1
|
Wang B, Tang X, Xiao C, Yu Z, Bo H, Wang J, Wang J. Nucleus-targeted ruthenium(II) complex triggers immunogenic cell death and sensitizes melanoma to anti-PD-1 therapy by activating cGAS-STING pathway. J Inorg Biochem 2025; 267:112871. [PMID: 40022761 DOI: 10.1016/j.jinorgbio.2025.112871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
A significant challenge in the treatment of melanoma with immune checkpoint blockades (ICBs) is the limited T cells response often observed in immunologically "cold" tumors. By leveraging the immunogenicity of immunogenic cell death (ICD), which increases the susceptibility of tumor cells to ICBs, this study investigated the potential of a nucleus-targeted ruthenium(II) complex (Ru1) as an inducer of ICD. Treatment with Ru1 induced DNA damage in melanoma cells, activating the cyclic GMP-AMP synthase-stimulator of the interferon genes (cGAS-STING) pathway. This triggered endoplasmic reticulum (ER) stress, leading to ICD. Ru1-treated dying melanoma cells exhibited characteristics such as cell exposure of calreticulin (CRT) on the cell surface, release of adenosine triphosphate (ATP), and secretion of high-mobility group box 1 (HMGB1). Vaccination with Ru1-treated, dying melanoma cells elicited robust antitumor immune responses, as evidenced by CD8+ T cells activation, reduced Foxp3+ T cells count, and the development of a memory immune response that protected mice from subsequent melanoma challenges. Combining Ru1 with anti-PD-1 therapy significantly promoted T cells infiltration, enhanced dendritic cell activation, and reduced tumor-associated immunosuppressive factors, indicating a reprogramming of the tumor microenvironment. These findings suggest that Ru1 is a promising therapeutic agent for treating "cold" tumors in cancer chemoimmunotherapy.
Collapse
Affiliation(s)
- Bishu Wang
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xingguo Tang
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Chuntao Xiao
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhijie Yu
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Huaben Bo
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jinquan Wang
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
2
|
Kooshan Z, Cárdenas-Piedra L, Clements J, Batra J. Glycolysis, the sweet appetite of the tumor microenvironment. Cancer Lett 2024; 600:217156. [PMID: 39127341 DOI: 10.1016/j.canlet.2024.217156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Cancer cells display an altered metabolic phenotype, characterised by increased glycolysis and lactate production, even in the presence of sufficient oxygen - a phenomenon known as the Warburg effect. This metabolic reprogramming is a crucial adaptation that enables cancer cells to meet their elevated energy and biosynthetic demands. Importantly, the tumor microenvironment plays a pivotal role in shaping and sustaining this metabolic shift in cancer cells. This review explores the intricate relationship between the tumor microenvironment and the Warburg effect, highlighting how communication within this niche regulates cancer cell metabolism and impacts tumor progression and therapeutic resistance. We discuss the potential of targeting the Warburg effect as a promising therapeutic strategy, with the aim of disrupting the metabolic advantage of cancer cells and enhancing our understanding of this complex interplay within the tumor microenvironment.
Collapse
Affiliation(s)
- Zeinab Kooshan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Lilibeth Cárdenas-Piedra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell & Tissue Engineering Technologies, Brisbane, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell & Tissue Engineering Technologies, Brisbane, Australia.
| |
Collapse
|
3
|
Vastrad SJ, Ritesh G, V SS, Saraswathy GR, Augustine D, Alzahrani KJ, Alzahrani FM, Halawani IF, Ashi H, Alshahrani M, Hassan RN, Baeshen HA, Saravanan KS, Satish KS, Vutukuru P, Patil S. Panoramic view of key cross-talks underpinning the oral squamous cell carcinoma stemness - unearthing the future opportunities. Front Oncol 2023; 13:1247399. [PMID: 38170015 PMCID: PMC10759990 DOI: 10.3389/fonc.2023.1247399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024] Open
Abstract
The clinical management of oral cancer is often frequented with challenges that arise from relapse, recurrence, invasion and resistance towards the cornerstone chemo and radiation therapies. The recent conceptual advancement in oncology has substantiated the role of cancer stem cells (CSC) as a predominant player of these intricacies. CSC are a sub-group of tumor population with inherent adroitness to self-renew with high plasticity. During tumor evolution, the structural and functional reprogramming persuades the cancer cells to acquire stem-cell like properties, thus presenting them with higher survival abilities and treatment resistance. An appraisal on key features that govern the stemness is of prime importance to confront the current challenges encountered in oral cancer. The nurturing niche of CSC for maintaining its stemness characteristics is thought to be modulated by complex multi-layered components encompassing neoplastic cells, extracellular matrix, acellular components, circulatory vessels, various cascading signaling molecules and stromal cells. This review focuses on recapitulating both intrinsic and extrinsic mechanisms that impart the stemness. There are contemplating evidences that demonstrate the role of transcription factors (TF) in sustaining the neoplastic stem cell's pluripotency and plasticity alongside the miRNA in regulation of crucial genes involved in the transformation of normal oral mucosa to malignancy. This review illustrates the interplay between miRNA and various known TF of oral cancer such as c-Myc, SOX, STAT, NANOG and OCT in orchestrating the stemness and resistance features. Further, the cross-talks involved in tumor micro-environment inclusive of cytokines, macrophages, extra cellular matrix, angiogenesis leading pathways and influential factors of hypoxia on tumorigenesis and CSC survival have been elucidated. Finally, external factorial influence of oral microbiome gained due to the dysbiosis is also emphasized. There are growing confirmations of the possible roles of microbiomes in the progression of oral cancer. Given this, an attempt has been made to explore the potential links including EMT and signaling pathways towards resistance and stemness. This review provides a spectrum of understanding on stemness and progression of oral cancers at various regulatory levels along with their current therapeutic knowledge. These mechanisms could be exploited for future research to expand potential treatment strategies.
Collapse
Affiliation(s)
- Soujanya J. Vastrad
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, India
| | - Giri Ritesh
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, India
| | - Sowmya S. V
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, MS Ramaiah University of Applied Sciences, Bengaluru, India
| | | | - Dominic Augustine
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, MS Ramaiah University of Applied Sciences, Bengaluru, India
| | - Khalid J. Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Fuad M. Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ibrahim F. Halawani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Haematology and Immunology Department, Faculty of Medicine, Umm Al-Qura University, AI Abdeyah, Makkah, Saudi Arabia
| | - Heba Ashi
- Department of Dental Public Health, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Alshahrani
- Department of Endodontic, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem Nabil Hassan
- Department of Biological Sciences (Genome), Faculty of Sciences, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Hosam Ali Baeshen
- Department of Orthodontics Faculty of Dentistry, King Abdulaziz University, Bengaluru, India
| | - Kamatchi Sundara Saravanan
- Department of Pharmacognosy, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, India
| | - Kshreeraja S. Satish
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, India
| | - Pravallika Vutukuru
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, India
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
| |
Collapse
|
4
|
Gu X, Shu T, Deng W, Shen C, Wu Y. An X-ray activatable gold nanorod encapsulated liposome delivery system for mitochondria-targeted photodynamic therapy (PDT). J Mater Chem B 2023; 11:4539-4547. [PMID: 37161717 DOI: 10.1039/d3tb00608e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this work, we developed a mitochondria-targeted nanomaterial for neoadjuvant X-ray-triggered photodynamic therapy of rectal cancer. Herein, we designed a biodegradable liposome incorporating a photosensitizer, verteporfin, to generate X-ray-induced reactive oxygen species, gold nanorods as radiation enhancers, and triphenylphosphonium as the mitochondrial targeting moiety. The average size of the nanocarrier was about 150 nm. Due to the synergetic effect between X-ray and a combination of verteporfin and gold nanorods, as well as precise site-targeted TPP-modified liposomal nanocarriers, our nanoconjugates generated sufficient cytotoxic singlet oxygen within the mitochondria under X-ray irradiation, triggering the loss of membrane potential and mitochondria-related apoptosis of cancer cells.
Collapse
Affiliation(s)
- Xuefan Gu
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, Shaanxi, 710065, P. R. China
- ARC Centre of Excellence for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South, Wales Kensington, 2052 NSW, Australia
- Faculty of Science and Engineering, Macquarie University, Sydney, 2109 NSW, Australia
| | - Tiantian Shu
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, Shaanxi, 710065, P. R. China
| | - Wei Deng
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Chao Shen
- Faculty of Science and Engineering, Macquarie University, Sydney, 2109 NSW, Australia
| | - Youshen Wu
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China.
| |
Collapse
|
5
|
Quílez-Alburquerque J, Saad MA, Descalzo AB, Orellana G, Hasan T. Hyaluronic acid-poly(lactic-co-glycolic acid) nanoparticles with a ruthenium photosensitizer cargo for photokilling of oral cancer cells. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Lin X, Guo L, Lin X, Wang Y, Zhang G. Expression and prognosis analysis of mitochondrial ribosomal protein family in breast cancer. Sci Rep 2022; 12:10658. [PMID: 35739158 PMCID: PMC9226049 DOI: 10.1038/s41598-022-14724-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/10/2022] [Indexed: 02/05/2023] Open
Abstract
Breast cancer (BC) is characterized by high morbidity. Mitochondrial ribosomal protein (MRP) family participates in mitochondrial energy metabolism, underlying BC progression. This study aims to analyze the expression and prognosis effect of the MRP genes in BC patients. GEPIA2, UALCAN, cBioPortal, and MethSurv were used to demonstrate the differential expression, genomic alteration profiles, and DNA methylation of the MRP gene family in BC. Functional enrichment analysis and protein-protein interaction network construction were performed to understand the biological function. Based on 1056 TCGA samples with the transcriptional level of MRPs, Kaplan-Meier curves, Cox, and LASSO regression were applied to explore their prognostic effects. 12 MRPs were upregulated in BC, which were associated with gene amplification and DNA methylation. MRP genetic alteration occurred in 42% of BC patients, and amplification was the most frequent variation. Functioning in its entirety, the MRP family was involved in mitochondrial translational termination, elongation, translation, and poly(A) RNA binding. High expression of MRPL1, MRPL13, MRPS6, MRPS18C, and MRPS35, as well as low levels of MRPL16, and MRPL40 significantly indicated poor prognosis in BC patients. Thus, a novel MRP-based prognostic nomogram was established and verified with favorable discrimination and calibration. We not only provided a thorough expression and prognosis analysis of the MRP family in BC patients but also constructed an MRP-based prognostic nomogram. It was suggested that MRPs acted as biomarkers in individualized risk prediction and may serve as potential therapeutic targets in BC patients.
Collapse
Affiliation(s)
- Xiaoyi Lin
- Department of Breast Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Lijuan Guo
- Department of Breast Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xin Lin
- Department of Breast Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yulei Wang
- Department of Breast Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Guochun Zhang
- Department of Breast Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 772] [Impact Index Per Article: 193.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
8
|
Apoptotic-Induced Effects of Acacia Catechu Willd. Extract in Human Colon Cancer Cells. Int J Mol Sci 2020; 21:ijms21062102. [PMID: 32204339 PMCID: PMC7139529 DOI: 10.3390/ijms21062102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
The research for innovative treatments against colon adenocarcinomas is still a great challenge. Acacia catechu Willd. heartwood extract (AC) has health-promoting qualities, especially at the gastrointestinal level. This study characterized AC for its catechins content and investigated the apoptosis-enhancing effect in human colorectal adenocarcinoma HT-29 cells, along with its ability to spare healthy tissue. MTT assay was used to describe the time course, concentration dependence and reversibility of AC-mediated cytotoxicity. Cell cycle analysis and AV-PI and DAPI-staining were performed to evaluate apoptosis, together with ROS formation, mitochondrial membrane potential (MMP) changes and caspase activities. Rat ileum and colon rings were tested for their viability and functionality to explore AC effects on healthy tissue. Quantitative analysis highlighted that AC was rich in (±)-catechin (31.5 ± 0.82 mg/g) and (−)-epicatechin (12.5 ± 0.42 mg/g). AC irreversibly decreased cell viability in a concentration-dependent, but not time-dependent fashion. Cytotoxicity was accompanied by increases in apoptotic cells and ROS, a reduction in MMP and increases in caspase-9 and 3 activities. AC did not affect rat ileum and colon rings’ viability and functionality, suggesting a safe profile toward healthy tissue. The present findings outline the potential of AC for colon cancer treatment.
Collapse
|
9
|
Zhuang Y, Li L, Feng L, Wang S, Su H, Liu H, Liu H, Wu Y. Mitochondrion-targeted selenium nanoparticles enhance reactive oxygen species-mediated cell death. NANOSCALE 2020; 12:1389-1396. [PMID: 31913383 DOI: 10.1039/c9nr09039h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Selenium nanoparticles (SeNPs) can induce reactive oxygen species (ROS)-mediated cell death when accumulated in cancer cells, while rendering anti-oxidation and cancer prevention in healthy tissues at low doses. Although they are promising anticancer agents with fewer side effects, their application is limited by their relative low toxicity to cancer cells. Therefore, we propose a mitochondrion-targeting strategy to improve their cancer cell killing efficiency. Such mitochondrion-targeted SeNPs could efficiently increase ROS production and mitochondrion damage in cancer cells; however, only a slightly increased toxicity to normal cells was observed, indicating a potentially better therapeutic window for anticancer treatments.
Collapse
Affiliation(s)
- Yuan Zhuang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Karaman O, Almammadov T, Emre Gedik M, Gunaydin G, Kolemen S, Gunbas G. Mitochondria-Targeting Selenophene-Modified BODIPY-Based Photosensitizers for the Treatment of Hypoxic Cancer Cells. ChemMedChem 2019; 14:1879-1886. [PMID: 31663667 DOI: 10.1002/cmdc.201900380] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/06/2019] [Indexed: 01/01/2023]
Abstract
Two red-absorbing, water-soluble and mitochondria (MT)-targeting selenophene-substituted BODIPY-based photosensitizers (PSs) were realized (BOD-Se, BOD-Se-I), and their potential as photodynamic therapy (PDT) agents were evaluated. BOD-Se-I showed higher 1 O2 generation yield thanks to the enhanced heavy-atom effect, and this derivative was further tested in detail in cell culture studies under both normoxic and hypoxic conditions. BOD-Se-I not only effectively functioned under hypoxic conditions, but also showed highly selective photocytotoxicity towards cancer cells. The selectivity is believed to arise from differences in mitochondrial membrane potentials of healthy and cancerous cells. To the best of our knowledge, this marks the first example of a MT-targeted BODIPY PS that functions under hypoxic conditions. Remarkably, thanks to the design strategy, all these properties where realized by a compound that was synthesized in only five steps with 32 % overall yield. Hence, this material holds great promise for the realization of next-generation PDT drugs for the treatment of hypoxic solid tumors.
Collapse
Affiliation(s)
- Osman Karaman
- Department of Chemistry, Middle East Technical University (METU), 06800, Ankara, Turkey
| | | | - M Emre Gedik
- Department of Basic Oncology, Hacettepe University, 06100, Ankara, Turkey
| | - Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University, 06100, Ankara, Turkey
| | - Safacan Kolemen
- Department of Chemistry, Koc University, 34450, Istanbul, Turkey.,Koc University (KU), Surface Science and Technology Center (KUYTAM), 34450, Istanbul, Turkey
| | - Gorkem Gunbas
- Department of Chemistry, Middle East Technical University (METU), 06800, Ankara, Turkey
| |
Collapse
|
11
|
Shi X, Zhang CY, Gao J, Wang Z. Recent advances in photodynamic therapy for cancer and infectious diseases. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1560. [PMID: 31058443 DOI: 10.1002/wnan.v11.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 05/22/2023]
Abstract
Photodynamic therapy (PDT) is a treatment by combining light and a photosensitizer to generate reactive oxygen species (ROS) for cellular damage, and is used to treat cancer and infectious diseases. In this review, we focus on recent advances in design of new photosensitizers for increased production of ROS and in genetic engineering of biological photosensitizers to study cellular signaling pathways. A new concept has been proposed that PDT-induced acute inflammation can mediate neutrophil infiltration to deliver therapeutics in deep tumor tissues. Combination of PDT and immunotherapies (neutrophil-mediated therapeutic delivery) has shown the promising translation of PDT for cancer therapies. Furthermore, a new area in PDT is to treat bacterial infections to overcome the antimicrobial resistance. Finally, we have discussed the new directions of PDT for therapies of cancer and infectious diseases. In summary, we believe that rational design and innovations in nanomaterials may have a great impact on translation of PDT in cancer and infectious diseases. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Xutong Shi
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Can Yang Zhang
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Jin Gao
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Zhenjia Wang
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| |
Collapse
|
12
|
Shi X, Zhang CY, Gao J, Wang Z. Recent advances in photodynamic therapy for cancer and infectious diseases. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1560. [PMID: 31058443 PMCID: PMC6697192 DOI: 10.1002/wnan.1560] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 01/08/2023]
Abstract
Photodynamic therapy (PDT) is a treatment by combining light and a photosensitizer to generate reactive oxygen species (ROS) for cellular damage, and is used to treat cancer and infectious diseases. In this review, we focus on recent advances in design of new photosensitizers for increased production of ROS and in genetic engineering of biological photosensitizers to study cellular signaling pathways. A new concept has been proposed that PDT-induced acute inflammation can mediate neutrophil infiltration to deliver therapeutics in deep tumor tissues. Combination of PDT and immunotherapies (neutrophil-mediated therapeutic delivery) has shown the promising translation of PDT for cancer therapies. Furthermore, a new area in PDT is to treat bacterial infections to overcome the antimicrobial resistance. Finally, we have discussed the new directions of PDT for therapies of cancer and infectious diseases. In summary, we believe that rational design and innovations in nanomaterials may have a great impact on translation of PDT in cancer and infectious diseases. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
| | | | - Jin Gao
- Washington State University,
| | | |
Collapse
|
13
|
Geller A, Shrestha R, Yan J. Yeast-Derived β-Glucan in Cancer: Novel Uses of a Traditional Therapeutic. Int J Mol Sci 2019; 20:E3618. [PMID: 31344853 PMCID: PMC6695648 DOI: 10.3390/ijms20153618] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023] Open
Abstract
An increased understanding of the complex mechanisms at play within the tumor microenvironment (TME) has emphasized the need for the development of strategies that target immune cells within the TME. Therapeutics that render the TME immune-reactive have a vast potential for establishing effective cancer interventions. One such intervention is β-glucan, a natural compound with immune-stimulatory and immunomodulatory potential that has long been considered an important anti-cancer therapeutic. β-glucan has the ability to modulate the TME both by bridging the innate and adaptive arms of the immune system and by modulating the phenotype of immune-suppressive cells to be immune-stimulatory. New roles for β-glucan in cancer therapy are also emerging through an evolving understanding that β-glucan is involved in a concept called trained immunity, where innate cells take on memory phenotypes. Additionally, the hollow structure of particulate β-glucan has recently been harnessed to utilize particulate β-glucan as a delivery vesicle. These new concepts, along with the emerging success of combinatorial approaches to cancer treatment involving β-glucan, suggest that β-glucan may play an essential role in future strategies to prevent and inhibit tumor growth. This review emphasizes the various characteristics of β-glucan, with an emphasis on fungal β-glucan, and highlights novel approaches of β-glucan in cancer therapy.
Collapse
Affiliation(s)
- Anne Geller
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Rejeena Shrestha
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Jun Yan
- Immuno-Oncology Program, Division of Immunotherapy, Department of Surgery, The James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
14
|
Bhargava P, Kumari A, Putri JF, Ishida Y, Terao K, Kaul SC, Sundar D, Wadhwa R. Caffeic acid phenethyl ester (CAPE) possesses pro-hypoxia and anti-stress activities: bioinformatics and experimental evidences. Cell Stress Chaperones 2018; 23:1055-1068. [PMID: 29869000 PMCID: PMC6111076 DOI: 10.1007/s12192-018-0915-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 12/27/2022] Open
Abstract
Honeybee propolis and its bioactive component, caffeic acid phenethyl ester (CAPE), are known for a variety of therapeutic potentials. By recruiting a cell-based reporter assay for screening of hypoxia-modulating natural drugs, we identified CAPE as a pro-hypoxia factor. In silico studies were used to probe the capacity of CAPE to interact with potential hypoxia-responsive proteins. CAPE could not dock into hypoxia inducing factor (HIF-1), the master regulator of hypoxia response pathway. On the other hand, it was predicted to bind to factor inhibiting HIF (FIH-1). The active site residue (Asp201) of FIH-1α was involved in hydrogen bond formation with CAPE and its analogue, caffeic acid methyl ester (CAME), especially in the presence of Fe and 2-oxoglutaric acid (OGA). We provide experimental evidence that the low doses of CAPE, that did not cause cytotoxicity or anti-migratory effect, activated HIF-1α and inhibited stress-induced protein aggregation, a common cause of age-related pathologies. Furthermore, by structural homology search, we explored and found candidate compounds that possess stronger FIH-1 binding capacity. These compounds could be promising candidates for modulating therapeutic potential of CAPE, and its recruitment in treatment of protein aggregation-based disorders.
Collapse
Affiliation(s)
- Priyanshu Bhargava
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305 8572, Japan
| | - Anjani Kumari
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi, 110 016, India
| | - Jayarani F Putri
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan
| | - Yoshiyuki Ishida
- CycloChem Co., Ltd, 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe, 650 0047, Japan
| | - Keiji Terao
- CycloChem Co., Ltd, 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe, 650 0047, Japan
| | - Sunil C Kaul
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan.
| | - Durai Sundar
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi, 110 016, India.
| | - Renu Wadhwa
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan.
| |
Collapse
|
15
|
Nambiar J, Vijayakumar G, Drishya G, Shaji SK, Pandurangan N, Kumar GB, Nair BG. (I-3,II-3)-Biacacetin-mediated cell death involves mitochondria. Mol Cell Biochem 2018; 451:79-90. [DOI: 10.1007/s11010-018-3395-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 06/26/2018] [Indexed: 01/23/2023]
|
16
|
Noh I, Lee D, Kim H, Jeong C, Lee Y, Ahn J, Hyun H, Park J, Kim Y. Enhanced Photodynamic Cancer Treatment by Mitochondria-Targeting and Brominated Near-Infrared Fluorophores. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700481. [PMID: 29593951 PMCID: PMC5867131 DOI: 10.1002/advs.201700481] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/25/2017] [Indexed: 05/21/2023]
Abstract
A noninvasive and selective therapy, photodynamic therapy (PDT) is widely researched in clinical fields; however, the lower efficiency of PDT can induce unexpected side effects. Mitochondria are extensively researched as target sites to maximize PDT effects because they play crucial roles in metabolism and can be used as cancer markers due to their high transmembrane potential. Here, a mitochondria targeting photodynamic therapeutic agent (MitDt) is developed. This photosensitizer is synthesized from heptamethine cyanine dyes, which are conjugated or modified as follows. The heptamethine meso-position is conjugated with a triphenylphosphonium derivative for mitochondrial targeting, the N-alkyl side chain is modified for regulation of charge balance and solubility, and the indolenine groups are brominated to enhance reactive oxygen species generation (ROS) after laser irradiation. The synthesized MitDt increases the cancer uptake efficiency due to the lipo-cationic properties of the triphenylphosphonium, and the PDT effects of MitDt are amplified after laser irradiation because mitochondria are susceptible to ROS, the response to which triggers an apoptotic anticancer effect. Consequently, these hypotheses are demonstrated by in vitro and in vivo studies, and the results indicate strong potential for use of MitDts as efficient single-molecule-based PDT agents for cancer treatment.
Collapse
Affiliation(s)
- Ilkoo Noh
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon305‐701South Korea
| | - DaeYong Lee
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon305‐701South Korea
| | - Heegon Kim
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon305‐701South Korea
| | - Chan‐Uk Jeong
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon305‐701South Korea
| | - Yunsoo Lee
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon305‐701South Korea
| | - Jung‐Oh Ahn
- Korea Research Institute of Bioscience and Biotechnology52 Eoeun‐dongDaejon305‐333South Korea
| | - Hoon Hyun
- Department of Biomedical SciencesChonnam National University Medical SchoolGwangju501‐746South Korea
| | - Ji‐Ho Park
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon305‐701South Korea
| | - Yeu‐Chun Kim
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon305‐701South Korea
| |
Collapse
|
17
|
Gao Y, Li F, Zhou H, Yang Y, Wu R, Chen Y, Li W, Li Y, Xu X, Ke C, Pei Z. Down-regulation of MRPS23 inhibits rat breast cancer proliferation and metastasis. Oncotarget 2017; 8:71772-71781. [PMID: 29069745 PMCID: PMC5641088 DOI: 10.18632/oncotarget.17888] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/28/2017] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial ribosomal protein S23 (MRPS23) has been shown to be involved in breast cancer cell proliferation and metastatic phenotypes of cervical cancer. Here we investigated its biological features in breast cancer for the first time. It demonstrated that knockdown of MRPS23 reduced breast cancer cell proliferation and induced apoptosis in vitro. Besides, shRNA targeting MRPS23 (shMRPS23) inhibited tumour proliferation and metastasis by blocking tumor angiogenesis in breast cancer xenograft rat model. Small animal positron emission tomography/computed tomography (PET/CT) with 2′-deoxy-2′-[18F] fluoro-D-glucose (FDG) was performed at four weeks after tumour cell injection. We found that FDG maximum standardized uptake value (SUVmax) significantly decreased by 31 ± 3% in the shMRPS23-treated group. But this change was not independent of metabolic tumour size. In addition, we also found that shMRPS23 could significantly suppress breast cancer metastasis through inhibiting epithelial mesenchymal transition (EMT) phenotype. The epithelial marker E-cadherin was increased, whereas the metastasis associated gene vimentin was decreased. Mechanistically, shMRPS23-treated tumours failed to progress through p53 and p21WAF1/CIP1 activation, but not cytochrome c-mediated pathway. These findings suggest that MRPS23 is a potential therapeutic target for interference of breast cancer proliferation, angiogenesis and metastasis.
Collapse
Affiliation(s)
- Yan Gao
- Department of PET Center and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of medicine, Hubei, China
| | - Fuyan Li
- Department of PET Center and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of medicine, Hubei, China
| | - Hong Zhou
- Department of PET Center and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of medicine, Hubei, China
| | - Yi Yang
- Department of PET Center and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of medicine, Hubei, China
| | - Ruimin Wu
- Department of PET Center and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of medicine, Hubei, China
| | - Yijia Chen
- Department of PET Center and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of medicine, Hubei, China
| | - Wei Li
- Department of PET Center and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of medicine, Hubei, China
| | - Yang Li
- Department of PET Center and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of medicine, Hubei, China
| | - Xueqin Xu
- Department of PET Center and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of medicine, Hubei, China
| | - Changbin Ke
- Department of PET Center and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of medicine, Hubei, China
| | - Zhijun Pei
- Department of PET Center and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of medicine, Hubei, China
| |
Collapse
|
18
|
Cao Y, Wang RH. Associations among Metabolism, Circadian Rhythm and Age-Associated Diseases. Aging Dis 2017; 8:314-333. [PMID: 28580187 PMCID: PMC5440111 DOI: 10.14336/ad.2016.1101] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/01/2016] [Indexed: 12/12/2022] Open
Abstract
Accumulating epidemiological studies have implicated a strong link between age associated metabolic diseases and cancer, though direct and irrefutable evidence is missing. In this review, we discuss the connection between Warburg effects and tumorigenesis, as well as adaptive responses to environment such as circadian rhythms on molecular pathways involved in metabolism. We also review the central role of the sirtuin family of proteins in physiological modulation of cellular processes and age-associated metabolic diseases. We also provide a macroscopic view of how the circadian rhythm affects metabolism and may be involved in cell metabolism reprogramming and cancer pathogenesis. The aberrations in metabolism and the circadian system may lead to age-associated diseases directly or through intermediates. These intermediates may be either mutated or reprogrammed, thus becoming responsible for chromatin modification and oncogene transcription. Integration of circadian rhythm and metabolic reprogramming in the holistic understanding of metabolic diseases and cancer may provide additional insights into human diseases.
Collapse
Affiliation(s)
- Yiwei Cao
- Faculty of Health Science, University of Macau, Macau, China
| | - Rui-Hong Wang
- Faculty of Health Science, University of Macau, Macau, China
| |
Collapse
|
19
|
Alibert C, Goud B, Manneville JB. Are cancer cells really softer than normal cells? Biol Cell 2017; 109:167-189. [DOI: 10.1111/boc.201600078] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/23/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Charlotte Alibert
- Institut Curie; PSL Research University, CNRS; UMR 144 Paris France
- Sorbonne Universités, UPMC University Paris 06, CNRS; UMR 144 Paris France
| | - Bruno Goud
- Institut Curie; PSL Research University, CNRS; UMR 144 Paris France
- Sorbonne Universités, UPMC University Paris 06, CNRS; UMR 144 Paris France
| | - Jean-Baptiste Manneville
- Institut Curie; PSL Research University, CNRS; UMR 144 Paris France
- Sorbonne Universités, UPMC University Paris 06, CNRS; UMR 144 Paris France
| |
Collapse
|
20
|
Mitochondrial Redox Signaling and Tumor Progression. Cancers (Basel) 2016; 8:cancers8040040. [PMID: 27023612 PMCID: PMC4846849 DOI: 10.3390/cancers8040040] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/21/2016] [Accepted: 03/07/2016] [Indexed: 01/10/2023] Open
Abstract
Cancer cell can reprogram their energy production by switching mitochondrial oxidative phosphorylation to glycolysis. However, mitochondria play multiple roles in cancer cells, including redox regulation, reactive oxygen species (ROS) generation, and apoptotic signaling. Moreover, these mitochondrial roles are integrated via multiple interconnected metabolic and redox sensitive pathways. Interestingly, mitochondrial redox proteins biphasically regulate tumor progression depending on cellular ROS levels. Low level of ROS functions as signaling messengers promoting cancer cell proliferation and cancer invasion. However, anti-cancer drug-initiated stress signaling could induce excessive ROS, which is detrimental to cancer cells. Mitochondrial redox proteins could scavenger basal ROS and function as “tumor suppressors” or prevent excessive ROS to act as “tumor promoter”. Paradoxically, excessive ROS often also induce DNA mutations and/or promotes tumor metastasis at various stages of cancer progression. Targeting redox-sensitive pathways and transcriptional factors in the appropriate context offers great promise for cancer prevention and therapy. However, the therapeutics should be cancer-type and stage-dependent.
Collapse
|
21
|
Periyasamy K, Sivabalan V, Baskaran K, Kasthuri K, Sakthisekaran D. Cellular metabolic energy modulation by tangeretin in 7,12-dimethylbenz(a) anthracene-induced breast cancer. J Biomed Res 2016; 30:134-141. [PMID: 28276668 PMCID: PMC4820890 DOI: 10.7555/jbr.30.20150060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 06/02/2015] [Accepted: 10/10/2016] [Indexed: 01/14/2023] Open
Abstract
Breast cancer is the leading cause of death among women worldwide. Chemoprevention and chemotherapy play beneficial roles in reducing the incidence and mortality of cancer. Epidemiological and experimental studies showed that naturally-occurring antioxidants present in the diet may act as anticancer agents. Identifying the abnormalities of cellular energy metabolism facilitates early detection and management of breast cancer. The present study evaluated the effect of tangeretin on cellular metabolic energy fluxes in 7,12-dimethylbenz(a) anthracene (DMBA)-induced proliferative breast cancer. The results showed that the activities of glycolytic enzymes significantly increased in mammary tissues of DMBA-induced breast cancer bearing rats. The gluconeogenic tricarboxylic acid (TCA) cycle and respiratory chain enzyme activities significantly decreased in breast cancer-bearing rats. In addition, proliferating cell nuclear antigen (PCNA) was highly expressed in breast cancer tissues. However, the activities of glycolytic enzymes were significantly normalized in the tangeretin pre- and post-treated rats and the TCA cycle and respiratory chain enzyme activities were significantly increased in tangeretin treated rats. Furthermore, tangeretin down-regulated PCNA expression on breast cancer-bearing rats. Our study demonstrates that tangeretin specifically regulates cellular metabolic energy fluxes in DMBA-induced breast cancer-bearing rats.
Collapse
Affiliation(s)
- Kuppusamy Periyasamy
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai-600 113, Tamil Nadu, India
| | - Venkatachalam Sivabalan
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai-600 113, Tamil Nadu, India
| | - Kuppusamy Baskaran
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai-600 113, Tamil Nadu, India
| | - Kannayiram Kasthuri
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai-600 113, Tamil Nadu, India
| | - Dhanapal Sakthisekaran
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai-600 113, Tamil Nadu, India;
| |
Collapse
|
22
|
Mendes MA, Guerra RF, Castelnovo B, Velazquez YS, Morandini P, Manrique S, Baumann N, Groß-Hardt R, Dickinson H, Colombo L. Live and let die: a REM complex promotes fertilization through synergid cell death in Arabidopsis. Development 2016; 143:2780-90. [DOI: 10.1242/dev.134916] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/02/2016] [Indexed: 11/20/2022]
Abstract
Fertilization in flowering plants requires a complex series of coordinated events involving interaction between the male and female gametophyte. We report here molecular data on one of the key events underpinning this process – the death of the receptive synergid cell and the coincident bursting of the pollen tube inside the ovule to release the sperms.
We show that two REM transcription factors, VALKYRIE (VAL) and VERDANDI (VDD), both targets of the ovule identity MADS-box complex SEEDSTICK-SEPALLATA3, interact to control the death of the receptive synergid cell. In vdd_1/+ mutants and VAL_RNAi lines we find that GAMETOPHYTIC FACTOR 2 (GFA2), required for synergid degeneration, is down regulated, while FERONIA (FER) and MYB98 expression, necessary for pollen tube attraction and perception remain unaffected. We also demonstrate that the vdd_1/+ phenotype can be rescued by expressing VDD or GFA2 in the synergid cells. Taken together, our findings reveal that the death of the receptive synergid cell is essential for the maintenance of the following generations, and that a complex formed of VDD and VAL regulate this event.
Collapse
Affiliation(s)
- Marta Adelina Mendes
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milan, Italy
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Portugal
| | | | - Beatrice Castelnovo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milan, Italy
| | | | - Piero Morandini
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Silvia Manrique
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Nadine Baumann
- Center for Plant Molecular Biology, University of Tübingen, Germany
| | - Rita Groß-Hardt
- Center for Biomolecular Interactions Bremen, University of Bremen, Germany
- Center for Plant Molecular Biology, University of Tübingen, Germany
| | - Hugh Dickinson
- Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, UK
| | - Lucia Colombo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
23
|
Lyakhovich A, Lleonart ME. Bypassing Mechanisms of Mitochondria-Mediated Cancer Stem Cells Resistance to Chemo- and Radiotherapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:1716341. [PMID: 26697128 PMCID: PMC4677234 DOI: 10.1155/2016/1716341] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 01/03/2023]
Abstract
Cancer stem cells (CSCs) are highly resistant to conventional chemo- and radiotherapeutic regimes. Therefore, the multiple drug resistance (MDR) of cancer is most likely due to the resistance of CSCs. Such resistance can be attributed to some bypassing pathways including detoxification mechanisms of reactive oxygen and nitrogen species (RO/NS) formation or enhanced autophagy. Unlike in normal cells, where RO/NS concentration is maintained at certain threshold required for signal transduction or immune response mechanisms, CSCs may develop alternative pathways to diminish RO/NS levels leading to cancer survival. In this minireview, we will focus on elaborated mechanisms developed by CSCs to attenuate high RO/NS levels. Gaining a better insight into the mechanisms of stem cell resistance to chemo- or radiotherapy may lead to new therapeutic targets thus serving for better anticancer strategies.
Collapse
Affiliation(s)
- Alex Lyakhovich
- International Clinical Research Center, St. Anne's University Hospital, Masaryk University, Kamenice 5/A7, 625 00 Brno, Czech Republic
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - Matilde E. Lleonart
- Oncology and Pathology Group, Institut de Recerca Hospital Vall d'Hebron, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| |
Collapse
|
24
|
Mitotic catastrophe and cancer drug resistance: A link that must to be broken. Drug Resist Updat 2015; 24:1-12. [PMID: 26830311 DOI: 10.1016/j.drup.2015.11.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/23/2015] [Accepted: 11/06/2015] [Indexed: 01/28/2023]
Abstract
An increased tendency of genomic alterations during the life cycle of cells leads to genomic instability, which is a major driving force for tumorigenesis. A considerable fraction of tumor cells are tetraploid or aneuploid, which renders them intrinsically susceptible to mitotic aberrations, and hence, are particularly sensitive to the induction of mitotic catastrophe. Resistance to cell death is also closely linked to genomic instability, as it enables malignant cells to expand even in a stressful environment. Currently it is known that cells can die via multiple mechanisms. Mitotic catastrophe represents a step preceding apoptosis or necrosis, depending on the expression and/or proper function of several proteins. Mitotic catastrophe was proposed to be an onco-suppressive mechanism and the evasion of mitotic catastrophe constitutes one of the gateways to cancer development. Thus, stimulation of mitotic catastrophe appears to be a promising strategy in cancer treatment. Indeed, several chemotherapeutic drugs are currently used at concentrations that induce apoptosis irrespective of the cell cycle phase, yet are very efficient at triggering mitotic catastrophe at lower doses, significantly limiting side effects. In the present review we summarize current data concerning the role of mitotic catastrophe in cancer drug resistance and discuss novel strategies to break this link.
Collapse
|
25
|
Wang H, Wang Y, Zhao Q, Guo Z, Zhang F, Zhao Y, Zhang R. Identification of sequence polymorphisms in the D-Loop region of mitochondrial DNA as a risk factor for gastric cancer. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:1045-7. [PMID: 25492534 DOI: 10.3109/19401736.2014.926546] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The accumulation of single nucleotide polymorphisms (SNPs) in the displacement loop (D-Loop) of mitochondrial DNA (mtDNA) has been identified for their association with cancer risk in different types of cancers. We investigated the gastric cancer risk profile of D-Loop SNPs in a case-control study. The frequent alleles of nucleotides 73G/A, 235A/G, 309C/C insert, 324C/G, 16,362T/C and 16,519C/T were significantly associated with an increased risk for gastric cancer, whereas the frequent alleles of nucleotides 523-524AC/del were associated with resistance to gastric cancer. In conclusion, SNPs in the mtDNA D-Loop were found to be valuable markers for gastric cancer risk evaluation.
Collapse
Affiliation(s)
- Huiying Wang
- a Department of Gastroenterology and Hepatology and
| | - Yingnan Wang
- a Department of Gastroenterology and Hepatology and
| | - Qun Zhao
- b Department of General Surgery , The Fourth Hospital of Hebei Medical University , Shijiazhuang , P.R. China
| | - Zhanjun Guo
- a Department of Gastroenterology and Hepatology and
| | | | - Yue Zhao
- a Department of Gastroenterology and Hepatology and
| | | |
Collapse
|
26
|
Kornienko A, Evidente A, Vurro M, Mathieu V, Cimmino A, Evidente M, van Otterlo WAL, Dasari R, Lefranc F, Kiss R. Toward a Cancer Drug of Fungal Origin. Med Res Rev 2015; 35:937-67. [PMID: 25850821 PMCID: PMC4529806 DOI: 10.1002/med.21348] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although fungi produce highly structurally diverse metabolites, many of which have served as excellent sources of pharmaceuticals, no fungi-derived agent has been approved as a cancer drug so far. This is despite a tremendous amount of research being aimed at the identification of fungal metabolites with promising anticancer activities. This review discusses the results of clinical testing of fungal metabolites and their synthetic derivatives, with the goal to evaluate how far we are from an approved cancer drug of fungal origin. Also, because in vivo studies in animal models are predictive of the efficacy and toxicity of a given compound in a clinical situation, literature describing animal cancer testing of compounds of fungal origin is reviewed as well. Agents showing the potential to advance to clinical trials are also identified. Finally, the technological challenges involved in the exploitation of fungal biodiversity and procurement of sufficient quantities of clinical candidates are discussed, and potential solutions that could be pursued by researchers are highlighted.
Collapse
Affiliation(s)
- Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, USA
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Maurizio Vurro
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/0, 70126 Bari, Italy
| | - Véronique Mathieu
- Laboratorie de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alessio Cimmino
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Marco Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Willem A. L. van Otterlo
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Ramesh Dasari
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, USA
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme; Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Robert Kiss
- Laboratorie de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
27
|
Zhang CJ, Hu Q, Feng G, Zhang R, Yuan Y, Lu X, Liu B. Image-guided combination chemotherapy and photodynamic therapy using a mitochondria-targeted molecular probe with aggregation-induced emission characteristics. Chem Sci 2015; 6:4580-4586. [PMID: 28717475 PMCID: PMC5500860 DOI: 10.1039/c5sc00826c] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/11/2015] [Indexed: 12/21/2022] Open
Abstract
Mitochondria-targeted AIE photosensitizers show multifunctions of targeted and image-guided combination chemotherapy and photodynamic therapy.
Subcellular targeted cancer therapy and in situ monitoring of therapeutic effect are highly desirable for clinical applications. Herein, we report a series of probes by conjugating zero (TPECM-2Br), one (TPECM-1TPP) and two (TPECM-2TPP) triphenylphosphine (TPP) ligands to a fluorogen with aggregation-induced emission (AIE) characteristics. The probes are almost non-emissive as molecularly dissolved species, but they can light up in cell cytoplasm or mitochondria. TPECM-2TPP is found to be able to target mitochondria, depolarize mitochondria membrane potential and selectively exert potent chemo-cytotoxicity on cancer cells. Furthermore, it can efficiently generate singlet oxygen with strong photo-toxicity upon light illumination, which further enhances its anti-cancer effect. On the other hand, TPECM-1TPP can also target mitochondria and generate singlet oxygen to trigger cancer cell apoptosis, but it shows low cytotoxicity in dark. Meanwhile, TPECM-1TPP can report the cellular oxidative stress by visualizing the morphological changes of mitochondria. However, TPECM-2Br does not target mitochondria and shows no obvious anticancer effect either in dark or under light illumination. This study thus highlights the importance of molecular probe design, which yields a new generation of subcellular targeted molecular theranostic agents with multi-function, such as cancer cell imaging, chemotherapy, photodynamic therapy, and in situ monitoring of the therapeutic effect in one go.
Collapse
Affiliation(s)
- Chong-Jing Zhang
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore , 117585 , Singapore .
| | - Qinglian Hu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore , 117585 , Singapore .
| | - Guangxue Feng
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore , 117585 , Singapore .
| | - Ruoyu Zhang
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore , 117585 , Singapore .
| | - Youyong Yuan
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore , 117585 , Singapore .
| | - Xianmao Lu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore , 117585 , Singapore .
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore , 117585 , Singapore . .,Institute of Materials Research and Engineering , Agency for Science, Technology and Research (ASTAR) , 3 Research Link , Singapore , 117602 , Singapore
| |
Collapse
|
28
|
Mitochondrial induction as a potential radio-sensitizer in lung cancer cells - a short report. Cell Oncol (Dordr) 2015; 38:247-52. [DOI: 10.1007/s13402-014-0212-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2014] [Indexed: 01/16/2023] Open
|
29
|
Antioxidant Peptide Derived from Spirulina maximaSuppresses HIF1 α-Induced Invasive Migration of HT1080 Fibrosarcoma Cells. J CHEM-NY 2015. [DOI: 10.1155/2015/308602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hypoxia causes the malignant progression of tumor cells; hence, it has been considered a central issue that must be addressed for effective cancer therapy. The initiation of tumor metastasis requires invasive cell migration. Here, we show that an antioxidant peptide derived fromSpirulina maximasuppresses hypoxia-induced invasive migration of HT1080 human fibrosarcoma cells. HT1080 cells treated with a hypoxia-inducing agent, CoCl2, exhibited an increase in invasive migration and intracellular reactive oxygen species (ROS), which is associated with an increase in the expression of hypoxia-induced factor 1α(HIF1α) accompanied by the activation of PI3K/Akt and ERK1/2. The inhibition of PI3K/Akt and ERK1/2 with specific inhibitors diminished the CoCl2-induced increase in HIF1αexpression and invasive cell migration. Moreover, CoCl2-induced HIF1αexpression was associated with an increase in the expression of molecules downstream ofβ-integrin, such as N-cadherin, vimentin, andβ-catenin. Therefore, theS. maximapeptide effectively attenuated the CoCl2-induced ROS generation and downregulated the HIF1αsignaling pathway involving PI3K/Akt, ERK1/2, andβ-integrin in cells. These results suggest that theS. maximaantioxidant peptide downregulates the HIF1αsignaling pathway necessary for hypoxia-induced invasive migration of HT1080 cells by attenuating intracellular ROS.S. maximapeptide may be an effective constituent in antitumor progression products.
Collapse
|
30
|
Chang J, Jung HJ, Jeong SH, Kim HK, Han J, Kwon HJ. A mutation in the mitochondrial protein UQCRB promotes angiogenesis through the generation of mitochondrial reactive oxygen species. Biochem Biophys Res Commun 2014; 455:290-7. [DOI: 10.1016/j.bbrc.2014.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/05/2014] [Indexed: 12/27/2022]
|
31
|
Hu Q, Gao M, Feng G, Liu B. Mitochondria-Targeted Cancer Therapy Using a Light-Up Probe with Aggregation-Induced-Emission Characteristics. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408897] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
32
|
Hu Q, Gao M, Feng G, Liu B. Mitochondria-targeted cancer therapy using a light-up probe with aggregation-induced-emission characteristics. Angew Chem Int Ed Engl 2014; 53:14225-9. [PMID: 25318447 DOI: 10.1002/anie.201408897] [Citation(s) in RCA: 302] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Indexed: 12/19/2022]
Abstract
Subcellular organelle-specific reagents for simultaneous tumor targeting, imaging, and treatment are of enormous interest in cancer therapy. Herein, we present a mitochondria-targeting probe (AIE-mito-TPP) by conjugating a triphenylphosphine (TPP) with a fluorogen which can undergo aggregation-induced emission (AIE). Owing to the more negative mitochondrial membrane potential of cancer cells than normal cells, the AIE-mito-TPP probe can selectively accumulate in cancer-cell mitochondria and light up its fluorescence. More importantly, the probe exhibits selective cytotoxicity for studied cancer cells over normal cells. The high potency of AIE-mito-TPP correlates with its strong ability to aggregate in mitochondria, which can efficiently decrease the mitochondria membrane potential and increase the level of intracellular reactive oxygen species (ROS) in cancer cells. The mitochondrial light-up probe provides a unique strategy for potential image-guided therapy of cancer cells.
Collapse
Affiliation(s)
- Qinglian Hu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585 (Singapore)
| | | | | | | |
Collapse
|