1
|
Zhou J, Guo Y, Liu X, Yuan W. Bioinformatics analysis identifies key secretory protein-encoding differentially expressed genes in adipose tissue of metabolic syndrome. Adipocyte 2025; 14:2446243. [PMID: 39819282 DOI: 10.1080/21623945.2024.2446243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025] Open
Abstract
The objective of this study was to identify key secretory protein-encoding differentially expressed genes (SP-DEGs) in adipose tissue in female metabolic syndrome, thus detecting potential targets in treatment. We examined gene expression profiles in 8 women with metabolic syndrome and 7 healthy, normal body weight women. A total of 143 SP-DEGs were screened, including 83 upregulated genes and 60 downregulated genes. GO analyses of these SP-DEGs included proteolysis, angiogenesis, positive regulation of endothelial cell proliferation, immune response, protein processing, positive regulation of neuroblast proliferation, cell adhesion and ER to Golgi vesicle-mediated transport. KEGG pathway analysis of the SP-DEGs were involved in the TGF-beta signalling pathway, cytokine‒cytokine receptor interactions, the hippo signalling pathway, Malaria. Two modules were identified from the PPI network, namely, Module 1 (DNMT1, KDM1A, NCoR1, and E2F1) and Module 2 (IL-7 R, IL-12A, and CSF3). The gene DNMT1 was shared between the network modules and the WGCNA brown module. According to the single-gene GSEA results, DNMT1 was significantly positively correlated with histidine metabolism and phenylalanine metabolism. This study identified 7 key SP-DEGs in adipose tissue. DNMT1 was selected as the central gene in the development of metabolic syndrome and might be a potential therapeutic target.
Collapse
Affiliation(s)
- Jiandong Zhou
- Department of Nephrology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Yunshan Guo
- Department of Nephrology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Xuan Liu
- Department of Nephrology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Weijie Yuan
- Department of Nephrology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| |
Collapse
|
2
|
Yu H, Wu B, He J, Yi J, Wu W, Wang H, Yang Q, Sun D, Zheng H. Exploring the epigenetic impacts of atrazine in zebrafish: Unveiling mechanisms of neurotoxicity, reproductive toxicity, and implications for human health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125941. [PMID: 40023241 DOI: 10.1016/j.envpol.2025.125941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/07/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Atrazine (ATZ), a widely utilized herbicide, is notable for its long environmental half-life and high solubility, raising significant concerns regarding its ecological and health impacts. While debates continue over its role as an endocrine disruptor, increasing attention has been directed toward its potential epigenetic effects. Utilizing the zebrafish model, a vertebrate with considerable genetic similarity to humans, provides valuable insights into how ATZ exposure may translate into human health risks. This review systematically examines the differential DNA methylation induced by ATZ's non-competitive inhibition of DNA methyltransferases, miRNA dysregulation resulting from mutations in miRNA processing enzymes, and the complex epigenetic interactions affecting histone modifications. Additionally, potential epigenetic biomarkers for ATZ exposure are proposed, which could advance targeted treatment strategies and improve health risk assessments. This synthesis of current understanding identifies knowledge gaps and guides future research towards a more comprehensive understanding of ATZ's epigenetic mechanisms.
Collapse
Affiliation(s)
- Haiyang Yu
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Baihui Wu
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Jiaxuan He
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Jia Yi
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Wei Wu
- Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Hanbing Wang
- Department of Biotechnology, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Da Sun
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China; Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China.
| | - Hongliang Zheng
- Department of Pharmacy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
| |
Collapse
|
3
|
Lei Y, Lin H, Chen Y, Wan B, Ao C, Liu J, Wang W. Epigenetic regulation of physiological resilience to ammonia nitrogen stress in the Pacific whiteleg shrimp Penaeus vannamei: Evidence from genome-wide DNA methylation dynamics. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101510. [PMID: 40220697 DOI: 10.1016/j.cbd.2025.101510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025]
Abstract
Although DNA methylation has emerged as an essential epigenetic mechanism modulating organismal responses to abiotic stresses, its involvement in the physiological resilience of marine invertebrates like shrimp to ammonia nitrogen toxicity remains enigmatic. Here, we performed the first comprehensive dissection of genome-wide DNA methylation dynamics in the Pacific whiteleg shrimp Penaeus vannamei exposed to ammonia nitrogen, based on whole-genome bisulfite sequencing and transcriptome analyses. In the genome of P. vannamei, three DNA methyltransferases (DNMT1, DNMT2 and DNMT3a), one DNA demethylase (TET2) and four methyl-CpG binding proteins (MBD2, MBD4, Kaiso, and UHRF1) were present. About 1.68-1.87 % of cytosine nucleotides were methylated, and higher percentages of cytosines in the CpG context (5.23 %-6.34 %) was methylated compared with the CHG and CHH contexts. Methylated cytosines were mostly enriched in the coding DNA sequence, and methylation peaks occurred near the transcription end sites. Following ammonia exposure, 4203 differentially expressed genes (DEGs) and 1100 differentially methylated genes (DMGs) were identified. The DMGs accounted for 4.4 % of the total gene reservoir in P. vannamei genome, and 212 shared genes were found between the DEGs and DMGs. Genes exhibiting significant methylation and expression changes were enriched in various pathways including the FoxO signaling pathway, autophagy and endocytosis. Among them was a group of genes related to energy metabolism, antioxidation response and detoxification metabolism, highlighting involvement of DNA methylation in fine-tuning these crucial physiological processes. These findings provide new insights into the regulatory roles of DNA methylation in the physiological resilience of marine invertebrates to aquatic stressors.
Collapse
Affiliation(s)
- Yiguo Lei
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Hanliang Lin
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yunhua Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Boquan Wan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chunmei Ao
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jianyong Liu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Wei Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China.
| |
Collapse
|
4
|
Moeinifar N, Hojati Z. Novel mutations found in genes involved in global developmental delay and intellectual disability by whole-exome sequencing, homology modeling, and systems biology. World J Biol Psychiatry 2025; 26:130-145. [PMID: 39853208 DOI: 10.1080/15622975.2025.2453198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/23/2024] [Accepted: 01/09/2025] [Indexed: 01/26/2025]
Abstract
BACKGROUND Genes associated with global developmental delay (GDD) and intellectual disability (ID) are increasingly being identified through next-generation sequencing (NGS) technologies. This study aimed to identify novel mutations in GDD/ID phenotypes through whole-exome sequencing (WES) and additional in silico analyses. MATERIAL AND METHODS WES was performed on 27 subjects, among whom 18 were screened for potential novel mutations. In silico analyses included protein-protein interactions (PPIs), gene-miRNA interactions (GMIs), and enrichment analyses. The identified novel variants were further modelled using I-Tasser-MTD and SWISS-MODEL, with structural superimposition performed. RESULTS Novel mutations were detected in 18 patients, with 10 variants reported for the first time. Among these, three were classified as pathogenic (DNMT1:c.856dup, KCNQ2:c.1635_1636insT, and TMEM94:c.2598_2599insC), and six were likely pathogenic. DNMT1 and MRE11 were highlighted as key players in PPIs and GMIs. GMIs analysis emphasised the roles of hsa-miR-30a-5p and hsa-miR-185-5p. The top-scoring pathways included the neuronal system (R-HSA-112316, p = 7.73E-04) and negative regulation of the smooth muscle cell apoptotic process (p = 3.37E-06). Homology modelling and superimposition revealed a significant functional loss in the mutated DNMT1 enzyme structure. CONCLUSION This study identified 10 novel pathogenic/likely pathogenic variants associated with GDD/ID, supported by clinical findings and in silico analyses focused on DNMT1 mutations.
Collapse
Affiliation(s)
- Nafiseh Moeinifar
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Zohreh Hojati
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
5
|
Ni Y, Chu T, Yan S, Wang Y. Forty-nine metagenomic-assembled genomes from an aquatic virome expand Caudoviricetes by 45 potential new families and the newly uncovered Gossevirus of Bamfordvirae. J Gen Virol 2024; 105. [PMID: 38446011 DOI: 10.1099/jgv.0.001967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Twenty complete genomes (29-63 kb) and 29 genomes with an estimated completeness of over 90 % (30-90 kb) were identified for novel dsDNA viruses in the Yangshan Harbor metavirome. These newly discovered viruses contribute to the expansion of viral taxonomy by introducing 46 potential new families. Except for one virus, all others belong to the class Caudoviricetes. The exception is a novel member of the recently characterized viral group known as Gossevirus. Fifteen viruses were predicted to be temperate. The predicted hosts for the viruses appear to be involved in various aspects of the nitrogen cycle, including nitrogen fixation, oxidation and denitrification. Two viruses were identified to have a host of Flavobacterium and Tepidimonas fonticaldi, respectively, by matching CRISPR spacers with viral protospacers. Our findings provide an overview for characterizing and identifying specific viruses from Yangshan Harbor. The Gossevirus-like virus uncovered emphasizes the need for further comprehensive isolation and investigation of polinton-like viruses.
Collapse
Affiliation(s)
- Yimin Ni
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, PR China
| | - Ting Chu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, PR China
| | - Shuling Yan
- Entwicklungsgenetik und Zellbiologie der Tiere, Philipps-Universität Marburg, Marburg, Germany
| | - Yongjie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, PR China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, PR China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs, Shanghai, PR China
| |
Collapse
|
6
|
Tao S, Wang J, Li F, Shi B, Ren Q, Zhuang Y, Qian X. Extracellular vesicles released by hypoxia-induced tumor-associated fibroblasts impart chemoresistance to breast cancer cells via long noncoding RNA H19 delivery. FASEB J 2024; 38:e23165. [PMID: 38197195 DOI: 10.1096/fj.202300203r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/11/2023] [Accepted: 08/14/2023] [Indexed: 01/11/2024]
Abstract
Recently, extracellular vesicles (EVs) have been emphasized in regulating the hypoxic tumor microenvironment of breast cancer (BC), where tumor-associated fibroblasts (TAFs) play a significant role. In this study, we describe possible molecular mechanisms behind the pro-tumoral effects of EVs, secreted by hypoxia (HP)-induced TAFs, on BC cell growth, metastasis, and chemoresistance. These mechanisms are based on long noncoding RNA H19 (H19) identified by microarray analysis. We employed an in silico approach to identify differentially expressed lncRNAs that were associated with BC. Subsequently, we explored possible downstream regulatory mechanisms. We isolated EVs from TAFs that were exposed to HP, and these EVs were denoted as HP-TAF-EVs henceforth. MTT, transwell, flow cytometry, and TUNEL assays were performed to assess the malignant phenotypes of BC cells. A paclitaxel (TAX)-resistant BC cell line was constructed, and xenograft tumor and lung metastasis models were established in nude mice for in vivo verification. Our observation revealed that lncRNA H19 was significantly overexpressed, whereas miR-497 was notably downregulated in BC. HP induced activation of TAFs and stimulated the secretion of EVs. Coculture of HP-TAF-EVs and BC cells led to an increase in TAX resistance of the latter. HP-TAF-EVs upregulated methylation of miR-497 by delivering lncRNA H19, which recruited DNMT1, thus lowering the expression of miR-497. In addition, lncRNA H19-containing HP-TAF-EVs hindered miR-497 expression, enhancing tumorigenesis and TAX resistance of BC cells in vivo. Our study presents evidence for the contribution of lncRNA H19-containing HP-TAF-EVs in the reduction of miR-497 expression through the recruitment of DNMT1, which in turn promotes the growth, metastasis, and chemoresistance of BC cells.
Collapse
Affiliation(s)
- Shuang Tao
- Department of Breast Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, P.R. China
- Department of Breast Surgery, The Wujin Clinical College, Xuzhou Medical University, Xuzhou, P.R. China
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
| | - Jian Wang
- Department of Oncological Surgery, Cancer Hospital of Yixing City, Yixing, P.R. China
| | - Fang Li
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bixia Shi
- Department of Breast Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, P.R. China
- Department of Breast Surgery, The Wujin Clinical College, Xuzhou Medical University, Xuzhou, P.R. China
| | - Quanhai Ren
- Department of Breast Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, P.R. China
- Department of Breast Surgery, The Wujin Clinical College, Xuzhou Medical University, Xuzhou, P.R. China
| | - Yuhong Zhuang
- Department of Breast Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, P.R. China
- Department of Breast Surgery, The Wujin Clinical College, Xuzhou Medical University, Xuzhou, P.R. China
| | - Xiaoping Qian
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Shi Q, Zheng X, Hu Y, Zhou Z, Fang M, Huang X. Methylation of hypoxia-inducible factor 3 subunit alpha contributes to poor prognosis in lung adenocarcinoma. J Appl Genet 2023; 64:769-777. [PMID: 37707680 DOI: 10.1007/s13353-023-00784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023]
Abstract
Hypoxia-inducible factor 3 subunit alpha (HIF3A) has been implicated in various types of cancers, while its precise role in the lung adenocarcinoma remains unclear. Our study aimed to investigate the roles of HIF3A in lung adenocarcinoma and its regulation by DNA methylation. We utilized bioinformatic tools, including UALCAN and KMPlot, to analyze the relationship between HIF3A expression, DNA methylation, and patient survival rate in lung adenocarcinoma. We also used siRNA-mediated knockdown of HIF3A and DNA-methyltransferase 1 (DNMT1), as well as the treatment of DNA methylation inhibitor 5-Azacytidine, in A549 and H1299 lung adenocarcinoma cell lines. qPCR, MTT, and cell counting assays were performed to evaluate the mRNA expression and cell viability. The bioinformatic analysis revealed that HIF3A expression was downregulated and its methylation was upregulated in lung tumor tissues. Additionally, Kaplan-Meier analysis indicated a correlation between low HIF3A expression and patient poor survival rate. We found that DNMT1 regulated HIF3A methylation. Knockdown of HIF3A promoted cancer cell proliferation. These data suggest that downregulation of HIF3A promotes tumor cell proliferation, and support that HIF3A methylation may serve as a prognostic factor for lung adenocarcinoma.
Collapse
Affiliation(s)
- Qin Shi
- Oncology Department, Fujian Fuzhou Pulmonary Hospital, No.2 Shangdu Hubian, Cangshan District, Fuzhou, 350000, Fujian, China.
| | - Xiuxia Zheng
- Oncology Department, Fujian Fuzhou Pulmonary Hospital, No.2 Shangdu Hubian, Cangshan District, Fuzhou, 350000, Fujian, China
| | - Ying Hu
- Oncology Department, Fujian Fuzhou Pulmonary Hospital, No.2 Shangdu Hubian, Cangshan District, Fuzhou, 350000, Fujian, China
| | - Zhan Zhou
- Oncology Department, Fujian Fuzhou Pulmonary Hospital, No.2 Shangdu Hubian, Cangshan District, Fuzhou, 350000, Fujian, China
| | - Minshan Fang
- Oncology Department, Fujian Fuzhou Pulmonary Hospital, No.2 Shangdu Hubian, Cangshan District, Fuzhou, 350000, Fujian, China
| | - Xinhui Huang
- Oncology Department, Fujian Fuzhou Pulmonary Hospital, No.2 Shangdu Hubian, Cangshan District, Fuzhou, 350000, Fujian, China
| |
Collapse
|
8
|
Yildiz CB, Kundu T, Gehrmann J, Koesling J, Ravaei A, Wolff P, Kraft F, Maié T, Jakovcevski M, Pensold D, Zimmermann O, Rossetti G, Costa IG, Zimmer-Bensch G. EphrinA5 regulates cell motility by modulating Snhg15/DNA triplex-dependent targeting of DNMT1 to the Ncam1 promoter. Epigenetics Chromatin 2023; 16:42. [PMID: 37880732 PMCID: PMC10601256 DOI: 10.1186/s13072-023-00516-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
Cell-cell communication is mediated by membrane receptors and their ligands, such as the Eph/ephrin system, orchestrating cell migration during development and in diverse cancer types. Epigenetic mechanisms are key for integrating external "signals", e.g., from neighboring cells, into the transcriptome in health and disease. Previously, we reported ephrinA5 to trigger transcriptional changes of lncRNAs and protein-coding genes in cerebellar granule cells, a cell model for medulloblastoma. LncRNAs represent important adaptors for epigenetic writers through which they regulate gene expression. Here, we investigate a lncRNA-mediated targeting of DNMT1 to specific gene loci by the combined power of in silico modeling of RNA/DNA interactions and wet lab approaches, in the context of the clinically relevant use case of ephrinA5-dependent regulation of cellular motility of cerebellar granule cells. We provide evidence that Snhg15, a cancer-related lncRNA, recruits DNMT1 to the Ncam1 promoter through RNA/DNA triplex structure formation and the interaction with DNMT1. This mediates DNA methylation-dependent silencing of Ncam1, being abolished by ephrinA5 stimulation-triggered reduction of Snhg15 expression. Hence, we here propose a triple helix recognition mechanism, underlying cell motility regulation via lncRNA-targeted DNA methylation in a clinically relevant context.
Collapse
Affiliation(s)
- Can Bora Yildiz
- Institute of Zoology (Biology 2), Division of Neuroepigenetics, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
- Research Training Group 2416 Multi Senses - Multi Scales, RWTH Aachen University, 52074, Aachen, Germany
| | - Tathagata Kundu
- Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Julia Gehrmann
- Institute for Computational Genomics, RWTH Aachen University, Medical Faculty, 52074, Aachen, Germany
| | - Jannis Koesling
- Institute of Zoology (Biology 2), Division of Neuroepigenetics, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Amin Ravaei
- Institute of Zoology (Biology 2), Division of Neuroepigenetics, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
- Department of Neurosciences and Rehabilitation, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy
| | - Philip Wolff
- Institute of Zoology (Biology 2), Division of Neuroepigenetics, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Florian Kraft
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
| | - Tiago Maié
- Institute for Computational Genomics, RWTH Aachen University, Medical Faculty, 52074, Aachen, Germany
| | - Mira Jakovcevski
- Institute of Zoology (Biology 2), Division of Neuroepigenetics, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Daniel Pensold
- Institute of Zoology (Biology 2), Division of Neuroepigenetics, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Olav Zimmermann
- Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Giulia Rossetti
- Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Department of Neurology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine (INM-9)/Institute of Advanced Simulations (IAS-5), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, RWTH Aachen University, Medical Faculty, 52074, Aachen, Germany
| | - Geraldine Zimmer-Bensch
- Institute of Zoology (Biology 2), Division of Neuroepigenetics, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany.
- Research Training Group 2416 Multi Senses - Multi Scales, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
9
|
Lin L, Song Q, Cheng W, Liu C, Zhou A, Zhou Z, Chen P. MiR-216a reduces apoptosis of pulmonary microvascular endothelial cells in COPD by targeting DNMT1. Tob Induc Dis 2023; 21:130. [PMID: 37822364 PMCID: PMC10563178 DOI: 10.18332/tid/171357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 10/13/2023] Open
Abstract
INTRODUCTION Abnormal apoptosis of pulmonary microvascular endothelial cells (PMVECs) participates in the pathogenesis of COPD. Studies have shown that microRNAs (miRNAs) contribute to the pathogenesis of pulmonary diseases by regulating cell apoptosis. The present study aimed to investigate the effects of miR-216a in cigarette smoke extract (CSE)-induced apoptosis of PMVECs in COPD and explore the potential mechanisms. METHODS The emphysema model mice were treated with CSE and CS exposure. The expression of miR-216a and DNA methyltransferase 1 (DNMT1) was assessed in emphysema mice and COPD patients. The miR-216a mimic and Lenti-DNMT1 were transfected into PMVECs to identify the underlying mechanisms. The expression levels of miR-216a and DNMT1 were detected by real-time quantitative polymerase chain reaction (RT-qPCR) or Western blot. Moreover, cell apoptosis was examined by flow cytometry assays. RESULTS The results show that the expression of miR-216a was decreased, whereas the expression of DNMT1 was increased in the lung tissue of emphysema mice and COPD patients. In addition, the expression of miR-216a was significantly reduced in CSE-treated PMVECs, and the overexpression of miR-216a attenuated CSE-induced PMVEC apoptosis. Furthermore, the expression of DNMT1 was increased in the CSE-induced PMVECs and then was reduced after the overexpression of miR-216a in the CSE-stimulated PMVECs. Luciferase reporter assays confirmed the target reaction between miR-216a and DNMT1. Also, the overexpression of DNMT1 was able to reverse the anti-apoptotic effect of miR-216a in CSE-induced PMVECs. CONCLUSIONS The results indicate that miR-216a may play a crucial role in CSE-induced apoptosis by directly regulating its target gene DNMT1 in COPD. It provides insights into the function of MiR-216a/DNMT1 as a potential molecule in COPD.
Collapse
Affiliation(s)
- Ling Lin
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Qing Song
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Wei Cheng
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Cong Liu
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Aiyuan Zhou
- Department of Respiratory and Critical Care Medicine, the Xiangya Hospital, Central South University, Changsha, China
| | - Zijing Zhou
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Ping Chen
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| |
Collapse
|
10
|
Wang M, Cui K, Guo J, Mu W. Curculigoside attenuates osteoporosis through regulating DNMT1 mediated osteoblast activity. In Vitro Cell Dev Biol Anim 2023; 59:649-657. [PMID: 37880555 DOI: 10.1007/s11626-023-00813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/15/2023] [Indexed: 10/27/2023]
Abstract
This work aims to study the function of curculigoside in osteoporosis and explore whether DNMT1 is closely involved in osteoblast activity. After OB-6 osteoblasts were treated with hydrogen peroxide (H2O2), a curculigoside treatment group was set up and a series of biological tests including MTT, flow cytometry, western blotting, ROS fluorescence intensity, mitochondrial membrane potential, and ELISA experiments were performed to verify the effect of curculigoside on the activity of osteoblasts. Then, alkaline phosphatase (ALP) activity, alizarin red staining, PCR, and western blotting assays were performed to detect the effects of curculigoside on osteoblast function. By constructing DNMT1 knockdown and overexpression OB-6 cell lines, the effect of DNMT1 on osteoblast function was verified. In addition, the expression level of Nrf2 in each group was detected to speculate the mechanism of DNMT1 in osteoporosis. The cell activity and level of bcl-2 and SOD were significantly increased; the cell apoptosis, ROS fluorescence intensity, mitochondrial membrane potential, MDA and level of caspase-3, Bax, and CAT was reduced in curculigoside treatment group compared with H2O2-induced OB-6 osteoblasts. Meanwhile, the ALP activity, number and area of bone mineralized nodules, and gene and protein expression of OSX and OPG were significantly elevated in curculigoside group. Moreover, DNMT1 knockdown had a similar promotion effect on osteoblast function as curculigoside, and DNMT1 overexpression could reverse the promotion effect of curculigoside on osteoblast function. Further mechanistic studies speculated that DNMT1 might play a role in osteoporosis by affecting Nrf2 methylation. Curculigoside enhances osteoblast activity through DNMT1 controls of Nrf2 methylation.
Collapse
Affiliation(s)
- Mingliang Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, China.
- Department of Orthopedic Trauma, Rizhao Hospital of Traditional Chinese Medicine, No. 35 Wanghai Road, Donggang District, Rizhao, 276800, China.
| | - Kaiying Cui
- Department of Orthopedic Spine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Jie Guo
- Maternity and Child Health Care of Rizhao, Rizhao, 276800, China
| | - Weidong Mu
- Department of Orthopedic Trauma, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jing Wu Wei Qi Road, Huaiyin District, Jinan, 250000, China.
| |
Collapse
|
11
|
Wang H, Liu B, Chen H, Xu P, Xue H, Yuan J. Dynamic changes of DNA methylation induced by benzo(a)pyrene in cancer. Genes Environ 2023; 45:21. [PMID: 37391844 DOI: 10.1186/s41021-023-00278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/07/2023] [Indexed: 07/02/2023] Open
Abstract
Benzo(a)pyrene (BaP), the earliest and most significant carcinogen among polycyclic aromatic hydrocarbons (PAHs), has been found in foods, tobacco smoke, and automobiles exhaust, etc. Exposure to BaP induced DNA damage directly, or oxidative stress-related damage, resulting in cell apoptosis and carcinogenesis in human respiratory system, digestive system, reproductive system, etc. Moreover, BaP triggered genome-wide epigenetic alterations by methylation, which might cause disturbances in regulation of gene expression, and thereby induced cancer. It has been proved that BaP reduced genome-wide DNA methylation, and activated proto-oncogene by hypomethylation in the promoter region, but silenced tumor suppressor genes by promoter hypermethylation, resulting in cancer initiation and progression. Here we summarized the changes in DNA methylation in BaP exposure, and revealed the methylation of DNA plays a role in cancer development.
Collapse
Affiliation(s)
- Huizeng Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Bingchun Liu
- Stem Cell Research Center, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Hong Chen
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Peixin Xu
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Huiting Xue
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010010, China.
| | - Jianlong Yuan
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China.
| |
Collapse
|
12
|
Gómez de Cedrón M, Moreno Palomares R, Ramírez de Molina A. Metabolo-epigenetic interplay provides targeted nutritional interventions in chronic diseases and ageing. Front Oncol 2023; 13:1169168. [PMID: 37404756 PMCID: PMC10315663 DOI: 10.3389/fonc.2023.1169168] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/24/2023] [Indexed: 07/06/2023] Open
Abstract
Epigenetic modifications are chemical modifications that affect gene expression without altering DNA sequences. In particular, epigenetic chemical modifications can occur on histone proteins -mainly acetylation, methylation-, and on DNA and RNA molecules -mainly methylation-. Additional mechanisms, such as RNA-mediated regulation of gene expression and determinants of the genomic architecture can also affect gene expression. Importantly, depending on the cellular context and environment, epigenetic processes can drive developmental programs as well as functional plasticity. However, misbalanced epigenetic regulation can result in disease, particularly in the context of metabolic diseases, cancer, and ageing. Non-communicable chronic diseases (NCCD) and ageing share common features including altered metabolism, systemic meta-inflammation, dysfunctional immune system responses, and oxidative stress, among others. In this scenario, unbalanced diets, such as high sugar and high saturated fatty acids consumption, together with sedentary habits, are risk factors implicated in the development of NCCD and premature ageing. The nutritional and metabolic status of individuals interact with epigenetics at different levels. Thus, it is crucial to understand how we can modulate epigenetic marks through both lifestyle habits and targeted clinical interventions -including fasting mimicking diets, nutraceuticals, and bioactive compounds- which will contribute to restore the metabolic homeostasis in NCCD. Here, we first describe key metabolites from cellular metabolic pathways used as substrates to "write" the epigenetic marks; and cofactors that modulate the activity of the epigenetic enzymes; then, we briefly show how metabolic and epigenetic imbalances may result in disease; and, finally, we show several examples of nutritional interventions - diet based interventions, bioactive compounds, and nutraceuticals- and exercise to counteract epigenetic alterations.
Collapse
Affiliation(s)
- Marta Gómez de Cedrón
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM, CSIC, Madrid, Spain
- Cell Metabolism Unit, IMDEA Food Institute, CEI UAM, CSIC, Madrid, Spain
| | - Rocío Moreno Palomares
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM, CSIC, Madrid, Spain
- FORCHRONIC S.L, Avda. Industria, Madrid, Spain
| | | |
Collapse
|
13
|
Feng C, Jiang Y, Wu G, Shi Y, Ge Y, Li B, Cheng X, Tang X, Zhu J, Le G. Dietary Methionine Restriction Improves Gastrocnemius Muscle Glucose Metabolism through Improved Insulin Secretion and H19/IRS-1/Akt Pathway in Middle-Aged Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5655-5666. [PMID: 36995760 DOI: 10.1021/acs.jafc.2c08373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Methionine restriction (MR) improves glucose metabolism. In skeletal muscle, H19 is a key regulator of insulin sensitivity and glucose metabolism. Therefore, this study aims to reveal the underlying mechanism of H19 upon MR on glucose metabolism in skeletal muscle. Middle-aged mice were fed MR diet for 25 weeks. Mouse islets β cell line β-TC6 cells and mouse myoblast cell line C2C12 cells were used to establish the apoptosis or insulin resistance model. Our findings showed that MR increased B-cell lymphoma-2 (Bcl-2) expression, deceased Bcl-2 associated X protein (Bax), cleaved cysteinyl aspartate-specific proteinase-3 (Caspase-3) expression in pancreas, and promoted insulin secretion of β-TC6 cells. Meanwhile, MR increased H19 expression, insulin Receptor Substrate-1/insulin Receptor Substrate-2 (IRS-1/IRS-2) value, protein Kinase B (Akt) phosphorylation, glycogen synthase kinase-3β (GSK3β) phosphorylation, and hexokinase 2 (HK2) expression in gastrocnemius muscle and promoted glucose uptake in C2C12 cells. But these results were reversed after H19 knockdown in C2C12 cells. In conclusion, MR alleviates pancreatic apoptosis and promotes insulin secretion. And MR enhances gastrocnemius muscle insulin-dependent glucose uptake and utilization via the H19/IRS-1/Akt pathway, thereby ameliorating blood glucose disorders and insulin resistance in high-fat-diet (HFD) middle-aged mice.
Collapse
Affiliation(s)
- Chuanxing Feng
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuge Jiang
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guoqing Wu
- School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yonghui Shi
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yueting Ge
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Bowen Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiangrong Cheng
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xue Tang
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianjin Zhu
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guowei Le
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
14
|
Aberrant expression of LINC00346 regulates cell migration and proliferation via competitively binding to miRNA-148a-3p/Dnmt1 in Hirschsprung's disease. Pediatr Surg Int 2022; 38:1273-1281. [PMID: 35836014 DOI: 10.1007/s00383-022-05144-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Hirschsprung's disease (HSCR) is a common birth defect caused by dysplasia of neural crest cells in the gut. Long noncoding RNAs (lncRNAs) play an important role in cellular processes, including development and disease. Despite the known engagement of LINC00346 in several human diseases, its biological function in HSCR remains unknown. METHODS The relative expression levels of LINC00346, miR-148a-3p and Dnmt1 in HSCR colon tissues were detected by quantitative real-time PCR. Western blot assays were conducted to investigate the Dnmt1 protein expression level. Knockdown of LINC00346 and overexpression of miR-148a-3p in SH-SY5Y and SK-N-BE(2) cell lines was conducted. Cell proliferation and migration were detected by cell counting Kit-8 assays, 5-ethynyl-2'-deoxyuridine assays and transwell assays. Cell apoptosis was verified by flow cytometric analysis. Furthermore, the competing endogenous RNA (ceRNA) activity of LINC00346 on miR-148a-5p was investigated via bioinformatics analysis and luciferase reporter assays. RESULT Downregulation of LINC00346 and Dnmt1 was detected in HSCR tissues. Knockdown of LINC00346 and overexpression of miR-148a-3p in SK-N-BE(2) and SH-SY5Y cells inhibited cell migration and proliferation and promoted apoptosis. Moreover, the miR-148a-3p inhibitor rescued the downregulation of Dnmt1 in LINC00346 knockdown cell lines, which was evidence of the ceRNA regulatory mechanism of Dnmt1 by LINC00346. CONCLUSIONS LINC00346 was downregulated in HSCR colon tissues and acted as a ceRNA to regulate the expression of Dnmt1 in vitro. Together, these findings indicate that LINC00346 could affect the occurrence of HSCR by participating in the development of enteric neural crest cells.
Collapse
|
15
|
Wei Y, Chen Q, Huang S, Liu Y, Li Y, Xing Y, Shi D, Xu W, Liu W, Ji Z, Wu B, Chen X, Jiang J. The Interaction between DNMT1 and High-Mannose CD133 Maintains the Slow-Cycling State and Tumorigenic Potential of Glioma Stem Cell. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202216. [PMID: 35798319 PMCID: PMC9475542 DOI: 10.1002/advs.202202216] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 05/24/2023]
Abstract
The quiescent/slow-cycling state preserves the self-renewal capacity of cancer stem cells (CSCs) and leads to the therapy resistance of CSCs. The mechanisms maintaining CSCs quiescence remain largely unknown. Here, it is demonstrated that lower expression of MAN1A1 in glioma stem cell (GSC) resulted in the formation of high-mannose type N-glycan on CD133. Furthermore, the high-mannose type N-glycan of CD133 is necessary for its interaction with DNMT1. Activation of p21 and p27 by the CD133-DNMT1 interaction maintains the slow-cycling state of GSC, and promotes chemotherapy resistance and tumorigenesis of GSCs. Elimination of the CD133-DNMT1 interaction by a cell-penetrating peptide or MAN1A1 overexpression inhibits the tumorigenesis of GSCs and increases the sensitivity of GSCs to temozolomide. Analysis of glioma samples reveals that the levels of high-mannose type N-glycan are correlated with glioma recurrence. Collectively, the high mannose CD133-DNMT1 interaction maintains the slow-cycling state and tumorigenic potential of GSC, providing a potential strategy to eliminate quiescent GSCs.
Collapse
Affiliation(s)
- Yuanyan Wei
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Qihang Chen
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Sijing Huang
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Yingchao Liu
- Department of NeurosurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandong250021P. R. China
| | - Yinan Li
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Yang Xing
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Danfang Shi
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Wenlong Xu
- Division of NeurosurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Weitao Liu
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Zhi Ji
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Bingrui Wu
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Xiaoning Chen
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Jianhai Jiang
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| |
Collapse
|
16
|
Niu N, Li H, Du X, Wang C, Li J, Yang J, Liu C, Yang S, Zhu Y, Zhao W. Effects of NRF-1 and PGC-1α cooperation on HIF-1α and rat cardiomyocyte apoptosis under hypoxia. Gene 2022; 834:146565. [PMID: 35569770 DOI: 10.1016/j.gene.2022.146565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Hypoxia is a primary inducer of cardiomyocyte injury, its significant marker being hypoxia-induced cardiomyocyte apoptosis. Nuclear respiratory factor-1 (NRF-1) and hypoxia-inducible factor-1α (HIF-1α) are transcriptional regulatory elements implicated in multiple biological functions, including oxidative stress response. However, their roles in hypoxia-induced cardiomyocyte apoptosis remain unknown. The effect HIF-1α, together with NRF-1, exerts on cardiomyocyte apoptosis also remains unclear. METHODS We established a myocardial hypoxia model and investigated the effects of these proteins on the proliferation and apoptosis of rat cardiomyocytes (H9C2) under hypoxia. Further, we examined the association between NRF-1 and HIF-1α to improve the current understanding of NRF-1 anti-apoptotic mechanisms. RESULTS The results show that NRF-1 and HIF-1α are important anti-apoptotic molecules in H9C2 cells under hypoxia, although their regulatory mechanisms differ. NRF-1 could bind to the promoter region of Hif1a and negatively regulate its expression. Additionally, HIF-1β exhibited competitive binding with NRF-1 and HIF-1α, demonstrating a synergism between NRF-1 and the peroxisome proliferator-activated receptor-gamma coactivator-1α. CONCLUSION These results indicate that cardiomyocytes can regulate different molecular patterns to tolerate hypoxia, providing a novel methodological framework for studying cardiomyocyte apoptosis under hypoxia.
Collapse
Affiliation(s)
- Nan Niu
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli South Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Hui Li
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli South Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Xiancai Du
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli South Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Chan Wang
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli South Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Junliang Li
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli South Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Jihui Yang
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli South Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Cheng Liu
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli South Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Songhao Yang
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli South Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Yazhou Zhu
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli South Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Wei Zhao
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli South Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
17
|
Investigating the role of DNMT1 gene expression on myocardial ischemia reperfusion injury in rat and associated changes in mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148566. [PMID: 35489443 DOI: 10.1016/j.bbabio.2022.148566] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 12/31/2022]
Abstract
Altered DNA methylation and mitochondrial dysfunction are the two key features of myocardial ischemia reperfusion injury (I/R), but their association with I/R remains unknown. In the present study, the relationship between DNA methyl transferase1 (DNMT1), the key methylation gene, and the mitochondrial quality control genes in rat heart during I/R was explored. We used the Langendorff rat heart model with 30 min of ischemia followed by 60 min of reperfusion and subsequent inhibition of DNMT1 with 5-azacytidine to evaluate the role of DNA methylation in I/R. Reperfusion significantly increased the expression of the DNMT1 gene, enzyme activity, and global DNA methylation levels, along with decreased mitochondrial copy, electron transport chain (ETC) activities, and ATP level. This was in agreement with the significant downregulation of 11 mitochondrial genes PGC-1α, TFAM, POLG, MFN1 and MFN2, FIS1, PARKIN, OPTN, ND1, ND4L, Cyt B and COX1 in I/R induced rat hearts. The expression pattern of the mitochondrial genes PGC-1α, TFAM, ND1 and Cyt B showed a significant negative correlation with DNMT1 expression. Rate pressure product, index of cardiac performance negatively correlated with DNMT1 expression (r = -0.8231, p = 0.0456). However, DNMT1 inhibited rat hearts via 5-azacytidine significantly improved the heart from I/R injury and reversed the I/R associated changes in the gene expression of TFAM, POLG, PGC-1α, ND1, COX1 and Cyt B, and improved the overall mtDNA copies, with a subsequent improvement in the ETC enzyme activity and ATP levels. To conclude, I/R augmented the DNMT1 activity with a subsequent increase in cardiac injury via downregulating the mitochondrial functional genes.
Collapse
|
18
|
Shi Q, Feng N, Ma Q, Wang S, Zhang H, Huang D, Sun J, Shi M. ZNF354C Mediated by DNMT1 Ameliorates Lung Ischemia-Reperfusion Oxidative Stress Injury by Reducing TFPI Promoter Methylation to Upregulate TFPI. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7288729. [PMID: 35915612 PMCID: PMC9338733 DOI: 10.1155/2022/7288729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/06/2022] [Accepted: 05/27/2022] [Indexed: 12/02/2022]
Abstract
Background Pulmonary ischemia reperfusion- (I/R-) induced dysfunction is a significant clinical problem after lung transplantation. In this study, we aim to explore the molecular mechanism of lung I/R injury (LIRI). Methods Bioinformatic analysis of gene involved in oxidative stress. A HUVEC oxygen glucose deprivation/reoxygenation (OGD/R) model and I/R mouse model were first established via I/R. The cellular proliferation, migration, reactive oxygen species (ROS), and parameters of lung injury were assessed via CCK-8, EdU staining, Transwell, cellular ROS kit, and H&E staining. We also confirmed related gene expressions and protein levels and the interaction between the tissue factor pathway inhibitor (TFPI) promotor and ZNF354C. Results Bioinformatic analysis results showed TFPI contributed to oxidative stress. OGD/R caused a reduction in cell viability and migration, hypermethylation of TFPI, increased ROS, and downregulation of ZNF354C, TFPI, and DNA methyltransferases (DNMTs) in HUVECs. Besides, ZNF354C could directly bind to the TFPI promoter, enhance proliferation and migration, and inhibit ROS in OGD/R-induced HUVECs by upregulating TFPI. More importantly, we discovered that 5-Aza could reduce TFPI methylation, upregulate TFPI, and enhance the binding of ZNF354C to the TFPI promoter in LIRI. Furthermore, DNMT1 silencing could induce proliferation and migration and prevent ROS in OGD/R-induced HUVECs by upregulating ZNF354C. Additionally, we verified that ZNF354C could alleviate LIRI by preventing DNA methylation in vivo. Conclusions ZNF354C overexpression induced proliferation and migration, as well as suppressed ROS in OGD/R-induced HUVECs, and alleviated LIRI in mice by inhibiting TFPI promoter methylation to upregulate TFPI. Therefore, ZNF354C and TFPI methylation might be promising molecular markers for LIRI therapy.
Collapse
Affiliation(s)
- Qi Shi
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai 200040, China
- Department of Respiratory Endoscopy, Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Nana Feng
- Department of Respiratory and Critical Medicine, Shanghai Eighth People's Hospital Affiliated to Jiang Su University, Shanghai 200030, China
| | - Qingyun Ma
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai 200040, China
| | - Shaohua Wang
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai 200040, China
| | - Huijun Zhang
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai 200040, China
| | - Dayu Huang
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai 200040, China
| | - Jiayuan Sun
- Department of Respiratory Endoscopy, Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Meng Shi
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai 200040, China
| |
Collapse
|
19
|
Mensah IK, Norvil AB, AlAbdi L, McGovern S, Petell CJ, He M, Gowher H. Misregulation of the expression and activity of DNA methyltransferases in cancer. NAR Cancer 2021; 3:zcab045. [PMID: 34870206 PMCID: PMC8634572 DOI: 10.1093/narcan/zcab045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
In mammals, DNA methyltransferases DNMT1 and DNMT3's (A, B and L) deposit and maintain DNA methylation in dividing and nondividing cells. Although these enzymes have an unremarkable DNA sequence specificity (CpG), their regional specificity is regulated by interactions with various protein factors, chromatin modifiers, and post-translational modifications of histones. Changes in the DNMT expression or interacting partners affect DNA methylation patterns. Consequently, the acquired gene expression may increase the proliferative potential of cells, often concomitant with loss of cell identity as found in cancer. Aberrant DNA methylation, including hypermethylation and hypomethylation at various genomic regions, therefore, is a hallmark of most cancers. Additionally, somatic mutations in DNMTs that affect catalytic activity were mapped in Acute Myeloid Leukemia cancer cells. Despite being very effective in some cancers, the clinically approved DNMT inhibitors lack specificity, which could result in a wide range of deleterious effects. Elucidating distinct molecular mechanisms of DNMTs will facilitate the discovery of alternative cancer therapeutic targets. This review is focused on: (i) the structure and characteristics of DNMTs, (ii) the prevalence of mutations and abnormal expression of DNMTs in cancer, (iii) factors that mediate their abnormal expression and (iv) the effect of anomalous DNMT-complexes in cancer.
Collapse
Affiliation(s)
- Isaiah K Mensah
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | - Lama AlAbdi
- Department of Zoology, Collage of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sarah McGovern
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | - Ming He
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
20
|
Picerno A, Stasi A, Franzin R, Curci C, di Bari I, Gesualdo L, Sallustio F. Why stem/progenitor cells lose their regenerative potential. World J Stem Cells 2021; 13:1714-1732. [PMID: 34909119 PMCID: PMC8641024 DOI: 10.4252/wjsc.v13.i11.1714] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/26/2021] [Accepted: 10/31/2021] [Indexed: 02/06/2023] Open
Abstract
Nowadays, it is clear that adult stem cells, also called as tissue stem cells, play a central role to repair and maintain the tissue in which they reside by their self-renewal ability and capacity of differentiating into distinct and specialized cells. As stem cells age, their renewal ability declines and their capacity to maintain organ homeostasis and regeneration is impaired. From a molecular perspective, these changes in stem cells properties can be due to several types of cell intrinsic injury and DNA aberrant alteration (i.e epigenomic profile) as well as changes in the tissue microenviroment, both into the niche and by systemic circulating factors. Strikingly, it has been suggested that aging-induced deterioration of stem cell functions may play a key role in the pathophysiology of the various aging-associated disorders. Therefore, understanding how resident stem cell age and affects near and distant tissues is fundamental. Here, we examine the current knowledge about aging mechanisms in several kinds of adult stem cells under physiological and pathological conditions and the principal aging-related changes in number, function and phenotype that determine the loss of tissue renewal properties. Furthermore, we examine the possible cell rejuvenation strategies. Stem cell rejuvenation may reverse the aging phenotype and the discovery of effective methods for inducing and differentiating pluripotent stem cells for cell replacement therapies could open up new possibilities for treating age-related diseases.
Collapse
Affiliation(s)
- Angela Picerno
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari 70124, Italy
| | - Alessandra Stasi
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari 70124, Italy
| | - Rossana Franzin
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari 70124, Italy
| | - Claudia Curci
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari 70124, Italy
| | - Ighli di Bari
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari 70124, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari 70124, Italy
| | - Fabio Sallustio
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari 70124, Italy
| |
Collapse
|
21
|
Demircan T, Yavuz M, Kaya E, Akgül S, Altuntaş E. Cellular and Molecular Comparison of Glioblastoma Multiform Cell Lines. Cureus 2021; 13:e16043. [PMID: 34345539 PMCID: PMC8322107 DOI: 10.7759/cureus.16043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiform (GBM) is one of the most severe tumor types. It is highly invasive and characterized as a grade IV neoplastic cancer. Its resistance to chemotherapy-temozolomide (TMZ treatment)-in combination with tumor treating fields (TTFields), limits the cure of GBM. Therefore researchers are searching for new treatment options to increase the length of recurrence time and improve overall survival for GBM patients. Several cell lines have been established and are in use to understand the molecular basis of GBM and to test the developed drugs. On one hand, it is highly advantageous to utilize multiple cell lines with different genetic backgrounds to gain more insight into the characterization and treatment of the disease. However, on the other hand, characteristics of these cell lines such as proliferation rate, invasion, and colony formation capacity differ greatly among these cells. Hence, a detailed comparison concerning molecular and cellular features of commonly used cell lines is essential. In this study, cell proliferation and apoptosis rate, cell migration capacity, and gene expression profile of U87, Ln229, and SvGp12 cells have been investigated and compared.
Collapse
Affiliation(s)
| | - Mervenur Yavuz
- Institute of Health Sciences, Muğla Sıtkı Koçman University, Muğla, TUR
| | - Egemen Kaya
- Surgery, Mugla Sitki Kocman University, Muğla, TUR
| | - Sıddıka Akgül
- Institute of Health Sciences, Aydın Adnan Menderes University, Aydın, TUR
| | - Ebru Altuntaş
- Institute of Natural Sciences, Muğla Sıtkı Koçman University, Muğla, TUR
| |
Collapse
|
22
|
Sieber KR, Dorman T, Newell N, Yan H. (Epi)Genetic Mechanisms Underlying the Evolutionary Success of Eusocial Insects. INSECTS 2021; 12:498. [PMID: 34071806 PMCID: PMC8229086 DOI: 10.3390/insects12060498] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022]
Abstract
Eusocial insects, such as bees, ants, and wasps of the Hymenoptera and termites of the Blattodea, are able to generate remarkable diversity in morphology and behavior despite being genetically uniform within a colony. Most eusocial insect species display caste structures in which reproductive ability is possessed by a single or a few queens while all other colony members act as workers. However, in some species, caste structure is somewhat plastic, and individuals may switch from one caste or behavioral phenotype to another in response to certain environmental cues. As different castes normally share a common genetic background, it is believed that much of this observed within-colony diversity results from transcriptional differences between individuals. This suggests that epigenetic mechanisms, featured by modified gene expression without changing genes themselves, may play an important role in eusocial insects. Indeed, epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNAs, have been shown to influence eusocial insects in multiple aspects, along with typical genetic regulation. This review summarizes the most recent findings regarding such mechanisms and their diverse roles in eusocial insects.
Collapse
Affiliation(s)
- Kayli R. Sieber
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Taylor Dorman
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Nicholas Newell
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Hua Yan
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
- Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
23
|
Moderate DNA hypomethylation suppresses intestinal tumorigenesis by promoting caspase-3 expression and apoptosis. Oncogenesis 2021; 10:38. [PMID: 33947834 PMCID: PMC8096944 DOI: 10.1038/s41389-021-00328-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/18/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Global DNA hypomethylation is a most common epigenetic alteration in human neoplasia. However, accumulative evidence shows that global DNA hypomethylation impacts tumorigenesis in a tissue-specific manner, promoting tumorigenesis in some but suppressing tumorigenesis in others including colorectal cancer. The underlying mechanisms, especially how DNA hypomethylation suppresses tumorigenesis, remain largely unknown. Here, we investigate how DNA hypomethylation affects intestinal tumorigenesis by using an Uhrf1 tandem tudor domain knockin mutant mouse model (Uhrf1ki/ki) that exhibits a moderate ~10% reduction of global DNA methylation. We found that both chemical-induced colorectal carcinogenesis and Apc loss of heterozygosity (LOH)-induced intestinal tumorigenesis are substantially suppressed in the Uhrf1 mutant mice. Furthermore, unlike Dnmt1 hypomorphic mice in which DNA hypomethylation suppresses the incidence of macroscopic intestinal tumors but promotes the formation of microadenoma in ApcMin/+ background, Uhrf1ki/ki/ApcMin/+ mice have markedly reduced incidence of both microadenoma and macroadenoma. DNA hypomethylation does not appear to affect Apc LOH, activation of the Wnt or Hippo pathway, or tumor cell proliferation, but acts cooperatively with activated Wnt pathway to enhance the caspase-3 gene expression, activation, and apoptosis. Furthermore, increased caspase-3 expression correlates with DNA hypomethylation within the caspase-3 enhancer regions. Taken together, we present a new mouse model for investigating the role of and the molecular mechanisms by which DNA hypomethylation suppresses intestinal tumorigenesis. Our finding that a moderate DNA hypomethylation is sufficient to suppress intestinal tumorigenesis by promoting caspase-3 expression and apoptosis sheds new light on DNA-methylation inhibitor-based colorectal cancer therapeutics.
Collapse
|
24
|
Alkaff AH, Saragih M, Imana SN, Nasution MAF, Tambunan USF. Identification of DNA Methyltransferase-1 Inhibitor for Breast Cancer Therapy through Computational Fragment-Based Drug Design. Molecules 2021; 26:E375. [PMID: 33450856 PMCID: PMC7828308 DOI: 10.3390/molecules26020375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 01/09/2023] Open
Abstract
Epimutation by DNA Methyltransferase 1 (DNMT1), an epigenetic regulator enzyme, may lead to the proliferation of breast cancer. In this report, 168,686 natural products from the PubChem database were screened and modified by in silico method to acquire the potential inhibitor of DNMT1. The initial screening of PubChem natural products using Lipinski's and Veber's rules of three and toxic properties have resulted in 2601 fragment candidates. Four fragments from pharmacophore-based molecular docking simulation were modified by utilizing FragFP and the Lipinski's and Veber's rules of five, and resulted in 51,200 ligands. The toxicological screening collected 13,563 ligands for a series of pharmacophore-based molecular docking simulations to sort out the modified ligands, which had the better binding activity and interactions to DNMT1 compared to the standards, SAH, SAM, and SFG. This step resulted in five ligand candidates, namely C-7756, C-5769, C-1723, C-2129, and C-2140. The ADME-Tox properties prediction showed that the selected ligands are generally better than standards in terms of druglikeness, GI absorption, and oral bioavailability. C-7756 exhibited a stronger affinity to DNMT1 as well as better ADME-Tox properties compared to the other ligands.
Collapse
Affiliation(s)
| | | | | | | | - Usman Sumo Friend Tambunan
- Bioinformatics and Biomedicals Research Group, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, West Java, Indonesia; (A.H.A.); (M.S.); (S.N.I.); (M.A.F.N.)
| |
Collapse
|
25
|
Abstract
Cancer can be identified as an uncontrolled growth and reproduction of cell. Accumulation of genetic aberrations (mutations of oncogenes and tumor-suppressor genes and epigenetic modifications) is one of the characteristics of cancer cell. Increasing number of studies highlighted importance of the epigenetic alterations in cancer treatment and prognosis. Now, cancer epigenetics have a huge importance for developing novel biomarkers and therapeutic target for cancer. In this review, we will provide a summary of the major epigenetic changes involved in cancer and preclinical results of epigenetic therapeutics.
Collapse
Affiliation(s)
- Cansu Aydin
- Department of Molecular Biology and Genetics, Faculty of Medicine, Trakya University, Merkez/Edirne, Turkey
| | - Rasime Kalkan
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Turkish Republic of Northern Cyprus
| |
Collapse
|
26
|
Liu Q, Du F, Huang W, Ding X, Wang Z, Yan F, Wu Z. Epigenetic control of Foxp3 in intratumoral T-cells regulates growth of hepatocellular carcinoma. Aging (Albany NY) 2020; 11:2343-2351. [PMID: 31006654 PMCID: PMC6520002 DOI: 10.18632/aging.101918] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/10/2019] [Indexed: 11/25/2022]
Abstract
Capability of tumor cells to impede immune response are largely associated with their interaction and regulation of CD4+CD25+ forkhead box transcription factor (Foxp)3+ regulatory T (Treg) cells, which suppress cytotoxic T cell-mediated immunity in the tumor microenvironment. Foxp3 level is critical for development and phenotypic maintenance of Treg, and is regulated by transcriptional control and epigenetic modification. Here, we showed that higher percentage of intratumoral Treg cells was positively correlated with lower Foxp3 promoter methylation in hepatocellular carcinoma (HCC), and both of them were associated with higher tumor grade, larger tumors, and poor prognosis of the patients. We used an adeno-associated virus (AAV) carrying either DNA (cytosine-5)-methyltransferase 1 (DNMT1) or shDNMT1 under a CD4 promoter (AAV-pCD4-DNMT1, AAV-pCD4-shDNMT1) to successfully target T-cells and alter the levels of DNMT1. Intratumoral injection of AAV- pCD4-DNMT1 significantly reduced tumor growth in mice, while intratumoral injection of AAV- pCD4-DNMT1 significantly induced tumor growth, compared to injection of control AAV. Finally, the effects of altering DNMT1 levels in T-cells seemed to affect tumor growth through alteration of methylation status of Foxp3 on promoter and CpG regions. Together, these data suggest that epigenetic control of Foxp3 in intratumoral T cells regulates growth of HCC.
Collapse
Affiliation(s)
- Qin Liu
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Du
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Huang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyi Ding
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongmin Wang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyuan Wu
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Celarain N, Tomas-Roig J. Aberrant DNA methylation profile exacerbates inflammation and neurodegeneration in multiple sclerosis patients. J Neuroinflammation 2020; 17:21. [PMID: 31937331 PMCID: PMC6961290 DOI: 10.1186/s12974-019-1667-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune and demyelinating disease of the central nervous system characterised by incoordination, sensory loss, weakness, changes in bladder capacity and bowel function, fatigue and cognitive impairment, creating a significant socioeconomic burden. The pathogenesis of MS involves both genetic susceptibility and exposure to distinct environmental risk factors. The gene x environment interaction is regulated by epigenetic mechanisms. Epigenetics refers to a complex system that modifies gene expression without altering the DNA sequence. The most studied epigenetic mechanism is DNA methylation. This epigenetic mark participates in distinct MS pathophysiological processes, including blood-brain barrier breakdown, inflammatory response, demyelination, remyelination failure and neurodegeneration. In this study, we also accurately summarised a list of environmental factors involved in the MS pathogenesis and its clinical course. A literature search was conducted using MEDLINE through PubMED and Scopus. In conclusion, an exhaustive study of DNA methylation might contribute towards new pharmacological interventions in MS by use of epigenetic drugs.
Collapse
Affiliation(s)
- Naiara Celarain
- Girona Neuroimmunology and Multiple Sclerosis Unit (UNIEM), Dr. Josep Trueta University Hospital and Girona Biomedical Research Institute (IDIBGI), Girona, Spain.
| | - Jordi Tomas-Roig
- Girona Neuroimmunology and Multiple Sclerosis Unit (UNIEM), Dr. Josep Trueta University Hospital and Girona Biomedical Research Institute (IDIBGI), Girona, Spain.
| |
Collapse
|
28
|
Bai Y, Lang L, Zhao W, Niu R. Long Non-Coding RNA HOXA11-AS Promotes Non-Small Cell Lung Cancer Tumorigenesis Through microRNA-148a-3p/DNMT1 Regulatory Axis. Onco Targets Ther 2019; 12:11195-11206. [PMID: 31908486 PMCID: PMC6927266 DOI: 10.2147/ott.s198367] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 10/01/2019] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Our present study aimed to further investigate the molecular basis of long non-coding RNA homeobox A11 antisense (HOXA11-AS) in the tumorigenesis of non-small cell lung cancer (NSCLC). METHODS HOXA11-AS, microRNA-148a-3p (miR-148a-3p), and DNA methyltransferase 1 (DNMT1) mRNA levels were measured by RT-qPCR assay. DNMT1 protein level was determined by Western blot assay. Cell proliferative capacity and apoptotic rate were determined by CCK-8 assay and flow cytometry analysis, respectively. The relationships of HOXA11-AS, miR-148a-3p, and DNMT1 were tested through bioinformatics analysis, luciferase assay, and RNA pull down assay. Mouse xenograft models of NSCLC were established to examine the biological function of HOXA11-AS in vivo. RESULTS HOXA11-AS expression was notably upregulated and miR-148a-3p expression was conspicuously downregulated in NSCLC tissues and cells. HOXA11-AS knockdown curbed NSCLC cell proliferation and promoted cell apoptosis through directly increasing miR-148a-3p expression. Moreover, miR-148a-3p overexpression suppressed NSCLC cell proliferation and induced cell apoptosis. HOXA11-AS functioned as a competing endogenous RNA (ceRNA) of miR-148a-3p to increase DNMT1 expression in NSCLC cells. And, DNMT1 upregulation weakened the influence of HOXA11-AS1 loss on NSCLC cell proliferation and apoptosis. Additionally, HOXA11-AS knockdown suppressed NSCLC xenograft growth by upregulating miR-148a-3p and downregulating DNMT1 in vivo. CONCLUSION HOXA11-AS facilitated NSCLC tumorigenesis through miR-148a-3p/DNMT1 axis in vitro and in vivo, deepening our understanding of the molecular basis of HOXA11-AS in the development of NSCLC.
Collapse
Affiliation(s)
- Yue Bai
- Department One of Thoracic Surgery, Gansu Provincial Cancer Hospital, Gansu, People’s Republic of China
| | - Lili Lang
- Department of Radiology, Gansu Provincial Cancer Hospital, Gansu, People’s Republic of China
| | - Wentao Zhao
- Department One of Thoracic Surgery, Gansu Provincial Cancer Hospital, Gansu, People’s Republic of China
| | - Rong Niu
- Department One of Thoracic Surgery, Gansu Provincial Cancer Hospital, Gansu, People’s Republic of China
| |
Collapse
|
29
|
He J, Liu W, Ge X, Wang GC, Desai V, Wang S, Mu W, Bhardwaj V, Seifert E, Liu LZ, Bhushan A, Peiper SC, Jiang BH. Arsenic-induced metabolic shift triggered by the loss of miR-199a-5p through Sp1-dependent DNA methylation. Toxicol Appl Pharmacol 2019; 378:114606. [PMID: 31170415 PMCID: PMC6788774 DOI: 10.1016/j.taap.2019.114606] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/21/2019] [Accepted: 05/31/2019] [Indexed: 12/23/2022]
Abstract
Inorganic arsenic is an environmental carcinogen that poses a major global public health risk. A high percentage of drinking water from wells in the U.S. contains higher-than-normal levels of arsenic, suggesting an increased risk of arsenic-induced deleterious effects. In addition to primary preventive measures, therapeutic strategies need to effectively address and integrate multiple molecular mechanisms underlying arsenic-induced carcinogenesis. We previously showed that the loss of miR-199a-5p in arsenic-transformed cells is pivotal to promote arsenic-induced angiogenesis and tumor growth in lung epithelial cells. In this study, we further showed that subacute or chronic exposure to arsenic diminished miR-199a-5p levels largely due to DNA methylation, which was achieved by increased DNA methyltransferase-1 (DNMT1) activity, mediated by the formation of specific protein 1 (Sp1)/DNMT1 complex. In addition to the DNA hypermethylation, arsenic exposure also repressed miR-199a transcription through a transcriptional repressor Sp1. We further identified an association between miR-199a-5p repression and the arsenic-mediated energy metabolic shift, as reflected by mitochondria defects and a switch to glycolysis, in which a glycolytic enzyme pyruvate kinase 2 (PKM2) was a functional target of miR-199a-5p. Taken together, the repression of miR-199a-5p through both Sp1-dependent DNA methylation and Sp1 transcriptional repression promotes an arsenic-mediated metabolic shift from mitochondria respiration to aerobic glycolysis via PKM2.
Collapse
Affiliation(s)
- Jun He
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States of America.
| | - Weitao Liu
- Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Xin Ge
- Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Gao-Chan Wang
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Vilas Desai
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Shaomin Wang
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Wei Mu
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Vikas Bhardwaj
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Erin Seifert
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Ling-Zhi Liu
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IW 52242, United States of America
| | - Alok Bhushan
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Stephen C Peiper
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Bing-Hua Jiang
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IW 52242, United States of America.
| |
Collapse
|
30
|
Switzer RL, Medrano J, Reedel DA, Weiss J. Substituted anthraquinones represent a potential scaffold for DNA methyltransferase 1-specific inhibitors. PLoS One 2019; 14:e0219830. [PMID: 31306451 PMCID: PMC6629088 DOI: 10.1371/journal.pone.0219830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022] Open
Abstract
In humans, the most common epigenetic DNA modification is methylation of the 5-carbon of cytosines, predominantly in CpG dinucleotides. DNA methylation is an important epigenetic mark associated with gene repression. Disruption of the normal DNA methylation pattern is known to play a role in the initiation and progression of many cancers. DNA methyltransferase 1 (DNMT1), the most abundant DNA methyltransferase in humans, is primarily responsible for maintenance of the DNA methylation pattern and is considered an important cancer drug target. Recently, laccaic acid A (LCA), a highly substituted anthraquinone natural product, was identified as a direct, DNA-competitive inhibitor of DNMT1. Here, we have successfully screened a small library of simplified anthraquinone compounds for DNMT1 inhibition. Using an endonuclease-coupled DNA methylation assay, we identified two anthraquinone compounds, each containing an aromatic substituent, that act as direct DNMT1 inhibitors. These simplified anthraquinone compounds retain the DNA-competitive mechanism of action of LCA and exhibit some selectivity for DNMT1 over DNMT3a. The newly identified compounds are at least 40-fold less potent than LCA, but have significantly less complex structures. Collectively, this data indicates that substituted anthraquinone compounds could serve as a novel scaffold for developing DNMT1-specific inhibitors.
Collapse
Affiliation(s)
- Rebecca L. Switzer
- Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania, United States of America
- * E-mail:
| | - Jessica Medrano
- Program in Cell Biology/Biochemistry, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - David A. Reedel
- Program in Cell Biology/Biochemistry, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Jill Weiss
- Program in Cell Biology/Biochemistry, Bucknell University, Lewisburg, Pennsylvania, United States of America
| |
Collapse
|
31
|
Kang X, Kong F, Huang K, Li L, Li Z, Wang X, Zhang W, Wu X. LncRNA MIR210HG promotes proliferation and invasion of non-small cell lung cancer by upregulating methylation of CACNA2D2 promoter via binding to DNMT1. Onco Targets Ther 2019; 12:3779-3790. [PMID: 31190878 PMCID: PMC6529604 DOI: 10.2147/ott.s189468] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/15/2019] [Indexed: 11/23/2022] Open
Abstract
Background: In recent years, a large number of studies have shown that differentially expressed lncRNAs are capable of promoting the occurrence and development of tumors by regulating cell proliferation and differentiation. However, the biological effects of lncRNAs in non-small cell lung cancer (NSCLC) are still needed to be further investigated. Methods: The differentially expressed lncRNAs in NSCLC tissues in the downloaded profiles from GEO database were analyzed and further verified in 100 pairs of NSCLC samples collected in our hospital. After identification of the target gene MIR210HG, the relationship between MIR210HG expression and clinical data of NSCLC patients was analyzed. Regulatory effects of MIR210HG on proliferation, migration, and invasion of NSCLC cells were detected by CCK-8, colony formation, and transwell assay, respectively. The binding condition of MIR210HG and DNA methyltransferase 1 (DNMT1) was detected by RNA binding protein immunoprecipitation. Subsequently, chromatin immunoprecipitation assay assessed the promoter binding of DNMT1 to CACNA2D2. Rescue experiments were conducted to assess whether CACNA2D2 can reverse the function of MIR210HG. Results: MIR210HG was highly expressed in NSCLC tissues not only in GSE30219 dataset but also in our collected NSCLC tissues. MIR210HG expression was correlated to tumor stage and lymph node metastasis of NSCLC patients. Besides, lower disease-free survival (DFS) and overall survival (OS) were found in NSCLC patients with high-level MIR210HG compared with those with low-level MIR210HG. Regression analysis indicated that MIR210HG was the independent risk factor for DFS and OS of NSCLC patients. In vitro experiments demonstrated that MIR210HG knockdown remarkably inhibited proliferation and migration of NSCLC cells. MIR210HG could recruit DNMT1, thereafter promoting methylation of CACNA2D2 promoter region. CACNA2D2 overexpression remarkably inhibited cell proliferation. Moreover, inhibited proliferation induced by MIR210HG knockdown was reversed by CACNA2D2 knockdown. Conclusion: MIR210HG can promote the tumorigenesis of NSCLC by inhibiting the expression of CACNA2D2. Our findings provide new therapeutic strategies for the future treatment of NSCLC.
Collapse
Affiliation(s)
- Xiaowen Kang
- Department of Pulmonology, The Second Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Fanwu Kong
- Department of Nephrology, The Second Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Kun Huang
- Department of Pulmonology, The Second Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Lu Li
- Department of Pulmonology, The Second Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Zhaoguo Li
- Department of Pulmonology, The Second Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Xinyan Wang
- Department of Pulmonology, The Second Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Wei Zhang
- Department of Pulmonology, The First Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Xiaomei Wu
- Department of Pulmonology, The Second Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
32
|
Effect of Disease-Associated Germline Mutations on Structure Function Relationship of DNA Methyltransferases. Genes (Basel) 2019; 10:genes10050369. [PMID: 31091831 PMCID: PMC6562416 DOI: 10.3390/genes10050369] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/21/2022] Open
Abstract
Despite a large body of evidence supporting the role of aberrant DNA methylation in etiology of several human diseases, the fundamental mechanisms that regulate the activity of mammalian DNA methyltransferases (DNMTs) are not fully understood. Recent advances in whole genome association studies have helped identify mutations and genetic alterations of DNMTs in various diseases that have a potential to affect the biological function and activity of these enzymes. Several of these mutations are germline-transmitted and associated with a number of hereditary disorders, which are potentially caused by aberrant DNA methylation patterns in the regulatory compartments of the genome. These hereditary disorders usually cause neurological dysfunction, growth defects, and inherited cancers. Biochemical and biological characterization of DNMT variants can reveal the molecular mechanism of these enzymes and give insights on their specific functions. In this review, we introduce roles and regulation of DNA methylation and DNMTs. We discuss DNMT mutations that are associated with rare diseases, the characterized effects of these mutations on enzyme activity and provide insights on their potential effects based on the known crystal structure of these proteins.
Collapse
|
33
|
Wirbisky-Hershberger SE, Sanchez OF, Horzmann KA, Thanki D, Yuan C, Freeman JL. Atrazine exposure decreases the activity of DNMTs, global DNA methylation levels, and dnmt expression. Food Chem Toxicol 2017; 109:727-734. [PMID: 28859886 DOI: 10.1016/j.fct.2017.08.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/24/2017] [Accepted: 08/26/2017] [Indexed: 11/26/2022]
Abstract
Atrazine, a herbicide used on agricultural crops is widely applied in the Midwestern United States as well as other areas of the globe. Atrazine frequently contaminates potable water supplies and is a suspected endocrine disrupting chemical. Previous studies have reported morphological, hormonal, and molecular alterations due to developmental and adulthood atrazine exposure; however, studies examining epigenetic alterations are limited. In this study, the effects of atrazine exposure on DNA methyltransferase (DNMT) activity and kinetics were evaluated. Global DNA methylation levels and dnmt expression in zebrafish larvae exposed to 0, 3, or 30 parts per billion (ppb) atrazine throughout embryogenesis was then assessed. Results indicate that atrazine significantly decreased the activity of maintenance DNMTs and that the inhibition mechanism can be described using non-competitive Michaelis-Menten kinetics. Furthermore, results show that an embryonic atrazine exposure decreases global methylation levels and the expression of dnmt4 and dnmt5. These findings indicate that atrazine exposure can decrease the expression and activity of DNMTs, leading to decreased DNA methylation levels.
Collapse
Affiliation(s)
| | - Oscar F Sanchez
- School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Devang Thanki
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Chongli Yuan
- School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
34
|
In silico design of the first DNA-independent mechanism-based inhibitor of mammalian DNA methyltransferase Dnmt1. PLoS One 2017; 12:e0174410. [PMID: 28399172 PMCID: PMC5388339 DOI: 10.1371/journal.pone.0174410] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 03/08/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND We use our earlier experimental studies of the catalytic mechanism of DNA methyltransferases to prepare in silico a family of novel mechanism-based inhibitors of human Dnmt1. Highly specific inhibitors of DNA methylation can be used for analysis of human epigenome and for the creation of iPS cells. RESULTS We describe a set of adenosyl-1-methyl-pyrimidin-2-one derivatives as novel mechanism-based inhibitors of mammalian DNA methyltransferase Dnmt1. The inhibitors have been designed to bind simultaneously in the active site and the cofactor site and thus act as transition-state analogues. Molecular dynamics studies showed that the lead compound can form between 6 to 9 binding interactions with Dnmt1. QM/MM analysis showed that the upon binding to Dnmt1 the inhibitor can form a covalent adduct with active site Cys1226 and thus act as a mechanism-based suicide-inhibitor. The inhibitor can target DNA-bond and DNA-free form of Dnmt1, however the suicide-inhibition step is more likely to happen when DNA is bound to Dnmt1. The validity of presented analysis is described in detail using 69 modifications in the lead compound structure. In total 18 of the presented 69 modifications can be used to prepare a family of highly specific inhibitors that can differentiate even between closely related enzymes such as Dnmt1 and Dnmt3a DNA methyltransferases. CONCLUSIONS Presented results can be used for preparation of some highly specific and potent inhibitors of mammalian DNA methylation with specific pharmacological properties.
Collapse
|
35
|
Benetatos L, Vartholomatos G. On the potential role of DNMT1 in acute myeloid leukemia and myelodysplastic syndromes: not another mutated epigenetic driver. Ann Hematol 2016; 95:1571-82. [PMID: 26983918 DOI: 10.1007/s00277-016-2636-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/04/2016] [Indexed: 12/19/2022]
Abstract
DNA methylation is the most common epigenetic modification in the mammalian genome. DNA methylation is governed by the DNA methyltransferases mainly DNMT1, DNMT3A, and DNMT3B. DNMT1 methylates hemimethylated DNA ensuring accurate DNA methylation maintenance. DNMT1 is involved in the proper differentiation of hematopoietic stem cells (HSCs) through the interaction with effector molecules. DNMT1 is deregulated in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) as early as the leukemic stem cell stage. Through the interaction with fundamental transcription factors, non-coding RNAs, fusion oncogenes and by modulating core members of signaling pathways, it can affect leukemic cells biology. DNMT1 action might be also catalytic-independent highlighting a methylation-independent mode of action. In this review, we have gathered some current facts of DNMT1 role in AML and MDS and we also propose some perspectives for future studies.
Collapse
|
36
|
Yang A, Zhang H, Sun Y, Wang Y, Yang X, Yang X, Zhang H, Guo W, Zhu G, Tian J, Jia Y, Jiang Y. Modulation of FABP4 hypomethylation by DNMT1 and its inverse interaction with miR-148a/152 in the placenta of preeclamptic rats and HTR-8 cells. Placenta 2016; 46:49-62. [PMID: 27697222 DOI: 10.1016/j.placenta.2016.08.086] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 08/01/2016] [Accepted: 08/23/2016] [Indexed: 12/25/2022]
Abstract
Inflammation and dysregulated lipid metabolism are involved in the pathogenesis of preeclampsia, and fatty acid binding protein 4 (FABP4) is known to regulate both inflammation and lipid metabolism. In the present study, we elucidated the role of FABP4 using in vitro and in vivo models of preclampsia. We found increased expression of FABP4 in the placenta of preeclamptic rats, which was further confirmed in HTR-8 cells, an extravillous trophoblast cell line, treated with L-NAME. Overexpression of FABP4 in HTR-8 cells resulted in upregulated expression of pro-inflammatory cytokines IL-6 and TNF-α, and increased lipid accumulation, suggesting that FABP4 plays a role in preeclampsia. Furthermore, downregulation of methylation in the promotor resulted in increased FABP4 expression, which was mediated by downregulated DNA methyltransferase 1 (DNMT1). Bioinformatics analysis showed that miR-148a/152 regulated the expression of DNMT1, and additional in vitro studies revealed that miR-148a/152 inhibited DNMT1 expression by directly binding to its 3'-UTR. Interestingly, DNMT1 enhanced the expression of miR-148a/152 by downregulation of methylation in its promotor. Taken together, our results showed that FABP4 may be involved in the pathogenesis of preeclampsia, and the expression of FABP4 is enhanced by miR-148a/152 mediated inhibition of DNMT1 expression.
Collapse
Affiliation(s)
- Anning Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Huiping Zhang
- Prenatal Diagnosis Center of Ningxia Medical University General Hospital, Yinchuan, China; Ningxia Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Yinchuan, China
| | - Yue Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; State Key Laboratory of Biotherapy, Chengdu, China
| | - Yanhua Wang
- Prenatal Diagnosis Center of Ningxia Medical University General Hospital, Yinchuan, China
| | - Xiaoming Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Ningxia Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Yinchuan, China
| | - Xiaoling Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Ningxia Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Yinchuan, China
| | - Hui Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Wei Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Guangrong Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jue Tian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Ningxia Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Yinchuan, China
| | - Yuexia Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Ningxia Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Yinchuan, China
| | - Yideng Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Ningxia Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Yinchuan, China.
| |
Collapse
|
37
|
Tao R, Chen Z, Wu P, Liu C, Peng Y, Zhao W, Hu C, Feng J. The possible role of EZH2 and DNMT1 polymorphisms in sporadic triple-negative breast carcinoma in southern Chinese females. Tumour Biol 2015; 36:9849-55. [PMID: 26162541 DOI: 10.1007/s13277-015-3754-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/02/2015] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has a more invasive and metastatic potential than the other types of breast cancer and hence is associated with poor prognosis. Zeste homolog 2 (EZH2) and DNA methyltransferase 1 (DNMT1) could lead to tumorigenesis by separately methylating histone H3K27 and CpG islands in tumor suppressor genes. In order to investigate the association between oncogenesis and the distribution of single nucleotide polymorphisms (SNPs) of EZH2, DNMT1, a case-control study on SNPs in TNBC cases from south China was conducted. A total of 13 SNPs were genotyped from 234 cases of TNBC tissues, and 300 normal blood samples from age-matched control group were analyzed using Snapshot technology. The expressions of EZH2 and DNMT1 were examined in the 234 cases of TNBC tissues by immunohistochemistry (IHC). The T allele of rs2288349 and the C allele of rs16999593 increase the risk of TNBC, with relative risk coefficients of 1.76 and 1.69, respectively (p < 0.001). The TC genotypes of rs2288349 and rs16999593 were higher in TNBC compared with the control group; the cancer risk increased to 5.27 and 4.13, respectively (p < 0.001). There were no significant differences between the frequencies of the other 10 SNPs and the risk of TNBC (p > 0.05). Five common haplotypes (>8 % frequency) were identified with a cumulative frequency of 96 % in the controls, while the haplotypes of AAGTAG, GGGTGA, and GACCAG were significantly increased in the control group compared to that in patients (p < 0.05). The G allele of rs10274701 significantly increased the EZH2 expression level in TNBC (p = 0.01). This is the first study to demonstrate a significant association between TNBC risk and the polymorphisms of EZH2 and DNMT1, and our researches indicate that the SNPs of EZH2 and DNMT1 are risk predictors for TNBC.
Collapse
Affiliation(s)
- Ran Tao
- Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201400, China
- Guangzhou Kingmed Centre for Clinical Laboratory, Guangzhou, 510330, China
| | - Zekun Chen
- Third Clinical College, Southern Medical University, Guangzhou, 510515, China
| | - Pingping Wu
- Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201400, China
| | - Cuicui Liu
- Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201400, China
| | - You Peng
- Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201400, China
| | - Weiwei Zhao
- Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201400, China
| | - Chaohui Hu
- Guangzhou Kingmed Centre for Clinical Laboratory, Guangzhou, 510330, China
| | - Jing Feng
- Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201400, China.
| |
Collapse
|
38
|
Li L, Chen BF, Chan WY. An epigenetic regulator: methyl-CpG-binding domain protein 1 (MBD1). Int J Mol Sci 2015; 16:5125-40. [PMID: 25751725 PMCID: PMC4394467 DOI: 10.3390/ijms16035125] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/13/2015] [Accepted: 03/01/2015] [Indexed: 12/19/2022] Open
Abstract
DNA methylation is an important form of epigenetic regulation in both normal development and cancer. Methyl-CpG-binding domain protein 1 (MBD1) is highly related to DNA methylation. Its MBD domain recognizes and binds to methylated CpGs. This binding allows it to trigger methylation of H3K9 and results in transcriptional repression. The CXXC3 domain of MBD1 makes it a unique member of the MBD family due to its affinity to unmethylated DNA. MBD1 acts as an epigenetic regulator via different mechanisms, such as the formation of the MCAF1/MBD1/SETDB1 complex or the MBD1-HDAC3 complex. As methylation status always changes along with carcinogenesis or neurogenesis, MBD1 with its interacting partners, including proteins and non-coding RNAs, participates in normal or pathological processes and functions in different regulatory systems. Because of the important role of MBD1 in epigenetic regulation, it is a good candidate as a therapeutic target for diseases.
Collapse
Affiliation(s)
- Lu Li
- The Chinese University of Hong Kong-Chinese Academy of Sciences Guangzhou Institute of Biomedicine and Health Joint Laboratory on Stem Cell and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
- The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Bi-Feng Chen
- The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
- Department of Biological Science and Biotechnology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, Hubei, China.
| | - Wai-Yee Chan
- The Chinese University of Hong Kong-Chinese Academy of Sciences Guangzhou Institute of Biomedicine and Health Joint Laboratory on Stem Cell and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
- The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
39
|
Nishino S, Sato M, Matsumura M, Kanbayashi T. Narcolepsy–Cataplexy Syndrome and Symptomatic Hypersomnia. Sleep Med 2015. [DOI: 10.1007/978-1-4939-2089-1_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Squillaro T, Severino V, Alessio N, Farina A, Di Bernardo G, Cipollaro M, Peluso G, Chambery A, Galderisi U. De-regulated expression of the BRG1 chromatin remodeling factor in bone marrow mesenchymal stromal cells induces senescence associated with the silencing of NANOG and changes in the levels of chromatin proteins. Cell Cycle 2015; 14:1315-1326. [PMID: 25724006 PMCID: PMC4614278 DOI: 10.4161/15384101.2014.995053] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 12/17/2022] Open
Abstract
Stem cells have a peculiar chromatin architecture that contributes to their unique properties, including uncommitted status, multi/pluripotency and self-renewal. We analyzed the effect of the de-regulation of the SWI/SNF chromatin remodeling complex in mesenchymal stromal cells (MSC) through the silencing and up-regulation of BRG1, which is the ATPase subunit of the complex. The altered expression of BRG1 promoted the senescence of MSC with suppression of the NANOG transcription, which is part of the transcriptional circuitry governing stem cell functions. To gain insight on the way NANOG was silenced, we evaluated how the de-regulated BRG1 expression affect the binding of activators and repressors on the NANOG promoter. We found 4 E2F binding motifs on NANOG promoter, which can be occupied by RB1 and RB2/P130. These are members of the retinoblastoma gene family. In MSC with a silenced BRG1, the relative binding of the 2 retinoblastoma proteins increased, and this was associated with the recruitment of DNMT1. This induced the methylation of CpG on the NANOG promoter. Opposingly, when a high level of BRG1 was present, the same E2F binding motifs were docking sites for BRG1, which induced chromatin compaction without CpG methylation but with increased histone deacetylation, associated with the presence of HDAC1 on E2F binding sites. Besides the sharp regulation of the NANOG expression, we evidenced, through proteomic analysis, that the de-regulation of the SWI/SNF function affected the expression of histones and other nuclear proteins involved in "nuclear architecture," suggesting that BRG1 may act as global regulator of gene expression.
Collapse
Affiliation(s)
- Tiziana Squillaro
- Department of Experimental Medicine; Biotechnology and Molecular Biology Section; Second University of Naples; Naples, Italy
| | - Valeria Severino
- Department of Environmental; Biological and Pharmaceutical Sciences and Technologies; Second University of Naples; Naples, Italy
| | - Nicola Alessio
- Biomedical Proteomics Research Group; Department of Human Protein Science; Geneva University; Geneva, Switzerland
| | - Annarita Farina
- Biomedical Proteomics Research Group; Department of Human Protein Science; Geneva University; Geneva, Switzerland
| | - Giovanni Di Bernardo
- Department of Experimental Medicine; Biotechnology and Molecular Biology Section; Second University of Naples; Naples, Italy
| | - Marilena Cipollaro
- Department of Experimental Medicine; Biotechnology and Molecular Biology Section; Second University of Naples; Naples, Italy
| | | | - Angela Chambery
- Department of Environmental; Biological and Pharmaceutical Sciences and Technologies; Second University of Naples; Naples, Italy
- IRCCS; Multimedica, Milano, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine; Biotechnology and Molecular Biology Section; Second University of Naples; Naples, Italy
- Institute Bioscience and BioResources; CNR; Naples, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine; Center for Biotechnology; Temple University; Philadelphia, PA USA
| |
Collapse
|
41
|
Cloning, purification and characterization of translationally fused protein DNA methyltransferase M•HhaI-EGFP. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Kim GH, Ryan JJ, Archer SL. The role of redox signaling in epigenetics and cardiovascular disease. Antioxid Redox Signal 2013; 18:1920-36. [PMID: 23480168 PMCID: PMC3624767 DOI: 10.1089/ars.2012.4926] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/24/2012] [Accepted: 01/15/2013] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The term epigenetics refers to the changes in the phenotype and gene expression that occur without alterations in the DNA sequence. There is a rapidly growing body of evidence that epigenetic modifications are involved in the pathological mechanisms of many cardiovascular diseases (CVDs), which intersect with many of the pathways involved in oxidative stress. RECENT ADVANCES Most studies relating epigenetics and human pathologies have focused on cancer. There has been a limited study of epigenetic mechanisms in CVDs. Although CVDs have multiple established genetic and environmental risk factors, these explain only a portion of the total CVD risk. The epigenetic perspective is beginning to shed new light on how the environment influences gene expression and disease susceptibility in CVDs. Known epigenetic changes contributing to CVD include hypomethylation in proliferating vascular smooth muscle cells in atherosclerosis, changes in estrogen receptor-α (ER-α) and ER-β methylation in vascular disease, decreased superoxide dismutase 2 expression in pulmonary hypertension (PH), as well as trimethylation of histones H3K4 and H3K9 in congestive heart failure. CRITICAL ISSUES In this review, we discuss the epigenetic modifications in CVDs, including atherosclerosis, congestive heart failure, hypertension, and PH, with a focus on altered redox signaling. FUTURE DIRECTIONS As advances in both the methodology and technology accelerate the study of epigenetic modifications, the critical role they play in CVD is beginning to emerge. A fundamental question in the field of epigenetics is to understand the biochemical mechanisms underlying reactive oxygen species-dependent regulation of epigenetic modification.
Collapse
Affiliation(s)
- Gene H Kim
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
43
|
Epigenetically mediated pathogenic effects of phenanthrene on regulatory T cells. J Toxicol 2013; 2013:967029. [PMID: 23533402 PMCID: PMC3606805 DOI: 10.1155/2013/967029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 01/04/2013] [Accepted: 01/07/2013] [Indexed: 12/22/2022] Open
Abstract
Phenanthrene (Phe), a polycyclic aromatic hydrocarbon (PAH), is a major constituent of urban air pollution. There have been conflicting results regarding the role of other AhR ligands 2,3,7,8- tetrachlorodibenzo-p-dioxin (TCDD) and 6-formylindolo [3,2-b]carbazole (FICZ) in modifying regulatory T cell populations (Treg) or T helper (Th)17 differentiation, and the effects of Phe have been understudied. We hypothesized that different chemical entities of PAH induce Treg to become either Th2 or Th17 effector T cells through epigenetic modification of FOXP3. To determine specific effects on T cell populations by phenanthrene, primary human Treg were treated with Phe, TCDD, or FICZ and assessed for function, gene expression, and phenotype. Methylation of CpG sites within the FOXP3 locus reduced FOXP3 expression, leading to impaired Treg function and conversion of Treg into a CD4+CD25lo Th2 phenotype in Phe-treated cells. Conversely, TCDD treatment led to epigenetic modification of IL-17A and conversion of Treg to Th17 T cells. These findings present a mechanism by which exposure to AhR-ligands mediates human T cell responses and begins to elucidate the relationship between environmental exposures, immune modulation, and initiation of human disease.
Collapse
|
44
|
Strogantsev R, Ferguson-Smith AC. Proteins involved in establishment and maintenance of imprinted methylation marks. Brief Funct Genomics 2012; 11:227-39. [PMID: 22760206 DOI: 10.1093/bfgp/els018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epigenetic phenomena are being increasingly recognized to play key roles in normal mammalian development and disease. This is exemplified by the process of genomic imprinting whereby despite identical DNA sequence, the two parental chromosomes are not equivalent and show either maternal- or paternal-specific expression at a subset of genes in the genome. These patterns are set up by differential DNA methylation marking at the imprinting control regions in male and female germ line. In this review, we discuss the specific mechanisms by which these methyl marks are established and then selectively maintained throughout pre-implantation development. Specifically, we discuss the recent findings of a critical role played by a KRAB zinc-finger protein ZFP57 and its co-factor KAP1/TRIM28 in mediating both processes.
Collapse
Affiliation(s)
- Ruslan Strogantsev
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK
| | | |
Collapse
|
45
|
Botia B, Legastelois R, Alaux-Cantin S, Naassila M. Expression of ethanol-induced behavioral sensitization is associated with alteration of chromatin remodeling in mice. PLoS One 2012; 7:e47527. [PMID: 23110077 PMCID: PMC3478273 DOI: 10.1371/journal.pone.0047527] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/12/2012] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Ethanol-induced behavioral sensitization (EIBS) is proposed to play a role in early and recurring steps of addiction. EIBS does not occur uniformly in all animals even from the same inbred strain. Since recent data demonstrate that epigenetic mechanisms are likely to be involved in the development and the persistence of ethanol-related behaviors, we explored the involvement of epigenetic mechanisms in ethanol response after EIBS development. METHODOLOGY DBA/2J mice were i.p. injected with saline or ethanol (2 g/kg) once a day for 10 consecutive days. At day 17, ethanol-treated mice were split in resistant and sensitized groups. Brains were then removed 30 min after a saline or 2 g/kg ethanol challenge to assess i) gene expression using PCR array targeting 84 epigenetic-related genes and ii) histone deacetylases (HDAC), histone acetylases (HAT) and DNA methyltransferases (DNMT) activities as well as H4K12 acetylation. PRINCIPAL FINDINGS Acute ethanol administration decreased dnmt1, esco2 and rps6ka5 genes expression. These genes were similarly altered in sensitized but not in resistant mice after an ethanol challenge, suggesting that resistant mice were tolerant to the transcriptional outcomes of an ethanol challenge. Whereas global HAT or DNMT activity was not affected, global HDAC activity was reduced after an acute ethanol injection. HDAC inhibition occurred in all ethanol-treated mice but with a lesser extent in sensitized animals. As a consequence, H4 acetylation was specifically potentiated in the core of the Nac proportionally to the striatal HDAC activity decrease. CONCLUSIONS/SIGNIFICANCE The present study highlights that the contrasted behavioral response to an ethanol challenge between resistant and sensitized mice may be mediated by epigenetic mechanisms occurring specifically in the striatum. Here we show that vulnerability to ethanol dependence and relapse could be, at least in part, due to individual variability in acute ethanol-induced epigenetic response.
Collapse
Affiliation(s)
- Béatrice Botia
- Université de Picardie Jules Verne, Unité de Formation et de Recherche de Pharmacie, Research Group on Alcohol and Pharmacodependences, Institut National de la Santé et de la Recherche Médicale (ERI 24), Amiens, France
| | - Rémi Legastelois
- Université de Picardie Jules Verne, Unité de Formation et de Recherche de Pharmacie, Research Group on Alcohol and Pharmacodependences, Institut National de la Santé et de la Recherche Médicale (ERI 24), Amiens, France
| | - Stéphanie Alaux-Cantin
- Université de Picardie Jules Verne, Unité de Formation et de Recherche de Pharmacie, Research Group on Alcohol and Pharmacodependences, Institut National de la Santé et de la Recherche Médicale (ERI 24), Amiens, France
| | - Mickaël Naassila
- Université de Picardie Jules Verne, Unité de Formation et de Recherche de Pharmacie, Research Group on Alcohol and Pharmacodependences, Institut National de la Santé et de la Recherche Médicale (ERI 24), Amiens, France
- * E-mail:
| |
Collapse
|
46
|
Jiang J, Jia Z, Cao D, Jin MS, Kong F, Suo J, Cao X. Polymorphisms of the DNA methyltransferase 1 associated with reduced risks of Helicobacter pylori infection and increased risks of gastric atrophy. PLoS One 2012; 7:e46058. [PMID: 23049933 PMCID: PMC3457938 DOI: 10.1371/journal.pone.0046058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/28/2012] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION DNA methyltransferase-1(DNMT1) is an important enzyme in determining genomic methylation patterns in mammalian cells. We investigated the associations between SNPs in the DNMT1 gene and risks of developing H. pylori seropositivity, gastric atrophy and gastric cancer in the Chinese population. METHODS The study consisted of 447 patients with gastric cancer; 111 patients with gastric atrophy; and 961 healthy controls. Five SNPs, rs10420321, rs16999593, rs8101866, rs8111085 and rs2288349 of the DNMT1 gene were genotyped. Anti-H.pylori IgG was detected by ELISA. Gastric atrophy was screened by the level of serum pepsinogen Ι and II and then confirmed by endoscopy and histopatholgical examinations. RESULTS The age- and sex-adjusted OR of H. pylori seropositivity was 0.67 (95%CI: 0.51-0.87) for rs8111085 TC/CC genotypes, significantly lower than the TT genotype in healthy controls. The adjusted OR of H.pylori seropositivity was 0.68 (95%CI: 0.52-0.89) for rs10420321 AG/GG genotypes. In addition, patients carrying rs2228349 AA genotype have a significantly increased risk for H.pylori seropositivity (OR=1.67; 95%CI: 1.02-2.75). Further haplotype analyses also showed that the ATTTG and ATCTA are significantly associated with increased risks in H.pylori infection compared to the GTCCG haplotype (OR=1.38, 95%CI: 1.08-1.77; OR=1.40, 95% CI: 1.09-1.80). The adjusted ORs of gastric atrophy were 1.66 (95%CI: 1.06-2.61) for rs10420321 GG genotype, and 1.67 (95%CI 1.06-2.63, P=0.03) for rs8111085 CC genotype, but no association was found between SNPs in the DNMT1 gene and risk of developing gastric cancer. CONCLUSIONS Individuals with rs10420321 GG and rs8111085 CC genotype of the DNMT1 gene were associated with reduced risks for H.pylori infection. On the other hand, higher risks of gastric atrophy were found in the carriers with these two genotypes compared to other genotypes. Our results suggested that SNPs of DNMT1 could be used as genotypic markers for predicting genetic susceptibilities to H.pylori infection and risks in gastric atrophy.
Collapse
Affiliation(s)
- Jing Jiang
- Division of Clinical Epidemiology, Jilin University First Hospital, Changchun, China
| | - Zhifang Jia
- Division of Clinical Epidemiology, Jilin University First Hospital, Changchun, China
| | - Donghui Cao
- Division of Clinical Epidemiology, Jilin University First Hospital, Changchun, China
| | - Mei-Shan Jin
- Division of Pathology, Jilin University First Hospital, Changchun, China
| | - Fei Kong
- Division of Clinical Epidemiology, Jilin University First Hospital, Changchun, China
| | - Jian Suo
- Department of Gastric and Colorectal Surgery, Jilin University First Hospital, Changchun, China
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, Jilin University First Hospital, Changchun, China
| |
Collapse
|
47
|
Abstract
Epigenetics refers to changes in phenotype and gene expression that occur without alterations in DNA sequence. Epigenetic modifications of the genome can be acquired de novo and are potentially heritable. This review focuses on the emerging recognition of a role for epigenetics in the development of pulmonary arterial hypertension (PAH). Lessons learned from the epigenetics in cancer and neurodevelopmental diseases, such as Prader-Willi syndrome, can be applied to PAH. These syndromes suggest that there is substantial genetic and epigenetic cross-talk such that a single phenotype can result from a genetic cause, an epigenetic cause, or a combined abnormality. There are three major mechanisms of epigenetic regulation, including methylation of CpG islands, mediated by DNA methyltransferases, modification of histone proteins, and microRNAs. There is substantial interaction between these epigenetic mechanisms. Recently, it was discovered that there may be an epigenetic component to PAH. In PAH there is downregulation of superoxide dismutase 2 (SOD2) and normoxic activation of hypoxia inducible factor (HIF-1α). This decrease in SOD2 results from methylation of CpG islands in SOD2 by lung DNA methyltransferases. The partial silencing of SOD2 alters redox signaling, activates HIF-1α) and leads to excessive cell proliferation. The same hyperproliferative epigenetic abnormality occurs in cancer. These epigenetic abnormalities can be therapeutically reversed. Epigenetic mechanisms may mediate gene-environment interactions in PAH and explain the great variability in susceptibility to stimuli such as anorexigens, virus, and shunts. Epigenetics may be relevant to the female predisposition to PAH and the incomplete penetrance of BMPR2 mutations in familial PAH.
Collapse
Affiliation(s)
- Gene H Kim
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
48
|
Kar S, Deb M, Sengupta D, Shilpi A, Parbin S, Torrisani J, Pradhan S, Patra S. An insight into the various regulatory mechanisms modulating human DNA methyltransferase 1 stability and function. Epigenetics 2012; 7:994-1007. [PMID: 22894906 DOI: 10.4161/epi.21568] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DNA methylation is one of the principal epigenetic signals that participate in cell specific gene expression in vertebrates. DNA methylation plays a quintessential role in the control of gene expression, cellular differentiation and development. It also plays a central role in the preservation of chromatin structure and chromosomal integrity, parental imprinting, X-chromosome inactivation, aging and carcinogenesis. The foremost contributor in the mammalian methylation scheme is DNMT1, a maintenance methyltransferase that faithfully copies the pre-existing methyl marks onto hemimethylated daughter strands during DNA replication to maintain the established methylation patterns across successive cell divisions. The ever-changing cellular physiology and the significant part that DNA methylation plays in genome regulation necessitate rigid management of this enzyme. In mammalian cells, a host of intrinsic and extrinsic mechanisms regulate the expression, activity and stability of DNMT1. Transcriptional regulation, post-transcriptional auto-inhibitory controls and post-translational modifications of the enzyme are responsible for the efficient inheritance of DNA methylation patterns. Also, a large number of intra- and intercellular signaling cascades and numerous interactions with other modulator molecules that affect the catalytic activity of the enzyme at multiple levels function as major checkpoints of the DNMT1 control system. An in-depth understanding of the DNMT1 enzyme, its targeting and function is crucial for comprehending how DNA methylation is coordinated with other critical developmental and physiological processes. This review aims to provide a comprehensive account of the various regulatory mechanisms and interactions of DNMT1 so as to elucidate its function at the molecular level and understand the dynamics of DNA methylation at the cellular level.
Collapse
Affiliation(s)
- Swayamsiddha Kar
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Holz-Schietinger C, Matje DM, Reich NO. Mutations in DNA methyltransferase (DNMT3A) observed in acute myeloid leukemia patients disrupt processive methylation. J Biol Chem 2012; 287:30941-51. [PMID: 22722925 DOI: 10.1074/jbc.m112.366625] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA methylation is a key regulator of gene expression and changes in DNA methylation occur early in tumorigenesis. Mutations in the de novo DNA methyltransferase gene, DNMT3A, frequently occur in adult acute myeloid leukemia patients with poor prognoses. Most of the mutations occur within the dimer or tetramer interface, including Arg-882. We have identified that the most prevalent mutation, R882H, and three additional mutants along the tetramer interface disrupt tetramerization. The processive methylation of multiple CpG sites is disrupted when tetramerization is eliminated. Our results provide a possible mechanism that accounts for how DNMT3A mutations may contribute to oncogenesis and its progression.
Collapse
Affiliation(s)
- Celeste Holz-Schietinger
- Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106-9510, USA
| | | | | |
Collapse
|
50
|
Effect of aging on 5-hydroxymethylcytosine in brain mitochondria. Neurobiol Aging 2012; 33:2881-91. [PMID: 22445327 DOI: 10.1016/j.neurobiolaging.2012.02.006] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 01/18/2012] [Accepted: 02/09/2012] [Indexed: 12/21/2022]
Abstract
Nuclear epigenetics of the mammalian brain is modified during aging. Little is known about epigenetic modifications of mitochondrial DNA (mtDNA). We analyzed brain samples of 4- and 24-month-old mice and found that aging decreased mtDNA 5-hydroxymethylcytosine (5hmC) but not 5-methylcytosine (5mC) levels in the frontal cortex but not the cerebellum. Transcript levels of selected mtDNA-encoded genes increased during aging in the frontal cortex only. Aging affected the expression of enzymes involved in 5-methylcytosine and 5-hydroxymethylcytosine synthesis (mitochondrial DNA methyltransferase 1 [mtDNMT1] and ten-eleven-translocation [TET]1-TET3, respectively). In the frontal cortex, aging decreased mtDNMT1 messenger RNA (mRNA) levels without affecting TET1-TET3 mRNAs. In the cerebellum, TET2 and TET3 mRNA content was increased but mtDNMT1 mRNA was unaffected. Using Western immunoblotting of samples from primary neuronal cultures, we found TET immunoreactivity in the mitochondrial fraction. At the single cell level, TET immunoreactivity was detected in the nucleus and in the perinuclear/intraneurite areas where it frequently colocalized with a mitochondrial marker. Our results demonstrated the presence and susceptibility to aging of mitochondrial epigenetic mechanisms in the mammalian brain.
Collapse
|