1
|
Mohan M, Selvam PP, Ewane EB, Moussa LG, Asbridge EF, Trevathan-Tackett SM, Macreadie PI, Watt MS, Gillis LG, Cabada-Blanco F, Hendy I, Broadbent EN, Olsson SKB, Marin-Diaz B, Burt JA. Eco-friendly structures for sustainable mangrove restoration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 978:179393. [PMID: 40250227 DOI: 10.1016/j.scitotenv.2025.179393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 04/05/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025]
Abstract
Mangrove forests around the world are under significant pressure from climate change (e.g., rising sea levels), and human-related anthropogenic activities (e.g., coastal infrastructure development). Mangrove restoration projects have increased over the past decades but seedling and propagule survival rates are reportedly low, while many projects have failed. There exists a need to assess the effectiveness of sustainable and cost-effective eco-friendly structures (EFS) for advancing the success of mangrove restoration and planting activities. Herein, by EFS, we refer to the frameworks made of biodegradable materials that help overcome establishment bottlenecks and thereby boost seedling survival and growth rates. In this study, we explored the effectiveness of EFS in aiding mangrove restoration success by enhancing seedling establishment and survival and tree growth rates. Furthermore, we examine the steps involved and the challenges limiting EFS implementation in mangrove restoration projects. EFS installed in coastal areas trap sediment and may provide protection for newly planted mangrove seedlings and propagules by providing a stable anchorage and attenuating water flow and waves. Additionally, once plants are established, these biodegradable structures would decompose and add to the soil nutrients stock, thereby improving its fertility and supporting mangrove growth. We emphasize that in sites with favorable biophysical conditions for mangrove growth (hydrology, soil, topography, climate, among others), using EFS can improve mangrove restoration success by enhancing seedling establishment, survival and growth. Mangrove restoration success may have add-on benefits such as increasing the provision of related ecosystem services, blue carbon credit financing and overall coastal environmental sustainability. Given the novelness of this topic in the scientific literature, this article aims to stimulate active discussions, including anticipation of potential challenges (e.g., cost-effectiveness, ability to scale and field limitations in a range of biogeographic settings), for bringing in improvements and scalable adoption strategies to the mangrove restoration approaches under consideration.
Collapse
Affiliation(s)
- Midhun Mohan
- Ecoresolve, San Francisco, CA, United States; Department of Geography, University of California - Berkeley, Berkeley, CA, United States.
| | - Pandi P Selvam
- Ecoresolve, San Francisco, CA, United States; GAIT Global, Singapore
| | - Ewane Basil Ewane
- Ecoresolve, San Francisco, CA, United States; Department of Geography, Faculty of Social and Management Sciences, University of Buea, Buea, Cameroon
| | - Lara G Moussa
- Ecoresolve, San Francisco, CA, United States; Higher Institute of Public Health, Faculty of Medicine, Saint Joseph University of Beirut, Beirut 1104 2020, Lebanon
| | - Emma F Asbridge
- School of Earth, Atmospheric and Life Sciences and Environmental Futures Research Centre, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Stacey M Trevathan-Tackett
- Centre for Nature Positive Solutions, Biosciences and Food Technology Discipline, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Peter I Macreadie
- Centre for Nature Positive Solutions, Biosciences and Food Technology Discipline, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | | | - Lucy Gwen Gillis
- Department of Water Resources and Ecosystems, IHE Delft UNESCO, Delft, Netherlands
| | - Francoise Cabada-Blanco
- IUCN Species Survival Commission Corals Specialist Group, Switzerland; Institute of Marine Sciences, School of the Environment and Life Sciences, University of Portsmouth, Portsmouth, UK
| | - Ian Hendy
- Institute of Marine Sciences, School of the Environment and Life Sciences, University of Portsmouth, Portsmouth, UK
| | - Eben North Broadbent
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Sabrina K B Olsson
- Deakin Marine Research and Innovation Centre, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Beatriz Marin-Diaz
- Department of Environmental Engineering Sciences, Engineering School for Sustainable Infrastructure and the Environment, University of Florida, Gainesville, FL, 32611, USA; Center for Coastal Solutions, University of Florida, Gainesville, FL 32611, USA
| | - John A Burt
- Mubadala Arabian Center for Climate and Environmental Sciences (Mubadala ACCESS), New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Zhu C, Dalsgaard B, Li W, Kaiser-Bunbury CN, Simmons BI, Ren P, Zhao Y, Zeng D, Gonçalves F, Zhang X, Chang L, Ding P, Si X. Interconnecting fragmented forests: Small and mobile birds are cornerstones in the plant-frugivore meta-network. Proc Natl Acad Sci U S A 2025; 122:e2415846122. [PMID: 39946536 PMCID: PMC11848312 DOI: 10.1073/pnas.2415846122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/30/2024] [Indexed: 02/26/2025] Open
Abstract
Habitat fragmentation is causing the collapse of seed dispersal interactions and ecosystem functioning. When management and conservation strategies aim to sustain ecosystem functioning of fragmented forests, species' traits and functional performance are critical in guiding decisions. However, to date, we lack a quantitative understanding of the role of frugivores' body size and dispersal ability in ecosystem sustainability among fragmented forests. Focusing on avian frugivory and seed dispersal in a multi-island setting, we address the data gap by recording more than 20,000 frugivory events in an artificial insular fragmented landscape constructed in 1959 and nearby unfragmented forests on the mainland. We show that large-bodied and dispersal-limited frugivorous birds are largely confined to large islands and the unfragmented mainland, whereas on small islands, small-bodied and highly mobile birds predominantly engage in frugivory interactions. The plant-frugivore meta-network exhibits a distinct compartmentalization, driven by island area and bird mobility. Birds with smaller size and greater mobility have higher topological importance, and the presence of small-bodied birds significantly enhances meta-network robustness. These results suggest that among insular fragmented forests where frugivory interactions are degraded, small-bodied and highly mobile birds disproportionately contribute to meta-community cohesion and ecosystem functioning because of the lack of large-bodied and dispersal-limited birds. We thus advocate for the restoration of landscapes to facilitate seed dispersal and functional connectivity, ensuring the presence of large patches along with small patches as stepping-stones. Meanwhile, we recommend prioritizing conservation on small-bodied and highly mobile birds in fragmented landscapes, a subset of underappreciated species that yet play crucial roles in ecosystem functioning.
Collapse
Affiliation(s)
- Chen Zhu
- Key Laboratory of Biosystems Homeostasis and Protection (Ministry of Education), College of Life Sciences, Zhejiang University, Hangzhou310058, Zhejiang, China
| | - Bo Dalsgaard
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen1350, Denmark
| | - Wande Li
- Center for Global Change and Ecological Forecasting, Zhejiang Zhoushan Island Ecosystem Observation and Research Station, Institute of Eco-Chongming, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai200241, China
| | - Christopher N. Kaiser-Bunbury
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, Penryn Campus, University of Exeter, PenrynTR10 9FE, United Kingdom
| | - Benno I. Simmons
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, Penryn Campus, University of Exeter, PenrynTR10 9FE, United Kingdom
| | - Peng Ren
- Key Laboratory of Biosystems Homeostasis and Protection (Ministry of Education), College of Life Sciences, Zhejiang University, Hangzhou310058, Zhejiang, China
| | - Yuhao Zhao
- Center for Global Change and Ecological Forecasting, Zhejiang Zhoushan Island Ecosystem Observation and Research Station, Institute of Eco-Chongming, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai200241, China
| | - Di Zeng
- Center for Global Change and Ecological Forecasting, Zhejiang Zhoushan Island Ecosystem Observation and Research Station, Institute of Eco-Chongming, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai200241, China
| | - Fernando Gonçalves
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen1350, Denmark
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich8057, Switzerland
| | - Xue Zhang
- Key Laboratory of Biosystems Homeostasis and Protection (Ministry of Education), College of Life Sciences, Zhejiang University, Hangzhou310058, Zhejiang, China
| | - Longxiao Chang
- Key Laboratory of Biosystems Homeostasis and Protection (Ministry of Education), College of Life Sciences, Zhejiang University, Hangzhou310058, Zhejiang, China
| | - Ping Ding
- Key Laboratory of Biosystems Homeostasis and Protection (Ministry of Education), College of Life Sciences, Zhejiang University, Hangzhou310058, Zhejiang, China
| | - Xingfeng Si
- Center for Global Change and Ecological Forecasting, Zhejiang Zhoushan Island Ecosystem Observation and Research Station, Institute of Eco-Chongming, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai200241, China
| |
Collapse
|
3
|
Zhang Z, Chase JM, Bearup D, Liao J. Complex interactive responses of biodiversity to multiple environmental drivers. Ecology 2025; 106:e4484. [PMID: 39587438 DOI: 10.1002/ecy.4484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/18/2024] [Accepted: 09/18/2024] [Indexed: 11/27/2024]
Abstract
There remains considerable doubt, debate, and confusion regarding how biodiversity responds to gradients of important environmental drivers, such as habitat size, resource productivity, and disturbance. Here we develop a simple but comprehensive theoretical framework based on competition-colonization multispecies communities to examine the separate and interactive effects of these drivers. Using both numerical simulations and analytical arguments, we demonstrate that the critical trade-off between competitive and colonization ability can lead to complex nonlinear, zig-zag responses in both species richness and the inverse Simpson index along gradients of these drivers. Furthermore, we find strong interactions between these drivers that can dramatically shift the response of biodiversity to these gradients. The zig-zag patterns in biodiversity along ecological gradients, together with the strong interactions between the drivers, can explain the mixed findings of empirical studies and syntheses, thereby providing a new paradigm that can reconcile debates on the relationships between biodiversity and multiple drivers.
Collapse
Affiliation(s)
- Zeyu Zhang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Daniel Bearup
- School of Computing and Mathematical Sciences, University of Leicester, Leicester, UK
| | - Jinbao Liao
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
4
|
Soares LS, Bombarely A, Freitas LB. How many species are there? Lineage diversification and hidden speciation in Solanaceae from highland grasslands in southern South America. ANNALS OF BOTANY 2024; 134:1291-1305. [PMID: 39196773 PMCID: PMC11688538 DOI: 10.1093/aob/mcae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/26/2024] [Indexed: 08/30/2024]
Abstract
BACKGROUND AND AIMS Species delimitation can be challenging when analysing recently diverged species, especially those taxonomically synonymized owing to morphological similarities. We aimed to untangle the relationships between two grassland species, Petunia guarapuavensis and Petunia scheideana, exploring the dynamics of fast divergence and addressing their species delimitation. METHODS We used a low-coverage genome sequencing and population genomic approach to distinguish species and populations between P. guarapuavensis and P. scheideana. Our analysis focused on detecting structuration, hybridization/introgression and phylogenetic patterns. We used demographic models to support species delimitation while exploring potential phylogeographical barriers influencing gene flow. KEY RESULTS Our findings indicated differentiation between the two species and revealed another lineage, which was phylogenetically distinct from the others and had no evidence of gene flow with them. The presence of a river acted as a phylogeographical barrier, limiting gene flow and allowing for structuration between closely related lineages. The optimal species delimitation scenario involved secondary contact between well-established lineages. CONCLUSIONS The rapid divergence observed in these Petunia species explains the lack of significant morphological differences, because floral diagnostic traits in species sharing pollinators tend to evolve more slowly. This study highlights the complexity of species delimitation in recently diverged groups and emphasizes the importance of genomic approaches in understanding evolutionary relationships and speciation dynamics.
Collapse
Affiliation(s)
- Luana S Soares
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Aureliano Bombarely
- Instituto de Biologia Molecular y Celular de Plantas (IBMCP) (CSIC-UPV), Valencia, Spain
| | - Loreta B Freitas
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
5
|
Malcangi F, Lindén A, Sundell J, Loehr J. Correlation between mammal track abundance and Forest Landscape Integrity Index validates actual forest ecological integrity. Oecologia 2024; 206:61-72. [PMID: 39230725 PMCID: PMC11489168 DOI: 10.1007/s00442-024-05613-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
Human disturbance compromises the ecological integrity of forests, negatively affecting associated species. Assessing the impact of forest integrity on biodiversity is complex due to the interplay of various human activities, ecological factors, and their interactions. Current large-scale indices assess forest integrity but often lack a direct connection to the biotic environment. We tested the effectiveness of the global Forest Landscape Integrity Index (FLII) in evaluating aspects of anthropogenic forest degradation on the biotic community. We analyzed the relationship between changes in the ecological integrity of Finnish forests and variations in mammal species abundance, using the number of tracks from 17 different species collected during the winter seasons between 2016 and 2020 in south-central Finland. Beyond the FLII, we analyzed forest and canopy cover to enhance the accuracy of habitat preference assessments. We found that the FLII captures the varying degrees of forest integrity, as reflected by the correlation between the abundance of winter tracks and the FLII for most mammals. Species that were positively associated with forest integrity were all native to the boreal forest, while mammals that adapt well to human-disturbed environments including two invasive species were more common in lower FLII forests. Significant differences in habitat preferences were also observed in relation to forest and canopy cover, revealing additional nuances that the FLII alone did not capture. This study demonstrates that the FLII, when combined with a comprehensive dataset and supplemented with region-specific factors, can assess species' adaptability to human-modified forests, aiding in the development of conservation strategies.
Collapse
Affiliation(s)
- Francesca Malcangi
- Lammi Biological Station, University of Helsinki, Pääjärventie 320, 16900, Lammi, Finland.
| | - Andreas Lindén
- Natural Resources Institute Finland (Luke), 00790, Helsinki, Finland
| | - Janne Sundell
- Lammi Biological Station, University of Helsinki, Pääjärventie 320, 16900, Lammi, Finland
| | - John Loehr
- Lammi Biological Station, University of Helsinki, Pääjärventie 320, 16900, Lammi, Finland
| |
Collapse
|
6
|
Henriksen MV, Bär A, Garratt MPD, Nielsen A, Johansen L. Limited function of road verges as habitat for species connecting plant-bee networks in remnant semi-natural grasslands. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230168. [PMID: 39034700 PMCID: PMC11305161 DOI: 10.1098/rstb.2023.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/23/2024] [Accepted: 03/04/2024] [Indexed: 07/23/2024] Open
Abstract
Species-rich natural and semi-natural ecosystems are under threat owing to land use change. To conserve the biodiversity associated with these ecosystems, we must identify and target conservation efforts towards functionally important species and supporting habitats that create connections between remnant patches in the landscape. Here, we use a multi-layer network approach to identify species that connect a metanetwork of plant-bee interactions in remnant semi-natural grasslands which are biodiversity hotspots in European landscapes. We investigate how these landscape connecting species, and their interactions, persist in their proposed supporting habitat, road verges, across a landscape with high human impact. We identify 11 plant taxa and nine bee species that connect semi-natural grassland patches. We find the beta diversity of these connector species to be low across road verges, indicating a poor contribution of these habitats to the landscape-scale diversity in semi-natural grasslands. We also find a significant influence of the surrounding landscape on the beta diversity of connector species and their interactions with implications for landscape-scale management. Conservation actions targeted toward species with key functional roles as connectors of fragmented ecosystems can provide cost-effective management of the diversity and functioning of threatened ecosystems.This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.
Collapse
Affiliation(s)
- Marie V. Henriksen
- Department of Landscape and Biodiversity, Norwegian Institute
of Bioeconomy Research, 1431, Ås, Norway
| | - Annette Bär
- Department of Landscape and Biodiversity, Norwegian Institute
of Bioeconomy Research, 1431, Ås, Norway
| | - Michael P. D. Garratt
- School of Agriculture, Policy and Development, University of
Reading, ReadingRG6 6AR, UK
| | - Anders Nielsen
- Department of Landscape and Biodiversity, Norwegian Institute
of Bioeconomy Research, 1431, Ås, Norway
| | - Line Johansen
- Department of Landscape and Biodiversity, Norwegian Institute
of Bioeconomy Research, 1431, Ås, Norway
| |
Collapse
|
7
|
Librán-Embid F, Grass I, Emer C, Alarcón-Segura V, Behling H, Biagioni S, Ganuza C, Herrera-Krings C, Setyaningsih CA, Tscharntke T. Flower-bee versus pollen-bee metanetworks in fragmented landscapes. Proc Biol Sci 2024; 291:20232604. [PMID: 38807521 PMCID: PMC11338570 DOI: 10.1098/rspb.2023.2604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 05/30/2024] Open
Abstract
Understanding the organization of mutualistic networks at multiple spatial scales is key to ensure biological conservation and functionality in human-modified ecosystems. Yet, how changing habitat and landscape features affect pollen-bee interaction networks is still poorly understood. Here, we analysed how bee-flower visitation and bee-pollen-transport interactions respond to habitat fragmentation at the local network and regional metanetwork scales, combining data from 29 fragments of calcareous grasslands, an endangered biodiversity hotspot in central Europe. We found that only 37% of the total unique pairwise species interactions occurred in both pollen-transport and flower visitation networks, whereas 28% and 35% were exclusive to pollen-transport and flower visitation networks, respectively. At local level, network specialization was higher in pollen-transport networks, and was negatively related to the diversity of land cover types in both network types. At metanetwork level, pollen transport data revealed that the proportion of single-fragment interactions increased with landscape diversity. Our results show that the specialization of calcareous grasslands' plant-pollinator networks decreases with landscape diversity, but network specialization is underestimated when only based on flower visitation information. Pollen transport data, more than flower visitation, and multi-scale analyses of metanetworks are fundamental for understanding plant-pollinator interactions in human-dominated landscapes.
Collapse
Affiliation(s)
- Felipe Librán-Embid
- Agroecology, University of Göttingen, Göttingen37077, Germany
- Justus Liebig University of Gießen, Institute of Animal Ecology and Systematics, Heinrich-Buff-Ring 26, Gießen35390, Germany
| | - Ingo Grass
- Department of Ecology of Tropical Agricultural Systems, University of Hohenheim, Stuttgart70599, Germany
- Center for Biodiversity and Integrative Taxonomy (KomBioTa), University of Hohenheim, Stuttgart70599, Germany
| | - Carine Emer
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, 915, Jardim Botânico, Rio de JaneiroCEP22460-030, Brazil
| | - Viviana Alarcón-Segura
- Agroecology, University of Göttingen, Göttingen37077, Germany
- Animal Ecology, Department of Biology, University of Marburg, Marburg35037, Germany
| | - Hermann Behling
- Department of Palynology and Climate Dynamics, Albrecht‐von‐Haller‐Institute for Plant Sciences, University of Göttingen, Göttingen37077, Germany
| | - Siria Biagioni
- Department of Palynology and Climate Dynamics, Albrecht‐von‐Haller‐Institute for Plant Sciences, University of Göttingen, Göttingen37077, Germany
| | - Cristina Ganuza
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg97074, Germany
| | | | - Christina Ani Setyaningsih
- Department of Palynology and Climate Dynamics, Albrecht‐von‐Haller‐Institute for Plant Sciences, University of Göttingen, Göttingen37077, Germany
| | - Teja Tscharntke
- Agroecology, University of Göttingen, Göttingen37077, Germany
| |
Collapse
|
8
|
Osterhout MJ, Stewart KM, Wakeling BF, Schroeder CA, Blum ME, Brockman JC, Shoemaker KT. Effects of large-scale gold mining on habitat use and selection by American pronghorn. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170750. [PMID: 38336073 DOI: 10.1016/j.scitotenv.2024.170750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Anthropogenic disturbances, including extraction of natural resources and development of alternative energy, are reducing and fragmenting habitat for wildlife across the globe. Effects of those disturbances have been explored by studying populations that migrate through oil and gas fields or alternative energy facilities. Extraction of minerals, including precious metals and lithium, is increasing rapidly in remote areas, which results in dramatically altered landscapes in areas of resident populations of wildlife. Our goal was to examine how a resident population of American pronghorn (Antilocapra americana) in the Great Basin ecosystem selected resources near a large-scale disturbance year around. We investigated how individuals selected resources around a large, open-pit gold mine. We classified levels of disturbance associated with the mine, and used a random forest model to select ecological covariates associated with habitat selection by pronghorn. We used resource selection functions to examine how disturbances affected habitat selection by pronghorn both annually and seasonally. Pronghorn strongly avoided areas of high disturbance, which included open pits, heap leach fields, rock disposal areas, and a tram. Pronghorn selected areas near roads, although selection was strongest about 2 km away. We observed relatively broad variation among individuals in selection of resources, and how they responded to the mine. The Great Basin is a mineral-rich area that continues to be exploited for natural resources, especially minerals. Sagebrush-dependent species, including pronghorn, that rely on this critical habitat were directly affected by that transformation of the landscape, which is likely to increase with expansion of the mine. As extraction of minerals from remote landscapes around the world continues to fragment habitats for wildlife, increasing our understanding of impacts of those changes on behaviors of wildlife before populations decline, may assist in the mitigation and minimization of negative impacts on mineral-rich landscapes and on wildlife populations.
Collapse
Affiliation(s)
- Megan J Osterhout
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, Reno, NV 89557, USA
| | - Kelley M Stewart
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, Reno, NV 89557, USA; Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, Reno, NV 89557, USA.
| | | | - Cody A Schroeder
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, Reno, NV 89557, USA; Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Marcus E Blum
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, Reno, NV 89557, USA; Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Julia C Brockman
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, Reno, NV 89557, USA; Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Kevin T Shoemaker
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, Reno, NV 89557, USA; Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, Reno, NV 89557, USA
| |
Collapse
|
9
|
Ohlmann M, Munoz F, Massol F, Thuiller W. Assessing mutualistic metacommunity capacity by integrating spatial and interaction networks. Theor Popul Biol 2024; 156:22-39. [PMID: 38219873 DOI: 10.1016/j.tpb.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 12/26/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
We develop a spatially realistic model of mutualistic metacommunities that exploits the joint structure of spatial and interaction networks. Assuming that all species have the same colonisation and extinction parameters, this model exhibits a sharp transition between stable non-null equilibrium states and a global extinction state. This behaviour allows defining a threshold on colonisation/extinction parameters for the long-term metacommunity persistence. This threshold, the 'metacommunity capacity', extends the metapopulation capacity concept and can be calculated from the spatial and interaction networks without needing to simulate the whole dynamics. In several applications we illustrate how the joint structure of the spatial and the interaction networks affects metacommunity capacity. It results that a weakly modular spatial network and a power-law degree distribution of the interaction network provide the most favourable configuration for the long-term persistence of a mutualistic metacommunity. Our model that encodes several explicit ecological assumptions should pave the way for a larger exploration of spatially realistic metacommunity models involving multiple interaction types.
Collapse
Affiliation(s)
- Marc Ohlmann
- Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont-Blanc, LECA, Laboratoire d'Ecologie Alpine, F-38000 Grenoble, France
| | - François Munoz
- Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont-Blanc, LECA, Laboratoire d'Ecologie Alpine, F-38000 Grenoble, France; Univ. Grenoble Alpes, CNRS, Liphy, Laboratoire Interdisciplinaire de Physique, F-38000 Grenoble, France
| | - François Massol
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Wilfried Thuiller
- Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont-Blanc, LECA, Laboratoire d'Ecologie Alpine, F-38000 Grenoble, France.
| |
Collapse
|
10
|
Beaudrot L, Acevedo MA, Gorczynski D, Harris NC. Geographic differences in body size distributions underlie food web connectance of tropical forest mammals. Sci Rep 2024; 14:6965. [PMID: 38521800 PMCID: PMC10960815 DOI: 10.1038/s41598-024-57500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/19/2024] [Indexed: 03/25/2024] Open
Abstract
Understanding variation in food web structure over large spatial scales is an emerging research agenda in food web ecology. The density of predator-prey links in a food web (i.e., connectance) is a key measure of network complexity that describes the mean proportional dietary breadth of species within a food web. Connectance is a critical component of food web robustness to species loss: food webs with lower connectance have been shown to be more susceptible to secondary extinctions. Identifying geographic variation in food web connectance and its drivers may provide insight into community robustness to species loss. We investigated the food web connectance of ground-dwelling tropical forest mammal communities in multiple biogeographic regions to test for differences among regions in food web connectance and to test three potential drivers: primary productivity, contemporary anthropogenic pressure, and variation in mammal body mass distributions reflective of historical extinctions. Mammal communities from fifteen protected forests throughout the Neo-, Afro-, and Asian tropics were identified from systematic camera trap arrays. Predator-prey interaction data were collected from published literature, and we calculated connectance for each community as the number of observed predator-prey links relative to the number of possible predator-prey links. We used generalized linear models to test for differences among regions and to identify the site level characteristics that best predicted connectance. We found that mammal food web connectance varied significantly among continents and that body size range was the only significant predictor. More possible predator-prey links were observed in communities with smaller ranges in body size and therefore sites with smaller body size ranges had higher mean proportional dietary breadth. Specifically, mammal communities in the Neotropics and in Madagascar had significantly higher connectance than mammal communities in Africa. This geographic variation in contemporary mammalian food web structure may be the product of historical extinctions in the Late Quaternary, which led to greater losses of large-bodied species in the Neotropics and Madagascar thus contributing to higher average proportional dietary breadth among the remaining smaller bodied species in these regions.
Collapse
Affiliation(s)
- Lydia Beaudrot
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, Houston, TX, USA.
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.
| | - Miguel A Acevedo
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Daniel Gorczynski
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, Houston, TX, USA
| | - Nyeema C Harris
- Applied Wildlife Ecology Lab, School of the Environment, Yale University, New Haven, CT, USA
| |
Collapse
|
11
|
Huang JF, Darwell CT, Peng YQ. Enhanced and asymmetric signatures of hybridization at climatic margins: Evidence from closely related dioecious fig species. PLANT DIVERSITY 2024; 46:181-193. [PMID: 38807912 PMCID: PMC11128846 DOI: 10.1016/j.pld.2023.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 05/30/2024]
Abstract
Hybridization plays a significant role in biological evolution. However, it is not clear whether ecological contingency differentially influences likelihood of hybridization, particularly at ecological margins where parental species may exhibit reduced fitnesses. Moreover, it is unknown whether future ecosystem change will increase the prevalence of hybridization. Ficus heterostyla and F. squamosa are closely related species co-distributed from southern Thailand to southwest China where hybridization, yielding viable seeds, has been documented. As a robust test of ecological factors driving hybridization, we investigated spatial hybridization signatures based on nuclear microsatellites from extensive population sampling across a widespread contact range. Both species showed high population differentiation and strong patterns of isolation by distance. Admixture estimates exposed asymmetric interspecific gene flow. Signatures of hybridization increase significantly towards higher latitude zones, peaking at the northern climatic margins. Geographic variation in reproductive phenology combined with ecologically challenging marginal habitats may promote this phenomenon. Our work is a first systematic evaluation of such patterns in a comprehensive, latitudinally-based clinal context, and indicates that tendency to hybridize appears strongly influenced by environmental conditions. Moreover, that future climate change scenarios will likely alter and possibly augment cases of hybridization at ecosystem scales.
Collapse
Affiliation(s)
- Jian-Feng Huang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Clive T. Darwell
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Yan-Qiong Peng
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| |
Collapse
|
12
|
Terpstra S, Marquitti FMD, Vasconcelos VV. Adaptive foraging of pollinators fosters gradual tipping under resource competition and rapid environmental change. PLoS Comput Biol 2024; 20:e1011762. [PMID: 38194414 PMCID: PMC10802948 DOI: 10.1371/journal.pcbi.1011762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 01/22/2024] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
Plant and pollinator communities are vital for transnational food chains. Like many natural systems, they are affected by global change: rapidly deteriorating conditions threaten their numbers. Previous theoretical studies identified the potential for community-wide collapse above critical levels of environmental stressors-so-called bifurcation-induced tipping points. Fortunately, even as conditions deteriorate, individuals have some adaptive capacity, potentially increasing the boundary for a safe operating space where changes in ecological processes are reversible. Our study considers this adaptive capacity of pollinators to resource availability and identifies a new threat to disturbed pollinator communities. We model the adaptive foraging of pollinators in changing environments. Pollinator's adaptive foraging alters the dynamical responses of species, to the advantage of some-typically generalists-and the disadvantage of others, with systematic non-linear and non-monotonic effects on the abundance of particular species. We show that, in addition to the extent of environmental stress, the pace of change of environmental stress can also lead to the early collapse of both adaptive and nonadaptive pollinator communities. Specifically, perturbed communities exhibit rate-induced tipping points at stress levels within the safe boundary defined for constant stressors. With adaptive foraging, tipping is a more asynchronous collapse of species compared to nonadaptive pollinator communities, meaning that not all pollinator species reach a tipping event simultaneously. These results suggest that it is essential to consider the adaptive capacity of pollinator communities for monitoring and conservation. Both the extent and the rate of stress change relative to the ability of communities to recover are critical environmental boundaries.
Collapse
Affiliation(s)
- Sjoerd Terpstra
- Graduate School of Informatics, University of Amsterdam, Amsterdam, The Netherlands
- Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, The Netherlands
- Institute for Advanced Study, University of Amsterdam, Amsterdam, The Netherlands
| | - Flávia M. D. Marquitti
- Instituto de Física ‘Gleb Wataghin’ & Programa de Pós Graduação em Ecologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- International Centre for Theoretical Physics - South American Institute for Fundamental Research (ICTP-SAIFR), São Paulo, São Paulo, Brazil
| | - Vítor V. Vasconcelos
- Institute for Advanced Study, University of Amsterdam, Amsterdam, The Netherlands
- Computational Science Lab, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Zhang X, Dalsgaard B, Staab M, Zhu C, Zhao Y, Gonçalves F, Ren P, Cai C, Qiao G, Ding P, Si X. Habitat fragmentation increases specialization of multi-trophic interactions by high species turnover. Proc Biol Sci 2023; 290:20231372. [PMID: 37876189 PMCID: PMC10598433 DOI: 10.1098/rspb.2023.1372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023] Open
Abstract
Habitat fragmentation is altering species interactions worldwide. However, the mechanisms underlying the response of network specialization to habitat fragmentation remain unknown, especially for multi-trophic interactions. We here collected a large dataset consisting of 2670 observations of tri-trophic interactions among plants, sap-sucking aphids and honeydew-collecting ants on 18 forested islands in the Thousand Island Lake, China. For each island, we constructed an antagonistic plant-aphid and a mutualistic aphid-ant network, and tested how network specialization varied with island area and isolation. We found that both networks exhibited higher specialization on smaller islands, while only aphid-ant networks had increased specialization on more isolated islands. Variations in network specialization among islands was primarily driven by species turnover, which was interlinked across trophic levels as fragmentation increased the specialization of both antagonistic and mutualistic networks through bottom-up effects via plant and aphid communities. These findings reveal that species on small and isolated islands display higher specialization mainly due to effects of fragmentation on species turnover, with behavioural changes causing interaction rewiring playing only a minor role. Our study highlights the significance of adopting a multi-trophic perspective when exploring patterns and processes in structuring ecological networks in fragmented landscapes.
Collapse
Affiliation(s)
- Xue Zhang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen 2100, Denmark
| | - Bo Dalsgaard
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen 2100, Denmark
| | - Michael Staab
- Technical University Darmstadt, Ecological Networks, 64287 Darmstadt, Germany
| | - Chen Zhu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen 2100, Denmark
| | - Yuhao Zhao
- Zhejiang Zhoushan Archipelago Observation and Research Station, Institute of Eco-Chongming, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, People's Republic of China
| | - Fernando Gonçalves
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen 2100, Denmark
| | - Peng Ren
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Chang Cai
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ping Ding
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Xingfeng Si
- Zhejiang Zhoushan Archipelago Observation and Research Station, Institute of Eco-Chongming, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, People's Republic of China
| |
Collapse
|
14
|
Mbora DNM, Mutua MN. The joint effects of forest habitat area and fragmentation on dung beetles. Ecol Evol 2023; 13:e10429. [PMID: 37636869 PMCID: PMC10451379 DOI: 10.1002/ece3.10429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/13/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023] Open
Abstract
Habitat loss and habitat fragmentation usually occur together, at the same time and place. However, while there is a consensus that habitat loss is the preeminent threat to biodiversity, the effects of fragmentation are contentious. Some argue that habitat fragmentation is not bad for biodiversity, and even that it is good. Generally, the studies that find no harm or positive outcomes of fragmentation invariably assume that it is independent of habitat loss. However, dissociating the effects of habitat fragmentation from habitat loss is questionable because the two are essentially coupled. Accordingly, we evaluated how forest area and fragmentation (via edge effects) influenced dung beetles per se, and through their effects on the abundance of mammals, using structural equation modeling (SEM). Dung beetles are very sensitive to forest habitat loss and fragmentation and to changes in the abundance of mammals on which they depend for dung. Our study area was in the Tana River, Kenya, where forest fragments are depauperated of mammals except for two endemic species of monkeys. We mapped 12 forests, counted the resident monkeys, and sampled 113,955 beetles from 288 plots. Most of the 87 species of beetles found were small tunnellers. After implementing a fully latent Structural Regression SEM, the optimal model explained a significant 26% of the variance in abundance, and 89% of diversity. The main drivers of beetle abundance were positive, direct, effects of forest area and number of monkeys, and negative edge effects. The main drivers of diversity were the direct effects of the beetle abundance, indirect effects of forest area and abundance of mammals, and indirect negative edge effects. Thus, forest area, fragmentation (via edge effects), and the number of monkeys jointly influenced the abundance and diversity of the beetles directly and indirectly.
Collapse
Affiliation(s)
- David Nyaga Mugo Mbora
- Department of Biology, The Program in Environmental ScienceWhittier CollegeWhittierCaliforniaUSA
- Tana River Primate National ReserveHolaKenya
| | | |
Collapse
|
15
|
Zhu C, Li W, Campos-Arceiz A, Dalsgaard B, Ren P, Wang D, Zhang X, Sun M, Si Q, Kang Y, Ding P, Si X. The reliability of regional ecological knowledge to build local interaction networks: a test using seed-dispersal networks across land-bridge islands. Proc Biol Sci 2023; 290:20231221. [PMID: 37464753 PMCID: PMC10354482 DOI: 10.1098/rspb.2023.1221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/21/2023] [Indexed: 07/20/2023] Open
Abstract
Building ecological networks is the fundamental basis of depicting how species in communities interact, but sampling complex interaction networks is extremely labour intensive. Recently, indirect ecological information has been applied to build interaction networks. Here we propose to extend the source of indirect ecological information, and applied regional ecological knowledge to build local interaction networks. Using a high-resolution dataset consisting of 22 locally observed networks with 17 572 seed-dispersal events, we test the reliability of indirectly derived local networks based on regional ecological knowledge (REK) across islands. We found that species richness strongly influenced 'local interaction rewiring' (i.e. the proportion of locally observed interactions among regionally interacting species), and all network properties were biased using REK-based networks. Notably, species richness and local interaction rewiring strongly affected estimations of REK-based network structures. However, locally observed and REK-based networks detected the same trends of how network structure correlates to island area and isolation. These results suggest that we should use REK-based networks cautiously for reflecting actual interaction patterns of local networks, but highlight that REK-based networks have great potential for comparative studies across environmental gradients. The use of indirect regional ecological information may thus advance our understanding of biogeographical patterns of species interactions.
Collapse
Affiliation(s)
- Chen Zhu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Wande Li
- Zhejiang Zhoushan Archipelago Observation and Research Station, Institute of Eco-Chongming, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, People's Republic of China
| | - Ahimsa Campos-Arceiz
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, People's Republic of China
| | - Bo Dalsgaard
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Peng Ren
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Duorun Wang
- Zhejiang Zhoushan Archipelago Observation and Research Station, Institute of Eco-Chongming, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, People's Republic of China
| | - Xue Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Minghao Sun
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Qi Si
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yi Kang
- Zhejiang Zhoushan Archipelago Observation and Research Station, Institute of Eco-Chongming, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, People's Republic of China
| | - Ping Ding
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Xingfeng Si
- Zhejiang Zhoushan Archipelago Observation and Research Station, Institute of Eco-Chongming, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, People's Republic of China
| |
Collapse
|
16
|
Dáttilo W, Luna P, Villegas-Patraca R. Invasive Plant Species Driving the Biotic Homogenization of Plant-Frugivore Interactions in the Atlantic Forest Biodiversity Hotspot. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091845. [PMID: 37176902 PMCID: PMC10181201 DOI: 10.3390/plants12091845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Although biological invasions are a common and intensively studied phenomenon, most studies often ignore the biotic interactions that invasive species play in the environment. Here, we evaluated how and why invasive plant species are interconnected within the overall frugivory network of the Brazilian Atlantic Forest, an important global biodiversity hotspot. To do this, we used the recently published Atlantic Frugivory Dataset to build a meta-network (i.e., a general network made of several local networks) that included interactions between 703 native and invasive plant species and 331 frugivore species. Using tools derived from complex network theory and a bootstrap simulation approach, we found that the general structure of the Atlantic Forest frugivory network (i.e., nestedness and modularity) is robust against the entry of invasive plant species. However, we observed that invasive plant species are highly integrated within the frugivory networks, since both native and invasive plant species play similar structural roles (i.e., plant status is not strong enough to explain the interactive roles of plant species). Moreover, we found that plants with smaller fruits and with greater lipid content play a greater interactive role, regardless of their native or invasive status. Our findings highlight the biotic homogenization involving plant-frugivore interactions in the Atlantic Forest and that the impacts and consequences of invasive plant species on native fauna can be anticipated based on the characteristics of their fruits.
Collapse
Affiliation(s)
- Wesley Dáttilo
- Red de Ecoetología, Instituto de Ecología, A.C., Xalapa 91073, Veracruz, Mexico
| | - Pedro Luna
- Unidad de Servicios Profesionales Altamente Especializados, Instituto de Ecología, A.C., Xalapa 91073, Veracruz, Mexico
| | - Rafael Villegas-Patraca
- Unidad de Servicios Profesionales Altamente Especializados, Instituto de Ecología, A.C., Xalapa 91073, Veracruz, Mexico
| |
Collapse
|
17
|
Brimacombe C, Bodner K, Michalska-Smith M, Poisot T, Fortin MJ. Shortcomings of reusing species interaction networks created by different sets of researchers. PLoS Biol 2023; 21:e3002068. [PMID: 37011096 PMCID: PMC10101633 DOI: 10.1371/journal.pbio.3002068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 04/13/2023] [Accepted: 03/07/2023] [Indexed: 04/05/2023] Open
Abstract
Given the requisite cost associated with observing species interactions, ecologists often reuse species interaction networks created by different sets of researchers to test their hypotheses regarding how ecological processes drive network topology. Yet, topological properties identified across these networks may not be sufficiently attributable to ecological processes alone as often assumed. Instead, much of the totality of topological differences between networks-topological heterogeneity-could be due to variations in research designs and approaches that different researchers use to create each species interaction network. To evaluate the degree to which this topological heterogeneity is present in available ecological networks, we first compared the amount of topological heterogeneity across 723 species interaction networks created by different sets of researchers with the amount quantified from non-ecological networks known to be constructed following more consistent approaches. Then, to further test whether the topological heterogeneity was due to differences in study designs, and not only to inherent variation within ecological networks, we compared the amount of topological heterogeneity between species interaction networks created by the same sets of researchers (i.e., networks from the same publication) with the amount quantified between networks that were each from a unique publication source. We found that species interaction networks are highly topologically heterogeneous: while species interaction networks from the same publication are much more topologically similar to each other than interaction networks that are from a unique publication, they still show at least twice as much heterogeneity as any category of non-ecological networks that we tested. Altogether, our findings suggest that extra care is necessary to effectively analyze species interaction networks created by different researchers, perhaps by controlling for the publication source of each network.
Collapse
Affiliation(s)
- Chris Brimacombe
- Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Korryn Bodner
- MAP Centre for Urban Health Solutions, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Matthew Michalska-Smith
- Department of Ecology, Evolution and Behavior, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Plant Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Timothée Poisot
- Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
- Centre de la Science de la Biodiversité du Québec, Montréal, Québec, Canada
| | - Marie-Josée Fortin
- Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Ren P, Didham RK, Murphy MV, Zeng D, Si X, Ding P. Forest edges increase pollinator network robustness to extinction with declining area. Nat Ecol Evol 2023; 7:393-404. [PMID: 36717744 PMCID: PMC9998274 DOI: 10.1038/s41559-022-01973-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 12/16/2022] [Indexed: 02/01/2023]
Abstract
Edge effects often exacerbate the negative effects of habitat loss on biodiversity. In forested ecosystems, however, many pollinators actually prefer open sunny conditions created by edge disturbances. We tested the hypothesis that forest edges have a positive buffering effect on plant-pollinator interaction networks in the face of declining forest area. In a fragmented land-bridge island system, we recorded ~20,000 plant-pollinator interactions on 41 islands over 3 yr. We show that plant richness and floral resources decline with decreasing forest area at both interior and edge sites, but edges maintain 10-fold higher pollinator abundance and richness regardless of area loss. Edge networks contain highly specialized species, with higher nestedness and lower modularity than interior networks, maintaining high robustness to extinction following area loss while forest interior networks collapse. Anthropogenic forest edges benefit community diversity and network robustness to extinction in the absence of natural gap-phase dynamics in small degraded forest remnants.
Collapse
Affiliation(s)
- Peng Ren
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Raphael K Didham
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,CSIRO Health and Biosecurity, Centre for Environment and Life Sciences, Floreat, Western Australia, Australia
| | - Mark V Murphy
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Di Zeng
- Zhejiang Zhoushan Archipelago Observation and Research Station, Institute of Eco-Chongming, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Xingfeng Si
- Zhejiang Zhoushan Archipelago Observation and Research Station, Institute of Eco-Chongming, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Ping Ding
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
19
|
Fournier RJ, de Mendoza G, Sarremejane R, Ruhi A. Isolation controls reestablishment mechanisms and post-drying community structure in an intermittent stream. Ecology 2023; 104:e3911. [PMID: 36335551 PMCID: PMC10078480 DOI: 10.1002/ecy.3911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022]
Abstract
Biota in disturbance-prone landscapes have evolved a variety of strategies to persist long term, either locally (resistance) or by regional recolonization (resilience). Habitat fragmentation and isolation can limit the availability of recolonization pathways, and thus the dynamics of post-disturbance community reestablishment. However, empirical studies on how isolation may control the mechanisms that enable community recovery remain scarce. Here, we studied a pristine intermittent stream (Chalone Creek, Pinnacles National Park, California) to understand how isolation (distance from a perennial pool) alters invertebrate community recolonization after drying. We monitored benthic invertebrate reestablishment during the rewetting phase along a ~2-km gradient of isolation, using mesh traps that selected for specific recolonization pathways (i.e., drift, flying, swimming/crawling, and vertical migration from the hyporheic). We collected daily emigration samples, surveyed the reestablished benthic community after 6 weeks, and compared assemblages across trap types and sites. We found that isolation mediated migration dynamics by delaying peak vertical migration from the hyporheic by ca. 1 day on average per 250 m of dry streambed. The relative importance of reestablishment mechanisms varied longitudinally-with more resistance strategists (up to 99.3% of encountered individuals) in the upstream reaches, and increased drift and aerial dispersers in the more fragmented habitats (up to 17.2% and 18%, respectively). Resistance strategists persisting in the hyporheic dominated overall (88.2% of individuals, ranging 52.9%-99.3% across sites), but notably most of these organisms subsequently outmigrated downstream (85.6% on average, ranging 52.1%-96% across sites). Thus, contrary to conventional wisdom, resistance strategists largely contributed to downstream resilience as well as to local community recovery. Finally, increased isolation was associated with a general decrease in benthic invertebrate diversity, and up to a 3-fold increase in the relative abundance of drought-resistant stoneflies. Our results advance the notion that understanding spatial context is key to predicting post-disturbance community dynamics. Considering the interaction between disturbance and fragmentation may help inform conservation in ecosystems that are subject to novel environmental regimes.
Collapse
Affiliation(s)
- Robert J Fournier
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Guillermo de Mendoza
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA.,Faculty of Oceanography and Geography, Institute of Geography, University of Gdansk, Gdańsk, Poland
| | - Romain Sarremejane
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA.,INRAE, UR RiverLy, Centre de Lyon-Grenoble Auvergne-Rhône-Alpes, Villeurbanne Cedex, France
| | - Albert Ruhi
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| |
Collapse
|
20
|
Abstract
There is growing awareness of pollinator declines worldwide. Conservation efforts have mainly focused on finding the direct causes, while paying less attention to building a systemic understanding of the fragility of these communities of pollinators. To fill this gap, we need operational measures of network resilience that integrate two different approaches in theoretical ecology. First, we should consider the range of conditions compatible with the stable coexistence of all of the species in a community. Second, we should address the rate and shape of network collapse once this safe operational space is exited. In this review, we describe this integrative approach and consider several mechanisms that may enhance the resilience of pollinator communities, chiefly rewiring the network of interactions, increasing heterogeneity, allowing variance, and enhancing coevolution. The most pressing need is to develop ways to reduce the gap between these theoretical recommendations and practical applications. This perspective shifts the emphasis from traditional approaches focusing on the equilibrium states to strategies that allow pollination networks to cope with global environmental change.
Collapse
Affiliation(s)
- Jordi Bascompte
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland;
| | - Marten Scheffer
- Department of Environmental Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
21
|
Yuan S, Zhang HT, Li X, Yue XX, Fu HP, Wu XD. The effect of grazing and reclamation on rodent community stability in the Alxa desert. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1105297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Ecosystem stability has been of increasing interest in the past several decades as it helps predict the consequences of anthropogenic disturbances on ecosystems. A wild rodent community under reclamation and different grazing disturbances in the Alxa Desert was investigated using live trapping from 2006 to 2011. We studied the rodent community composition, community diversity, and variability of different life history strategies. These results showed that reclamation reduced rodent community stability by increasing temporal variability of community, reducing rodent community resistance as shown by decreasing dominance of KSS strategists, and increased the resistance variability of the rodent community by increasing the variability of abundance and richness for KSS strategists. Grazing reduced rodent community resilience by reducing the dominance of rRF strategists, and increased the resilience variability of the rodent community by increasing the variability of abundance and richness for rRF strategists. Those results may answer the three ecological questions about how ecosystems respond to disturbances from a diversity perspective. The ecosystems with intermediate disturbance are more stable, in other words, with higher resistance and resilience. The increase of KSS strategists means the increase of resistance of the community. The increase of rRF strategists means the increase of community resilience.
Collapse
|
22
|
Lin Q, Song Y, Zhang Y, Hao JL, Wu Z. Strategies for Restoring and Managing Ecological Corridors of Freshwater Ecosystem. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15921. [PMID: 36497995 PMCID: PMC9740539 DOI: 10.3390/ijerph192315921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Along with accelerating urbanization and associated anthropogenic disturbance, the structure and function of freshwater ecosystems worldwide are substantially damaged. To improve ecosystem health, and thus enhance the ecosystem security of the urban ecosystem, numbers of management approaches and engineering projects have been applied to mitigate the degradation of freshwaters. Nevertheless, there is still a lack of comprehensive and systematic research on the ecological corridor restoration of freshwater ecosystems; especially for Suzhou Grand Canal, one section of the world's longest and ancient Grand Canal which is inclined to severe ecosystem degradation. Through investigating the adjacent land use characteristics, habitat quality, vegetation cover, instream water quality, and habitat composition, we aimed to: (i) assess the water quality of the Suzhou Grand Canal; (ii) evaluate the ecological characteristics of the canal ecosystem; (iii) develop strategic countermeasures to restore the ecological corridors for the mitigation of ecological problems. The results demonstrated: a large built area, a smaller ecological zone, a low habitat quality and habitat connectivity, and a high degree of habitat fragmentation within the canal corridor, also a simplified instream habitat composition, and greater nutrient and COD concentrations in the surface water-especially in the upstream and midstream canal. All urbanization-induced multiple stressors, such as land use changes, altered hydrology, and the simplified riparian zone et al., contributed synergistically to the degradation of the canal ecosystem. To alleviate the ecosystem deterioration, three aspects of recommendations were proposed: water pollution control, watershed ecosystem restoration, and ecological network construction. Basically, building a comprehensive watershed ecological network-on the basis of associated ecosystem restoration, and the connection of multi-dimensional ecological corridors-would dramatically increase the maintenance of aquatic-terrestrial system biodiversity, and improve the regional ecological security pattern and watershed resilience toward stochastic future disturbances. This study contributes to the understanding of the ecological challenges and related causes of the canal ecosystem. The integrated strategy introduced in this study provides policymakers, water resource managers, and planners with comprehensive guidelines to restore and manage the ecological corridor of the canal ecosystem. This can be used as a reference in freshwater ecosystems elsewhere, to improve ecosystem stability for supporting the sustainable development of urban ecosystems.
Collapse
Affiliation(s)
- Qiaoyan Lin
- The XIPU Institution, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Yu Song
- The XIPU Institution, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
- Department of China Studies, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Yixin Zhang
- Department of Landscape Architecture, Gold Mantis School of Architecture, Soochow University, Suzhou 215123, China
| | - Jian Li Hao
- Department of Civil Engineering, Design School, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Zhijie Wu
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, RIET, Suzhou 215163, China
| |
Collapse
|
23
|
Princepe D, Czarnobai S, Pradella TM, Caetano RA, Marquitti FMD, de Aguiar MAM, Araujo SBL. Diversity patterns and speciation processes in a two-island system with continuous migration. Evolution 2022; 76:2260-2271. [PMID: 36036483 DOI: 10.1111/evo.14603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/22/2022] [Indexed: 01/22/2023]
Abstract
Geographic isolation is a central mechanism of speciation, but perfect isolation of populations is rare. Although speciation can be hindered if gene flow is large, intermediate levels of migration can enhance speciation by introducing genetic novelty in the semi-isolated populations or founding small communities of migrants. Here, we consider a two-island neutral model of speciation with continuous migration and study diversity patterns as a function of the migration probability, population size, and number of genes involved in reproductive isolation (dubbed as genome size). For small genomes, low levels of migration induce speciation on the islands that otherwise would not occur. Diversity, however, drops sharply to a single species inhabiting both islands as the migration probability increases. For large genomes, sympatric speciation occurs even when the islands are strictly isolated. Then species richness per island increases with the probability of migration, but the total number of species decreases as they become cosmopolitan. For each genome size, there is an optimal migration intensity for each population size that maximizes the number of species. We discuss the observed modes of speciation induced by migration and how they increase species richness in the insular system while promoting asymmetry between the islands and hindering endemism.
Collapse
Affiliation(s)
- Débora Princepe
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, Campinas, Brasil
| | - Simone Czarnobai
- Programa de Pós Graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, Brasil
| | - Thiago M Pradella
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, Campinas, Brasil
| | - Rodrigo A Caetano
- Departamento de Física, Universidade Federal do Paraná, Curitiba, Brasil
| | - Flavia M D Marquitti
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, Campinas, Brasil.,Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brasil
| | - Marcus A M de Aguiar
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, Campinas, Brasil
| | - Sabrina B L Araujo
- Departamento de Física, Universidade Federal do Paraná, Curitiba, Brasil
| |
Collapse
|
24
|
Sandor ME, Elphick CS, Tingley MW. Extinction of biotic interactions due to habitat loss could accelerate the current biodiversity crisis. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2608. [PMID: 35366031 DOI: 10.1002/eap.2608] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Habitat loss disrupts species interactions through local extinctions, potentially orphaning species that depend on interacting partners, via mutualisms or commensalisms, and increasing secondary extinction risk. Orphaned species may become functionally or secondarily extinct, increasing the severity of the current biodiversity crisis. While habitat destruction is a major cause of biodiversity loss, the number of secondary extinctions is largely unknown. We investigate the relationship between habitat loss, orphaned species, and bipartite network properties. Using a real seed dispersal network, we simulate habitat loss to estimate the rate at which species are orphaned. To be able to draw general conclusions, we also simulate habitat loss in synthetic networks to quantify how changes in network properties affect orphan rates across broader parameter space. Both real and synthetic network simulations show that even small amounts of habitat loss can cause up to 10% of species to be orphaned. More area loss, less connected networks, and a greater disparity in the species richness of the network's trophic levels generally result in more orphaned species. As habitat is lost to land-use conversion and climate change, more orphaned species increase the loss of community-level and ecosystem functions. However, the potential severity of repercussions ranges from minimal (no species orphaned) to catastrophic (up to 60% of species within a network orphaned). Severity of repercussions also depends on how much the interaction richness and intactness of the community affects the degree of redundancy within networks. Orphaned species could add substantially to the loss of ecosystem function and secondary extinction worldwide.
Collapse
Affiliation(s)
- Manette E Sandor
- Ecology & Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
- Northern Arizona University, Landscape Conservation Initiative, Flagstaff, Arizona, USA
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York, USA
- Center for Biodiversity and Conservation, American Museum of Natural History, New York, New York, USA
| | - Chris S Elphick
- Ecology & Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Morgan W Tingley
- Ecology & Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
- Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| |
Collapse
|
25
|
Specht H, Golding JD, Pero EM, Crane MT, Ortiz‐Calo W, McDevitt MC, Karlen JG, Branch JV, Hansen CP, Millspaugh JJ. A framework for evaluating the implications of assumptions in broad conservation strategies. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Hannah Specht
- W.A. Franke College of Forestry and Conservation Missoula Montana USA
| | - Jessie D. Golding
- W.A. Franke College of Forestry and Conservation Missoula Montana USA
| | - Ellen M. Pero
- W.A. Franke College of Forestry and Conservation Missoula Montana USA
| | - Madison T. Crane
- W.A. Franke College of Forestry and Conservation Missoula Montana USA
| | | | - Molly C. McDevitt
- W.A. Franke College of Forestry and Conservation Missoula Montana USA
| | | | - J. Vaughan Branch
- W.A. Franke College of Forestry and Conservation Missoula Montana USA
| | | | | |
Collapse
|
26
|
Effect of Landscape Composition and Invasive Plants on Pollination Networks of Smallholder Orchards in Northeastern Thailand. PLANTS 2022; 11:plants11151976. [PMID: 35956454 PMCID: PMC9370323 DOI: 10.3390/plants11151976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Destruction of natural habitat, land-use changes and biological invasion are some of the major threats to biodiversity. Both habitat alteration and biological invasions can have impacts on pollinator communities and pollination network structures. This study aims to examine the effect of an invasive plant, praxelis (Praxelis clematidea; Asteraceae), and land-use types on pollinator communities and the structure of pollination networks. We conducted the study in smallholder orchards which are either invaded or non-invaded by P. clematidea. We estimated the pollinator richness, visitation rates, and pollinator diversity and evaluated the network structures from 18 smallholder orchards in Northeastern Thailand. The effect of landscape structure in the vicinity of the orchards was investigated, with the proportion of agricultural, forest, and urban landscape within a 3 km radius analyzed. The invasive species and land-use disturbance influence the pollinator communities and pollination network structure at species level was affected by the presence of P. clematidea. Bees were the most important pollinator group for pollinator communities and pollination networks of both invaded or non-invaded plots, as bees are a generalist species, they provide the coherence of both the network and its own module. The urban landscape had a strong negative influence on pollinator richness, while the proportions of agriculture and forest landscape positively affected the pollinator community.
Collapse
|
27
|
Cacabelos E, Gestoso I, Ramalhosa P, Canning-Clode J. Role of non-indigenous species in structuring benthic communities after fragmentation events: an experimental approach. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02768-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
OxDNA to Study Species Interactions. ENTROPY 2022; 24:e24040458. [PMID: 35455121 PMCID: PMC9029285 DOI: 10.3390/e24040458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023]
Abstract
Molecular ecology uses molecular genetic data to answer traditional ecological questions in biogeography and biodiversity, among others. Several ecological principles, such as the niche hypothesis and the competitive exclusions, are based on the fact that species compete for resources. More in generally, it is now recognized that species interactions play a crucial role in determining the coexistence and abundance of species. However, experimentally controllable platforms, which allow us to study and measure competitions among species, are rare and difficult to implement. In this work, we suggest exploiting a Molecular Dynamics coarse-grained model to study interactions among single strands of DNA, representing individuals of different species, which compete for binding to other oligomers considered as resources. In particular, the well-established knowledge of DNA–DNA interactions at the nanoscale allows us to test the hypothesis that the maximum consecutive overlap between pairs of oligomers measure the species’ competitive advantages. However, we suggest that a more complex structure also plays a role in the ability of the species to successfully bind to the target resource oligomer. We complement the simulations with experiments on populations of DNA strands which qualitatively confirm our hypotheses. These tools constitute a promising starting point for further developments concerning the study of controlled, DNA-based, artificial ecosystems.
Collapse
|
29
|
Rother DC, Sousa ILF, Gressler E, Liboni AP, Souza VC, Rodrigues RR, Morellato LP. Comparing the potential reproductive phenology between restored areas and native tropical forest fragments in Southeastern Brazil. Restor Ecol 2022. [DOI: 10.1111/rec.13529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Débora C. Rother
- Departamento de Ecologia Universidade de São Paulo – USP, Instituto de Biociências São Paulo São Paulo Brazil
- Laboratório de Ecologia e Restauração Florestal Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz” – ESALQ, Universidade de São Paulo Piracicaba São Paulo Brazil
| | - Igor L. F. Sousa
- Departamento de Biodiversidade, Laboratório de Fenologia Universidade Estadual Paulista – UNESP, Instituto de Biociências Rio Claro São Paulo Brazil
| | - Eliana Gressler
- Departamento de Biodiversidade, Laboratório de Fenologia Universidade Estadual Paulista – UNESP, Instituto de Biociências Rio Claro São Paulo Brazil
| | - Ana P. Liboni
- Laboratório de Ecologia e Restauração Florestal Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz” – ESALQ, Universidade de São Paulo Piracicaba São Paulo Brazil
- Departamento de Botânica Universidade Estadual de Campinas – UNICAMP Campinas São Paulo Brazil
| | - Vinícius C. Souza
- Laboratório de Ecologia e Restauração Florestal Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz” – ESALQ, Universidade de São Paulo Piracicaba São Paulo Brazil
| | - Ricardo R. Rodrigues
- Laboratório de Ecologia e Restauração Florestal Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz” – ESALQ, Universidade de São Paulo Piracicaba São Paulo Brazil
| | - L. Patrícia Morellato
- Departamento de Biodiversidade, Laboratório de Fenologia Universidade Estadual Paulista – UNESP, Instituto de Biociências Rio Claro São Paulo Brazil
| |
Collapse
|
30
|
Costa A, Heleno R, Dufrene Y, Huckle E, Gabriel R, Doudee D, Kaiser‐Bunbury CN. Seed dispersal by frugivores from forest remnants promotes the regeneration of adjacent invaded forests in an oceanic island. Restor Ecol 2022. [DOI: 10.1111/rec.13654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alba Costa
- Centre for Ecology and Conservation, College of Life and Environmental Sciences University of Exeter Penryn Campus TR10 9FE UK
| | - Ruben Heleno
- Centre for Functional Ecology, TERRA Associated Laboratory, Department of Life Sciences University of Coimbra, Calçada Martim de Freitas 3000‐456 Coimbra Portugal
| | - Yanick Dufrene
- Seychelles National Parks Authority, PO Box 1240 Mahé Seychelles
| | - Eleanor Huckle
- Centre for Ecology and Conservation, College of Life and Environmental Sciences University of Exeter Penryn Campus TR10 9FE UK
| | - Ronny Gabriel
- Seychelles National Parks Authority, PO Box 1240 Mahé Seychelles
| | - Damien Doudee
- Seychelles National Parks Authority, PO Box 1240 Mahé Seychelles
| | - Christopher N. Kaiser‐Bunbury
- Centre for Ecology and Conservation, College of Life and Environmental Sciences University of Exeter Penryn Campus TR10 9FE UK
| |
Collapse
|
31
|
Cid N, Erős T, Heino J, Singer G, Jähnig SC, Cañedo‐Argüelles M, Bonada N, Sarremejane R, Mykrä H, Sandin L, Paloniemi R, Varumo L, Datry T. From meta-system theory to the sustainable management of rivers in the Anthropocene. FRONTIERS IN ECOLOGY AND THE ENVIRONMENT 2022; 20:49-57. [PMID: 35873359 PMCID: PMC9292669 DOI: 10.1002/fee.2417] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Regional-scale ecological processes, such as the spatial flows of material, energy, and organisms, are fundamental for maintaining biodiversity and ecosystem functioning in river networks. Yet these processes remain largely overlooked in most river management practices and underlying policies. Here, we propose adoption of a meta-system approach, where regional processes acting at different levels of ecological organization - populations, communities, and ecosystems - are integrated into conventional river conservation, restoration, and biomonitoring. We also describe a series of measurements and indicators that could be assimilated into the implementation of relevant biodiversity and environmental policies. Finally, we highlight the need for alternative management strategies that can guide practitioners toward applying recent advances in ecology to preserve and restore river ecosystems and the ecosystem services they provide, in the context of increasing alteration of river network connectivity worldwide.
Collapse
Affiliation(s)
- Núria Cid
- INRAEUR RiverLyCentre de Lyon‐VilleurbanneVilleurbanne CedexFrance
| | - Tibor Erős
- Balaton Limnological Research InstituteTihanyHungary
| | - Jani Heino
- Finnish Environment InstituteFreshwater CentreOuluFinland
| | - Gabriel Singer
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| | - Sonja C Jähnig
- Leibniz Institute of Freshwater Ecology and Inland FisheriesDepartment of Ecosystem ResearchBerlinGermany
- Geography DepartmentFaculty of Mathematics and Natural SciencesHumboldt‐Universität zu BerlinBerlinGermany
| | - Miguel Cañedo‐Argüelles
- Freshwater Ecology, Hydrology and Management Research GroupDepartament de Biologia EvolutivaEcologia i Ciències AmbientalsFacultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
- Institut de Recerca de l'AiguaUniversitat de BarcelonaBarcelonaSpain
| | - Núria Bonada
- Freshwater Ecology, Hydrology and Management Research GroupDepartament de Biologia EvolutivaEcologia i Ciències AmbientalsFacultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
- Institut de Recerca de la BiodiversitatUniversitat de BarcelonaBarcelonaSpain
| | | | - Heikki Mykrä
- Finnish Environment InstituteFreshwater CentreOuluFinland
| | | | - Riikka Paloniemi
- Finnish Environment InstituteEnvironmental Policy CentreHelsinkiFinland
| | - Liisa Varumo
- Finnish Environment InstituteEnvironmental Policy CentreHelsinkiFinland
| | - Thibault Datry
- INRAEUR RiverLyCentre de Lyon‐VilleurbanneVilleurbanne CedexFrance
| |
Collapse
|
32
|
Cazetta E, Fahrig L. The effects of human‐altered habitat spatial pattern on frugivory and seed dispersal: a global meta‐analysis. OIKOS 2021. [DOI: 10.1111/oik.08288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eliana Cazetta
- Applied Ecology and Conservation Lab, Univ. Estadual de Santa Cruz Ilhéus Bahia Brazil
| | - Lenore Fahrig
- Geomatics and Landscape Ecology Research Laboratory, Dept of Biology, Carleton Univ. Ottawa ON Canada
| |
Collapse
|
33
|
Henriksen MV, Latombe G, Chapple DG, Chown SL, McGeoch MA. A multi-site method to capture turnover in rare to common interactions in bipartite species networks. J Anim Ecol 2021; 91:404-416. [PMID: 34800042 DOI: 10.1111/1365-2656.13639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 11/09/2021] [Indexed: 12/01/2022]
Abstract
Ecological network structure is maintained by a generalist core of common species. However, rare species contribute substantially to both the species and functional diversity of networks. Capturing changes in species composition and interactions, measured as turnover, is central to understanding the contribution of rare and common species and their interactions. Due to a large contribution of rare interactions, the pairwise metrics used to quantify interaction turnover are, however, sensitive to compositional change in the interactions of, often rare, peripheral specialists rather than common generalists in the network. Here we expand on pairwise interaction turnover using a multi-site metric that enables quantifying turnover in rare to common interactions (in terms of occurrence of interactions). The metric further separates this turnover into interaction turnover due to species turnover and interaction rewiring. We demonstrate the application and value of this method using a host-parasitoid system sampled along gradients of environmental modification. In the study system, both the type and amount of habitat needed to maintain interaction composition depended on the properties of the interactions considered, that is, from rare to common. The analyses further revealed the potential of host switching to prevent or delay species loss, and thereby buffer the system from perturbation. Multi-site interaction turnover provides a comprehensive measure of network change that can, for example, detect ecological thresholds to habitat loss for rare to common interactions. Accurate description of turnover in common, in addition to rare, species and their interactions is particularly relevant for understanding how network structure and function can be maintained.
Collapse
Affiliation(s)
- Marie V Henriksen
- School of Biological Sciences, Monash University, Clayton, Vic., Australia.,Department of Landscape and Biodiversity, Norwegian Institute of Bioeconomy Research, Trondheim, Norway
| | - Guillaume Latombe
- School of Biological Sciences, Monash University, Clayton, Vic., Australia.,Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, UK
| | - David G Chapple
- School of Biological Sciences, Monash University, Clayton, Vic., Australia
| | - Steven L Chown
- School of Biological Sciences, Monash University, Clayton, Vic., Australia
| | - Melodie A McGeoch
- School of Biological Sciences, Monash University, Clayton, Vic., Australia.,Department of Ecology, Environment and Evolution, Centre for Future Landscapes, La Trobe University, Melbourne, Vic., Australia
| |
Collapse
|
34
|
Mendes SB, Timóteo S, Loureiro J, Castro S. The impact of habitat loss on pollination services for a threatened dune endemic plant. Oecologia 2021; 198:279-293. [PMID: 34775515 DOI: 10.1007/s00442-021-05070-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 10/23/2021] [Indexed: 11/28/2022]
Abstract
Habitat loss is currently a major threat to biodiversity, affecting species interactions, such as plant-pollinator interactions. This is particularly important in self-incompatible plants relying on pollinators to reproduce and sustain their populations. Here, we evaluated how habitat loss affects the pollination system, plant individual-pollinator species interaction network, and plant reproductive fitness of the self-incompatible Jasione maritima var. sabularia, a threatened taxon from dune systems. This plant is a pollinator generalist, visited by 108 species from distinct taxonomic groups. Results suggest that increasing habitat loss led to a significant decline in pollinator richness, increased pollen limitation, and a decrease in reproductive fitness of J. maritima var. sabularia. Visitation rate per individual did not significantly change with available area, indicating that the quality of pollen differed across populations. The topology of the network between J. maritima var. sabularia individuals and its pollinator species did not change, which may be attributed to the stability in the core of pollinator species. This suggests that the lower fitness of plants with increasing habitat degradation may be explained not only by the lower richness of peripheral pollinators but also by the genetic structure of the plant populations, as there is a possible higher transference of less quality pollen by pollinators, ultimately compromising the persistence of plant populations. Our study highlights the need of future studies to integrate the fine details provided by individual-level networks, which will increase our understanding of the pattern of species interactions and its consequences for the fitness of threatened plant populations.
Collapse
Affiliation(s)
- Sara Beatriz Mendes
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sérgio Timóteo
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| | - João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sílvia Castro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
35
|
Librán-Embid F, Grass I, Emer C, Ganuza C, Tscharntke T. A plant-pollinator metanetwork along a habitat fragmentation gradient. Ecol Lett 2021; 24:2700-2712. [PMID: 34612562 DOI: 10.1111/ele.13892] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/25/2021] [Accepted: 08/27/2021] [Indexed: 11/29/2022]
Abstract
To understand how plant-pollinator interactions respond to habitat fragmentation, we need novel approaches that can capture properties that emerge at broad scales, where multiple communities engage in metanetworks. Here we studied plant-pollinator interactions over 2 years on 29 calcareous grassland fragments selected along independent gradients of habitat size and surrounding landscape diversity of cover types. We associated network centrality of plant-pollinator interactions and grassland fragments with their ecological and landscape traits, respectively. Interactions involving habitat specialist plants and large-bodied pollinators were the most central, implying that species with these traits form the metanetwork core. Large fragments embedded in landscapes with high land cover diversity exhibited the highest centrality; however, small fragments harboured many unique interactions not found on larger fragments. Intensively managed landscapes have reached a point in which all remaining fragments matter, meaning that losing any further areas may vanish unique interactions with unknown consequences for ecosystem functioning.
Collapse
Affiliation(s)
- Felipe Librán-Embid
- Agroecology, University of Göttingen, Göttingen, Germany.,Zoological Biodiversity, Institute of Geobotany, Leibniz University of Hannover, Hannover, Germany
| | - Ingo Grass
- Department of Ecology of Tropical Agricultural Systems, University of Hohenheim, Stuttgart, Germany
| | - Carine Emer
- Instituto de Biociências, Departamento de Ecologia, Universidade Estadual Paulista, Rio Claro, SP, Brazil.,Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Cristina Ganuza
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
36
|
Ritchie AL, Elliott CP, Sinclair EA, Krauss SL. Restored and remnant Banksia woodlands elicit different foraging behavior in avian pollinators. Ecol Evol 2021; 11:11774-11785. [PMID: 34522340 PMCID: PMC8427588 DOI: 10.1002/ece3.7946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 11/23/2022] Open
Abstract
Pollinators and the pollination services they provide are critical for seed set and self-sustainability of most flowering plants. Despite this, pollinators are rarely assessed in restored plant communities, where their services are largely assumed to re-establish. Bird-pollinator richness, foraging, and interaction behavior were compared between natural and restored Banksia woodland sites in Western Australia to assess their re-establishment in restored sites. These parameters were measured for natural communities of varying size and degree of fragmentation, and restored plant communities of high and low complexity for three years, in the summer and winter flowering of Banksia attenuata and B. menziesii, respectively. Bird visitor communities varied in composition, richness, foraging movement distances, and aggression among sites. Bird richness and abundance were lowest in fragmented remnants. Differences in the composition were associated with the size and degree of fragmentation in natural sites, but this did not differ between seasons. Restored sites and their adjacent natural sites had similar species composition, suggesting proximity supports pollinator re-establishment. Pollinator foraging movements were influenced by the territorial behavior of different species. Using a network analysis approach, we found foraging behavior varied, with more frequent aggressive chases observed in restored sites, resulting in more movements out of the survey areas, than observed in natural sites. Aggressors were larger-bodied Western Wattlebirds (Anthochaera chrysoptera) and New Holland Honeyeaters (Phylidonyris novaehollandiae) that dominated nectar resources, particularly in winter. Restored sites had re-established pollination services, albeit with clear differences, as the degree of variability in the composition and behavior of bird pollinators for Banksias in the natural sites created a broad completion target against which restored sites were assessed. The abundance, diversity, and behavior of pollinator services to remnant and restored Banksia woodland sites were impacted by the size and degree of fragmentation, which in turn influenced bird-pollinator composition, and were further influenced by seasonal changes between summer and winter. Consideration of the spatial and temporal landscape context of restored sites, along with plant community diversity, is needed to ensure the maintenance of the effective movement of pollinators between natural remnant woodlands and restored sites.
Collapse
Affiliation(s)
- Alison L. Ritchie
- School of Biological ScienceThe University of Western AustraliaCrawleyWAAustralia
- Kings Park ScienceDepartment of Biodiversity, Conservation and AttractionsKings Park and Botanic GardenKings ParkWAAustralia
| | - Carole P. Elliott
- School of Biological ScienceThe University of Western AustraliaCrawleyWAAustralia
- Kings Park ScienceDepartment of Biodiversity, Conservation and AttractionsKings Park and Botanic GardenKings ParkWAAustralia
| | - Elizabeth A. Sinclair
- School of Biological ScienceThe University of Western AustraliaCrawleyWAAustralia
- Kings Park ScienceDepartment of Biodiversity, Conservation and AttractionsKings Park and Botanic GardenKings ParkWAAustralia
| | - Siegfried L. Krauss
- School of Biological ScienceThe University of Western AustraliaCrawleyWAAustralia
- Kings Park ScienceDepartment of Biodiversity, Conservation and AttractionsKings Park and Botanic GardenKings ParkWAAustralia
| |
Collapse
|
37
|
Jain A, Page NV, Rawat GS, Naniwadekar R. Are fragments fruitful? A comparison of plant–seed disperser communities between fragments and contiguous forest in north‐east India. Biotropica 2021. [DOI: 10.1111/btp.12985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Abir Jain
- Wildlife Institute of India Dehradun India
| | | | | | | |
Collapse
|
38
|
Syahidah T, Rizali A, Prasetyo LB, Pudjianto, Buchori D. Composition of tropical agricultural landscape alters the structure of host-parasitoid food webs. Heliyon 2021; 7:e07625. [PMID: 34377859 PMCID: PMC8327651 DOI: 10.1016/j.heliyon.2021.e07625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/20/2021] [Accepted: 07/15/2021] [Indexed: 11/30/2022] Open
Abstract
Land-use change and habitat fragmentation are well-known to affect host-parasitoid interactions. However, the study of the effects of landscape composition, as a result of habitat fragmentation, on host-parasitoid food webs is still limited especially in a tropical agricultural landscape. This research was aimed to study the effect of agricultural landscape composition on the structure of host-parasitoid food webs. Field research was conducted in sixteen long-bean fields located in Bogor Regency, West Java, Indonesia. In each long-bean field, sampling of insect pests and their parasitoids was carried out using direct observation within a plot size of 25 m × 50 m. The collected insects were brought to the laboratory for rearing and observed for emerging parasitoids. Landscape composition of each long-bean field was measured by digitizing the whole patch within a radius of 500 m from the long-bean field as a center of landscape, and landscape parameters were then quantified by focusing on number of patches and class area of both semi-natural habitats and crop fields. In total, we found 51 morphospecies of insect pests and 110 morphospecies of associated parasitoids from all research locations. Lepidopteran pests are the most abundant and species-rich with 35 morphospecies and with 76 morphospecies of parasitoids. Based on the generalized linear models, landscape composition especially class area of natural habitat and crop field showed a positive relationship with host-parasitoid food-web structure especially on connectance and compartment diversity. In conclusion, landscape composition contributes to shaping the host-parasitoid food-webs in a tropical agricultural landscape.
Collapse
Affiliation(s)
- Tazkiyatul Syahidah
- Department of Plant Protection, IPB University, Kampus IPB Dramaga, Bogor, West Java, Indonesia
| | - Akhmad Rizali
- Department of Plant Pests and Diseases, Faculty of Agriculture, University of Brawijaya, Jl. Veteran, Malang, East Java, Indonesia
| | - Lilik Budi Prasetyo
- Department of Forest Resources Conservation and Ecotourism, Faculty of Forestry, IPB University, Dramaga, Bogor, West Java, Indonesia
| | - Pudjianto
- Department of Plant Protection, IPB University, Kampus IPB Dramaga, Bogor, West Java, Indonesia
| | - Damayanti Buchori
- Department of Plant Protection, IPB University, Kampus IPB Dramaga, Bogor, West Java, Indonesia.,Center for Transdisciplinary and Sustainability Science, IPB University, Jl. Pajajaran, Bogor, West Java, Indonesia
| |
Collapse
|
39
|
Blüthgen N, Staab M. Ecology: Mammals, interaction networks and the relevance of scale. Curr Biol 2021; 31:R850-R853. [PMID: 34256918 DOI: 10.1016/j.cub.2021.05.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A new study shows that large mammals in an African savanna not only modify the vegetation but also strongly alter interaction networks between plants and pollinators. These insights raise fundamental yet unresolved questions about spatial dimensions of experiments, species interaction networks and ecosystems.
Collapse
Affiliation(s)
- Nico Blüthgen
- Technical University Darmstadt, Ecological Networks, Schnittspahnstrasse 3, 64287 Darmstadt, Germany.
| | - Michael Staab
- Technical University Darmstadt, Ecological Networks, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| |
Collapse
|
40
|
Menezes Pinto Í, Emer C, Cazetta E, Morante-Filho JC. Deforestation Simplifies Understory Bird Seed-Dispersal Networks in Human-Modified Landscapes. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.640210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Global biodiversity is threatened by land-use changes through human activities. This is mainly due to the conversion of continuous forests into forest fragments surrounded by anthropogenic matrices. In general, sensitive species are lost while species adapted to disturbances succeed in altered environments. However, whether the interactions performed by the persisting species are also modified, and how it scales up to the network level throughout the landscape are virtually unknown in most tropical hotspots of biodiversity. Here we evaluated how landscape predictors (forest cover, total core area, edge density, inter-patch isolation) and local characteristics (fruit availability, vegetation complexity) affected understory birds seed-dispersal networks in 19 forest fragments along the hyperdiverse but highly depauperate northeast distribution of the Brazilian Atlantic Forest. Also, our sampled sites were distributed in two regions with contrasting land cover changes. We used mist nets to obtain samples of understory bird food contents to identify the plant species consumed and dispersed by them. We estimated network complexity on the basis of the number of interactions, links per species, interaction evenness, and modularity. Our findings showed that the number of interactions increased with the amount of forest cover, and it was significantly lower in the more deforested region. None of the other evaluated parameters were affected by any other landscape or local predictors. We also observed a lack of significant network structure compared to null models, which we attribute to a pervasive impoverishment of bird and plant communities in these highly modified landscapes. Our results demonstrate the importance of forest cover not only to maintain species diversity but also their respective mutualistic relationships, which are the bases for ecosystem functionality, forest regeneration and the provision of ecological services.
Collapse
|
41
|
Priority list of biodiversity metrics to observe from space. Nat Ecol Evol 2021; 5:896-906. [PMID: 33986541 DOI: 10.1038/s41559-021-01451-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 03/22/2021] [Indexed: 02/03/2023]
Abstract
Monitoring global biodiversity from space through remotely sensing geospatial patterns has high potential to add to our knowledge acquired by field observation. Although a framework of essential biodiversity variables (EBVs) is emerging for monitoring biodiversity, its poor alignment with remote sensing products hinders interpolation between field observations. This study compiles a comprehensive, prioritized list of remote sensing biodiversity products that can further improve the monitoring of geospatial biodiversity patterns, enhancing the EBV framework and its applicability. The ecosystem structure and ecosystem function EBV classes, which capture the biological effects of disturbance as well as habitat structure, are shown by an expert review process to be the most relevant, feasible, accurate and mature for direct monitoring of biodiversity from satellites. Biodiversity products that require satellite remote sensing of a finer resolution that is still under development are given lower priority (for example, for the EBV class species traits). Some EBVs are not directly measurable by remote sensing from space, specifically the EBV class genetic composition. Linking remote sensing products to EBVs will accelerate product generation, improving reporting on the state of biodiversity from local to global scales.
Collapse
|
42
|
Seasonal Succession of Bacterial Communities in Three Eutrophic Freshwater Lakes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136950. [PMID: 34209591 PMCID: PMC8295879 DOI: 10.3390/ijerph18136950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/17/2021] [Accepted: 06/26/2021] [Indexed: 12/24/2022]
Abstract
Urban freshwater lakes play an indispensable role in maintaining the urban environment and are suffering great threats of eutrophication. Until now, little has been known about the seasonal bacterial communities of the surface water of adjacent freshwater urban lakes. This study reported the bacterial communities of three adjacent freshwater lakes (i.e., Tangxun Lake, Yezhi Lake and Nan Lake) during the alternation of seasons. Nan Lake had the best water quality among the three lakes as reflected by the bacterial eutrophic index (BEI), bacterial indicator (Luteolibacter) and functional prediction analysis. It was found that Alphaproteobacteria had the lowest abundance in summer and the highest abundance in winter. Bacteroidetes had the lowest abundance in winter, while Planctomycetes had the highest abundance in summer. N/P ratio appeared to have some relationships with eutrophication. Tangxun Lake and Nan Lake with higher average N/P ratios (e.g., N/P = 20) tended to have a higher BEI in summer at a water temperature of 27 °C, while Yezhi Lake with a relatively lower average N/P ratio (e.g., N/P = 14) tended to have a higher BEI in spring and autumn at a water temperature of 9-20 °C. BEI and water temperature were identified as the key parameters in determining the bacterial communities of lake water. Phosphorus seemed to have slightly more impact on the bacterial communities than nitrogen. It is expected that this study will help to gain more knowledge on urban lake eutrophication.
Collapse
|
43
|
Habitat Quality and Social Behavioral Association Network in a Wintering Waterbirds Community. SUSTAINABILITY 2021. [DOI: 10.3390/su13116044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Migratory waterbirds concentrated in freshwater ecosystems in mosaic environments rely on quality habitats for overwintering. At West Dongting Lake National Nature Reserve (WDLNNR), China, land-use change and hydrology alternation are compounding factors that have affected important wintering areas for migratory waterbirds. Presently, changes in the hydrology and landscape have reshaped natural wintering habitats and their availability, though the impact of hydrological management on habitat selection of wintering waterbirds is largely unknown. In this study, we classified differentially managed habitats and calculated their area using the normalized difference vegetation index (NDVI) to evaluate suitable habitat availability over the study period (2016–2017 and 2017–2018 wintering periods). We then used social behavioral association network (SBAN) model to compare habitat quality through species-species social interactions and species-habitat associations in lakes with different hydrological management. The results indicated that social interactions between and within species structured wintering waterbirds communities, which could be dominated by one or more species, while dominant species control the activities of other co-existing species. Analysis of variance (ANOVA) tests indicated significant differences in SBAN metrics between lakes (p = 0.0237) and habitat (p < 0.0001) levels. Specifically, lakes with managed hydrology were preferred by more species. The managed lakes had better habitat quality in terms of significantly higher habitat areas (p < 0.0001) and lower habitat transitions (p = 0.0113). Collectively, our findings suggest that proper hydrological management can provide continuous availability of quality habitats, especially mudflats and shallow waters, for a stable SBAN to ensure a wintering waterbirds community with more sympatric species in a dynamic environment.
Collapse
|
44
|
Rodrigues Junior DM, Santos JBSVD, Sant’Anna DO. Polinização, Abelhas-robô e a neutralidade da tecnologia. LIINC EM REVISTA 2021. [DOI: 10.18617/liinc.v17i1.5608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
O colapso dos polinizadores, uma das muitas facetas das crises ambientais correntes, traz um enorme desafio para a produção agrícola. Estudos apontam a correlação entre este problema e o uso extensivo de agrotóxicos, mas outra possibilidade além de seu controle mais estrito pode ser apresentada ao grande público como uma solução desta crise: o desenvolvimento de tecnologias de polinização artificial. Este artigo procura, após estabelecer a seriedade desta crise e a fundamentar suas origens antropogênicas a partir de relatórios e revisão bibliográfica, se utilizar de artigos de divulgação científica como fontes primárias para problematizar o desenvolvimento tecnológico como não-neutro, nem baseado puramente em critérios de eficiência, mas influenciado por fatores econômicos e sociais, bem como reprodutor de ideologias.
Collapse
|
45
|
Tallei E, Benavidez A, Schaaf A, Isola P, Zanotti M. Seasonal dynamics of waterbirds from a relict wetland in the central Monte Desert, Argentina. NEOTROPICAL BIOLOGY AND CONSERVATION 2021. [DOI: 10.3897/neotropical.16.e61672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Wetlands currently have high rates of degradation, with more than 70% lost globally. In the central Monte Desert, Argentina, they are a scarce and limited resource for the biodiversity which depends on them. Waterbirds have been used as biological indicators of wetlands because they respond to fluctuations in food resources and to environmental changes in the short term. Here we analyse the seasonal variations in the structure of the waterbird assemblage from a relict wetland in this region. We carried out censuses of waterbirds in a 6-year period (between 2009 and 2019) during the southern summer and winter. We recorded 1875 individuals of 33 species of waterbirds during the summer and 677 individuals of 29 species during the winter. The grouping patterns of the waterbird assemblages differed between seasons (R = 0.35; p < 0.01). Taxonomic diversity profiles showed greater diversity for all indexes (qD) during the summer. The guild of invertivorous and omnivorous waders had a greater abundance of individuals during the summer (p < 0.05) and, together with the surface-feeding herbivores, contributed to the 87% of the dissimilarity of the assemblages between seasons. Phoenicopterus chilensis was the only species registered as threatened with national and international extinction. Relict wetlands, such as Laguna del Viborón, still have attributes of community diversity and represent the last refuges for waterbirds of the central Monte Desert. The information gathered in this study will contribute to the guidelines for integrated management plans and monitoring programmes for the conservation of the wetland and its biodiversity.
Collapse
|
46
|
Rivaes RP, Feio MJ, Almeida SFP, Vieira C, Calapez AR, Mortágua A, Gebler D, Lozanovska I, Aguiar FC. Multi-biologic group analysis for an ecosystem response to longitudinal river regulation gradients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144327. [PMID: 33422957 DOI: 10.1016/j.scitotenv.2020.144327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/23/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
This work assesses the effects of river regulation on the diversity of different instream and riparian biological communities along a relieve gradient of disturbance in regulated rivers. Two case studies in Portugal were used, with different river regulation typology (downstream of run-of-river and reservoir dams), where regulated and free-flowing river stretches were surveyed for riparian vegetation, macrophytes, bryophytes, macroalgae, diatoms and macroinvertebrates. The assessment of the regulation effects on biological communities was approached by both biological and functional diversity analysis. Results of this investigation endorse river regulation as a major factor differentiating fluvial biological communities through an artificial environmental filtering that governs species assemblages by accentuating species traits related to river regulation tolerance. Communities' response to regulation gradient seem to be similar and insensitive to river regulation typology. Biological communities respond to this regulation gradient with different sensibilities and rates of response, with riparian vegetation and macroinvertebrates being the most responsive to river regulation and its gradient. Richness appears to be the best indicator for general fluvial ecological quality facing river regulation. Nevertheless, there are high correlations between the biological and functional diversity indices of different biological groups, which denotes biological connections indicative of a cascade of effects leading to an indirect influence of river regulation even on non-responsive facets of communities' biological and functional diversities. These results highlight the necessary holistic perspective of the fluvial system when assessing the effects of river regulation and the proposal of restoration measures.
Collapse
Affiliation(s)
- Rui Pedro Rivaes
- Forest Research Centre (CEF), School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
| | - Maria João Feio
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal
| | - Salomé F P Almeida
- Department of Biology, GeoBioTec - GeoBioSciences, GeoTechnologies and GeoEngineering Research Centre, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Cristiana Vieira
- Museu de História Natural e da Ciência da Universidade do Porto (MHNC-UP; UPorto/PRISC), Praça Gomes Teixeira, 4099-002 Porto, Portugal
| | - Ana R Calapez
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal
| | - Andreia Mortágua
- Department of Biology, GeoBioTec - GeoBioSciences, GeoTechnologies and GeoEngineering Research Centre, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Daniel Gebler
- Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland
| | - Ivana Lozanovska
- Forest Research Centre (CEF), School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Francisca C Aguiar
- Forest Research Centre (CEF), School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
47
|
Abstract
Interest is growing in designing resilient and ecologically rich urban environments that provide social and ecological benefits. Regenerative and biocentric designs fostering urban ecological habitats including food webs that provide ecosystem services for people and wildlife increasingly are being sought. However, the intentional design of urban landscapes for food webs remains in an early stage with few precedents and many challenges. In this paper, we explore the potential to design (for) urban food webs through collaborations between designers and ecologists. We start by examining the ecology and management of Jamaica Bay in New York City as a case study of an anthropogenic landscape where ecosystems are degraded and the integrity of extant food webs are intertwined with human agency. A subsequent design competition focusing on ecological design and management of this large-scale landscape for animal habitat and ecosystem services for people illustrates how designers approach this anthropogenic landscape. This case study reveals that both designing urban landscapes for food webs and directly designing and manipulating urban food webs are complicated and challenging to achieve and maintain, but they have the potential to increase ecological health of, and enhance ecosystem services in, urban environments. We identify opportunities to capitalize on species interactions across trophic structures and to introduce managed niches in biologically engineered urban systems. The design competition reveals an opportunity to approach urban landscapes and ecological systems creatively through a proactive design process that includes a carefully crafted collaborative approach to constructing ecologically functioning landscapes that can integrate societal demands. As designers increasingly seek to build, adapt, and manage urban environments effectively, it will be critical to resolve the contradictions and challenges associated with human needs, ecosystem dynamics, and interacting assemblages of species. Ecologists and designers are still discovering and experimenting with designing (for) urban food webs and fostering species interactions within them. We recommend generating prototypes of urban food webs through a learning-by-doing approach in urban development projects. Design and implementation of urban food webs also can lead to research opportunities involving monitoring and experiments that identify and solve challenges of food-web construction while supporting and encouraging ongoing management.
Collapse
|
48
|
Fortin MJ, Dale MRT, Brimacombe C. Network ecology in dynamic landscapes. Proc Biol Sci 2021; 288:20201889. [PMID: 33906397 PMCID: PMC8080002 DOI: 10.1098/rspb.2020.1889] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 04/01/2021] [Indexed: 12/25/2022] Open
Abstract
Network ecology is an emerging field that allows researchers to conceptualize and analyse ecological networks and their dynamics. Here, we focus on the dynamics of ecological networks in response to environmental changes. Specifically, we formalize how network topologies constrain the dynamics of ecological systems into a unifying framework in network ecology that we refer to as the 'ecological network dynamics framework'. This framework stresses that the interplay between species interaction networks and the spatial layout of habitat patches is key to identifying which network properties (number and weights of nodes and links) and trade-offs among them are needed to maintain species interactions in dynamic landscapes. We conclude that to be functional, ecological networks should be scaled according to species dispersal abilities in response to landscape heterogeneity. Determining how such effective ecological networks change through space and time can help reveal their complex dynamics in a changing world.
Collapse
Affiliation(s)
- Marie-Josée Fortin
- Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Mark R. T. Dale
- Ecosystem Science and Management, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Chris Brimacombe
- Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
49
|
Abstract
Plant phenology is strongly interlinked with ecosystem processes and biodiversity. Like many other aspects of ecosystem functioning, it is affected by habitat and climate change, with both global change drivers altering the timings and frequency of phenological events. As such, there has been an increased focus in recent years to monitor phenology in different biomes. A range of approaches for monitoring phenology have been developed to increase our understanding on its role in ecosystems, ranging from the use of satellites and drones to collection traps, each with their own merits and limitations. Here, we outline the trade-offs between methods (spatial resolution, temporal resolution, cost, data processing), and discuss how their use can be optimised in different environments and for different goals. We also emphasise emerging technologies that will be the focus of monitoring in the years to follow and the challenges of monitoring phenology that still need to be addressed. We conclude that there is a need to integrate studies that incorporate multiple monitoring methods, allowing the strengths of one to compensate for the weaknesses of another, with a view to developing robust methods for upscaling phenological observations from point locations to biome and global scales and reconciling data from varied sources and environments. Such developments are needed if we are to accurately quantify the impacts of a changing world on plant phenology.
Collapse
|
50
|
Sulliván SMP, Bohenek JR, Cáceres C, Pomeroy LW. Multiple urban stressors drive fish-based ecological networks in streams of Columbus, Ohio, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:141970. [PMID: 32920387 DOI: 10.1016/j.scitotenv.2020.141970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/11/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Integrating a network perspective into multiple-stressor research can reveal indirect stressor effects and simultaneously estimate both taxonomic and functional community characteristics, thus representing a novel approach to stressor paradigms in rivers. Using six years of data from twelve streams of Columbus, Ohio, USA, the effects of nutrients (N:P), impervious surface (%IS), and sedimentation on network properties were quantified. Variability in the strength and distribution of trophic interactions was assessed by incorporating biomass into networks. All stressors impacted some properties of network topology - linkage density (average number of links per species), connectance (fraction of all possible links realized in a network), and compartmentalization (degree to which networks contain discrete sub-webs), including synergistic interactive effects between sedimentation and stream size. We also found support for antagonistic effects between (1) sedimentation and %IS and between %IS and N:P on the weighted index mean link weight, which represents the magnitude of trophic interactions among species in a network, and (2) %IS and stream size on strength standard deviation, a measure of the distribution of total magnitude of all trophic interactions per species in a network. Overall, our results point to the potential for urban stressors such as impervious surfaces and sedimentation - alone and as interactions - to decrease network complexity, compartmentalization, and stability, likely through homogenizing habitat and limiting food resources. The observation that larger streams often buffered the negative effects of these stressors suggests that restoration and other management approaches might be most beneficial in smaller headwater streams of urban catchments.
Collapse
Affiliation(s)
- S Mažeika Patricio Sulliván
- Olentangy River Wetland Research Park, School of Environment and Natural Resources, The Ohio State University, Columbus, OH 43202, USA.
| | - Jason R Bohenek
- Olentangy River Wetland Research Park, School of Environment and Natural Resources, The Ohio State University, Columbus, OH 43202, USA
| | - Carlos Cáceres
- Olentangy River Wetland Research Park, School of Environment and Natural Resources, The Ohio State University, Columbus, OH 43202, USA
| | - Laura W Pomeroy
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH 43210, USA; Translational Data Analytics Institute, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|