1
|
Lin CM, Ding YX, Huang SM, Chen YC, Lee HJ, Sung CC, Lin SH. Identification and characterization of a novel CASR mutation causing familial hypocalciuric hypercalcemia. Front Endocrinol (Lausanne) 2024; 15:1291160. [PMID: 38487341 PMCID: PMC10937390 DOI: 10.3389/fendo.2024.1291160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/22/2024] [Indexed: 03/17/2024] Open
Abstract
Context Although a monoallelic mutation in the calcium-sensing receptor (CASR) gene causes familial hypocalciuric hypercalcemia (FHH), the functional characterization of the identified CASR mutation linked to the clinical response to calcimimetics therapy is still limited. Objective A 45-year-old male presenting with moderate hypercalcemia, hypocalciuria, and inappropriately high parathyroid hormone (PTH) had a good response to cinacalcet (total serum calcium (Ca2+) from 12.5 to 10.1 mg/dl). We identified the genetic mutation and characterized the functional and pathophysiological mechanisms, and then linked the mutation to calcimimetics treatment in vitro. Design Sanger sequencing of the CASR, GNA11, and AP2S1 genes was performed in his family. The simulation model was used to predict the function of the identified mutant. In vitro studies, including immunoblotting, immunofluorescence, a cycloheximide chase study, Calbryte™ 520 Ca2+ detection, and half-maximal effective concentration (EC50), were examined. Results This proband was found to carry a de novo heterozygous missense I554N in the cysteine-rich domain of CASR, which was pathogenic based on the different software prediction models and ACGME criteria. The simulation model showed that CASR I554N mutation decreased its binding energy with Ca2+. Human CASR I554N mutation attenuated the stability of CASR protein, reduced the expression of p-ERK 1/2, and blunted the intracellular Ca2+ response to gradient extracellular Ca2+ (eCa2+) concentration. The EC50 study also demonstrated the correctable effect of calcimimetics on the function of the CASR I554N mutation. Conclusion This novel CASR I554N mutation causing FHH attenuates CASR stability, its binding affinity with Ca2+, and the response to eCa2+ corrected by therapeutic calcimimetics.
Collapse
Affiliation(s)
- Chien-Ming Lin
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Xuan Ding
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Ying-Chuan Chen
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan
| | - Hwei-Jen Lee
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Chien Sung
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
2
|
Ulloa-Aguirre A, Zariñán T, Jardón-Valadez E. Misfolded G Protein-Coupled Receptors and Endocrine Disease. Molecular Mechanisms and Therapeutic Prospects. Int J Mol Sci 2021; 22:ijms222212329. [PMID: 34830210 PMCID: PMC8622668 DOI: 10.3390/ijms222212329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022] Open
Abstract
Misfolding of G protein-coupled receptors (GPCRs) caused by mutations frequently leads to disease due to intracellular trapping of the conformationally abnormal receptor. Several endocrine diseases due to inactivating mutations in GPCRs have been described, including X-linked nephrogenic diabetes insipidus, thyroid disorders, familial hypocalciuric hypercalcemia, obesity, familial glucocorticoid deficiency [melanocortin-2 receptor, MC2R (also known as adrenocorticotropin receptor, ACTHR), and reproductive disorders. In these mutant receptors, misfolding leads to endoplasmic reticulum retention, increased intracellular degradation, and deficient trafficking of the abnormal receptor to the cell surface plasma membrane, causing inability of the receptor to interact with agonists and trigger intracellular signaling. In this review, we discuss the mechanisms whereby mutations in GPCRs involved in endocrine function in humans lead to misfolding, decreased plasma membrane expression of the receptor protein, and loss-of-function diseases, and also describe several experimental approaches employed to rescue trafficking and function of the misfolded receptors. Special attention is given to misfolded GPCRs that regulate reproductive function, given the key role played by these particular membrane receptors in sexual development and fertility, and recent reports on promising therapeutic interventions targeting trafficking of these defective proteins to rescue completely or partially their normal function.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City 14080, Mexico;
- Correspondence:
| | - Teresa Zariñán
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City 14080, Mexico;
| | - Eduardo Jardón-Valadez
- Departamento de Recursos de la Tierra, Universidad Autónoma Metropolitana-Lerma, Lerma de Villada 52005, Estado de México, Mexico;
| |
Collapse
|
3
|
Celli A, Tu CL, Lee E, Bikle DD, Mauro TM. Decreased Calcium-Sensing Receptor Expression Controls Calcium Signaling and Cell-To-Cell Adhesion Defects in Aged Skin. J Invest Dermatol 2021; 141:2577-2586. [PMID: 33862069 PMCID: PMC8526647 DOI: 10.1016/j.jid.2021.03.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 11/24/2022]
Abstract
The calcium-sensing receptor (CaSR) drives essential calcium ion (Ca2+) and E-cadherin‒mediated processes in the epidermis, including differentiation, cell-to-cell adhesion, and epidermal barrier homeostasis in cells and in young adult mice. We now report that decreased CaSR expression leads to impaired Ca2+ signal propagation in aged mouse (aged >22 months) epidermis and human (aged >79 years, donor age) keratinocytes. Baseline cytosolic Ca2+ concentrations were higher, and capacitive Ca2+ entry was lower in aged than in young keratinocytes. As in Casr-knockout mice (EpidCaSR-/-), decreased CaSR expression led to decreased E-cadherin and phospholipase C-γ expression and to a compensatory upregulation of STIM1. Pretreatment with the CaSR agonist N-(3-[2-chlorophenyl]propyl)-(R)-alpha-methyl-3-methoxybenzylamine normalized Ca2+ propagation and E-cadherin organization after experimental wounding. These results suggest that age-related defects in CaSR expression dysregulate normal keratinocyte and epidermal Ca2+ signaling, leading to impaired E-cadherin expression, organization, and function. These findings show an innovative mechanism whereby Ca2+- and E-cadherin‒dependent functions are impaired in aging epidermis and suggest a new therapeutic approach by restoring CaSR function.
Collapse
Affiliation(s)
- Anna Celli
- Department of Dermatology, SFVAHCS Medical Center and University of California San Francisco, San Francisco, California, USA
| | - Chia-Ling Tu
- Endocrine Unit, San Francisco VA Medical Center (SFVAMC), San Francisco, California, USA; Department of Medicine, University of California-San Francisco (UCSF), San Francisco, California, USA
| | - Elise Lee
- Department of Dermatology, SFVAHCS Medical Center and University of California San Francisco, San Francisco, California, USA
| | - Daniel D Bikle
- Departments of Medicine and Dermatology, UCSF Staff Physician, SF Department of Health Affairs Medical Center, San Francisco, California, USA
| | - Theodora M Mauro
- Department of Dermatology, SFVAHCS Medical Center and University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
4
|
Iamartino L, Elajnaf T, Kallay E, Schepelmann M. Calcium-sensing receptor in colorectal inflammation and cancer: Current insights and future perspectives. World J Gastroenterol 2018; 24:4119-4131. [PMID: 30271078 PMCID: PMC6158479 DOI: 10.3748/wjg.v24.i36.4119] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/11/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023] Open
Abstract
The extracellular calcium-sensing receptor (CaSR) is best known for its action in the parathyroid gland and kidneys where it controls body calcium homeostasis. However, the CaSR has different roles in the gastrointestinal tract, where it is ubiquitously expressed. In the colon, the CaSR is involved in controlling multiple mechanisms, including fluid transport, inflammation, cell proliferation and differentiation. Although the expression pattern and functions of the CaSR in the colonic microenvironment are far from being completely understood, evidence has been accumulating that the CaSR might play a protective role against both colonic inflammation and colorectal cancer. For example, CaSR agonists such as dipeptides have been suggested to reduce colonic inflammation, while dietary calcium was shown to reduce the risk of colorectal cancer. CaSR expression is lost in colonic malignancies, indicating that the CaSR is a biomarker for colonic cancer progression. This dual anti-inflammatory and anti-tumourigenic role of the CaSR makes it especially interesting in colitis-associated colorectal cancer. In this review, we describe the clinical and experimental evidence for the role of the CaSR in colonic inflammation and colorectal cancer, the intracellular signalling pathways which are putatively involved in these actions, and the possibilities to exploit these actions of the CaSR for future therapies of colonic inflammation and cancer.
Collapse
Affiliation(s)
- Luca Iamartino
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna 1090, Austria
| | - Taha Elajnaf
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna 1090, Austria
| | - Enikö Kallay
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna 1090, Austria
| | - Martin Schepelmann
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna 1090, Austria
| |
Collapse
|
5
|
Gorvin CM. Insights into calcium-sensing receptor trafficking and biased signalling by studies of calcium homeostasis. J Mol Endocrinol 2018; 61:R1-R12. [PMID: 29599414 DOI: 10.1530/jme-18-0049] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 03/29/2018] [Indexed: 12/18/2022]
Abstract
The calcium-sensing receptor (CASR) is a class C G-protein-coupled receptor (GPCR) that detects extracellular calcium concentrations, and modulates parathyroid hormone secretion and urinary calcium excretion to maintain calcium homeostasis. The CASR utilises multiple heterotrimeric G-proteins to mediate signalling effects including activation of intracellular calcium release; mitogen-activated protein kinase (MAPK) pathways; membrane ruffling; and inhibition of cAMP production. By studying germline mutations in the CASR and proteins within its signalling pathway that cause hyper- and hypocalcaemic disorders, novel mechanisms governing GPCR signalling and trafficking have been elucidated. This review focusses on two recently described pathways that provide novel insights into CASR signalling and trafficking mechanisms. The first, identified by studying a CASR gain-of-function mutation that causes autosomal dominant hypocalcaemia (ADH), demonstrated a structural motif located between the third transmembrane domain and the second extracellular loop of the CASR that mediates biased signalling by activating a novel β-arrestin-mediated G-protein-independent pathway. The second, in which the mechanism by which adaptor protein-2 σ-subunit (AP2σ) mutations cause familial hypocalciuric hypercalcaemia (FHH) was investigated, demonstrated that AP2σ mutations impair CASR internalisation and reduce multiple CASR-mediated signalling pathways. Furthermore, these studies showed that the CASR can signal from the cell surface using multiple G-protein pathways, whilst sustained signalling is mediated only by the Gq/11 pathway. Thus, studies of FHH- and ADH-associated mutations have revealed novel steps by which CASR mediates signalling and compartmental bias, and these pathways could provide new targets for therapies for patients with calcaemic disorders.
Collapse
Affiliation(s)
- Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| |
Collapse
|
6
|
Gregório SF, Fuentes J. Regulation of Bicarbonate Secretion in Marine Fish Intestine by the Calcium-Sensing Receptor. Int J Mol Sci 2018; 19:E1072. [PMID: 29617283 PMCID: PMC5979614 DOI: 10.3390/ijms19041072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/26/2018] [Accepted: 04/01/2018] [Indexed: 12/29/2022] Open
Abstract
In marine fish, high epithelial intestinal HCO₃− secretion generates luminal carbonate precipitates of divalent cations that play a key role in water and ion homeostasis. The present study was designed to expose the putative role for calcium and the calcium-sensing receptor (CaSR) in the regulation of HCO₃− secretion in the intestine of the sea bream (Sparus aurata L.). Effects on the expression of the CaSR in the intestine were evaluated by qPCR and an increase was observed in the anterior intestine in fed fish compared with unfed fish and with different regions of intestine. CaSR expression reflected intestinal fluid calcium concentration. In addition, anterior intestine tissue was mounted in Ussing chambers to test the putative regulation of HCO₃− secretion in vitro using the anterior intestine. HCO₃− secretion was sensitive to varying calcium levels in luminal saline and to calcimimetic compounds known to activate/block the CaSR i.e., R 568 and NPS-2143. Subsequent experiments were performed in intestinal sacs to measure water absorption and the sensitivity of water absorption to varying luminal levels of calcium and calcimimetics were exposed as well. It appears, that CaSR mediates HCO₃− secretion and water absorption in marine fish as shown by responsiveness to calcium levels and calcimimetic compounds.
Collapse
Affiliation(s)
- Sílvia F Gregório
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Juan Fuentes
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
7
|
Ward BK, Rea SL, Magno AL, Pedersen B, Brown SJ, Mullin S, Arulpragasam A, Ingley E, Conigrave AD, Ratajczak T. The endoplasmic reticulum-associated protein, OS-9, behaves as a lectin in targeting the immature calcium-sensing receptor. J Cell Physiol 2017; 233:38-56. [PMID: 28419469 DOI: 10.1002/jcp.25957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 04/13/2017] [Indexed: 11/07/2022]
Abstract
The mechanisms responsible for the processing and quality control of the calcium-sensing receptor (CaSR) in the endoplasmic reticulum (ER) are largely unknown. In a yeast two-hybrid screen of the CaSR C-terminal tail (residues 865-1078), we identified osteosarcoma-9 (OS-9) protein as a binding partner. OS-9 is an ER-resident lectin that targets misfolded glycoproteins to the ER-associated degradation (ERAD) pathway through recognition of specific N-glycans by its mannose-6-phosphate receptor homology (MRH) domain. We show by confocal microscopy that the CaSR and OS-9 co-localize in the ER in COS-1 cells. In immunoprecipitation studies with co-expressed OS-9 and CaSR, OS-9 specifically bound the immature form of wild-type CaSR in the ER. OS-9 also bound the immature forms of a CaSR C-terminal deletion mutant and a C677A mutant that remains trapped in the ER, although binding to neither mutant was favored over wild-type receptor. OS-9 binding to immature CaSR required the MRH domain of OS-9 indicating that OS-9 acts as a lectin most likely to target misfolded CaSR to ERAD. Our results also identify two distinct binding interactions between OS-9 and the CaSR, one involving both C-terminal domains of the two proteins and the other involving both N-terminal domains. This suggests the possibility of more than one functional interaction between OS-9 and the CaSR. When we investigated the functional consequences of altered OS-9 expression, neither knockdown nor overexpression of OS-9 was found to have a significant effect on CaSR cell surface expression or CaSR-mediated ERK1/2 phosphorylation.
Collapse
Affiliation(s)
- Bryan K Ward
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Laboratory for Molecular Endocrinology, Harry Perkins Institute of Medical Research and the Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Sarah L Rea
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Laboratory for Molecular Endocrinology, Harry Perkins Institute of Medical Research and the Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Aaron L Magno
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Laboratory for Molecular Endocrinology, Harry Perkins Institute of Medical Research and the Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Bernadette Pedersen
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Laboratory for Molecular Endocrinology, Harry Perkins Institute of Medical Research and the Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Suzanne J Brown
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Shelby Mullin
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Ajanthy Arulpragasam
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Laboratory for Molecular Endocrinology, Harry Perkins Institute of Medical Research and the Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Evan Ingley
- Cell Signalling Group, Harry Perkins Institute of Medical Research and the Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Arthur D Conigrave
- School of Life and Environmental Sciences, Charles Perkins Centre, University of Sydney, New South Wales, Australia
| | - Thomas Ratajczak
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Laboratory for Molecular Endocrinology, Harry Perkins Institute of Medical Research and the Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
8
|
Beerepoot P, Nazari R, Salahpour A. Pharmacological chaperone approaches for rescuing GPCR mutants: Current state, challenges, and screening strategies. Pharmacol Res 2017; 117:242-251. [DOI: 10.1016/j.phrs.2016.12.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/11/2022]
|
9
|
Pharmacological chaperoning: a primer on mechanism and pharmacology. Pharmacol Res 2014; 83:10-9. [PMID: 24530489 DOI: 10.1016/j.phrs.2014.01.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 12/26/2022]
Abstract
Approximately forty percent of diseases are attributable to protein misfolding, including those for which genetic mutation produces misfolding mutants. Intriguingly, many of these mutants are not terminally misfolded since native-like folding, and subsequent trafficking to functional locations, can be induced by target-specific, small molecules variably termed pharmacological chaperones, pharmacoperones, or pharmacochaperones (PCs). PC targets include enzymes, receptors, transporters, and ion channels, revealing the breadth of proteins that can be engaged by ligand-assisted folding. The purpose of this review is to provide an integrated primer of the diverse mechanisms and pharmacology of PCs. In this regard, we examine the structural mechanisms that underlie PC rescue of misfolding mutants, including the ability of PCs to act as surrogates for defective intramolecular interactions and, at the intermolecular level, overcome oligomerization deficiencies and dominant negative effects, as well as influence the subunit stoichiometry of heteropentameric receptors. Not surprisingly, PC-mediated structural correction of misfolding mutants normalizes interactions with molecular chaperones that participate in protein quality control and forward-trafficking. A variety of small molecules have proven to be efficacious PCs and the advantages and disadvantages of employing orthostatic antagonists, active-site inhibitors, orthostatic agonists, and allosteric modulator PCs are considered. Also examined is the possibility that several therapeutic agents may have unrecognized activity as PCs, and this chaperoning activity may mediate/contribute to therapeutic action and/or account for adverse effects. Lastly, we explore evidence that pharmacological chaperoning exploits intrinsic ligand-assisted folding mechanisms. Given the widespread applicability of PC rescue of mutants associated with protein folding disorders, both in vitro and in vivo, the therapeutic potential of PCs is vast. This is most evident in the treatment of lysosomal storage disorders, cystic fibrosis, and nephrogenic diabetes insipidus, for which proof of principle in humans has been demonstrated.
Collapse
|
10
|
Armato U, Chiarini A, Chakravarthy B, Chioffi F, Pacchiana R, Colarusso E, Whitfield JF, Dal Prà I. Calcium-sensing receptor antagonist (calcilytic) NPS 2143 specifically blocks the increased secretion of endogenous Aβ42 prompted by exogenous fibrillary or soluble Aβ25-35 in human cortical astrocytes and neurons-therapeutic relevance to Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1832:1634-52. [PMID: 23628734 DOI: 10.1016/j.bbadis.2013.04.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/28/2013] [Accepted: 04/18/2013] [Indexed: 11/17/2022]
Abstract
The "amyloid-β (Aβ) hypothesis" posits that accumulating Aβ peptides (Aβs) produced by neurons cause Alzheimer's disease (AD). However, the Aβs contribution by the more numerous astrocytes remains undetermined. Previously we showed that fibrillar (f)Aβ25-35, an Aβ42 proxy, evokes a surplus endogenous Aβ42 production/accumulation in cortical adult human astrocytes. Here, by using immunocytochemistry, immunoblotting, enzymatic assays, and highly sensitive sandwich ELISA kits, we investigated the effects of fAβ25-35 and soluble (s)Aβ25-35 on Aβ42 and Aβ40 accumulation/secretion by human cortical astrocytes and HCN-1A neurons and, since the calcium-sensing receptor (CaSR) binds Aβs, their modulation by NPS 2143, a CaSR allosteric antagonist (calcilytic). The fAβ25-35-exposed astrocytes and surviving neurons produced, accumulated, and secreted increased amounts of Aβ42, while Aβ40 also accrued but its secretion was unchanged. Accordingly, secreted Aβ42/Aβ40 ratio values rose for astrocytes and neurons. While slightly enhancing Aβ40 secretion by fAβ25-35-treated astrocytes, NPS 2143 specifically suppressed the fAβ25-35-elicited surges of endogenous Aβ42 secretion by astrocytes and neurons. Therefore, NPS 2143 addition always kept Aβ42/Aβ40 values to baseline or lower levels. Mechanistically, NPS 2143 decreased total CaSR protein complement, transiently raised proteasomal chymotrypsin activity, and blocked excess NO production without affecting the ongoing increases in BACE1/β-secretase and γ-secretase activity in fAβ25-35-treated astrocytes. Compared to fAβ25-35, sAβ25-35 also stimulated Aβ42 secretion by astrocytes and neurons and NPS 2143 specifically and wholly suppressed this effect. Therefore, since NPS 2143 thwarts any Aβ/CaSR-induced surplus secretion of endogenous Aβ42 and hence further vicious cycles of Aβ self-induction/secretion/spreading, calcilytics might effectively prevent/stop the progression to full-blown AD.
Collapse
Affiliation(s)
- Ubaldo Armato
- Department of Life and Reproduction Sciences, University of Verona Medical School, Verona, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Breitwieser GE. The calcium sensing receptor life cycle: trafficking, cell surface expression, and degradation. Best Pract Res Clin Endocrinol Metab 2013; 27:303-13. [PMID: 23856261 DOI: 10.1016/j.beem.2013.03.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The calcium-sensing receptor (CaSR) must function in the chronic presence of agonist, and recent studies suggest that its ability to signal under such conditions depends upon the unique mechanism(s) regulating its cellular trafficking. This chapter will highlight the evidence supporting an intracellular endoplasmic reticulum-localized pool of CaSR that can be mobilized to the plasma membrane by CaSR signaling, leading to agonist-driven insertional signaling (ADIS). I summarize evidence for the role of small GTP binding proteins (Rabs, Sar1 and ARFs), cargo receptors or chaperones (p24A, RAMPs) and interacting proteins (14-3-3 proteins, calmodulin) in anterograde trafficking of CaSR, and discuss the potential signaling specializations arising from CaSR interactions with caveolins or Filamin A/Rho. Finally, I summarize current knowledge about CaSR endocytosis and degradation by both the proteasome and lysosome, and highlight recent studies indicating that defective trafficking of CaSR or interacting protein mutants contributes to pathology in disorders of calcium homeostasis.
Collapse
Affiliation(s)
- Gerda E Breitwieser
- Weis Center for Research, Geisinger Clinic, 100 N. Academy Avenue, Danville, PA 17822-2604, USA.
| |
Collapse
|
12
|
Grant MP, Stepanchick A, Breitwieser GE. Calcium signaling regulates trafficking of familial hypocalciuric hypercalcemia (FHH) mutants of the calcium sensing receptor. Mol Endocrinol 2012; 26:2081-91. [PMID: 23077345 DOI: 10.1210/me.2012-1232] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Calcium-sensing receptors (CaSRs) regulate systemic Ca(2+) homeostasis. Loss-of-function mutations cause familial benign hypocalciuric hypercalcemia (FHH) or neonatal severe hyperparathyroidism (NSHPT). FHH/NSHPT mutations can reduce trafficking of CaSRs to the plasma membrane. CaSR signaling is potentiated by agonist-driven anterograde CaSR trafficking, leading to a new steady state level of plasma membrane CaSR, which is maintained, with minimal functional desensitization, as long as extracellular Ca(2+) is elevated. This requirement for CaSR signaling to drive CaSR trafficking to the plasma membrane led us to reconsider the mechanism(s) contributing to dysregulated trafficking of FHH/NSHPT mutants. We simultaneously monitored dynamic changes in plasma membrane levels of CaSR and intracellular Ca(2+), using a chimeric CaSR construct, which allowed explicit tracking of plasma membrane levels of mutant or wild-type CaSRs in the presence of nonchimeric partners. Expression of mutants alone revealed severe defects in plasma membrane targeting and Ca(2+) signaling, which were substantially rescued by coexpression with wild-type CaSR. Biasing toward heterodimerization of wild-type and FHH/NSHPT mutants revealed that intracellular Ca(2+) oscillations were insufficient to rescue plasma membrane targeting. Coexpression of the nonfunctional mutant E297K with the truncation CaSRΔ868 robustly rescued trafficking and Ca(2+) signaling, whereas coexpression of distinct FHH/NSHPT mutants rescued neither trafficking nor signaling. Our study suggests that rescue of FHH/NSHPT mutants requires a steady state intracellular Ca(2+) response when extracellular Ca(2+) is elevated and argues that Ca(2+) signaling by wild-type CaSRs rescues FHH mutant trafficking to the plasma membrane.
Collapse
Affiliation(s)
- Michael P Grant
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822-2604, USA
| | | | | |
Collapse
|
13
|
Breitwieser GE. Minireview: the intimate link between calcium sensing receptor trafficking and signaling: implications for disorders of calcium homeostasis. Mol Endocrinol 2012; 26:1482-95. [PMID: 22745192 DOI: 10.1210/me.2011-1370] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The calcium-sensing receptor (CaSR) regulates organismal Ca(2+) homeostasis. Dysregulation of CaSR expression or mutations in the CASR gene cause disorders of Ca(2+) homeostasis and contribute to the progression or severity of cancers and cardiovascular disease. This brief review highlights recent findings that define the CaSR life cycle, which controls the cellular abundance of CaSR and CaSR signaling. A novel mechanism, termed agonist-driven insertional signaling (ADIS), contributes to the unique hallmarks of CaSR signaling, including the high degree of cooperativity and the lack of functional desensitization. Agonist-mediated activation of plasma membrane-localized CaSR increases the rate of insertion of CaSR at the plasma membrane without altering the constitutive endocytosis rate, thereby acutely increasing the maximum signaling response. Prolonged CaSR signaling requires a large intracellular ADIS-mobilizable pool of CaSR, which is maintained by signaling-mediated increases in biosynthesis. This model provides a rational framework for characterizing the defects caused by CaSR mutations and the altered functional expression of wild-type CaSR in disease states. Mechanistic dissection of ADIS of CaSR should lead to optimized pharmacological approaches to normalize CaSR signaling in disorders of Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Gerda E Breitwieser
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822-2604, USA.
| |
Collapse
|