PMID: 10801075 DOI: 10.3109/08977190009028970] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In a previous work we have reported evidences on the mitogenic activity of urokinase-type and tissue-type plasminogen activator (u-PA, t-PA) on serum-deprived human dermal fibroblasts. In this work we have studied the transcription-dependent changes of some cell-cycle related genes associated with the biological activity of PAs, as well as the possible involvement of protein tyr kinases (PTK) and/or protein kinase C (PKC) in the mitogenic signal transduction. The data obtained demonstrate that the growth factor activity of PAs is associated with: - a rapid transient activation of early response genes, c-fos, c-jun and c-myc; - the subsequent coordinated down-regulation of p53 and p21CIP1; - the constant expression of the MEK1 mRNA in every phase of the cell cycle. Quiescent (G0) cells did not express c-fos, c-jun, c-myc and cyclin A, but upon stimulation with mitogens (fetal calf serum (FCS), u-PA, t-PA) the cyclin A mRNA expression was observed in concomitance with the activation of DNA synthesis. Therefore u-PA, t-PA and FCS similarly modulate the expression of c-fos, c-jun, c-myc, p53, p21CIP1 and cyclin A with only slight differences likely related to the time required for activation of DNA synthesis. The PAs mitogenic stimulation of serum-starved cells was associated with the internalization of their molecules, as revealed by immunostaining. The biological activity of u-PA, t-PA, as well as that of limiting concentration of FCS (1%), was mediated by PTK and PKC. Conversely, PTK, but not PKC, was involved in the activation of the proliferative response of basic fibroblast growth factor in the same experimental conditions. In conclusion, u-PA and t-PA can utilize two different pathways, one depending on PTK and the other on PKC in a way similar to the mitogenic activity induced by low concentration of FCS (1%).
Collapse
Affiliation(s)
- A Copeta
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Italy
| | | | | | | | | |
Collapse
|
27
|
Schönermark MP, Issing PR, Erbrich BK, Lenarz T. Expression pattern of the plasminogen activator-plasmin system in human cholesteatoma. Ann Otol Rhinol Laryngol 1999; 108:245-52. [PMID: 10086616 DOI: 10.1177/000348949910800305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The plasminogen activator-plasmin system plays a pivotal role in the delicately regulated process of extracellular matrix remodeling. Recent studies have shown that an imbalance of proteolytic enzymes over specific inhibitors in this system may lead to an aggressive, expanding, and infiltrating cellular phenotype. As cholesteatoma resembles a tumor in many ways, we investigated the pattern of expression for members of the plasminogen activator-plasmin system in 12 human cholesteatomas, using immunohistochemistry. As controls, 3 tympanic membranes and 4 ear canal skin specimens were used. In contrast to the tympanic membranes, all cholesteatoma specimens showed a strong expression of plasminogen at the basal epithelial cell layers. In ear canal skin, only the basal surface of the most basal epithelia stained discretely positive. The urokinase-type plasminogen activator (uPA) could be detected in the basal stratum of the cholesteatoma matrix and in the surrounding granulation tissue, while tissue-type plasminogen activator (tPA) was not detectable at all. Plasminogen activator inhibitor-1 (PAI-1) was expressed in both the granulation tissue and the granular cell layer of the matrix, but not in the basal epithelial cells; PAI-2 showed a pericellular expression pattern in the subbasal and granular cell layers. Neither uPA, tPA, nor the PAIs could be detected in tympanic membrane controls; ear canal skin showed the same staining pattern as cholesteatoma only for PAI-2. Our data demonstrate that there is a clear imbalance in favor of proteolytic activity in the basal epithelial layers of the cholesteatoma matrix, which might at least partly account for the aggressive behavior of this tumorlike lesion. Further, the pattern of expression resembles the pattern described for several epithelial malignancies.
Collapse
Affiliation(s)
- M P Schönermark
- Department of Otorhinolaryngology-Head and Neck Surgery, Hannover Medical School, Germany
| | | | | | | |
Collapse
|
28
|
Bator JM, Cohen RL, Chambers DA. Hydrocortisone regulates the dynamics of plasminogen activator and plasminogen activator inhibitor expression in cultured murine keratinocytes. Exp Cell Res 1998; 242:110-9. [PMID: 9665808 DOI: 10.1006/excr.1998.4065] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The plasminogen activators tPA and uPA, and their inhibitors, PAI-1 and PAI-2, have been associated with epithelial homeostasis and wound healing. In these studies, we investigate the effect of the steroid hormone hydrocortisone, a commonly used therapeutic modality for skin, on PAs/PAIs in serum- and plasminogen-free primary cultures of murine keratinocytes. SDS-PAGE fibrin zymography showed that addition of 1 microM hydrocortisone to cultures significantly reduced tPA fibrinolytic activity in both cell extracts and conditioned medium. uPA activity in conditioned medium was similarly inhibited. Cells were also cultured in the presence of dibutyryl cyclic AMP (dbcAMP). dbcAMP (5 mM) alone enhanced uPA and tPA fibrinolytic activity in conditioned medium, but this increase was diminished in the presence of 1 microM hydrocortisone. Immunoblots revealed a three- to fivefold induction of free PAI-1 by hydrocortisone which was partially blocked by dbcAMP. Northern blots showed that PAI-1 mRNA increased threefold 2 h after addition of hydrocortisone and remained elevated at least 8 h. In contrast, uPA and tPA mRNA were unchanged over the same time course. uPA, tPA, and PAI-1 mRNA increased in the presence of dbcAMP; levels remained elevated at least 8 h. HC suppressed the induction of uPA and tPA by dbcAMP. Studies directed at identifying plasminogen mRNA showed that in this culture system, keratinocytes produce no plasminogen mRNA either in the presence or in the absence of hydrocortisone or dbcAMP. Collectively, these results show that keratinocyte plasminogen activator activity is suppressed by hydrocortisone as a function of increased PAI-1 combined with an attenuation of PA induction by agents that increase intracellular cAMP. These results provide additional information to further define the mechanism by which glucocorticoids inhibit wound healing.
Collapse
Affiliation(s)
- J M Bator
- Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, Illinois 60612, USA
| | | | | |
Collapse
|