1
|
Cañete PF, Yu D. Follicular T cells and the control of IgE responses. Allergol Int 2025; 74:13-19. [PMID: 39455298 DOI: 10.1016/j.alit.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
Atopy is considered the epidemic of the 21st century, and while decades of research have established a direct link between Th2 cells driving pathogenic IgE-mediated allergic disease, only in the past years have T follicular helper (Tfh) cells emerged as pivotal drivers of these responses. In this review, we will examine the molecular mechanisms governing the IgE response, with a particular emphasis on the key cytokines and signaling pathways. We will discuss the exclusion of IgE-producing B cells from germinal centers and explore the recently established role of follicular T cell function and heterogeneity in driving or curtailing these immune responses. Additionally, we will assess the current state of major monoclonal antibodies and allergen immunotherapies designed to counteract Th2-driven inflammation, as well as reflect on the need to investigate how these biologics impact Tfh cell activity, differentiation, and function, as these insights could pave the way for much-needed therapeutic innovation in the treatment of allergic diseases.
Collapse
Affiliation(s)
- Pablo F Cañete
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| | - Di Yu
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
2
|
Thouvenot B, Roitel O, Tomasina J, Hilselberger B, Richard C, Jacquenet S, Codreanu-Morel F, Morisset M, Kanny G, Beaudouin E, Delebarre-Sauvage C, Olivry T, Favrot C, Bihain BE. Transcriptional frameshifts contribute to protein allergenicity. J Clin Invest 2020; 130:5477-5492. [PMID: 32634131 PMCID: PMC7524509 DOI: 10.1172/jci126275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 07/01/2020] [Indexed: 01/07/2023] Open
Abstract
Transcription infidelity (TI) is a mechanism that increases RNA and protein diversity. We found that single-base omissions (i.e., gaps) occurred at significantly higher rates in the RNA of highly allergenic legumes. Transcripts from peanut, soybean, sesame, and mite allergens contained a higher density of gaps than those of nonallergens. Allergen transcripts translate into proteins with a cationic carboxy terminus depleted in hydrophobic residues. In mice, recombinant TI variants of the peanut allergen Ara h 2, but not the canonical allergen itself, induced, without adjuvant, the production of anaphylactogenic specific IgE (sIgE), binding to linear epitopes on both canonical and TI segments of the TI variants. The removal of cationic proteins from bovine lactoserum markedly reduced its capacity to induce sIgE. In peanut-allergic children, the sIgE reactivity was directed toward both canonical and TI segments of Ara h 2 variants. We discovered 2 peanut allergens, which we believe to be previously unreported, because of their RNA-DNA divergence gap patterns and TI peptide amino acid composition. Finally, we showed that the sIgE of children with IgE-negative milk allergy targeted cationic proteins in lactoserum. We propose that it is not the canonical allergens, but their TI variants, that initiate sIgE isotype switching, while both canonical and TI variants elicit clinical allergic reactions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Françoise Codreanu-Morel
- Unité Nationale d’Immunologie et d’Allergologie, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Martine Morisset
- Unité d’Allergologie, Département de Pneumologie, Centre Hospitalier Universitaire Angers, Angers, France
| | - Gisèle Kanny
- Service de Médecine Interne, Immunologie Clinique et Allergologie, Hôpitaux de Brabois, Centre Hospitalier Universitaire de Nancy, Vandœuvre-lès-Nancy, France
| | - Etienne Beaudouin
- Unité d’Allergologie, Centre Hospitalier Régional de Metz, Metz, France
| | - Christine Delebarre-Sauvage
- Allergology Center Saint-Vincent de Paul Hospital, Groupe Hospitalier de l’Institut Catholique de Lille, Lille, France
| | - Thierry Olivry
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Claude Favrot
- Clinic for Small Animal Internal Medicine, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
3
|
He JS, Subramaniam S, Narang V, Srinivasan K, Saunders SP, Carbajo D, Wen-Shan T, Hidayah Hamadee N, Lum J, Lee A, Chen J, Poidinger M, Zolezzi F, Lafaille JJ, Curotto de Lafaille MA. IgG1 memory B cells keep the memory of IgE responses. Nat Commun 2017; 8:641. [PMID: 28935935 PMCID: PMC5608722 DOI: 10.1038/s41467-017-00723-0] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 07/23/2017] [Indexed: 02/03/2023] Open
Abstract
The unique differentiation of IgE cells suggests unconventional mechanisms of IgE memory. IgE germinal centre cells are transient, most IgE cells are plasma cells, and high affinity IgE is produced by the switching of IgG1 cells to IgE. Here we investigate the function of subsets of IgG1 memory B cells in IgE production and find that two subsets of IgG1 memory B cells, CD80+CD73+ and CD80-CD73-, contribute distinctively to the repertoires of high affinity pathogenic IgE and low affinity non-pathogenic IgE. Furthermore, repertoire analysis indicates that high affinity IgE and IgG1 plasma cells differentiate from rare CD80+CD73+ high affinity memory clones without undergoing further mutagenesis. By identifying the cellular origin of high affinity IgE and the clonal selection of high affinity memory B cells into the plasma cell fate, our findings provide fundamental insights into the pathogenesis of allergies, and on the mechanisms of antibody production in memory B cell responses.IgE is an important mediator of protective immunity as well as allergic reaction, but how high affinity IgE antibodies are produced in memory responses is not clear. Here the authors show that IgE can be generated via class-switch recombination in IgG1 memory B cells without additional somatic hypermutation.
Collapse
Affiliation(s)
- Jin-Shu He
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Sharrada Subramaniam
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Vipin Narang
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore
| | | | - Sean P Saunders
- Division of Pulmonary, Critical Care and Sleep Medicine, Departments of Medicine and Cell Biology, New York University School of Medicine, 550 First Ave, New York, 10016, USA
| | - Daniel Carbajo
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Tsao Wen-Shan
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Nur Hidayah Hamadee
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Andrea Lee
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Francesca Zolezzi
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore
- Galderma R&D, Les Templiers, 2400 route des Colles, Sophia Antipolis, 06410, Biot, France
| | - Juan J Lafaille
- Skirball Institute and Department of Pathology, New York University School of Medicine, 540 First Ave, New York, 10016, USA
| | - Maria A Curotto de Lafaille
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore.
- Division of Pulmonary, Critical Care and Sleep Medicine, Departments of Medicine and Cell Biology, New York University School of Medicine, 550 First Ave, New York, 10016, USA.
| |
Collapse
|
4
|
Sullivan KM, Enoch SJ, Ezendam J, Sewald K, Roggen EL, Cochrane S. An Adverse Outcome Pathway for Sensitization of the Respiratory Tract by Low-Molecular-Weight Chemicals: Building Evidence to Support the Utility ofIn VitroandIn SilicoMethods in a Regulatory Context. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/aivt.2017.0010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kristie M. Sullivan
- Physicians Committee for Responsible Medicine, Washington, District of Columbia
| | - Steven J. Enoch
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, England
| | - Janine Ezendam
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, Bilthoven, The Netherlands
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Erwin L. Roggen
- 3Rs Management & Consulting ApS (3RsMC ApS), Lyngby, Denmark
| | | |
Collapse
|
5
|
Wu YL, Stubbington MJT, Daly M, Teichmann SA, Rada C. Intrinsic transcriptional heterogeneity in B cells controls early class switching to IgE. J Exp Med 2016; 214:183-196. [PMID: 27994069 PMCID: PMC5206502 DOI: 10.1084/jem.20161056] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/27/2016] [Accepted: 11/13/2016] [Indexed: 12/11/2022] Open
Abstract
Combining novel mouse reporters and single-cell transcriptomic analyses, Wu et al. uncover differential activation thresholds for the transcripts that direct antibody class switching to IgE versus IgG1 in response to IL-4 and explain how cell-intrinsic transcriptional heterogeneity governs CSR. Noncoding transcripts originating upstream of the immunoglobulin constant region (I transcripts) are required to direct activation-induced deaminase to initiate class switching in B cells. Differential regulation of Iε and Iγ1 transcription in response to interleukin 4 (IL-4), hence class switching to IgE and IgG1, is not fully understood. In this study, we combine novel mouse reporters and single-cell RNA sequencing to reveal the heterogeneity in IL-4–induced I transcription. We identify an early population of cells expressing Iε but not Iγ1 and demonstrate that early Iε transcription leads to switching to IgE and occurs at lower activation levels than Iγ1. Our results reveal how probabilistic transcription with a lower activation threshold for Iε directs the early choice of IgE versus IgG1, a key physiological response against parasitic infestations and a mediator of allergy and asthma.
Collapse
Affiliation(s)
- Yee Ling Wu
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| | | | - Maria Daly
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| | - Sarah A Teichmann
- The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, England, UK
| | - Cristina Rada
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| |
Collapse
|
6
|
Looney TJ, Lee JY, Roskin KM, Hoh RA, King J, Glanville J, Liu Y, Pham TD, Dekker CL, Davis MM, Boyd SD. Human B-cell isotype switching origins of IgE. J Allergy Clin Immunol 2016; 137:579-586.e7. [PMID: 26309181 PMCID: PMC4747810 DOI: 10.1016/j.jaci.2015.07.014] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 01/13/2023]
Abstract
BACKGROUND B cells expressing IgE contribute to immunity against parasites and venoms and are the source of antigen specificity in allergic patients, yet the developmental pathways producing these B cells in human subjects remain a subject of debate. Much of our knowledge of IgE lineage development derives from model studies in mice rather than from human subjects. OBJECTIVE We evaluate models for isotype switching to IgE in human subjects using immunoglobulin heavy chain (IGH) mutational lineage data. METHODS We analyzed IGH repertoires in 9 allergic and 24 healthy adults using high-throughput DNA sequencing of 15,843,270 IGH rearrangements to identify clonal lineages of B cells containing members expressing IgE. Somatic mutations in IGH inherited from common ancestors within the clonal lineage are used to infer the relationships between B cells. RESULTS Data from 613,641 multi-isotype B-cell clonal lineages, of which 592 include an IgE member, are consistent with indirect switching to IgE from IgG- or IgA-expressing lineage members in human subjects. We also find that these inferred isotype switching frequencies are similar in healthy and allergic subjects. CONCLUSIONS We found evidence that secondary isotype switching of mutated IgG1-expressing B cells is the primary source of IgE in human subjects, with lesser contributions from precursors expressing other switched isotypes and rarely IgM or IgD, suggesting that IgE is derived from previously antigen-experienced B cells rather than naive B cells that typically express low-affinity unmutated antibodies. These data provide a basis from which to evaluate allergen-specific human antibody repertoires in healthy and diseased subjects.
Collapse
Affiliation(s)
- Timothy J Looney
- Department of Pathology, Transplantation and Infection, Stanford University, Stanford, Calif
| | - Ji-Yeun Lee
- Department of Pathology, Transplantation and Infection, Stanford University, Stanford, Calif
| | - Krishna M Roskin
- Department of Pathology, Transplantation and Infection, Stanford University, Stanford, Calif
| | - Ramona A Hoh
- Department of Pathology, Transplantation and Infection, Stanford University, Stanford, Calif
| | - Jasmine King
- Department of Pathology, Transplantation and Infection, Stanford University, Stanford, Calif; Department of Biology, Transplantation and Infection, Stanford University, Stanford, Calif
| | - Jacob Glanville
- Department of Pathology, Transplantation and Infection, Stanford University, Stanford, Calif; Program in Immunology, Transplantation and Infection, Stanford University, Stanford, Calif
| | - Yi Liu
- Department of Pathology, Transplantation and Infection, Stanford University, Stanford, Calif; Biomedical Informatics Training Program, Transplantation and Infection, Stanford University, Stanford, Calif
| | - Tho D Pham
- Department of Pathology, Transplantation and Infection, Stanford University, Stanford, Calif
| | - Cornelia L Dekker
- Department of Pediatrics, Transplantation and Infection, Stanford University, Stanford, Calif
| | - Mark M Davis
- Department of Microbiology & Immunology, Transplantation and Infection, Stanford University, Stanford, Calif; Howard Hughes Medical Institute, Transplantation and Infection, Stanford University, Stanford, Calif; Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, Calif
| | - Scott D Boyd
- Department of Pathology, Transplantation and Infection, Stanford University, Stanford, Calif.
| |
Collapse
|
7
|
Campo P, Rondón C, Gould HJ, Barrionuevo E, Gevaert P, Blanca M. Local IgE in non-allergic rhinitis. Clin Exp Allergy 2016; 45:872-881. [PMID: 25495772 DOI: 10.1111/cea.12476] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Local allergic rhinitis (LAR) is characterized by the presence of a nasal Th2 inflammatory response with local production of specific IgE antibodies and a positive response to a nasal allergen provocation test (NAPT) without evidence of systemic atopy. The prevalence has been shown to be up to 25% in subjects affected with rhinitis with persistence, comorbidity and evolution similar to allergic rhinitis. LAR is a consistent entity that does not evolve to allergic rhinitis with systemic atopy over time although patients have significant impairment in quality of life and increase in the severity of nasal symptoms over time. Lower airways can be also involved. The diagnosis of LAR is based mostly on demonstration of positive response to NAPT and/or local synthesis of specific IgE. Allergens involved include seasonal or perennial such as house dusts mites, pollens, animal epithelia, moulds (alternaria) and others. Basophils from peripheral blood may be activated by the involved allergens suggesting the spill over of locally synthesized specific IgE to the circulation. LAR patients will benefit from the same treatment as allergic patients using antihistamines, inhaled corticosteroids and IgE antagonists. Studies on immunotherapy are ongoing and will determine its efficacy in LAR in terms of symptoms improvement and evolution of the natural course of the disease.
Collapse
Affiliation(s)
- P Campo
- Allergy Unit, Regional University Hospital of Malaga, IBIMA, UMA, Malaga, Spain
| | - C Rondón
- Allergy Unit, Regional University Hospital of Malaga, IBIMA, UMA, Malaga, Spain
| | - H J Gould
- Randall Division of Cell and Molecular Biophysics, Division of Asthma, Allergy and Lung Biology, King's College London, MRC-Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - E Barrionuevo
- Allergy Unit, Regional University Hospital of Malaga, IBIMA, UMA, Malaga, Spain
| | - P Gevaert
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - M Blanca
- Allergy Unit, Regional University Hospital of Malaga, IBIMA, UMA, Malaga, Spain
| |
Collapse
|
8
|
Abstract
Immunoglobulin E (IgE) antibodies play a crucial role in host defense against parasite infections. However, inappropriate IgE responses are also involved in the pathogenesis of allergic diseases. The generation of IgE antibodies is a tightly controlled process regulated by multiple transcription factors, cytokines, and immune cells including γδ T cells. Accumulating evidence demonstrates that γδ T cells play a critical role in regulating IgE responses; however, both IgE-enhancing and IgE-suppressive effects are suggested for these cells in different experimental systems. In this review, we examine the available evidence and discuss the role of γδ T cells in IgE regulation both in the context of antigen-induced immune responses and in the state of partial immunodeficiency.
Collapse
|
9
|
Abstract
The pathogenic role of immunoglobulin E (IgE) antibodies in triggering and maintaining allergic inflammation in response to allergens is due to the binding of multivalent allergens to allergen-specific IgEs on sensitized effector cells. These interactions trigger effector cell activation, resulting in release of potent inflammatory mediators, recruitment of inflammatory cells, antigen presentation, and production of allergen-specific antibody responses. Since its discovery in the 1960s, the central role of IgE in allergic disease has been intensively studied, placing IgE and its functions at the heart of therapeutic efforts for the treatment of allergies. Here, we provide an overview of the nature, roles, and significance of IgE antibodies in allergic diseases, infections, and inflammation and the utility of antibodies as therapies. We place special emphasis on allergen-IgE-Fcε receptor complexes in the context of allergic and inflammatory diseases and describe strategies, including monoclonal antibodies, aimed at interrupting these complexes. Of clinical significance, one antibody, omalizumab, is presently in clinical use and works by preventing formation of IgE-Fcε receptor interactions. Active immunotherapy approaches with allergens and allergen derivatives have also demonstrated clinical benefits for patients with allergic diseases. These treatments are strongly associated with serum increases of IgE-neutralizing antibodies and feature a notable redirection of humoral responses towards production of antibodies of the IgG4 subclass in patients receiving immunotherapies. Lastly, we provide a new perspective on the rise of recombinant antibodies of the IgE class recognizing tumor-associated antigens, and we discuss the potential utility of tumor antigen-specific IgE antibodies to direct potent IgE-driven immune responses against tumors.
Collapse
|
10
|
Biology of IgE production: IgE cell differentiation and the memory of IgE responses. Curr Top Microbiol Immunol 2015; 388:1-19. [PMID: 25553792 DOI: 10.1007/978-3-319-13725-4_1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The generation of long-lived plasma cells and memory B cells producing high-affinity antibodies depends on the maturation of B cell responses in germinal centers. These processes are essential for long-lasting antibody-mediated protection against infections. IgE antibodies are important for defense against parasites and toxins and can also mediate anti-tumor immunity. However, high-affinity IgE is also the main culprit responsible for the manifestations of allergic disease, including life-threatening anaphylaxisAnaphylaxis . Thus, generation of high-affinity IgE must be tightly regulated. Recent studies of IgE B cell biology have unveiled two mechanisms that limit high-affinity IgE memory responses: First, B cells that have recently switched to IgE production are programmed to rapidly differentiate into plasma cells,Plasma cells and second, IgE germinal centerGerminal center cells are transient and highly apoptotic. Opposing these processes, we now know that germinal center-derived IgG B cells can switch to IgE production, effectively becoming IgE-producing plasma cells. In this chapter, we will discuss the unique molecular and cellular pathways involved in the generation of IgE antibodies.
Collapse
|
11
|
Gould HJ, Ramadani F. IgE responses in mouse and man and the persistence of IgE memory. Trends Immunol 2014; 36:40-8. [PMID: 25499855 DOI: 10.1016/j.it.2014.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 12/29/2022]
Abstract
Rapid and robust recall or 'memory' responses are an essential feature of adaptive immunity. They constitute a defense against reinfection by pathogens, yet arguably do more harm than good in allergic disease. Immunoglobulin (Ig)E antibodies mediate the allergic reaction characterized by immediate hypersensitivity, a manifestation of IgE memory. The origin of IgE memory remains obscure, mainly due to the low proportion of IgE-expressing B cells in the total B cell population. The recent development of ultrasensitive methods for tracking these cells in vivo has overcome this obstacle, and their use has revealed unexpected pathways to IgE memory in the mouse. Here, we review these findings and consider their bearing on our understanding of IgE memory and allergic disease in man.
Collapse
Affiliation(s)
- Hannah J Gould
- Divisions of Cell and Molecular Biophysics and Asthma, Allergy and Lung Biology, King's College London, London, SE1 1UL, UK.
| | - Faruk Ramadani
- Divisions of Cell and Molecular Biophysics and Asthma, Allergy and Lung Biology, King's College London, London, SE1 1UL, UK
| |
Collapse
|
12
|
Di-(2-ethylhexyl) phthalate adjuvantly induces imbalanced humoral immunity in ovalbumin-sensitized BALB/c mice ascribing to T follicular helper cells hyperfunction. Toxicology 2014; 324:88-97. [DOI: 10.1016/j.tox.2014.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 12/21/2022]
|
13
|
Brachs S, Turqueti-Neves A, Stein M, Reimer D, Brachvogel B, Bösl M, Winkler T, Voehringer D, Jäck HM, Mielenz D. Swiprosin-1/EFhd2 limits germinal center responses and humoral type 2 immunity. Eur J Immunol 2014; 44:3206-19. [PMID: 25092375 DOI: 10.1002/eji.201444479] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 06/27/2014] [Accepted: 07/31/2014] [Indexed: 01/19/2023]
Abstract
Activated B cells are selected for in germinal centers by regulation of their apoptosis. The Ca2+ -binding cytoskeletal adaptor protein Swiprosin-1/EFhd2 (EFhd2) can promote apoptosis in activated B cells. We therefore hypothesized that EFhd2 might limit humoral immunity by repressing both the germinal center reaction and the expected enhancement of immune responses in the absence of EFhd2. Here, we established EFhd2(-/-) mice on a C57BL/6 background, which revealed normal B- and T-cell development, basal Ab levels, and T-cell independent type 1, and T-cell independent type 2 responses. However, T cell-dependent immunization with sheep red blood cells and infection with the helminth Nippostrongylus brasiliensis (N.b) increased production of antibodies of multiple isotypes, as well as germinal center formation in EFhd2(-/-) mice. In addition, serum IgE levels and numbers of IgE+ plasma cells were strongly increased in EFhd2(-/-) mice, both after primary as well as after secondary N.b infection. Finally, mixed bone marrow chimeras unraveled an EFhd2-dependent B cell-intrinsic contribution to increased IgE plasma cell numbers in N.b-infected mice. Hence, we established a role for EFhd2 as a negative regulator of germinal center-dependent humoral type 2 immunity, with implications for the generation of IgE.
Collapse
Affiliation(s)
- Sebastian Brachs
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus Fiebiger Center, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nuremberg, Nuremberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Dema B, Suzuki R, Rivera J. Rethinking the role of immunoglobulin E and its high-affinity receptor: new insights into allergy and beyond. Int Arch Allergy Immunol 2014; 164:271-9. [PMID: 25227903 DOI: 10.1159/000365633] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Immunoglobulin E (IgE) and its high-affinity receptor (FcεRI) are well-known participants in the allergic response. The interaction of allergens with FcεRI-bound IgE antibodies is an essential step in mast cell/basophil activation and the subsequent release of allergic mediators. It is known that the affinity of the interaction between an IgE antibody and an allergen may differ, raising the question of whether FcεRI can decipher these differences. If so, do the cellular and physiological outcomes vary? Are the molecular mechanisms initiated by FcεRI similarly under low- or high-affinity interactions? Could the resulting inflammatory response differ? Recent discoveries summarized herein are beginning to shed new light on these important questions. What we have learned from them is that IgE and FcεRI form a complex regulatory network influencing the inflammatory response in allergy and beyond.
Collapse
Affiliation(s)
- Barbara Dema
- Molecular Immunology Section, Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md., USA
| | | | | |
Collapse
|
15
|
Yang Z, Robinson MJ, Allen CDC. Regulatory constraints in the generation and differentiation of IgE-expressing B cells. Curr Opin Immunol 2014; 28:64-70. [PMID: 24632082 DOI: 10.1016/j.coi.2014.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/01/2014] [Accepted: 02/03/2014] [Indexed: 11/25/2022]
Abstract
B cells expressing antibodies of the immunoglobulin E (IgE) isotype are rare, yet are heavily implicated in the pathogenesis of allergies and asthma. This review discusses recent methodological advances that permit sensitive probing of IgE-expressing (IgE(+)) B cells in vivo and have accordingly clarified the basic behavior and fate of IgE(+) B cells during immune responses in mouse models. IgE antibody secreting plasma cells can arise from extrafollicular foci, germinal centers, and memory B cells. However, compared to B cells expressing other isotypes, IgE(+) B cells are susceptible to multiple additional regulatory constraints that restrict the size of the IgE(+) B cell pool at each stage, coordinately limiting the overall magnitude, affinity, and duration of the IgE antibody response.
Collapse
Affiliation(s)
- Zhiyong Yang
- Cardiovascular Research Institute and Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marcus J Robinson
- Cardiovascular Research Institute and Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christopher D C Allen
- Cardiovascular Research Institute and Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy and Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
16
|
He JS, Meyer-Hermann M, Xiangying D, Zuan LY, Jones LA, Ramakrishna L, de Vries VC, Dolpady J, Aina H, Joseph S, Narayanan S, Subramaniam S, Puthia M, Wong G, Xiong H, Poidinger M, Urban JF, Lafaille JJ, Curotto de Lafaille MA. The distinctive germinal center phase of IgE+ B lymphocytes limits their contribution to the classical memory response. ACTA ACUST UNITED AC 2013; 210:2755-71. [PMID: 24218137 PMCID: PMC3832920 DOI: 10.1084/jem.20131539] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Direct class switching to IgE generates IgE+ GC cells that are highly apoptotic and do not contribute to the memory compartment, while sequential switching through an IgG+ intermediate results in the generation of long-lived IgE+ plasma cells. The mechanisms involved in the maintenance of memory IgE responses are poorly understood, and the role played by germinal center (GC) IgE+ cells in memory responses is particularly unclear. IgE+ B cell differentiation is characterized by a transient GC phase, a bias toward the plasma cell (PC) fate, and dependence on sequential switching for the production of high-affinity IgE. We show here that IgE+ GC B cells are unfit to undergo the conventional GC differentiation program due to impaired B cell receptor function and increased apoptosis. IgE+ GC cells fail to populate the GC light zone and are unable to contribute to the memory and long-lived PC compartments. Furthermore, we demonstrate that direct and sequential switching are linked to distinct B cell differentiation fates: direct switching generates IgE+ GC cells, whereas sequential switching gives rise to IgE+ PCs. We propose a comprehensive model for the generation and memory of IgE responses.
Collapse
Affiliation(s)
- Jin-Shu He
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore 138648
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Eckl-Dorna J, Niederberger V. What is the source of serum allergen-specific IgE? Curr Allergy Asthma Rep 2013; 13:281-7. [PMID: 23585215 DOI: 10.1007/s11882-013-0348-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Immunoglobulin E (IgE), the key effector element in the induction and propagation of allergic diseases, is the least abundant antibody class. In allergic patients, class switch recombination to IgE in B cells is induced by allergen contact in conjunction with T cell interaction and a Th2 cytokine environment. With regard to future therapeutic approaches, the sites of IgE production in human subjects and the nature and characteristics of IgE-producing cells are of great interest. In this context, it has been shown that allergen-specific IgE levels can be boosted by contact with allergens via the respiratory mucosa of the nose. Also, it has been proposed that allergy effector organs (e.g., the nasal mucosa and the lung) may be important sites of IgE production in allergic patients. IgE-producing cells have also been found in the blood, but their numbers are extremely low. Transfer of specific sensitization during bone marrow transplantation indicates the presence of IgE-producing B memory cells or plasma cells also in the bone marrow. This review summarizes data on the induction of IgE production, IgE memory and the sites of IgE production in human allergic patients.
Collapse
Affiliation(s)
- Julia Eckl-Dorna
- Department of Otorhinolaryngology, Medical University of Vienna, General Hospital Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | | |
Collapse
|
18
|
Davies JM, Platts-Mills TA, Aalberse RC. The enigma of IgE+ B-cell memory in human subjects. J Allergy Clin Immunol 2013; 131:972-6. [DOI: 10.1016/j.jaci.2012.12.1569] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 12/21/2012] [Accepted: 12/27/2012] [Indexed: 01/09/2023]
|