1
|
Henríquez-Beltrán M, González J, Labarca G, Targa ADS. The Critical Role of Sleep in Enhancing Pulmonary Rehabilitation Outcomes. Semin Respir Crit Care Med 2025. [PMID: 40164117 DOI: 10.1055/a-2557-8463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Pulmonary rehabilitation is a comprehensive, interdisciplinary intervention that aims to enhance the physical and psychological well-being of individuals with chronic respiratory diseases. This approach entails the implementation of tailored therapies, including exercise training, education, and behavioral modification. Sleep plays a crucial role in numerous physiological processes, including the regulation of inflammation and tissue repair, both of which are fundamental to the efficacy of rehabilitation. A paucity of optimal sleep health has been associated with deleterious effects on pivotal factors that are indispensable for favorable outcomes in pulmonary rehabilitation, including mental and physical health and immune function. This, in turn, may increase susceptibility to impaired pulmonary function. The integration of pulmonary rehabilitation protocols with healthy sleep practices is expected to yield significant improvements in lung function and overall health, which will, in turn, promote long-term adherence to rehabilitative behaviors. This study aims to examine the relationship between sleep health and pulmonary rehabilitation outcomes.
Collapse
Affiliation(s)
- Mario Henríquez-Beltrán
- Translational Research in Respiratory Medicine, Biomedical Research Institute of Lleida (IRBLleida), Hospital Universitari Arnau de Vilanova-Santa Maria, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Núcleo de Investigación en Ciencias de la Salud, Universidad Adventista de Chile, Chillán, Chile
- Escuela de Kinesiología, Facultad de Salud, Universidad Santo Tomás, Chile
| | - Jessica González
- Translational Research in Respiratory Medicine, Biomedical Research Institute of Lleida (IRBLleida), Hospital Universitari Arnau de Vilanova-Santa Maria, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Gonzalo Labarca
- Departamento de Enfermedades Respiratorias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Adriano D S Targa
- Translational Research in Respiratory Medicine, Biomedical Research Institute of Lleida (IRBLleida), Hospital Universitari Arnau de Vilanova-Santa Maria, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Zhang W, Jiang Z, Ding M, Wang X, Huang A, Qiu L, Qi S. Novel neonicotinoid insecticide cycloxaprid exhibits sublethal toxicity to honeybee (Apis mellifera L.) workers by disturbing olfactory sensitivity and energy metabolism. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136923. [PMID: 39706026 DOI: 10.1016/j.jhazmat.2024.136923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/04/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
The risk of neonicotinoid insecticides to honeybees is a global issue. Cycloxaprid (CYC) is a novel neonicotinoid insecticide with outstanding activities, good safety profiles, and no cross-resistance with other neonicotinoids. Information on the environmental risks of CYC is limited, especially its effects on honeybees. Herein, the acute and chronic toxicities of CYC on honeybees were evaluated, and the underlying mechanisms were explored via transcriptomics and molecular docking. The results indicate that CYC had high toxicity to honeybees, with a 48-h oral median lethal dose of 32.8 ng/bee. Over a 10-days of chronic exposure to CYC at sublethal concentration 30 μg/L, the honeybees showed significantly decreased survival rates and food consumption. Additionally, the sensitivity of honeybees to sucrose and odors and CO2 production was significantly reduced. Furthermore, molecular docking revealed that CYC has higher binding affinity than odors to odorant-binding proteins, and the olfactory and metabolism pathways gene expression was negatively affected at transcriptome level. These findings indicate that CYC at sublethal concentration can pose risks to honeybees by affecting their olfactory function and energy metabolic balance. Further study and consideration are needed to fully exploit the benefits of this pesticide.
Collapse
Affiliation(s)
- Wei Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiyang Jiang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Mu Ding
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing 100093, China; Beijing University of Agriculture, Beijing 100096, China
| | - Xue Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Aidi Huang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Lihong Qiu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Suzhen Qi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing 100093, China.
| |
Collapse
|
3
|
Joyal KG, Petrucci AN, Littlepage-Saunders MV, Boodhoo NA, Wendt LH, Buchanan GF. Selective Serotonin Reuptake Inhibitors and 5-HT 2 Receptor Agonists Have Distinct, Sleep-state Dependent Effects on Postictal Breathing in Amygdala Kindled Mice. Neuroscience 2023; 513:76-95. [PMID: 36702372 PMCID: PMC9974756 DOI: 10.1016/j.neuroscience.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
Seizures can cause profound breathing disruptions. Seizures arising from sleep cause greater breathing impairment than those emerging from wakefulness and more often result in sudden unexpected death in epilepsy (SUDEP). The neurotransmitter serotonin (5-HT) plays a major role in respiration and sleep-wake regulation. 5-HT modulates seizure susceptibility and severity and is dysregulated by seizures. Thus, the impact of seizures on breathing dysregulation may be due to impaired 5-HT neurotransmission. We examined whether pharmacologically increasing 5-HT neurotransmission prior to seizures improves postictal breathing and how sleep-state during seizure induction contributes to these effects. We assessed breathing with whole-body plethysmography in 84 amygdala-kindled mice pre-treated with selective serotonin reuptake inhibitors (SSRI) or 5-HT2 receptor agonists. SSRIs and 5-HT2 agonists increased postictal breathing frequency (fR), tidal volume (VT), and minute ventilation (VE) at different timepoints following seizures induced during wakefulness. These effects were not observed following seizures induced during NREM sleep. SSRIs suppressed ictal and postictal apnea regardless of sleep state. The SSRI citalopram and the 5-HT2 agonists TCB-2 and MK-212 decreased breathing variability following wake-occurring seizures at different postictal timepoints. Only MK-212 decreased breathing variability when seizures were induced during NREM sleep. The 5-HT2A antagonist MDL-11939 reduced the effect of citalopram on fR, VT, and VE, and enhanced its effect on breathing variability in the initial period following a seizure. These results suggest that 5-HT mechanisms that are dependent on or independent from the 5-HT2 family of receptors impact breathing on different timescales during the recovery of eupnea, and that certain serotonergic treatments may be less effective at facilitating postictal breathing following seizures emerging from sleep.
Collapse
Affiliation(s)
- Katelyn G Joyal
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Alexandra N Petrucci
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Mydirah V Littlepage-Saunders
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Nicole A Boodhoo
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Linder H Wendt
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA 52242, USA.
| | - Gordon F Buchanan
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
4
|
Joyal KG, Kreitlow BL, Buchanan GF. The role of sleep state and time of day in modulating breathing in epilepsy: implications for sudden unexpected death in epilepsy. Front Neural Circuits 2022; 16:983211. [PMID: 36082111 PMCID: PMC9445500 DOI: 10.3389/fncir.2022.983211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death among patients with refractory epilepsy. While the exact etiology of SUDEP is unknown, mounting evidence implicates respiratory dysfunction as a precipitating factor in cases of seizure-induced death. Dysregulation of breathing can occur in epilepsy patients during and after seizures as well as interictally, with many epilepsy patients exhibiting sleep-disordered breathing (SDB), such as obstructive sleep apnea (OSA). The majority of SUDEP cases occur during the night, with the victim found prone in or near a bed. As breathing is modulated in both a time-of-day and sleep state-dependent manner, it is relevant to examine the added burden of nocturnal seizures on respiratory function. This review explores the current state of understanding of the relationship between respiratory function, sleep state and time of day, and epilepsy. We highlight sleep as a particularly vulnerable period for individuals with epilepsy and press that this topic warrants further investigation in order to develop therapeutic interventions to mitigate the risk of SUDEP.
Collapse
Affiliation(s)
- Katelyn G. Joyal
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Benjamin L. Kreitlow
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Gordon F. Buchanan
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- *Correspondence: Gordon F. Buchanan
| |
Collapse
|
5
|
Olivares MJ, Toledo C, Ortolani D, Ortiz FC, Díaz HS, Iturriaga R, Del Río R. Sleep dysregulation in sympathetic-mediated diseases: implications for disease progression. Sleep 2022; 45:6649852. [DOI: 10.1093/sleep/zsac166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/18/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
The autonomic nervous system (ANS) plays an important role in the coordination of several physiological functions including sleep/wake process. Significant changes in ANS activity occur during wake-to-sleep transition maintaining the adequate cardiorespiratory regulation and brain activity. Since sleep is a complex homeostatic function, partly regulated by the ANS, it is not surprising that sleep disruption trigger and/or evidence symptoms of ANS impairment. Indeed, several studies suggest a bidirectional relationship between impaired ANS function (i.e. enhanced sympathetic drive), and the emergence/development of sleep disorders. Furthermore, several epidemiological studies described a strong association between sympathetic-mediated diseases and the development and maintenance of sleep disorders resulting in a vicious cycle with adverse outcomes and increased mortality risk. However, which and how the sleep/wake control and ANS circuitry becomes affected during the progression of ANS-related diseases remains poorly understood. Thus, understanding the physiological mechanisms underpinning sleep/wake-dependent sympathetic modulation could provide insights into diseases involving autonomic dysfunction. The purpose of this review is to explore potential neural mechanisms involved in both the onset/maintenance of sympathetic-mediated diseases (Rett syndrome, congenital central hypoventilation syndrome, obstructive sleep apnoea, type 2 diabetes, obesity, heart failure, hypertension, and neurodegenerative diseases) and their plausible contribution to the generation of sleep disorders in order to review evidence that may serve to establish a causal link between sleep disorders and heightened sympathetic activity.
Collapse
Affiliation(s)
- María José Olivares
- Department of Physiology, Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Camilo Toledo
- Department of Physiology, Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile , Santiago , Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes , Punta Arenas , Chile
| | - Domiziana Ortolani
- Department of Physiology, Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Fernando C Ortiz
- Mechanisms of Myelin Formation and Repair Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile , Santiago , Chile
| | - Hugo S Díaz
- Department of Physiology, Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile , Santiago , Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes , Punta Arenas , Chile
| | - Rodrigo Iturriaga
- Department of Physiology, Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile , Santiago , Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes , Punta Arenas , Chile
| | - Rodrigo Del Río
- Department of Physiology, Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile , Santiago , Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes , Punta Arenas , Chile
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile , Santiago , Chile
| |
Collapse
|
6
|
Web Applications for Teaching the Respiratory System: Content Validation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The subject of respiratory mechanics has complex characteristics, functions, and interactions that can be difficult to understand in training and medical education contexts. As such, education strategies based on computational simulations comprise useful tools, but their application in the medical area requires stricter validation processes. This paper shows a statistical and a Delphi validation for two modules of a web application used for respiratory system learning: (I) “Anatomy and Physiology” and (II) “Work of Breathing Indexes”. For statistical validation, population and individual analyses were made using a database of healthy men to compare experimental and model-predicted data. For both modules, the predicted values followed the trend marked by the experimental data in the population analysis, while in the individual analysis, the predicted errors were 9.54% and 25.38% for maximal tidal volume and airflow, respectively, and 6.55%, 9.33%, and 11.77% for rapid shallow breathing index, work of breathing, and maximal inspiratory pressure, respectively. For the Delphi validation, an average higher than 4 was obtained after health professionals evaluated both modules from 1 to 5. In conclusion, both modules are good tools for respiratory system learning processes. The studied parameters behaved consistently with the expressions that describe ventilatory dynamics and were correlated with experimental data; furthermore, they had great acceptance by specialists.
Collapse
|
7
|
Anand B, Karthikbabu S. Effects of additional inspiratory muscle training on mobility capacity and respiratory strength for school-children and adolescents with cerebral palsy: a randomized controlled trial. Braz J Phys Ther 2021; 25:891-899. [PMID: 34810107 DOI: 10.1016/j.bjpt.2021.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 06/21/2021] [Accepted: 10/29/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Children and adolescents with cerebral palsy often have poor respiratory function, which is often not addressed. OBJECTIVE To examine if adding inspiratory muscle training to sensorimotor exercises would improve mobility capacity and respiratory function in children and adolescents with cerebral palsy. METHODS Forty school-children and adolescents with cerebral palsy aged 8-15 years with Gross Motor Function Classification System I-III, participated in this randomized controlled trial. The experimental group received 45 min of sensorimotor physical therapy in addition to 15 min of inspiratory muscle training for 18 sessions over six weeks. In contrast, the control group received 45 min of sensorimotor training session, three times a week over six weeks. The primary outcome measure was the six-minute walk test. The secondary outcome measures were maximal inspiratory and maximal expiratory pressure, as well as pulmonary function tests. RESULTS Time by group interaction showed no statistical significance between the groups in any outcome measures except for peak expiratory flow. The mean difference of 9.6 cm H2O (95% CI: 2.3, 16.8) in the MIP from baseline to 2-month follow-up supports the experimental intervention. Post-training, the between-group mean difference was 19.8 (95% CI: -18.0, 57.6) meter in the six-minute walk test. CONCLUSION Adding inspiratory muscle training to sensorimotor physical therapy did not impact mobility capacity in children and adolescents with cerebral palsy.
Collapse
Affiliation(s)
- Bhuvaneshwari Anand
- Department of Physical Therapy, Manipal Hospital, Bangalore Campus, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| | - Suruliraj Karthikbabu
- Department of Physical Therapy, Manipal Hospital, Bangalore Campus, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
8
|
Purnell BS, Petrucci AN, Li R, Buchanan GF. The effect of time-of-day and circadian phase on vulnerability to seizure-induced death in two mouse models. J Physiol 2021; 599:1885-1899. [PMID: 33501667 DOI: 10.1113/jp280856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/18/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Sudden unexpected death in epilepsy (SUDEP) is the leading cause of premature death in patients with refractory epilepsy. SUDEP typically occurs during the night, although the reason for this is unclear. We found that, in normally entrained mice, time-of-day alters vulnerability to seizure-induced death. We found that, in free-running mice, circadian phase alters the vulnerability to seizure-induced death. These findings suggest that circadian rhythmicity may be responsible for the increased night-time prevalence of SUDEP ABSTRACT: Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related death. SUDEP typically occurs during the night following a seizure. Many aspects of mammalian physiology are regulated by circadian rhythms in ways that might make seizures occuring during the night more dangerous. Using two mouse models of seizure-induced death, we demonstrate that time-of-day and circadian rhythms alter vulnerability to seizure-induced death. We exposed normally entrained DBA/1 mice to a potentially seizure-inducing acoustic stimulus at different times of day and compared the characteristics and outcomes of the seizures. Time-of-day did not alter the probability of a seizure but it did alter the probability of seizure-induced death. To determine whether circadian rhythms alter vulnerability to seizure-induced death, we induced maximal electroshock seizures in free-running C57BL/6J mice at different circadian time points at the same time as measuring breathing via whole body plethysmography. Circadian phase did not affect seizure severity but it did alter postictal respiratory outcomes and the probability of seizure-induced death. By contrast to our expectations, in entrained and free-running mice, vulnerability to seizure-induced death was greatest during the night and subjective night, respectively. These findings suggest that circadian rhythmicity may be responsible for the increased night-time prevalence of SUDEP and that the underlying mechanism is phase conserved between nocturnal and diurnal mammals. All of the seizures in the present study were induced during wakefulness, indicating that the effect of time point on vulnerability to seizure-induced death was not the result of sleep. Understanding why SUDEP occurs more frequently during the night may inform future preventative countermeasures.
Collapse
Affiliation(s)
- Benton S Purnell
- Interdisciplinary Graduate Program in Neuroscience, Iowa City, IA, USA.,Iowa Neuroscience Institute, Iowa City, IA, USA.,Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Alexandra N Petrucci
- Interdisciplinary Graduate Program in Neuroscience, Iowa City, IA, USA.,Iowa Neuroscience Institute, Iowa City, IA, USA.,Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Rui Li
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Gordon F Buchanan
- Interdisciplinary Graduate Program in Neuroscience, Iowa City, IA, USA.,Iowa Neuroscience Institute, Iowa City, IA, USA.,Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
9
|
El Banna EH, El Hadidy EI, Ali WM. Effect of respiratory therapy on pulmonary functions in children with cerebral palsy: a systematic review. BULLETIN OF FACULTY OF PHYSICAL THERAPY 2020. [DOI: 10.1186/s43161-020-00016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Children with cerebral palsy (CP) are at risk for respiratory dysfunction. Early initiation of pulmonary rehabilitation in addition to conventional physical therapy may result in improvement and maintenance of chest mobility and respiratory function. However, empirical support for respiratory therapy is limited. The aim of the review was to assess the evidence of the effectiveness of respiratory therapy on pulmonary functions in children with CP.
Methods
Four electronic databases (PubMed, Cochrane Library, Physiotherapy Evidence Database (PEDro), and Google Scholar) were searched till December 2019 using predefined terms by two independent reviewers. Randomized controlled trials published in English were included if they met the following criteria: population—children with different types of CP of both sex, aged up to 18 years; intervention—respiratory therapy; outcomes—pulmonary functions. Eight studies with 235 participants only met the inclusion criteria and were included in this review. Predefined data were tabulated using American Academy for Cerebral Palsy and Developmental Medicine by two reviewers and verified by a third reviewer. Methodological quality was assessed using rating system of quality assessment and PEDro scale; also, levels of evidence adopted from modified Sacket’s scale were used for each outcome.
Results
The quality of studies ranged from excellent (one study) to good (five studies) and fair (two studies). The results showed level 1 (six studies) and level 2 (two studies) on modified Sacket’s scale for level of evidence. Lack of allocation concealment and blinding was the major risk of bias in the included studies.
Conclusions
Meta-analysis revealed significant difference in the improvement of vital capacity, peak expiratory flow, and forced expiratory volume at 1 s in favor of the study groups. However, there is a need for high-quality studies to draw a clear conclusion.
Collapse
|
10
|
Purnell BS, Buchanan GF. Free-running circadian breathing rhythms are eliminated by suprachiasmatic nucleus lesion. J Appl Physiol (1985) 2020; 129:49-57. [PMID: 32501775 PMCID: PMC7469233 DOI: 10.1152/japplphysiol.00211.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/06/2020] [Accepted: 06/02/2020] [Indexed: 11/22/2022] Open
Abstract
It is widely agreed that breathing is subject to circadian regulation. Circadian differences in respiratory physiology significantly impact a number of diseases including sleep apnea, asthma, and seizure-induced death. The effect of time of day on breathing has been previously characterized; however, an endogenous free-running respiratory rhythm in mammals has not previously been described. Furthermore, it is assumed that circadian rhythms in breathing are dependent on the hypothalamic suprachiasmatic nucleus (SCN), the home of the mammalian central circadian oscillator, but this has not been shown experimentally. The breathing of mice was monitored during wakefulness using whole body plethysmography at six times of day while housed under light-dark conditions and at six circadian phases while housed under constant darkness. Respiratory frequency and minute ventilation, but not tidal volume, were significantly higher during the active phase in both entrained and free-running conditions. To determine whether circadian regulation of breathing requires the SCN, in separate sets of animals this structure was electrolytically lesioned bilaterally or a sham surgery was performed, and breathing was measured at six different time points. Time-dependent oscillations in breathing were lost in SCN-lesioned animals, but not those subjected to sham surgery. These results suggest that breathing is subject to circadian regulation via the SCN. Mechanistic insights into the circadian regulation of breathing may lead to targeted interventions to reduce the morbidity and mortality associated with diseases with respiratory pathophysiology.NEW & NOTEWORTHY It has long been appreciated that breathing is altered by time of day. This study demonstrates that rhythmicity in breathing persists in constant darkness but is dependent on the suprachiasmatic nucleus in the hypothalamus. Understanding circadian rhythms in breathing may be important for the treatment and prevention of diseases such as sleep apnea and sudden unexpected death in epilepsy.
Collapse
Affiliation(s)
- Benton S Purnell
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Gordon F Buchanan
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
11
|
Kelly MN, Smith DN, Sunshine MD, Ross A, Zhang X, Gumz ML, Esser KA, Mitchell GS. Circadian clock genes and respiratory neuroplasticity genes oscillate in the phrenic motor system. Am J Physiol Regul Integr Comp Physiol 2020; 318:R1058-R1067. [PMID: 32348679 DOI: 10.1152/ajpregu.00010.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Circadian rhythms are endogenous and entrainable daily patterns of physiology and behavior. Molecular mechanisms underlie circadian rhythms, characterized by an ~24-h pattern of gene expression of core clock genes. Although it has long been known that breathing exhibits circadian rhythms, little is known concerning clock gene expression in any element of the neuromuscular system controlling breathing. Furthermore, we know little concerning gene expression necessary for specific respiratory functions, such as phrenic motor plasticity. Thus, we tested the hypotheses that transcripts for clock genes (Bmal1, Clock, Per1, and Per2) and molecules necessary for phrenic motor plasticity (Htr2a, Htr2b, Bdnf, and Ntrk2) oscillate in regions critical for phrenic/diaphragm motor function via RT-PCR. Tissues were collected from male Sprague-Dawley rats entrained to a 12-h light-dark cycle at 4 zeitgeber times (ZT; n = 8 rats/group): ZT5, ZT11, ZT17, and ZT23; ZT0 = lights on. Here, we demonstrate that 1) circadian clock genes (Bmal1, Clock, Per1, and Per2) oscillate in regions critical for phrenic/diaphragm function, including the caudal medulla, ventral C3-C5 cervical spinal cord, and diaphragm; 2) the clock protein BMAL1 is localized within CtB-labeled phrenic motor neurons; 3) genes necessary for intermittent hypoxia-induced phrenic/diaphragm motor plasticity (Htr2b and Bdnf) oscillate in the caudal medulla and ventral C3-C5 spinal cord; and 4) there is higher intensity of immunofluorescent BDNF protein within phrenic motor neurons at ZT23 compared with ZT11 (n = 11 rats/group). These results suggest local circadian clocks exist in the phrenic motor system and confirm the potential for local circadian regulation of neuroplasticity and other elements of the neural network controlling breathing.
Collapse
Affiliation(s)
- Mia N Kelly
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida.,Department of Physical Therapy, University of Florida, Gainesville, Florida.,McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Danelle N Smith
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida
| | - Michael D Sunshine
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida.,Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Ashley Ross
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida.,Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Xiping Zhang
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Michelle L Gumz
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Gordon S Mitchell
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida.,Department of Physical Therapy, University of Florida, Gainesville, Florida.,McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
12
|
Petrucci AN, Joyal KG, Purnell BS, Buchanan GF. Serotonin and sudden unexpected death in epilepsy. Exp Neurol 2020; 325:113145. [PMID: 31866464 PMCID: PMC7029792 DOI: 10.1016/j.expneurol.2019.113145] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/12/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Epilepsy is a highly prevalent disease characterized by recurrent, spontaneous seizures. Approximately one-third of epilepsy patients will not achieve seizure freedom with medical management and become refractory to conventional treatments. These patients are at greatest risk for sudden unexpected death in epilepsy (SUDEP). The exact etiology of SUDEP is unknown, but a combination of respiratory, cardiac, neuronal electrographic dysfunction, and arousal impairment is thought to underlie SUDEP. Serotonin (5-HT) is involved in regulation of breathing, sleep/wake states, arousal, and seizure modulation and has been implicated in the pathophysiology of SUDEP. This review explores the current state of understanding of the relationship between 5-HT, epilepsy, and respiratory and autonomic control processes relevant to SUDEP in epilepsy patients and in animal models.
Collapse
Affiliation(s)
- Alexandra N Petrucci
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States of America; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America
| | - Katelyn G Joyal
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States of America; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America
| | - Benton S Purnell
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States of America; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America
| | - Gordon F Buchanan
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States of America; Department of Neurology, University of Iowa, Iowa City, IA 52242, United States of America; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America.
| |
Collapse
|
13
|
Li R, Buchanan GF. Scurrying to Understand Sudden Expected Death in Epilepsy: Insights From Animal Models. Epilepsy Curr 2019; 19:390-396. [PMID: 31526023 PMCID: PMC6891182 DOI: 10.1177/1535759719874787] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in patients with refractory epilepsy, accounting for up to 17% of deaths in patients with epilepsy. The pathophysiology of SUDEP has remained unclear, largely because it is unpredictable and commonly unwitnessed. This poses a great challenge to studies in patients. Recently, there has been an increase in animal studies to try to better understand the pathophysiology of SUDEP. In this current review, we focus on developments through seizure-induced death models and the preventative strategies they may reveal.
Collapse
Affiliation(s)
- Rui Li
- Department of Neurology, Carver College of Medicine, University of Iowa, IA, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, IA, USA
| | - Gordon F. Buchanan
- Department of Neurology, Carver College of Medicine, University of Iowa, IA, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, IA, USA
| |
Collapse
|
14
|
Teran FA, Kim Y, Crotts MS, Bravo E, Emaus KJ, Richerson GB. Time of Day and a Ketogenic Diet Influence Susceptibility to SUDEP in Scn1a R1407X/+ Mice. Front Neurol 2019; 10:278. [PMID: 30984098 PMCID: PMC6449461 DOI: 10.3389/fneur.2019.00278] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/04/2019] [Indexed: 01/02/2023] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a major cause of mortality in patients with drug-resistant epilepsy. Most SUDEP cases occur in bed at night and are preceded by a generalized tonic-clonic seizure (GTCS). Dravet syndrome (DS) is a severe childhood-onset epilepsy commonly caused by mutations in the SCN1A gene. Affected individuals suffer from refractory seizures and an increased risk of SUDEP. Here, we demonstrate that mice with the Scn1aR1407X/+ loss-of-function mutation (DS) experience more spontaneous seizures and SUDEP during the early night. We also evaluate effects of long-term ketogenic diet (KD) treatment on mortality and seizure frequency. DS mice showed high premature mortality (44% survival by P60) that was associated with increased spontaneous GTCSs 1–2 days prior to SUDEP. KD treated mice had a significant reduction in mortality (86% survival by P60) compared to mice fed a control diet. Interestingly, increased survival was not associated with a decrease in seizure frequency. Further studies are needed to determine how KD confers protection from SUDEP. Moreover, our findings implicate time of day as a factor influencing the occurrence of seizures and SUDEP. DS mice, though nocturnal, are more likely to have SUDEP at night, suggesting that the increased incidence of SUDEP at night in may not be solely due to sleep.
Collapse
Affiliation(s)
- Frida A Teran
- Department of Neurology, University of Iowa, Iowa City, IA, United States.,Medical Scientist Training Program, University of Iowa, Iowa City, IA, United States.,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
| | - YuJaung Kim
- Department of Neurology, University of Iowa, Iowa City, IA, United States.,Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Megan S Crotts
- Department of Neurology, University of Iowa, Iowa City, IA, United States
| | - Eduardo Bravo
- Department of Neurology, University of Iowa, Iowa City, IA, United States.,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
| | - Katlynn J Emaus
- Department of Neurology, University of Iowa, Iowa City, IA, United States
| | - George B Richerson
- Department of Neurology, University of Iowa, Iowa City, IA, United States.,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States.,Department of Molecular Physiology & Biophysics, University of Iowa, Iowa City, IA, United States.,Neurology, Veterans Affairs Medical Center, Iowa City, IA, United States
| |
Collapse
|
15
|
Kwon HY, Kim BJ. Correlation between the dimensions of diaphragm movement, respiratory functions and pressures in accordance with the gross motor function classification system levels in children with cerebral palsy. J Exerc Rehabil 2018; 14:998-1004. [PMID: 30656161 PMCID: PMC6323324 DOI: 10.12965/jer.1836422.211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/05/2018] [Indexed: 11/22/2022] Open
Abstract
This study was executed as correlation study to investigate the correlation between the dimensions of diaphragm movement, and respiratory functions and pressures in accordance with the Gross Motor Function Classification System (GMFCS) levels on children with cerebral palsy as the participants. Forty-three children in the age range of 5–13 years diagnosed with cerebral palsy as the research participants were divided into three groups (levels I, II, and III) through systematic stratified random sampling in accordance with their GMFCS levels. Pearson correlation analysis was executed to examine the correlation between dimensions of diaphragm movement, and respiratory functions and pressures in accordance with the GMFCS levels of the participants. There was no significant correlation between the dimensions of diaphragm movement, and respiratory functions and pressures in all of the three groups in accordance with the GMFCS levels of the participants. Therefore, it is deemed that although measurement of the dimensions of diaphragm movement of children with cerebral palsy by using diagnostic ultrasonic M-mode imaging device can be considered as auxiliary tool in predicting the breathing capabilities, it cannot be used as independent measurement equipment.
Collapse
Affiliation(s)
- Hae-Yeon Kwon
- Department of Physical Therapy, College of Nursing, Healthcare Sciences and Human Ecology, Dong-eui University, Busan, Korea
| | - Byeong-Jo Kim
- Department of Physical Therapy, College of Nursing, Healthcare Sciences and Human Ecology, Dong-eui University, Busan, Korea
| |
Collapse
|
16
|
Purnell BS, Thijs RD, Buchanan GF. Dead in the Night: Sleep-Wake and Time-Of-Day Influences on Sudden Unexpected Death in Epilepsy. Front Neurol 2018; 9:1079. [PMID: 30619039 PMCID: PMC6297781 DOI: 10.3389/fneur.2018.01079] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/27/2018] [Indexed: 11/13/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related death in patients with refractory epilepsy. Convergent lines of evidence suggest that SUDEP occurs due to seizure induced perturbation of respiratory, cardiac, and electrocerebral function as well as potential predisposing factors. It is consistently observed that SUDEP happens more during the night and the early hours of the morning. The aim of this review is to discuss evidence from patient cases, clinical studies, and animal research which is pertinent to the nocturnality of SUDEP. There are a number of factors which might contribute to the nighttime predilection of SUDEP. These factors fall into four categories: influences of (1) being unwitnessed, (2) lying prone in bed, (3) sleep-wake state, and (4) circadian rhythms. During the night, seizures are more likely to be unwitnessed; therefore, it is less likely that another person would be able to administer a lifesaving intervention. Patients are more likely to be prone on a bed following a nocturnal seizure. Being prone in the accouterments of a bed during the postictal period might impair breathing and increase SUDEP risk. Sleep typically happens at night and seizures which emerge from sleep might be more dangerous. Lastly, there are circadian changes to physiology during the night which might facilitate SUDEP. These possible explanations for the nocturnality of SUDEP are not mutually exclusive. The increased rate of SUDEP during the night is likely multifactorial involving both situational factors, such as being without a witness and prone, and physiological changes due to the influence of sleep and circadian rhythms. Understanding the causal elements in the nocturnality of SUDEP may be critical to the development of effective preventive countermeasures.
Collapse
Affiliation(s)
- Benton S Purnell
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States.,Neuroscience Program, University of Iowa, Iowa City, IA, United States.,Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Roland D Thijs
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands.,NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, London, United Kingdom.,Department of Neurology, LUMC Leiden University Medical Center, Leiden, Netherlands
| | - Gordon F Buchanan
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States.,Neuroscience Program, University of Iowa, Iowa City, IA, United States.,Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
17
|
Kwon HY, Kim BJ. Effects of task-specific movement patterns during resistance exercise on the respiratory functions and thickness of abdominal muscles of children with cerebral palsy: randomized placebo-controlled double-blinded clinical trial. J Phys Ther Sci 2018; 30:1073-1080. [PMID: 30154603 PMCID: PMC6110216 DOI: 10.1589/jpts.30.1073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/15/2018] [Indexed: 11/27/2022] Open
Abstract
[Purpose] This study was conducted to examine the effects of task-specific movement
patterns during resistance exercise program, which are applied to children with cerebral
palsy, on respiratory functions and thickness of abdominal muscles. [Participants and
Methods] This study was conducted with randomized double-blinded controlled research was
pursued since it is a clinical trial with minors with disabilities as the participants.
Seventeen children with cerebral palsy were randomly allocated to both experimental group
and placebo group by means of simple randomized sampling. The experimental group wore
weighted vest to which loaded-resistance was applied by means of sand bag while the
placebo group wore weighted vest without loaded-resistance. Task-specific movement
patterns during resistance exercise were performed for 40 minutes 2 times a week over a
period of 12 weeks for the participants in both groups. Differences in respiratory
functions and thickness of abdominal muscles measured prior to and after 12 weeks of the
experiment were compared. [Results] All the measurement values for the respiratory
functions and abdominal muscle thickness displayed statistically significant changes
between those prior to and after the exercise in both of the experimental group and the
placebo group. There were statistically significant differences in the changes prior to
and following the exercise between the two groups. [Conclusion] Therefore, task-specific
movement patterns in anatomical plane, diagonal patterns and combined forms during
resistance exercise program on for children with cerebral palsy can be considered as an
efficient intervention method in improving respiratory capacity.
Collapse
Affiliation(s)
- Hae-Yeon Kwon
- Department of Physical Therapy, Dong-eui University: 176 Umkwang-ro, Busanjin-gu, Busan 47340, Republic of Korea
| | - Byeong-Jo Kim
- Department of Physical Therapy, Dong-eui University: 176 Umkwang-ro, Busanjin-gu, Busan 47340, Republic of Korea
| |
Collapse
|
18
|
Sundar IK, Sellix MT, Rahman I. Redox regulation of circadian molecular clock in chronic airway diseases. Free Radic Biol Med 2018; 119:121-128. [PMID: 29097215 PMCID: PMC5910271 DOI: 10.1016/j.freeradbiomed.2017.10.383] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/12/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022]
Abstract
At the cellular level, circadian timing is maintained by the molecular clock, a family of interacting clock gene transcription factors, nuclear receptors and kinases called clock genes. Daily rhythms in pulmonary function are dictated by the circadian timing system, including rhythmic susceptibility to the harmful effects of airborne pollutants, exacerbations in patients with chronic airway disease and the immune-inflammatory response to infection. Further, evidence strongly suggests that the circadian molecular clock has a robust reciprocal interaction with redox signaling and plays a considerable role in the response to oxidative/carbonyl stress. Disruption of the circadian timing system, particularly in airway cells, impairs pulmonary rhythms and lung function, enhances oxidative stress due to airway inhaled pollutants like cigarette smoke and airborne particulate matter and leads to enhanced inflammosenescence, inflammasome activation, DNA damage and fibrosis. Herein, we briefly review recent evidence supporting the role of the lung molecular clock and redox signaling in regulating inflammation, oxidative stress, and DNA damage responses in lung diseases and their exacerbations. We further describe the potential for clock genes as novel biomarkers and therapeutic targets for the treatment of chronic lung diseases.
Collapse
Affiliation(s)
- Isaac K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael T Sellix
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
19
|
de Assis LVM, Moraes MN, Magalhães-Marques KK, Kinker GS, da Silveira Cruz-Machado S, Castrucci AMDL. Non-Metastatic Cutaneous Melanoma Induces Chronodisruption in Central and Peripheral Circadian Clocks. Int J Mol Sci 2018; 19:E1065. [PMID: 29614021 PMCID: PMC5979525 DOI: 10.3390/ijms19041065] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022] Open
Abstract
The biological clock has received increasing interest due to its key role in regulating body homeostasis in a time-dependent manner. Cancer development and progression has been linked to a disrupted molecular clock; however, in melanoma, the role of the biological clock is largely unknown. We investigated the effects of the tumor on its micro- (TME) and macro-environments (TMaE) in a non-metastatic melanoma model. C57BL/6J mice were inoculated with murine B16-F10 melanoma cells and 2 weeks later the animals were euthanized every 6 h during 24 h. The presence of a localized tumor significantly impaired the biological clock of tumor-adjacent skin and affected the oscillatory expression of genes involved in light- and thermo-reception, proliferation, melanogenesis, and DNA repair. The expression of tumor molecular clock was significantly reduced compared to healthy skin but still displayed an oscillatory profile. We were able to cluster the affected genes using a human database and distinguish between primary melanoma and healthy skin. The molecular clocks of lungs and liver (common sites of metastasis), and the suprachiasmatic nucleus (SCN) were significantly affected by tumor presence, leading to chronodisruption in each organ. Taken altogether, the presence of non-metastatic melanoma significantly impairs the organism's biological clocks. We suggest that the clock alterations found in TME and TMaE could impact development, progression, and metastasis of melanoma; thus, making the molecular clock an interesting pharmacological target.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-900, Brazil.
| | - Maria Nathália Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-900, Brazil.
| | - Keila Karoline Magalhães-Marques
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-900, Brazil.
| | - Gabriela Sarti Kinker
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-900, Brazil.
| | - Sanseray da Silveira Cruz-Machado
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-900, Brazil.
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-900, Brazil.
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
20
|
Purnell BS, Hajek MA, Buchanan GF. Time-of-day influences on respiratory sequelae following maximal electroshock-induced seizures in mice. J Neurophysiol 2017; 118:2592-2600. [PMID: 28794189 PMCID: PMC5668461 DOI: 10.1152/jn.00039.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 11/22/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in refractory epilepsy patients. Although specific mechanisms underlying SUDEP are not well understood, evidence suggests most SUDEP occurs due to seizure-induced respiratory arrest. SUDEP also tends to happen at night. Although this may be due to circumstances in which humans find themselves at night, such as being alone without supervision or sleeping prone, or to independent influences of sleep state, there are a number of reasons why the night (i.e., circadian influences) could be an independent risk factor for SUDEP. We explored this possibility. Adult male WT mice were instrumented for EEG, EMG, and EKG recording and subjected to maximal electroshock (MES) seizures during wakefulness, non-rapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep during the nighttime/dark phase. These data were compared with data collected following seizures induced during the daytime/light phase. Seizures induced during the nighttime were similar in severity and duration to those induced during the daytime; however, seizures induced during the nighttime were associated with a lesser degree of respiratory dysregulation and postictal EEG suppression. Seizures induced during REM sleep during the nighttime were universally fatal, as is seen when seizures are induced during REM during the daytime. Taken together, these data implicate a role for time of day in influencing the physiological consequences of seizures that may contribute to seizure-induced death.NEW & NOTEWORTHY Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in patients with refractory epilepsy. SUDEP frequently occurs during the night, which has been attributed to an effect of sleep. We have shown that sleep state does indeed influence survival following a seizure. That SUDEP occurs during the night could also implicate a circadian influence. In this study we found that time of day independently affects the physiological consequences of seizures.
Collapse
Affiliation(s)
- Benton S Purnell
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Michael A Hajek
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
| | - Gordon F Buchanan
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa Carver College of Medicine, Iowa City, Iowa;
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, Iowa; and
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
21
|
Cristancho E, Riveros A, Sánchez A, Peñuela O, Böning D. Diurnal changes of arterial oxygen saturation and erythropoietin concentration in male and female highlanders. Physiol Rep 2017; 4:4/17/e12901. [PMID: 27597764 PMCID: PMC5027342 DOI: 10.14814/phy2.12901] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/20/2016] [Indexed: 01/27/2023] Open
Abstract
In Caucasians and Native Americans living at altitude, hemoglobin mass is increased in spite of erythropoietin concentrations ([Epo]) not markedly differing from sea level values. We hypothesized that a nocturnal decrease of arterial oxygen saturation (SaO2) causes a temporary rise of [Epo] not detected by morning measurements. SaO2 (continuous, finger oximeter) and [Epo] (ELISA, every 4 h) were determined in young highlanders (altitude 2600 m) during 24 h of usual daily activity. In Series I (six male, nine female students), SaO2 fell during the night with the nadir occurring between 01:00 and 03:00; daily means (range 92.4–95.2%) were higher in females (+1.7%, P < 0.01). [Epo] showed opposite changes with zenith occurring at 04:00 without a sex difference. Mean daily values (22.9 ± 10.7SD U/L) were higher than values obtained at 08:00 (17.2 ± 9.5 U/L, P < 0.05). In Series II (seven females), only SaO2 was measured. During follicular and luteal phases, SaO2 variation was similar to Series I, but the rhythm was disturbed during menstruation. While daily [Epo] variations at sea level are not homogeneous, there is a diurnal variation at altitude following changes in SaO2. Larger hypoventilation‐dependent decreases of alveolar PO2 decreases during the night probably cause a stronger reduction of SaO2 in highlanders compared to lowlanders. This variation might be enlarged by a diurnal fluctuation of Hb concentration. In spite of a lower [Hb], the higher SaO2 in women compared to men led to a similar arterial oxygen content, likely explaining the absence of differences in [Epo] between sexes.
Collapse
Affiliation(s)
- Edgar Cristancho
- Departamento de Biologia, Division de Fisiologia Animal, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | | | | |
Collapse
|
22
|
Hill A, Kelly E, Horswill MS, Watson MO. The effects of awareness and count duration on adult respiratory rate measurements: An experimental study. J Clin Nurs 2017; 27:546-554. [PMID: 28426897 DOI: 10.1111/jocn.13861] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2017] [Indexed: 11/30/2022]
Abstract
AIMS AND OBJECTIVES To investigate whether awareness of manual respiratory rate monitoring affects respiratory rate in adults, and whether count duration influences respiratory rate estimates. BACKGROUND Nursing textbooks typically suggest that the patient should ideally be unaware of respiratory rate observations; however, there is little published evidence of the effect of awareness on respiratory rate, and none specific to manual measurement. In addition, recommendations about the length of the respiratory rate count vary from text to text, and the relevant empirical evidence is scant, inconsistent and subject to substantial methodological limitations. DESIGN Experimental study with awareness of respiration monitoring (aware, unaware; randomised between-subjects) and count duration (60 s, 30 s, 15 s; within-subjects) as the independent variables. Respiratory rate (breaths/minute) was the dependent variable. METHODS Eighty-two adult volunteers were randomly assigned to aware and unaware conditions. In the baseline block, no live monitoring occurred. In the subsequent experimental block, the researcher informed aware participants that their respiratory rate would be counted, and did so. Respirations were captured throughout via video recording, and counted by blind raters viewing 60-, 30- and 15-s extracts. The data were collected in 2015. RESULTS There was no baseline difference between the groups. During the experimental block, the respiratory rates of participants in the aware condition were an average of 2.13 breaths/minute lower compared to unaware participants. Reducing the count duration from 1 min to 15 s caused respiratory rate to be underestimated by an average of 2.19 breaths/minute (and 0.95 breaths/minute for 30-s counts). The awareness effect did not depend on count duration. CONCLUSIONS Awareness of monitoring appears to reduce respiratory rate, and shorter monitoring durations yield systematically lower respiratory rate estimates. RELEVANCE TO CLINICAL PRACTICE When interpreting and acting upon respiratory rate data, clinicians should consider the potential influence of these factors, including cumulative effects.
Collapse
Affiliation(s)
- Andrew Hill
- Clinical Skills Development Service, Metro North Hospital and Health Service, Brisbane, Qld, Australia.,School of Psychology, The University of Queensland, Brisbane, Qld, Australia
| | - Eliza Kelly
- School of Psychology, The University of Queensland, Brisbane, Qld, Australia
| | - Mark S Horswill
- School of Psychology, The University of Queensland, Brisbane, Qld, Australia
| | - Marcus O Watson
- Clinical Skills Development Service, Metro North Hospital and Health Service, Brisbane, Qld, Australia.,School of Psychology, The University of Queensland, Brisbane, Qld, Australia.,School of Medicine, The University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
23
|
Choi JY, Rha DW, Park ES. Change in Pulmonary Function after Incentive Spirometer Exercise in Children with Spastic Cerebral Palsy: A Randomized Controlled Study. Yonsei Med J 2016; 57:769-75. [PMID: 26996580 PMCID: PMC4800370 DOI: 10.3349/ymj.2016.57.3.769] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/23/2015] [Accepted: 09/03/2015] [Indexed: 11/27/2022] Open
Abstract
PURPOSE The aim of this study was to investigate the effect of incentive spirometer exercise (ISE) on pulmonary function and maximal phonation time (MPT) in children with spastic cerebral palsy (CP). MATERIALS AND METHODS Fifty children with CP were randomly assigned to two groups: the experimental group and the control group. Both groups underwent comprehensive rehabilitation therapy. The experimental group underwent additional ISE. The forced vital capacity (FVC), forced expiratory volume at one second (FEV₁), FEV₁/FVC ratio, peak expiratory flow (PEF), and MPT were assessed as outcome measures before and after 4 weeks of training. RESULTS There were significant improvements in FVC, FEV₁, PEF, and MPT in the experimental group, but not in the control group. In addition, the improvements in FVC, FEV₁, and MPT were significantly greater in the experimental group than in the control group. CONCLUSION The results of this randomized controlled study support the use of ISE for enhancing pulmonary function and breath control for speech production in children with CP.
Collapse
Affiliation(s)
- Ja Young Choi
- Department of Rehabilitation Medicine, Severance Hospital, Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Dong-wook Rha
- Department of Rehabilitation Medicine, Severance Hospital, Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Sook Park
- Department of Rehabilitation Medicine, Severance Hospital, Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
24
|
Hajek MA, Buchanan GF. Influence of vigilance state on physiological consequences of seizures and seizure-induced death in mice. J Neurophysiol 2016; 115:2286-93. [PMID: 26888097 DOI: 10.1152/jn.00011.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/13/2016] [Indexed: 12/31/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in patients with refractory epilepsy. SUDEP occurs more commonly during nighttime sleep. The details of why SUDEP occurs at night are not well understood. Understanding why SUDEP occurs at night during sleep might help to better understand why SUDEP occurs at all and hasten development of preventive strategies. Here we aimed to understand circumstances causing seizures that occur during sleep to result in death. Groups of 12 adult male mice were instrumented for EEG, EMG, and EKG recording and subjected to seizure induction via maximal electroshock (MES) during wakefulness, nonrapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep. Seizure inductions were performed with concomitant EEG, EMG, and EKG recording and breathing assessment via whole body plethysmography. Seizures induced via MES during sleep were associated with more profound respiratory suppression and were more likely to result in death. Despite REM sleep being a time when seizures do not typically occur spontaneously, when seizures were forced to occur during REM sleep, they were invariably fatal in this model. An examination of baseline breathing revealed that mice that died following a seizure had increased baseline respiratory rate variability compared with those that did not die. These data demonstrate that sleep, especially REM sleep, can be a dangerous time for a seizure to occur. These data also demonstrate that there may be baseline respiratory abnormalities that can predict which individuals have higher risk for seizure-induced death.
Collapse
Affiliation(s)
- Michael A Hajek
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
| | - Gordon F Buchanan
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut; Veterans Affairs Medical Center, West Haven, Connecticut; and Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
25
|
Manzar MD, Zannat W, Hussain ME. Sleep and physiological systems: a functional perspective. BIOL RHYTHM RES 2014. [DOI: 10.1080/09291016.2014.966504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Lee HY, Kim K. Can walking ability enhance the effectiveness of breathing exercise in children with spastic cerebral palsy? J Phys Ther Sci 2014; 26:539-42. [PMID: 24764629 PMCID: PMC3996417 DOI: 10.1589/jpts.26.539] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/30/2013] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The purpose of this study was to compare differences in respiratory pressure and pulmonary function and the effectiveness of respiratory feedback training according to walking ability in children with cerebral palsy (CP). [Subjects and Methods] Twenty-three children with spastic CP were enrolled in the final analysis and were divided into an independent walking group (n=12) and non-independent walking group. All children received respiratory feedback training for four weeks. Before and after the training, respiratory muscle strength was measured and a pulmonary function test was performed. [Results] Comparison of respiratory pressure and pulmonary function test results between the two revealed that the independent walking group had significantly higher respiratory function than the other group in all variables except peak expiratory flow. In comparison of changes in respiratory function between the two groups, the independent walking group showed significantly higher improvement of respiratory function in terms of maximal inspiratory pressure, maximal expiratory pressure, and forced vital capacity. [Conclusion] These findings showed that children with independent walking ability had better respiratory muscle strength and pulmonary function compared with children without independent walking ability. Understanding respiratory function and the effectiveness of respiratory training according to walking ability will be valuable clinical information for respiratory assessment and therapy in children with CP.
Collapse
Affiliation(s)
- Hye Young Lee
- Department of Physical Therapy, Graduate School of Rehabilitation Science, Daegu University, Republic of Korea
| | - Kyoung Kim
- Department of Physical Therapy, College of Rehabilitation Science, Daegu University, Republic of Korea
| |
Collapse
|
27
|
Fink AM, Topchiy I, Ragozzino M, Amodeo DA, Waxman JA, Radulovacki MG, Carley DW. Brown Norway and Zucker Lean rats demonstrate circadian variation in ventilation and sleep apnea. Sleep 2014; 37:715-21. [PMID: 24899760 DOI: 10.5665/sleep.3576] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Circadian rhythms influence many biological systems, but there is limited information about circadian and diurnal variation in sleep related breathing disorder. We examined circadian and diurnal patterns in sleep apnea and ventilatory patterns in two rat strains, one with high sleep apnea propensity (Brown Norway [BN]) and the other with low sleep apnea propensity (Zucker Lean [ZL]). DESIGN/SETTING Chronically instrumented rats were randomized to breathe room air (control) or 100% oxygen (hyperoxia), and we performed 20-h polysomnography beginning at Zeitgeber time 4 (ZT 4; ZT 0 = lights on, ZT12 = lights off). We examined the effect of strain and inspired gas (twoway analysis of variance) and analyzed circadian and diurnal variability. MEASUREMENTS AND RESULTS Strain and inspired gas-dependent differences in apnea index (AI; apneas/h) were particularly prominent during the light phase. AI in BN rats (control, 16.9 ± 0.9; hyperoxia, 34.0 ± 5.8) was greater than in ZL rats (control, 8.5 ± 1.0; hyperoxia, 15.4 ± 1.1, [strain effect, P < 0.001; gas effect, P = 0.001]). Hyperoxia reduced respiratory frequency in both strains, and all respiratory pattern variables demonstrated circadian variability. BN rats exposed to hyperoxia demonstrated the largest circadian fluctuation in AI (amplitude = 17.9 ± 3.7 apneas/h [strain effect, P = 0.01; gas effect, P < 0.001; interaction, P = 0.02]; acrophase = 13.9 ± 0.7 h; r (2) = 0.8 ± 1.4). CONCLUSIONS Inherited, environmental, and circadian factors all are important elements of underlying sleep related breathing disorder. Our method to examine sleep related breathing disorder phenotypes in rats may have implications for understanding vulnerability for sleep related breathing disorder in humans.
Collapse
Affiliation(s)
- Anne M Fink
- Center for Narcolepsy, Sleep and Health Research, College of Nursing, University of Illinois at Chicago, Chicago, IL ; Department of Biobehavioral Health Science, College of Nursing, University of Illinois at Chicago, Chicago, IL
| | - Irina Topchiy
- Center for Narcolepsy, Sleep and Health Research, College of Nursing, University of Illinois at Chicago, Chicago, IL ; Department of Biobehavioral Health Science, College of Nursing, University of Illinois at Chicago, Chicago, IL ; Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Michael Ragozzino
- Department of Psychology, University of Illinois at Chicago, Chicago, IL
| | - Dionisio A Amodeo
- Department of Psychology, University of Illinois at Chicago, Chicago, IL
| | - Jonathan A Waxman
- Center for Narcolepsy, Sleep and Health Research, College of Nursing, University of Illinois at Chicago, Chicago, IL ; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| | - Miodrag G Radulovacki
- Center for Narcolepsy, Sleep and Health Research, College of Nursing, University of Illinois at Chicago, Chicago, IL ; Department of Pharmacology, University of Illinois at Chicago, Chicago, IL
| | - David W Carley
- Center for Narcolepsy, Sleep and Health Research, College of Nursing, University of Illinois at Chicago, Chicago, IL ; Department of Biobehavioral Health Science, College of Nursing, University of Illinois at Chicago, Chicago, IL ; Department of Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|