1
|
Incomplete abscission and cytoplasmic bridges in the evolution of eukaryotic multicellularity. Curr Biol 2022; 32:R385-R397. [DOI: 10.1016/j.cub.2022.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
2
|
Traxler L, Shrestha J, Richter M, Krause K, Schäfer T, Kothe E. Metal adaptation and transport in hyphae of the wood-rot fungus Schizophyllum commune. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127978. [PMID: 34896706 DOI: 10.1016/j.jhazmat.2021.127978] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Fungi living in heavy metals and radionuclides contaminated environments, namely the Chernobyl Exclusion Zone need to be able to cope with these pollutants. In this study, the wood-rot fungus Schizophyllum commune was investigated for its metal tolerance mechanisms, and for its ability to transport such metals through its hyphae. Effects of temperature and pH on tolerance of Cs, Sr, Cd, and Zn were tested. At concentrations allowing for half-maximal growth, adapted strains were raised. The strontium-adapted strain, S. commune 12-43 Sr, showed transport of specifically Sr over distances on a cm-scale using split plates. The adaptation did not yield changes in cell or colony morphology. Intracellular metal localization was not changed, and gene expression profiles under metal stress growing on soil versus artificial medium showed a higher impact of a structured surface for growth on soil than with different metal concentrations. In the transcriptome, transporter genes were mostly down-regulated, while up-regulation was seen for genes involved in the secretory pathway under metal stress. A comparison of wildtype and adapted strains could confirm lower cellular stress levels leading to lack of glutathione S-transferase up-regulation in the adapted strain. Thus, we could show metal transport as well as specific mechanisms in metal stress avoidance.
Collapse
Affiliation(s)
- Lea Traxler
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Jenny Shrestha
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Martin Richter
- Institute of Geosciences, Applied Geology, Friedrich Schiller University, Burgweg 11, 07749 Jena, Germany
| | - Katrin Krause
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Thorsten Schäfer
- Institute of Geosciences, Applied Geology, Friedrich Schiller University, Burgweg 11, 07749 Jena, Germany
| | - Erika Kothe
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany.
| |
Collapse
|
3
|
Abstract
Septation in filamentous fungi is a normal part of development, which involves the formation of cross-hyphal bulkheads, typically containing pores, allowing cytoplasmic streaming between compartments. Based on previous findings regarding septa and cell wall stress, we hypothesized that septa are critical for survival during cell wall stress. To test this hypothesis, we used known Aspergillus nidulans septation-deficient mutants (ΔsepH, Δbud3, Δbud4, and Δrho4) and six antifungal compounds. Three of these compounds (micafungin, Congo red, and calcofluor white) are known cell wall stressors which activate the cell wall integrity signaling pathway (CWIS), while the three others (cycloheximide, miconazole, and 2,3-butanedione monoxime) perturb specific cellular processes not explicitly related to the cell wall. Our results show that deficiencies in septation lead to fungi which are more susceptible to cell wall-perturbing compounds but are no more susceptible to other antifungal compounds than a control. This implies that septa play a critical role in surviving cell wall stress. IMPORTANCE The ability to compartmentalize potentially lethal damage via septation appears to provide filamentous fungi with a facile means to tolerate diverse forms of stress. However, it remains unknown whether this mechanism is deployed in response to all forms of stress or is limited to specific perturbations. Our results support the latter possibility by showing that presence of septa promotes survival in response to cell wall damage but plays no apparent role in coping with other unrelated forms of stress. Given that cell wall damage is a primary effect caused by exposure to the echinocandin class of antifungal agents, our results emphasize the important role that septa might play in enabling resistance to these drugs. Accordingly, the inhibition of septum formation could conceivably represent an attractive approach to potentiating the effects of echinocandins and mitigating resistance in human fungal pathogens.
Collapse
|
4
|
Roberson RW. Subcellular structure and behaviour in fungal hyphae. J Microsc 2020; 280:75-85. [PMID: 32700404 DOI: 10.1111/jmi.12945] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022]
Abstract
This work briefly surveys the diversity of selected subcellular characteristics in hyphal tip cells of the fungal kingdom (Mycota). Hyphae are filamentous cells that grow by tip extension. It is a highly polarised mechanism that requires a robust secretory system for the delivery of materials (e.g. membrane, proteins, cell wall materials) to sites of cell growth. These events result it the self-assembly of a Spitzenkörper (Spk), found most often in the Basidiomycota, Ascomycota, and Blastocladiomycota, or an apical vesicle crescent (AVC), present in the most Mucoromycota and Zoopagomycota. The Spk is a complex apical body composed of secretory vesicles, cytoskeletal elements, and signaling proteins. The AVC appears less complex, though little is known of its composition other than secretory vesicles. Both bodies influence hyphal growth and morphogenesis. Other factors such as cytoskeletal functions, endocytosis, cytoplasmic flow, and turgor pressure are also important in sustaining hyphal growth. Clarifying subcellular structures, functions, and behaviours through bioimagining analysis are providing a better understanding of the cell biology and phylogenetic relationships of fungi. LAY DESCRIPTION: Fungi are most familiar to the public as yeast, molds, and mushrooms. They are eukaryotic organisms that inhabit diverse ecological niches around the world and are critical to the health of ecosystems performing roles in decomposition of organic matter and nutrient recycling (Heath, 1990). Fungi are heterotrophs, unlike plants, and comprise the most successful and diverse phyla of eukaryotic microbes, interacting with all other forms of life in associations that range from beneficial (e.g., mycorrhizae) to antagonistic (e.g., pathogens). Some fungi can be parasitic or pathogenic on plants (e.g., Cryphonectria parasitica, Magnaporthe grisea), insects (e.g., Beauveria bassiana, Cordyceps sp.), invertebrates (e.g., Drechslerella anchonia), vertebrates (e.g., Coccidioides immitis, Candia albicans) and other fungi (e.g., Trichoderma viride, Ampelomyces quisqualis). The majority of fungi, however, are saprophytes, obtaining nutrition through the brake down of non-living organic matter.
Collapse
Affiliation(s)
- R W Roberson
- School of Life Sciences, Arizona State University, Tempe, Arizona, U.S.A
| |
Collapse
|
5
|
Li Y, Hu Y, Zhao K, Pan Y, Qu Y, Zhao J, Qin Y. The Indispensable Role of Histone Methyltransferase PoDot1 in Extracellular Glycoside Hydrolase Biosynthesis of Penicillium oxalicum. Front Microbiol 2019; 10:2566. [PMID: 31787956 PMCID: PMC6853848 DOI: 10.3389/fmicb.2019.02566] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/23/2019] [Indexed: 11/13/2022] Open
Abstract
Histone methylation is associated with transcription regulation, but its role for glycoside hydrolase (GH) biosynthesis is still poorly understood. We identified the histone H3 lysine 79 (H3K79)-specific methyltransferase PoDot1 in Penicillium oxalicum. PoDot1 affects conidiation by regulating the transcription of key regulators (BrlA, FlbC, and StuA) of asexual development and is required in normal hyphae septum and branch formation by regulating the transcription of five septin-encoding genes, namely, aspA, aspB, aspC, aspD, and aspE. Tandem affinity purification/mass spectrometry showed that PoDot1 has no direct interaction with transcription machinery, but it affects the expressions of extracellular GH genes extensively. The expression of genes (amy15A, amy13A, cel7A/cbh1, cel61A, chi18A, cel3A/bgl1, xyn10A, cel7B/eg1, cel5B/eg2, and cel6A/cbh2) that encode the top 10 GHs was remarkably downregulated by Podot1 deletion (ΔPodot1). Consistent with the decrease in gene transcription level, the activities of amylases and cellulases were significantly decreased in ΔPodot1 mutants in agar (solid) and fermentation (liquid) media. The repression of GH gene expressions caused by PoDot1 deletion was not mediated by key transcription factors, such as AmyR, ClrB, CreA, and XlnR, but was accompanied by defects in global demethylated H3K79 (H3K79me2) and trimethylated H3K79 (H3K79me3). The impairment of H3K79me2 on specific GH gene loci was observed due to PoDot1 deletion. The results implies that defects of H3K79 methylation is the key reason of the downregulated transcription level of GH-encoding genes and reveals the indispensable role of PoDot1 in extracellular GH biosynthesis.
Collapse
Affiliation(s)
- Yanan Li
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,College of Life Sciences, Henan Agricultural University, Zhengzhou, China.,Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Yueyan Hu
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Kaili Zhao
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Yunjun Pan
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yinbo Qu
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Jian Zhao
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yuqi Qin
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| |
Collapse
|
6
|
Dimou S, Kourkoulou A, Amillis S, Percudani R, Diallinas G. The peroxisomal SspA protein is redundant for purine utilization but essential for peroxisome localization in septal pores in Aspergillus nidulans. Fungal Genet Biol 2019; 132:103259. [PMID: 31394175 DOI: 10.1016/j.fgb.2019.103259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 10/26/2022]
Abstract
In an in silico search for correlated gene loss with fungal peroxisomal uric acid oxidase (UOX), we identified PMP22-like proteins, some of which function as promiscuous channels in organellar membranes. To investigate whether PMP22 channels have a role in peroxisomal uric acid transport and catabolism, we functionally analyzed the closest homologue in Aspergillus nidulans, named SspA. We confirmed that SspA is a peroxisomal membrane protein that co-localizes significantly with PTS1-tagged mRFP, UOX or HexA, the latter considered a protein of Woronin bodies (WB), organelles originating from peroxisomes that dynamically plug septal pores in ascomycetes. Our results suggest that in A. nidulans, unlike some other ascomycetes, there is no strict protein segregation of peroxisomal and WB-specific proteins. Importantly, genetic deletion of sspA, but not of hexA, led to lack of peroxisomal localization at septal pores, suggesting that SspA is a key factor for septal pore functioning. Additionally, ΔsspA resulted in increased sensitivity to oxidative stress, apparently as a consequence of not only the inability to plug septal pores, but also a recorded reduction in peroxisome biogenesis. However, deleting sspA had no effect on uric acid or purine utilization, as we hypothesized, a result also in line with the observation that expression of SspA was not affected by regulatory mutants and conditions known to control purine catabolic enzymes. Our results are discussed within the framework of previous studies of SspA homologues in other fungi, as well as, the observed gene losses of PMP22 and peroxisomal uric acid oxidase.
Collapse
Affiliation(s)
- Sofia Dimou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece
| | - Anezia Kourkoulou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece
| | - Sotiris Amillis
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece
| | - Riccardo Percudani
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece.
| |
Collapse
|
7
|
Kinnaer C, Dudin O, Martin SG. Yeast-to-hypha transition of Schizosaccharomyces japonicus in response to environmental stimuli. Mol Biol Cell 2019; 30:975-991. [PMID: 30726171 PMCID: PMC6589906 DOI: 10.1091/mbc.e18-12-0774] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/28/2022] Open
Abstract
Many fungal species are dimorphic, exhibiting both unicellular yeast-like and filamentous forms. Schizosaccharomyces japonicus, a member of the fission yeast clade, is one such dimorphic fungus. Here, we first identify fruit extracts as natural, stress-free, starvation-independent inducers of filamentation, which we use to describe the properties of the dimorphic switch. During the yeast-to-hypha transition, the cell evolves from a bipolar to a unipolar system with 10-fold accelerated polarized growth but constant width, vacuoles segregated to the nongrowing half of the cell, and hyper-lengthening of the cell. We demonstrate unusual features of S. japonicus hyphae: these cells lack a Spitzenkörper, a vesicle distribution center at the hyphal tip, but display more rapid cytoskeleton-based transport than the yeast form, with actin cables being essential for the transition. S. japonicus hyphae also remain mononuclear and undergo complete cell divisions, which are highly asymmetric: one daughter cell inherits the vacuole, the other the growing tip. We show that these elongated cells scale their nuclear size, spindle length, and elongation rates, but display altered division size controls. This establishes S. japonicus as a unique system that switches between symmetric and asymmetric modes of growth and division.
Collapse
Affiliation(s)
- Cassandre Kinnaer
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Omaya Dudin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Sophie G. Martin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Ramírez-Del Villar A, Roberson RW, Callejas-Negrete OA, Mouriño-Pérez RR. The actin motor MYO-5 effect in the intracellular organization of Neurospora crassa. Fungal Genet Biol 2019; 125:13-27. [PMID: 30615944 DOI: 10.1016/j.fgb.2018.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/02/2018] [Accepted: 11/16/2018] [Indexed: 01/16/2023]
Abstract
In filamentous fungi, polarized growth is the result of vesicle secretion at the hyphal apex. Motor proteins mediate vesicle transport to target destinations on the plasma membrane via actin and microtubule cytoskeletons. Myosins are motor proteins associated with actin filaments. Specifically, class V myosins are responsible for cargo transport in eukaryotes. We studied the dynamics and localization of myosin V in wild type hyphae of Neurospora crassa and in hyphae that lacked MYO-5. In wild type hyphae, MYO-5-GFP was localized concentrated in the hyphal apex and colocalized with Spitzenkörper. Photobleaching studies showed that MYO-5-GFP was transported to the apex from subapical hyphal regions. The deletion of the class V myosin resulted in a reduced rate of hyphal growth, apical hyperbranching, and intermittent loss of hyphal polarity. MYO-5 did not participate in breaking the symmetrical growth during germination but contributed in the apical organization upon establishment of polarized growth. In the Δmyo-5 mutant, actin was organized into thick cables in the apical and subapical hyphal regions, and the number of endocytic patches was reduced. The microvesicles-chitosomes observed with CHS-1-GFP were distributed as a cloud occupying the apical dome and not in the Spitzenkörper as the WT strain. The mitochondrial movement was not associated with MYO-5, but tubular vacuole position is MYO-5-dependent. These results suggest that MYO-5 plays a role in maintaining apical organization and the integrity of the Spitzenkörper and is required for normal hyphal growth, polarity, septation, conidiation, and proper conidial germination.
Collapse
Affiliation(s)
- Arianne Ramírez-Del Villar
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | | | - Olga A Callejas-Negrete
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Rosa R Mouriño-Pérez
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico.
| |
Collapse
|
9
|
Riquelme M, Aguirre J, Bartnicki-García S, Braus GH, Feldbrügge M, Fleig U, Hansberg W, Herrera-Estrella A, Kämper J, Kück U, Mouriño-Pérez RR, Takeshita N, Fischer R. Fungal Morphogenesis, from the Polarized Growth of Hyphae to Complex Reproduction and Infection Structures. Microbiol Mol Biol Rev 2018; 82:e00068-17. [PMID: 29643171 PMCID: PMC5968459 DOI: 10.1128/mmbr.00068-17] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Filamentous fungi constitute a large group of eukaryotic microorganisms that grow by forming simple tube-like hyphae that are capable of differentiating into more-complex morphological structures and distinct cell types. Hyphae form filamentous networks by extending at their tips while branching in subapical regions. Rapid tip elongation requires massive membrane insertion and extension of the rigid chitin-containing cell wall. This process is sustained by a continuous flow of secretory vesicles that depends on the coordinated action of the microtubule and actin cytoskeletons and the corresponding motors and associated proteins. Vesicles transport cell wall-synthesizing enzymes and accumulate in a special structure, the Spitzenkörper, before traveling further and fusing with the tip membrane. The place of vesicle fusion and growth direction are enabled and defined by the position of the Spitzenkörper, the so-called cell end markers, and other proteins involved in the exocytic process. Also important for tip extension is membrane recycling by endocytosis via early endosomes, which function as multipurpose transport vehicles for mRNA, septins, ribosomes, and peroxisomes. Cell integrity, hyphal branching, and morphogenesis are all processes that are largely dependent on vesicle and cytoskeleton dynamics. When hyphae differentiate structures for asexual or sexual reproduction or to mediate interspecies interactions, the hyphal basic cellular machinery may be reprogrammed through the synthesis of new proteins and/or the modification of protein activity. Although some transcriptional networks involved in such reprogramming of hyphae are well studied in several model filamentous fungi, clear connections between these networks and known determinants of hyphal morphogenesis are yet to be established.
Collapse
Affiliation(s)
- Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Jesús Aguirre
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Salomon Bartnicki-García
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Michael Feldbrügge
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Ursula Fleig
- Institute for Functional Genomics of Microorganisms, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Wilhelm Hansberg
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Jörg Kämper
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Ulrich Kück
- Ruhr University Bochum, Lehrstuhl für Allgemeine und Molekulare Botanik, Bochum, Germany
| | - Rosa R Mouriño-Pérez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Norio Takeshita
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Japan
| | - Reinhard Fischer
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| |
Collapse
|
10
|
Jung EM, Kothe E, Raudaskoski M. The making of a mushroom: Mitosis, nuclear migration and the actin network. Fungal Genet Biol 2018; 111:85-91. [DOI: 10.1016/j.fgb.2017.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
|
11
|
De Souza CP, Hashmi SB, Hage N, Fitch RM, Osmani AH, Osmani SA. Location and functional analysis of the Aspergillus nidulans Aurora kinase confirm mitotic functions and suggest non-mitotic roles. Fungal Genet Biol 2017; 103:1-15. [PMID: 28315405 PMCID: PMC11443558 DOI: 10.1016/j.fgb.2017.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/12/2017] [Indexed: 11/17/2022]
Abstract
Filamentous fungi have devastating negative impacts as pathogens and agents of food spoilage but also have critical ecological importance and are utilized for industrial applications. The characteristic multinucleate nature of filamentous fungi is facilitated by limiting if, when and where septation, the fungal equivalent of cytokinesis, occurs. In the model filamentous fungus Aspergillus nidulans septation does not occur immediately after mitosis and is an incomplete process resulting in the formation of a septal pore whose permeability is cell cycle regulated. How mitotic regulators, such as the Aurora kinase, contribute to the often unique biology of filamentous fungi is not well understood. The Aurora B kinase has not previously been investigated in any detail during hyphal growth. Here we demonstrate for the first time that Aurora displays cell cycle dependent locations to the region of forming septa, the septal pore and mature septa as well as the mitotic apparatus. To functionally analyze Aurora, we generated a temperature sensitive allele revealing essential mitotic and spindle assembly checkpoint functions consistent with its location to the kinetochore region and spindle midzone. Our analysis also reveals that cellular and kinetochore Aurora levels increase during a mitotic spindle assembly checkpoint arrest and we propose that this could be important for checkpoint inactivation when spindle formation is prevented. We demonstrate that Aurora accumulation at mature septa following mitotic entry does not require mitotic progression but is dependent upon a timing mechanism. Surprisingly we also find that Aurora inactivation leads to cellular swelling and lysis indicating an unexpected function for Aurora in fungal cell growth. Thus in addition to its conserved mitotic functions our data suggest that Aurora has the capacity to be an important regulator of septal biology and cell growth in filamentous fungi.
Collapse
Affiliation(s)
- Colin P De Souza
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States
| | - Shahr B Hashmi
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States
| | - Natalie Hage
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States
| | - Rebecca M Fitch
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States
| | - Aysha H Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States
| | - Stephen A Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
12
|
Fricker MD, Heaton LLM, Jones NS, Boddy L. The Mycelium as a Network. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0033-2017. [PMID: 28524023 PMCID: PMC11687498 DOI: 10.1128/microbiolspec.funk-0033-2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Indexed: 01/12/2023] Open
Abstract
The characteristic growth pattern of fungal mycelia as an interconnected network has a major impact on how cellular events operating on a micron scale affect colony behavior at an ecological scale. Network structure is intimately linked to flows of resources across the network that in turn modify the network architecture itself. This complex interplay shapes the incredibly plastic behavior of fungi and allows them to cope with patchy, ephemeral resources, competition, damage, and predation in a manner completely different from multicellular plants or animals. Here, we try to link network structure with impact on resource movement at different scales of organization to understand the benefits and challenges of organisms that grow as connected networks. This inevitably involves an interdisciplinary approach whereby mathematical modeling helps to provide a bridge between information gleaned by traditional cell and molecular techniques or biophysical approaches at a hyphal level, with observations of colony dynamics and behavior at an ecological level.
Collapse
Affiliation(s)
- Mark D Fricker
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, United Kingdom
| | - Luke L M Heaton
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, United Kingdom
- Mathematics Department, Imperial College, Queen's Gate, London SW7 2AZ, United Kingdom
| | - Nick S Jones
- Mathematics Department, Imperial College, Queen's Gate, London SW7 2AZ, United Kingdom
| | - Lynne Boddy
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| |
Collapse
|
13
|
Pérez P, Cortés JCG, Martín-García R, Ribas JC. Overview of fission yeast septation. Cell Microbiol 2016; 18:1201-7. [PMID: 27155541 DOI: 10.1111/cmi.12611] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 02/04/2023]
Abstract
Cytokinesis is the final process of the vegetative cycle, which divides a cell into two independent daughter cells once mitosis is completed. In fungi, as in animal cells, cytokinesis requires the formation of a cleavage furrow originated by constriction of an actomyosin ring which is connected to the plasma membrane and causes its invagination. Additionally, because fungal cells have a polysaccharide cell wall outside the plasma membrane, cytokinesis requires the formation of a septum coincident with the membrane ingression. Fission yeast Schizosaccharomyces pombe is a unicellular, rod-shaped fungus that has become a popular model organism for the study of actomyosin ring formation and constriction during cell division. Here we review the current knowledge of the septation and separation processes in this fungus, as well as recent advances in understanding the functional interaction between the transmembrane enzymes that build the septum and the actomyosin ring proteins.
Collapse
Affiliation(s)
- Pilar Pérez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, 37007, Spain
| | - Juan C G Cortés
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, 37007, Spain
| | - Rebeca Martín-García
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, 37007, Spain
| | - Juan C Ribas
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, 37007, Spain
| |
Collapse
|
14
|
Schinke J, Kolog Gulko M, Christmann M, Valerius O, Stumpf SK, Stirz M, Braus GH. The DenA/DEN1 Interacting Phosphatase DipA Controls Septa Positioning and Phosphorylation-Dependent Stability of Cytoplasmatic DenA/DEN1 during Fungal Development. PLoS Genet 2016; 12:e1005949. [PMID: 27010942 PMCID: PMC4806917 DOI: 10.1371/journal.pgen.1005949] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/01/2016] [Indexed: 11/18/2022] Open
Abstract
DenA/DEN1 and the COP9 signalosome (CSN) represent two deneddylases which remove the ubiquitin-like Nedd8 from modified target proteins and are required for distinct fungal developmental programmes. The cellular DenA/DEN1 population is divided into a nuclear and a cytoplasmatic subpopulation which is especially enriched at septa. DenA/DEN1 stability control mechanisms are different for the two cellular subpopulations and depend on different physical interacting proteins and the C-terminal DenA/DEN1 phosphorylation pattern. Nuclear DenA/DEN1 is destabilized during fungal development by five of the eight CSN subunits which target nuclear DenA/DEN1 for degradation. DenA/DEN1 becomes stabilized as a phosphoprotein at S243/S245 during vegetative growth, which is necessary to support further asexual development. After the initial phase of development, the newly identified cytoplasmatic DenA/DEN1 interacting phosphatase DipA and an additional developmental specific C-terminal phosphorylation site at serine S253 destabilize DenA/DEN1. Outside of the nucleus, DipA is co-transported with DenA/DEN1 in the cytoplasm between septa and nuclei. Deletion of dipA resulted in increased DenA/DEN1 stability in a strain which is unresponsive to illumination. The mutant strain is dysregulated in cytokinesis and impaired in asexual development. Our results suggest a dual phosphorylation-dependent DenA/DEN1 stability control with stabilizing and destabilizing modifications and physical interaction partner proteins which function as control points in the nucleus and the cytoplasm.
Collapse
Affiliation(s)
- Josua Schinke
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), and Georg-August-University, Göttingen, Germany
| | - Miriam Kolog Gulko
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), and Georg-August-University, Göttingen, Germany
| | - Martin Christmann
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), and Georg-August-University, Göttingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), and Georg-August-University, Göttingen, Germany
| | - Sina Kristin Stumpf
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), and Georg-August-University, Göttingen, Germany
| | - Margarita Stirz
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), and Georg-August-University, Göttingen, Germany
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), and Georg-August-University, Göttingen, Germany
- * E-mail:
| |
Collapse
|
15
|
Lara-Rojas F, Bartnicki-García S, Mouriño-Pérez RR. Localization and role of MYO-1, an endocytic protein in hyphae of Neurospora crassa. Fungal Genet Biol 2016; 88:24-34. [DOI: 10.1016/j.fgb.2016.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
|
16
|
Dynamics of the establishment of multinucleate compartments in Fusarium oxysporum. EUKARYOTIC CELL 2014; 14:78-85. [PMID: 25398376 DOI: 10.1128/ec.00200-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nuclear dynamics can vary widely between fungal species and between stages of development of fungal colonies. Here we compared nuclear dynamics and mitotic patterns between germlings and mature hyphae in Fusarium oxysporum. Using fluorescently labeled nuclei and live-cell imaging, we show that F. oxysporum is subject to a developmental transition from a uninucleate to a multinucleate state after completion of colony initiation. We observed a special type of hypha that exhibits a higher growth rate, possibly acting as a nutrient scout. The higher growth rate is associated with a higher nuclear count and mitotic waves involving 2 to 6 nuclei in the apical compartment. Further, we found that dormant nuclei of intercalary compartments can reenter the mitotic cycle, resulting in multinucleate compartments with up to 18 nuclei in a single compartment.
Collapse
|
17
|
Delgado-Álvarez DL, Bartnicki-García S, Seiler S, Mouriño-Pérez RR. Septum development in Neurospora crassa: the septal actomyosin tangle. PLoS One 2014; 9:e96744. [PMID: 24800890 PMCID: PMC4011870 DOI: 10.1371/journal.pone.0096744] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/10/2014] [Indexed: 12/05/2022] Open
Abstract
Septum formation in Neurospora crassa was studied by fluorescent tagging of actin, myosin, tropomyosin, formin, fimbrin, BUD-4, and CHS-1. In chronological order, we recognized three septum development stages: 1) septal actomyosin tangle (SAT) assembly, 2) contractile actomyosin ring (CAR) formation, 3) CAR constriction together with plasma membrane ingrowth and cell wall construction. Septation began with the assembly of a conspicuous tangle of cortical actin cables (SAT) in the septation site >5 min before plasma membrane ingrowth. Tropomyosin and myosin were detected as components of the SAT from the outset. The SAT gradually condensed to form a proto-CAR that preceded CAR formation. During septum development, the contractile actomyosin ring remained associated with the advancing edge of the septum. Formin and BUD-4 were recruited during the transition from SAT to CAR and CHS-1 appeared two min before CAR constriction. Actin patches containing fimbrin were observed surrounding the ingrowing septum, an indication of endocytic activity. Although the trigger of SAT assembly remains unclear, the regularity of septation both in space and time gives us reason to believe that the initiation of the septation process is integrated with the mechanisms that control both the cell cycle and the overall growth of hyphae, despite the asynchronous nature of mitosis in N. crassa.
Collapse
Affiliation(s)
- Diego Luis Delgado-Álvarez
- Departamento de Microbiología, Centro de Educación Científica y de Educación Superior de Ensenada, Ensenada, B. C. México
| | - Salomón Bartnicki-García
- Departamento de Microbiología, Centro de Educación Científica y de Educación Superior de Ensenada, Ensenada, B. C. México
| | - Stephan Seiler
- Institute for Biology II – Molecular Plant Physiology, Albert-Ludwigs University Freiburg, Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Rosa Reyna Mouriño-Pérez
- Departamento de Microbiología, Centro de Educación Científica y de Educación Superior de Ensenada, Ensenada, B. C. México
| |
Collapse
|