1
|
Hashemi B, Assadpour E, Zhang F, Jafari SM. Interactions between β-lactoglobulin and polyphenols: Mechanisms, properties, characterization, and applications. Adv Colloid Interface Sci 2025; 339:103424. [PMID: 39919619 DOI: 10.1016/j.cis.2025.103424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/09/2025]
Abstract
β-lactoglobulins (βLGs) have a wide range of applications in food because of their ability to emulsify, foam, and gel. This makes them good functional additives. However, their performance depends on temperature, pH, and mineral levels, so their functional qualities are limited in particular applications. How polyphenols (PPs) interact with βLG is crucial for the functional characteristics and quality of dietary compounds. In most food systems, a spontaneous interaction between proteins and PPs results in a "protein-PP conjugate," which is known to affect the sensory, functional, and nutraceutical qualities of food products. The βLG-PP conjugates can be used to enhance the quality of food. This article emphasizes analytical techniques for describing the characteristics of βLG-PP complexes/conjugates. It also goes over the functions of βLG-PP conjugates, including their solubility, thermal stability, emulsifying, and antioxidant qualities. The majority of βLG-PPs interactions is due to non-covalent (H-bonding, electrostatic interactions) or covalent bonds that are mostly caused by βLG or PP oxidation through enzymatic or non-enzymatic mechanisms. Furthermore, the conformation or type of proteins and PPs, as well as environmental factors like pH and temperature, have a significant impact on proteins-PPs interactions. Higher thermal stability, antioxidant activities, and superior emulsifying capabilities of the βLG-PP conjugates make them useful as innovative additives to enhance the quality and functions of food products.
Collapse
Affiliation(s)
- Behnaz Hashemi
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
2
|
Zheng S, Shi X, Lin J, Yang Y, Xin Y, Bai X, Zhu H, Chen H, Wu J, Zheng X, Lin L, Huang Z, Yang S, Hu F, Liu W. Structural basis for the fast maturation of pcStar, a photoconvertible fluorescent protein. Acta Crystallogr D Struct Biol 2025; 81:181-195. [PMID: 40094266 DOI: 10.1107/s2059798325002141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Green-to-red photoconvertible fluorescent proteins (PCFPs) serve as key players in single-molecule localization super-resolution imaging. As an early engineered variant, mEos3.2 has limited applications, mostly due to its slow maturation rate. The recent advent of a novel variant, pcStar, obtained by the simple mutation of only three amino acids (D28E/L93M/N166G) in mEos3.2, exhibits significantly accelerated maturation and enhanced fluorescent brightness. This improvement represents an important advance in the field of biofluorescence by enabling early detection with reliable signals, essential for labelling dynamic biological processes. However, the mechanism underlying the significant improvement in fluorescent performance from mEos3.2 to pcStar remains elusive, preventing the rational design of more robust variants through mutagenesis. In this study, we determined the crystal structures of mEos3.2 and pcStar in their green states at atomic resolution and performed molecular-dynamics simulations to reveal significant divergences between the two proteins. Our structural and computational analyses revealed crucial features that are distinctively present in pcStar, including the presence of an extra solvent molecule, high conformational stability and enhanced interactions of the chromophore with its surroundings, tighter tertiary-structure packing and dynamic central-helical deformation. Resulting from the triple mutations, all of these structural features are likely to establish a mechanistic link to the greatly improved fluorescent performance of pcStar. The data described here not only provide a good example illustrating how distant amino-acid substitutions can affect the structure and bioactivity of a protein, but also give rise to strategic considerations for the future engineering of more widely applicable PCFPs.
Collapse
Affiliation(s)
- Shuping Zheng
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Xiangrui Shi
- Institute of Immunology, PLA, Army Medical University, Chongqing, People's Republic of China
| | - Junjin Lin
- Public Technology Service Center, Fujian Medical University, Fuzhou, People's Republic of China
| | - Yiwei Yang
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, People's Republic of China
| | - Yiting Xin
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Xinru Bai
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Huachen Zhu
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Hui Chen
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Jiasen Wu
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Xiaowei Zheng
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Ling Lin
- Public Technology Service Center, Fujian Medical University, Fuzhou, People's Republic of China
| | - Zhihong Huang
- Public Technology Service Center, Fujian Medical University, Fuzhou, People's Republic of China
| | - Sheng Yang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, People's Republic of China
| | - Fen Hu
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Wei Liu
- Institute of Immunology, PLA, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
3
|
Haas‐Neill L, Joron K, Lerner E, Rauscher S. PEG-mCherry interactions beyond classical macromolecular crowding. Protein Sci 2025; 34:e5235. [PMID: 39968832 PMCID: PMC11836898 DOI: 10.1002/pro.5235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/12/2024] [Accepted: 11/09/2024] [Indexed: 02/20/2025]
Abstract
The dense cellular environment influences bio-macromolecular structure, dynamics, interactions, and function. Despite advancements in understanding protein-crowder interactions, predicting their precise effects on protein structure and function remains challenging. Here, we elucidate the effects of PEG-induced crowding on the fluorescent protein mCherry using molecular dynamics simulations and fluorescence-based experiments. We identify and characterize specific PEG-induced structural and dynamical changes in mCherry. Importantly, we find interactions in which PEG molecules wrap around specific surface-exposed residues in a binding mode previously observed in protein crystal structures. Fluorescence correlation spectroscopy experiments capture PEG-induced changes, including aggregation, suggesting a potential role for the specific PEG-mCherry interactions identified in simulations. Additionally, mCherry fluorescence lifetimes are influenced by PEG and not by the bulkier crowder dextran or by another linear polymer, polyvinyl alcohol, highlighting the importance of crowder-protein soft interactions. This work augments our understanding of macromolecular crowding effects on protein structure and dynamics.
Collapse
Affiliation(s)
- Liam Haas‐Neill
- Department of PhysicsUniversity of TorontoTorontoOntarioCanada
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaOntarioCanada
| | - Khalil Joron
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra CampusThe Hebrew University of JerusalemJerusalemIsrael
| | - Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra CampusThe Hebrew University of JerusalemJerusalemIsrael
- The Center for Nanoscience and NanotechnologyThe Hebrew University of JerusalemJerusalemIsrael
| | - Sarah Rauscher
- Department of PhysicsUniversity of TorontoTorontoOntarioCanada
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaOntarioCanada
- Department of ChemistryUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
4
|
Hiraoka K, Ninomiya S, Rankin-Turner S, Suzuki N, Akashi S. Sodiation of Enhanced Green Fluorescent Protein (EGFP) in Basic Solution Studied by Electrospray Mass Spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2025; 60:e5111. [PMID: 39757144 DOI: 10.1002/jms.5111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/08/2024] [Accepted: 12/15/2024] [Indexed: 01/07/2025]
Abstract
In our previous work, the sodiation of melittin, cytochrome c, and ubiquitin in a 1 mM NaOH water/methanol solution was studied by electrospray mass spectrometry. It was suggested that the α-helix is more resistant to sodiation than the β-sheet. In this study, sodiation of enhanced green fluorescent protein (EGFP) composed of a β-barrel was studied in 1% CH3COOH (AcOH) or 1 mM NaOH water/methanol solution by electrospray mass spectrometry. Although EGFP was denatured in an acidic solution, it maintains a near-native structure in a basic solution. For the 1% AcOH solution, the protonated EGFP, [EGFP + nH - mH + mNa]n+, with n = 14 - 36 and m = 0 was detected. For 1 mM NaOH, the number n for [EGFP + nH - mH + mNa]n+ was found to increase with the sodiation number m and vice versa for [EGFP + nH - mH + mNa]n-. Namely, Na+ adducts counteract the negative charges of deprotonated acidic residues. The protonated EGFP detected as major ions for basic 1 mM NaOH was ascribed to the more surface-active H3O+(aq) than OH-(aq).
Collapse
Affiliation(s)
- Kenzo Hiraoka
- Clean Energy Research Center, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Satoshi Ninomiya
- Clean Energy Research Center, University of Yamanashi, Kofu, Yamanashi, Japan
| | | | - Noa Suzuki
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Satoko Akashi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
| |
Collapse
|
5
|
Khalid A, Tomljenovic-Hanic S. Emerging Fluorescent Nanoparticles for Non-Invasive Bioimaging. Molecules 2024; 29:5594. [PMID: 39683753 DOI: 10.3390/molecules29235594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Fluorescence-based techniques have great potential in the field of bioimaging and could bring tremendous progress in microbiology and biomedicine. The most essential element in these techniques is fluorescent nanomaterials. The use of fluorescent nanoparticles as contrast agents for bioimaging is a large topic to cover. The purpose of this mini-review is to give the reader an overview of biocompatible and biodegradable fluorescent nanoparticles that are emerging nanomaterials for use in fluorescent bioimaging. In addition to the biocompatibility of these nanomaterials, biodegradability is considered a necessity for short-term sustainable bioimaging. Firstly, the main requirements for bioimaging are raised, and a few existing fluorescent nanoprobes are discussed. Secondly, a few inert biocompatible fluorescent nanomaterials for long-term bioimaging that have been, to some extent, demonstrated as fluorescent probes are reviewed. Finally, a few biocompatible and biodegradable nanomaterials for short-term bioimaging that are evolving for bioimaging applications are discussed. Together, these advancements signal a transformative leap toward sustainability and functionality in biomedical imaging.
Collapse
Affiliation(s)
- Asma Khalid
- School of Physics, University of Melbourne, Parkville, VIC 3010, Australia
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | | |
Collapse
|
6
|
Chen Y, Huang Z, Cai E, Zhong S, Li H, Ju W, Yang J, Chen W, Tang C, Wang P. Novel Vibrational Proteins. Anal Chem 2024; 96:16481-16486. [PMID: 39434664 DOI: 10.1021/acs.analchem.4c01569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Genetically encoded green fluorescent protein (GFP) and its brighter and redder variants have tremendously revolutionized modern molecular biology and life science by enabling direct visualization of gene regulated protein functions on microscopic and nanoscopic scales. However, the current fluorescent proteins (FPs) only emit a few colors with an emission width of about 30-50 nm. Here, we engineer novel vibrational proteins (VPs) that undergo much finer vibrational transitions and emit rather narrow vibrational spectra (0.1-0.3 nm, roughly 3-10 cm-1). In response to an amber stop codon (UAG), a terminal alkyne bearing an unnatural amino acid (UAA, pEtF) is directly incorporated in place of Tyr64 in the chromophore of pr-Kaede by genetic code expansion. Essentially, the UAA64 further conjugates into a large π system with the contiguous two editable amino acid residues (His63 and Gly65), resulting in a programmable Raman resonance shift of the embedded alkyne. In the proof-of-concept experiment, we constructed a series of novel pEtF-VP mutants and observed fine Raman shifts of the alkynyl group in different chromophores. The genetically encoded novel VPs, could potentially label tens of proteins in the future.
Collapse
Affiliation(s)
- Yage Chen
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhiliang Huang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Changping Laboratory, Beijing 102206, China
| | - Erli Cai
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shuchen Zhong
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, PKU-Tsinghua Center for Life Science, Center for Quantitate Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | | | - Wei Ju
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Changping Laboratory, Beijing 102206, China
| | - Jie Yang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wei Chen
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chun Tang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, PKU-Tsinghua Center for Life Science, Center for Quantitate Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ping Wang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Changping Laboratory, Beijing 102206, China
- Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| |
Collapse
|
7
|
Bhutani G, Verma P, Paul S, Dhamija S, Chattopadhyay K, De AK. Elucidating photocycle in large Stokes shift red fluorescent proteins: Focus on mKeima. Photochem Photobiol 2024; 100:897-909. [PMID: 38752609 DOI: 10.1111/php.13964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 07/30/2024]
Abstract
Large Stokes shift red fluorescent proteins (LSS-RFPs) are genetically encoded and exhibit a significant difference of a few hundreds of nanometers between their excitation and emission peak maxima (i.e., the Stokes shift). These LSS-RFPs (absorbing blue light and emitting red light) feature a unique photocycle responsible for their significant Stokes shift. The photocycle associated with this LSS characteristic in certain RFPs is quite perplexing, hinting at the complex nature of excited-state photophysics. This article provides a brief review on the fundamental mechanisms governing the photocycle of various LSS-RFPs, followed by a discussion on experimental results on mKeima emphasizing its relaxation pathways which garnered attention due to its >200 nm Stokes shift. Corroborating steady-state spectroscopy with computational studies, four different forms of chromophore of mKeima contributing to the cis-trans conformers of the neutral and anionic forms were identified in a recent study. Furthering these findings, in this account a detailed discussion on the photocycle of mKeima, which encompasses sequential excited-state isomerization, proton transfer, and subsequent structural reorganization involving three isomers, leading to an intriguing temperature and pH-dependent dual fluorescence, is explored using broadband femtosecond transient absorption spectroscopy.
Collapse
Affiliation(s)
- Garima Bhutani
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Punjab, India
| | - Pratima Verma
- Cytolysin Study Group, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Punjab, India
| | - Sasthi Paul
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Punjab, India
| | - Shaina Dhamija
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Punjab, India
| | - Kausik Chattopadhyay
- Cytolysin Study Group, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Punjab, India
| | - Arijit K De
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Punjab, India
| |
Collapse
|
8
|
Kausar MA, Bhardwaj T, Alenazi F, Alshammari KF, Anwar S, Ali A, AboElnaga SMH, Najm MZ, Saeed M. A comprehensive immunoinformatics study to explore and characterize potential vaccine constructs against Ole e 9 allergen of Olea europaea. J Biomol Struct Dyn 2024; 42:4644-4655. [PMID: 37340658 DOI: 10.1080/07391102.2023.2224884] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/31/2023] [Indexed: 06/22/2023]
Abstract
Immunoglobulin E (IgE)-mediated allergy, which affects more than 30% of the population, is the most prevalent hypersensitivity illness. In an atopic individual, even a small amount of allergen exposure can cause IgE antibodies to be produced. Due to the engagement of receptors that are highly selective for IgE, even tiny amounts of allergens can induce massive inflammation. This study focuses on the exploration and characterization of the allergen potential of Olea europaea allergen (Ole e 9) affecting the population in Saudi Arabia. A systematic computational approach was performed to identify potential epitopes of allergens and complementary determining regions of IgE. In support, physiochemical characterization and secondary structure analysis unravel the structural conformations of allergens and active sites. Epitope prediction uses a pool of computational algorithms to identify plausible epitopes. Furthermore, the vaccine construct was assessed for its binding efficiency using molecular docking and molecular dynamics simulation studies, which led to strong and stable interactions. This is because IgE is known to play a role in allergic responses, which facilitate host cell activation for an immune response. Overall, the immunoinformatics analysis advocates that the proposed vaccine candidate is safe and immunogenic and therefore can be pushed as a lead for in vitro and in vivo investigations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Ha'il, Ha'il, Saudi Arabia
| | - Tulika Bhardwaj
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Fahaad Alenazi
- Department of Pharmacology, College of Medicine, University of Ha'il, Ha'il, Saudi Arabia
| | - Khalid F Alshammari
- Department of Internal Medicine, College of Medicine, University of Ha'il, Ha'il, Saudi Arabia
| | - Sadaf Anwar
- Department of Biochemistry, College of Medicine, University of Ha'il, Ha'il, Saudi Arabia
| | - Abrar Ali
- Department of Pharmacology, College of Medicine, University of Ha'il, Ha'il, Saudi Arabia
| | - Shimaa M H AboElnaga
- Department of Basic Science, Deanship of Preparatory Year, University of Ha'il, Ha'il, Saudi Arabia
| | - Mohammad Z Najm
- School of Biosciences, Apeejay Stya University, Gurugram, India
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Ha'il, Ha'il, Saudi Arabia
| |
Collapse
|
9
|
Tomris I, van der Woude R, de Paiva Froes Rocha R, Torrents de la Peña A, Ward AB, de Vries RP. Viral envelope proteins fused to multiple distinct fluorescent reporters to probe receptor binding. Protein Sci 2024; 33:e4974. [PMID: 38533540 DOI: 10.1002/pro.4974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
Enveloped viruses carry one or multiple proteins with receptor-binding functionalities. Functional receptors can be glycans, proteinaceous, or both; therefore, recombinant protein approaches are instrumental in attaining new insights regarding viral envelope protein receptor-binding properties. Visualizing and measuring receptor binding typically entails antibody detection or direct labeling, whereas direct fluorescent fusions are attractive tools in molecular biology. Here, we report a suite of distinct fluorescent fusions, both N- and C-terminal, for influenza A virus hemagglutinins and SARS-CoV-2 spike RBD. The proteins contained three or six fluorescent protein barrels and were applied directly to cells to assess receptor binding properties.
Collapse
Affiliation(s)
- Ilhan Tomris
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands
| | - Roosmarijn van der Woude
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands
| | - Rebeca de Paiva Froes Rocha
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Alba Torrents de la Peña
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Robert P de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands
| |
Collapse
|
10
|
Ossa-Hernández N, Marins LF, Almeida RV, Almeida DV. Red Fluorescent Protein Variant with a Dual-Peak Emission of Fluorescence. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1099-1109. [PMID: 37864761 DOI: 10.1007/s10126-023-10262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
The marine environment is a rich reservoir of diverse biological entities, many of which possess unique properties that are of immense value to biotechnological applications. One such example is the red fluorescent protein derived from the coral Discosoma sp. This protein, encoded by the DsRed gene, has been the subject of extensive research due to its potential applications in various fields. In the study, a variant of the red fluorescent protein was generated through random mutagenesis using the DsRed2 gene as a template. The process employed error-prone PCR (epPCR) to introduce random mutations, leading to the isolation of twelve gene variants. Among these, one variant stood out due to its unique spectral properties, exhibiting dual fluorescence emission at both 480 nm (green) and 550 nm (red). This novel variant was expressed in both Escherichia coli and zebrafish (Danio rerio) muscle, confirming the dual fluorescence emission in both model systems. One of the immediate applications of this novel protein variant is in ornamental aquaculture. The dual fluorescence can serve as a unique marker or trait, enhancing the aesthetic appeal of aquatic species in ornamental settings.
Collapse
Affiliation(s)
| | - Luis Fernando Marins
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Rodrigo Volcan Almeida
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Daniela Volcan Almeida
- Departamento de Fisiologia e Farmacologia, Instituto de Biologia, Universidade Federal de Pelotas (UFPEL), Campus Universitário Capão do Leão s/n, CEP, Pelotas, RS, 96160-000, Brazil.
| |
Collapse
|
11
|
Porębska N, Ciura K, Chorążewska A, Zakrzewska M, Otlewski J, Opaliński Ł. Multivalent protein-drug conjugates - An emerging strategy for the upgraded precision and efficiency of drug delivery to cancer cells. Biotechnol Adv 2023; 67:108213. [PMID: 37453463 DOI: 10.1016/j.biotechadv.2023.108213] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/20/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
With almost 20 million new cases per year, cancer constitutes one of the most important challenges for public health systems. Unlike traditional chemotherapy, targeted anti-cancer strategies employ sophisticated therapeutics to precisely identify and attack cancer cells, limiting the impact of drugs on healthy cells and thereby minimizing the unwanted side effects of therapy. Protein drug conjugates (PDCs) are a rapidly growing group of targeted therapeutics, composed of a cancer-recognition factor covalently coupled to a cytotoxic drug. Several PDCs, mainly in the form of antibody-drug conjugates (ADCs) that employ monoclonal antibodies as cancer-recognition molecules, are used in the clinic and many PDCs are currently in clinical trials. Highly selective, strong and stable interaction of the PDC with the tumor marker, combined with efficient, rapid endocytosis of the receptor/PDC complex and its subsequent effective delivery to lysosomes, is critical for the efficacy of targeted cancer therapy with PDCs. However, the bivalent architecture of contemporary clinical PDCs is not optimal for tumor receptor recognition or PDCs internalization. In this review, we focus on multivalent PDCs, which represent a rapidly evolving and highly promising therapeutics that overcome most of the limitations of current bivalent PDCs, enhancing the precision and efficiency of drug delivery to cancer cells. We present an expanding set of protein scaffolds used to generate multivalent PDCs that, in addition to folding into well-defined multivalent molecular structures, enable site-specific conjugation of the cytotoxic drug to ensure PDC homogeneity. We provide an overview of the architectures of multivalent PDCs developed to date, emphasizing their efficacy in the targeted treatment of various cancers.
Collapse
Affiliation(s)
- Natalia Porębska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Krzysztof Ciura
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Aleksandra Chorążewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Małgorzata Zakrzewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Łukasz Opaliński
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland.
| |
Collapse
|
12
|
Joron K, Viegas JO, Haas-Neill L, Bier S, Drori P, Dvir S, Lim PSL, Rauscher S, Meshorer E, Lerner E. Fluorescent protein lifetimes report densities and phases of nuclear condensates during embryonic stem-cell differentiation. Nat Commun 2023; 14:4885. [PMID: 37573411 PMCID: PMC10423231 DOI: 10.1038/s41467-023-40647-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023] Open
Abstract
Fluorescent proteins (FP) are frequently used for studying proteins inside cells. In advanced fluorescence microscopy, FPs can report on additional intracellular variables. One variable is the local density near FPs, which can be useful in studying densities within cellular bio-condensates. Here, we show that a reduction in fluorescence lifetimes of common monomeric FPs reports increased levels of local densities. We demonstrate the use of this fluorescence-based variable to report the distribution of local densities within heterochromatin protein 1α (HP1α) in mouse embryonic stem cells (ESCs), before and after early differentiation. We find that local densities within HP1α condensates in pluripotent ESCs are heterogeneous and cannot be explained by a single liquid phase. Early differentiation, however, induces a change towards a more homogeneous distribution of local densities, which can be explained as a liquid-like phase. In conclusion, we provide a fluorescence-based method to report increased local densities and apply it to distinguish between homogeneous and heterogeneous local densities within bio-condensates.
Collapse
Affiliation(s)
- Khalil Joron
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Juliane Oliveira Viegas
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Liam Haas-Neill
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Department of Physics, University of Toronto, Toronto, ON, M5S 1A7, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Sariel Bier
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Paz Drori
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Shani Dvir
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Patrick Siang Lin Lim
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Sarah Rauscher
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Department of Physics, University of Toronto, Toronto, ON, M5S 1A7, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Eran Meshorer
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel.
- Edmond and Lily Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| |
Collapse
|
13
|
Ryan A, Shade O, Bardhan A, Bartnik A, Deiters A. Quantitative Analysis and Optimization of Site-Specific Protein Bioconjugation in Mammalian Cells. Bioconjug Chem 2022; 33:2361-2369. [PMID: 36459098 DOI: 10.1021/acs.bioconjchem.2c00451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Despite a range of covalent protein modifications, few techniques exist for quantification of protein bioconjugation in cells. Here, we describe a novel method for quantifying in cellulo protein bioconjugation through covalent bond formation with HaloTag. This approach utilizes unnatural amino acid (UAA) mutagenesis to selectively install a small and bioorthogonally reactive handle onto the surface of a protein. We utilized the fast kinetics and high selectivity of inverse electron-demand Diels-Alder cycloadditions to evaluate reactions of tetrazine phenylalanine (TetF) with strained trans-cyclooctene-chloroalkane (sTCO-CA) and trans-cyclooctene lysine (TCOK) with tetrazine-chloroalkane (Tet-CA). Following bioconjugation, the chloroalkane ligand is exposed for labeling by the HaloTag enzyme, allowing for straightforward quantification of bioconjugation via simple western blot analysis. We demonstrate the versatility of this tool for quickly and accurately determining the bioconjugation efficiency of different UAA/chloroalkane pairs and for different sites on different proteins of interest, including EGFP and the estrogen-related receptor ERRα.
Collapse
Affiliation(s)
- Amy Ryan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Olivia Shade
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Anirban Bardhan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Aleksander Bartnik
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
14
|
Melnik BS, Katina NS, Ryabova NA, Marchenkov VV, Melnik TN, Karuzina NE, Nemtseva EV. Relationship between Changes in the Protein Folding Pathway and the Process of Amyloid Formation: The Case of Bovine Carbonic Anhydrase II. Int J Mol Sci 2022; 23:ijms232314645. [PMID: 36498970 PMCID: PMC9735599 DOI: 10.3390/ijms232314645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Many proteins form amyloid fibrils only under conditions when the probability of transition from a native (structured, densely packed) to an intermediate (labile, destabilized) state is increased. It implies the assumption that some structural intermediates are more convenient for amyloid formation than the others. Hence, if a mutation affects the protein folding pathway, one should expect that this mutation could affect the rate of amyloid formation as well. In the current work, we have compared the effects of amino acid substitutions of bovine carbonic anhydrase II on its unfolding pathway and on its ability to form amyloids at acidic pH and an elevated temperature. Wild-type protein and four mutant forms (L78A, L139A, I208A, and M239A) were studied. We analyzed the change of the protein unfolding pathway by the time-resolved fluorescence technique and the process of amyloid formation by thioflavin T fluorescence assay and electron microscopy. It was revealed that I208A substitution accelerates amyloid formation and affects the structure of the late (molten globule-like)-intermediate state of carbonic anhydrase, whereas the other mutations slow down the growth of amyloids and have either no effect on the unfolding pathway (L78A, L139A) or alter the conformational states arising at the early unfolding stage (M239A).
Collapse
Affiliation(s)
- Bogdan S. Melnik
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
- Correspondence: ; Tel.: +7-(4967)-318271; Fax: +7-(4967)-318435
| | - Natalya S. Katina
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Natalya A. Ryabova
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Victor V. Marchenkov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Tatiana N. Melnik
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Natalya E. Karuzina
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Elena V. Nemtseva
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
| |
Collapse
|
15
|
Rajbongshi BK, Rafiq S, Bhowmik S, Sen P. Ultrafast Excited State Relaxation of a Model Green Fluorescent Protein Chromophore: Femtosecond Fluorescence and Transient Absorption Study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Implementation of a Practical Teaching Course on Protein Engineering. BIOLOGY 2022; 11:biology11030387. [PMID: 35336761 PMCID: PMC8944992 DOI: 10.3390/biology11030387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary Proteins are the workhorses of the cell. With different combinations of the 20 common amino acids and some modifications of these amino acids, proteins have evolved with a staggering array of new functions and capabilities due to Protein Engineering techniques. The practical course presented was offered to undergraduate bioengineering and chemical students at the Faculty of Engineering of the University of Porto (Portugal) and consists of sequential laboratory sessions to learn the basic skills related to the expression and purification of recombinant proteins in bacterial hosts. These experiments were successfully applied by students as all working groups were able to isolate a model recombinant protein (the enhanced green fluorescent protein) from a cell lysate containing a mixture of proteins and other biomolecules produced by an Escherichia coli strain and evaluate the performance of the extraction and purification procedures they learned. Abstract Protein Engineering is a highly evolved field of engineering aimed at developing proteins for specific industrial, medical, and research applications. Here, we present a practical teaching course to demonstrate fundamental techniques used to express, purify and analyze a recombinant protein produced in Escherichia coli—the enhanced green fluorescent protein (eGFP). The methodologies used for eGFP production were introduced sequentially over six laboratory sessions and included (i) bacterial growth, (ii) sonication (for cell lysis), (iii) affinity chromatography and dialysis (for eGFP purification), (iv) bicinchoninic acid (BCA) and fluorometry assays for total protein and eGFP quantification, respectively, and (v) sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) for qualitative analysis. All groups were able to isolate the eGFP from the cell lysate with purity levels up to 72%. Additionally, a mass balance analysis performed by the students showed that eGFP yields up to 46% were achieved at the end of the purification process following the adopted procedures. A sensitivity analysis was performed to pinpoint the most critical steps of the downstream processing.
Collapse
|
17
|
Kwon J, Elgawish MS, Shim S. Bleaching-Resistant Super-Resolution Fluorescence Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2101817. [PMID: 35088584 PMCID: PMC8948665 DOI: 10.1002/advs.202101817] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 01/07/2022] [Indexed: 05/08/2023]
Abstract
Photobleaching is the permanent loss of fluorescence after extended exposure to light and is a major limiting factor in super-resolution microscopy (SRM) that restricts spatiotemporal resolution and observation time. Strategies for preventing or overcoming photobleaching in SRM are reviewed developing new probes and chemical environments. Photostabilization strategies are introduced first, which are borrowed from conventional fluorescence microscopy, that are employed in SRM. SRM-specific strategies are then highlighted that exploit the on-off transitions of fluorescence, which is the key mechanism for achieving super-resolution, which are becoming new routes to address photobleaching in SRM. Off states can serve as a shelter from excitation by light or an exit to release a damaged probe and replace it with a fresh one. Such efforts in overcoming the photobleaching limits are anticipated to enhance resolution to molecular scales and to extend the observation time to physiological lifespans.
Collapse
Affiliation(s)
- Jiwoong Kwon
- Department of Biophysics and Biophysical ChemistryJohns Hopkins UniversityBaltimoreMD21205USA
| | - Mohamed Saleh Elgawish
- Department of ChemistryKorea UniversitySeoul02841Republic of Korea
- Medicinal Chemistry DepartmentFaculty of PharmacySuez Canal UniversityIsmailia41522Egypt
| | - Sang‐Hee Shim
- Department of ChemistryKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
18
|
Sulatskaya AI, Kosolapova AO, Bobylev AG, Belousov MV, Antonets KS, Sulatsky MI, Kuznetsova IM, Turoverov KK, Stepanenko OV, Nizhnikov AA. β-Barrels and Amyloids: Structural Transitions, Biological Functions, and Pathogenesis. Int J Mol Sci 2021; 22:11316. [PMID: 34768745 PMCID: PMC8582884 DOI: 10.3390/ijms222111316] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/17/2023] Open
Abstract
Insoluble protein aggregates with fibrillar morphology called amyloids and β-barrel proteins both share a β-sheet-rich structure. Correctly folded β-barrel proteins can not only function in monomeric (dimeric) form, but also tend to interact with one another-followed, in several cases, by formation of higher order oligomers or even aggregates. In recent years, findings proving that β-barrel proteins can adopt cross-β amyloid folds have emerged. Different β-barrel proteins were shown to form amyloid fibrils in vitro. The formation of functional amyloids in vivo by β-barrel proteins for which the amyloid state is native was also discovered. In particular, several prokaryotic and eukaryotic proteins with β-barrel domains were demonstrated to form amyloids in vivo, where they participate in interspecies interactions and nutrient storage, respectively. According to recent observations, despite the variety of primary structures of amyloid-forming proteins, most of them can adopt a conformational state with the β-barrel topology. This state can be intermediate on the pathway of fibrillogenesis ("on-pathway state"), or can be formed as a result of an alternative assembly of partially unfolded monomers ("off-pathway state"). The β-barrel oligomers formed by amyloid proteins possess toxicity, and are likely to be involved in the development of amyloidoses, thus representing promising targets for potential therapy of these incurable diseases. Considering rapidly growing discoveries of the amyloid-forming β-barrels, we may suggest that their real number and diversity of functions are significantly higher than identified to date, and represent only "the tip of the iceberg". Here, we summarize the data on the amyloid-forming β-barrel proteins, their physicochemical properties, and their biological functions, and discuss probable means and consequences of the amyloidogenesis of these proteins, along with structural relationships between these two widespread types of β-folds.
Collapse
Affiliation(s)
- Anna I. Sulatskaya
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia; (I.M.K.); (K.K.T.); (O.V.S.)
| | - Anastasiia O. Kosolapova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Alexander G. Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., 142290 Moscow, Russia;
| | - Mikhail V. Belousov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Maksim I. Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia;
| | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia; (I.M.K.); (K.K.T.); (O.V.S.)
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia; (I.M.K.); (K.K.T.); (O.V.S.)
| | - Olesya V. Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia; (I.M.K.); (K.K.T.); (O.V.S.)
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| |
Collapse
|
19
|
Ovejero JG, Armenia I, Serantes D, Veintemillas-Verdaguer S, Zeballos N, López-Gallego F, Grüttner C, de la Fuente JM, Puerto Morales MD, Grazu V. Selective Magnetic Nanoheating: Combining Iron Oxide Nanoparticles for Multi-Hot-Spot Induction and Sequential Regulation. NANO LETTERS 2021; 21:7213-7220. [PMID: 34410726 PMCID: PMC8431726 DOI: 10.1021/acs.nanolett.1c02178] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/11/2021] [Indexed: 05/11/2023]
Abstract
The contactless heating capacity of magnetic nanoparticles (MNPs) has been exploited in fields such as hyperthermia cancer therapy, catalysis, and enzymatic thermal regulation. Herein, we propose an advanced technology to generate multiple local temperatures in a single-pot reactor by exploiting the unique nanoheating features of iron oxide MNPs exposed to alternating magnetic fields (AMFs). The heating power of the MNPs depends on their magnetic features but also on the intensity and frequency conditions of the AMF. Using a mixture of diluted colloids of MNPs we were able to generate a multi-hot-spot reactor in which each population of MNPs can be selectively activated by adjusting the AMF conditions. The maximum temperature reached at the surface of each MNP was registered using independent fluorescent thermometers that mimic the molecular link between enzymes and MNPs. This technology paves the path for the implementation of a selective regulation of multienzymatic reactions.
Collapse
Affiliation(s)
- Jesus G. Ovejero
- Institute
of Materials Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz
3, 28049 Madrid, Spain
| | - Ilaria Armenia
- BioNanoSurf
Group, Aragon Nanoscience and Materials Institute (INMA-CSIC-UNIZAR),
Edificio I+D, Mariano
Esquillor Gómez, 50018 Zaragoza, Spain
| | - David Serantes
- Applied
Physics Department and Instituto de Investigacións Tecnolóxicas, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | | | - Nicoll Zeballos
- Heterogeneous
Biocatalysis Laboratory, Center for Cooperative
Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology
Alliance, Paseo de Miramón
194, 20014 Donostia-San
Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Fernando López-Gallego
- Heterogeneous
Biocatalysis Laboratory, Center for Cooperative
Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology
Alliance, Paseo de Miramón
194, 20014 Donostia-San
Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Cordula Grüttner
- Micromod,
Partikeltechnologie GmbH, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany
| | - Jesús M. de la Fuente
- BioNanoSurf
Group, Aragon Nanoscience and Materials Institute (INMA-CSIC-UNIZAR),
Edificio I+D, Mariano
Esquillor Gómez, 50018 Zaragoza, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - María del Puerto Morales
- Institute
of Materials Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz
3, 28049 Madrid, Spain
| | - Valeria Grazu
- BioNanoSurf
Group, Aragon Nanoscience and Materials Institute (INMA-CSIC-UNIZAR),
Edificio I+D, Mariano
Esquillor Gómez, 50018 Zaragoza, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain
| |
Collapse
|
20
|
Bogorodskiy A, Okhrimenko I, Maslov I, Maliar N, Burkatovskii D, von Ameln F, Schulga A, Jakobs P, Altschmied J, Haendeler J, Katranidis A, Sorokin I, Mishin A, Gordeliy V, Büldt G, Voos W, Gensch T, Borshchevskiy V. Accessing Mitochondrial Protein Import in Living Cells by Protein Microinjection. Front Cell Dev Biol 2021; 9:698658. [PMID: 34307376 PMCID: PMC8292824 DOI: 10.3389/fcell.2021.698658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/15/2021] [Indexed: 01/06/2023] Open
Abstract
Mitochondrial protein biogenesis relies almost exclusively on the expression of nuclear-encoded polypeptides. The current model postulates that most of these proteins have to be delivered to their final mitochondrial destination after their synthesis in the cytoplasm. However, the knowledge of this process remains limited due to the absence of proper experimental real-time approaches to study mitochondria in their native cellular environment. We developed a gentle microinjection procedure for fluorescent reporter proteins allowing a direct non-invasive study of protein transport in living cells. As a proof of principle, we visualized potential-dependent protein import into mitochondria inside intact cells in real-time. We validated that our approach does not distort mitochondrial morphology and preserves the endogenous expression system as well as mitochondrial protein translocation machinery. We observed that a release of nascent polypeptides chains from actively translating cellular ribosomes by puromycin strongly increased the import rate of the microinjected pre-protein. This suggests that a substantial amount of mitochondrial translocase complexes was involved in co-translational protein import of endogenously expressed pre-proteins. Our protein microinjection method opens new possibilities to study the role of mitochondrial protein import in cell models of various pathological conditions as well as aging processes.
Collapse
Affiliation(s)
- Andrey Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ivan Okhrimenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ivan Maslov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Nina Maliar
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Dmitrii Burkatovskii
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Florian von Ameln
- Environmentally-Induced Cardiovascular Degeneration, Central Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, University Hospital and Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- IUF–Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Alexey Schulga
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Philipp Jakobs
- Environmentally-Induced Cardiovascular Degeneration, Central Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, University Hospital and Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Joachim Altschmied
- Environmentally-Induced Cardiovascular Degeneration, Central Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, University Hospital and Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- IUF–Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Judith Haendeler
- Environmentally-Induced Cardiovascular Degeneration, Central Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, University Hospital and Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Alexandros Katranidis
- Institute of Biological Information Processing (IBI-6: Cellular Structural Biology), Forschungszentrum Jülich, Jülich, Germany
| | - Ivan Sorokin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexey Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Valentin Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Georg Büldt
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Wolfgang Voos
- Institute of Biochemistry and Molecular Biology (IBMB), Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Thomas Gensch
- Institute of Biological Information Processing (IBI-1: Molecular and Cellular Physiology), Forschungszentrum Jülich, Jülich, Germany
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
21
|
Morikawa TJ, Nishiyama M, Yoshizawa K, Fujita H, Watanabe TM. Glycine insertion modulates the fluorescence properties of Aequorea victoria green fluorescent protein and its variants in their ambient environment. Biophys Physicobiol 2021; 18:145-158. [PMID: 34178565 PMCID: PMC8214926 DOI: 10.2142/biophysico.bppb-v18.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/27/2021] [Indexed: 12/04/2022] Open
Abstract
The green fluorescent protein (GFP) derived from Pacific Ocean jellyfish is an essential tool in biology. GFP-solvent interactions can modulate the fluorescent property of GFP. We previously reported that glycine insertion is an effective mutation in the yellow variant of GFP, yellow fluorescent protein (YFP). Glycine insertion into one of the β-strands comprising the barrel structure distorts its structure, allowing water molecules to invade near the chromophore, enhancing hydrostatic pressure or solution hydrophobicity sensitivity. However, the underlying mechanism of how glycine insertion imparts environmental sensitivity to YFP has not been elucidated yet. To unveil the relationship between fluorescence and β-strand distortion, we investigated the effects of glycine insertion on the dependence of the optical properties of GFP variants named enhanced-GFP (eGFP) and its yellow (eYFP) and cyan (eCFP) variants with respect to pH, temperature, pressure, and hydrophobicity. Our results showed that the quantum yield decreased depending on the number of inserted glycines in all variants, and the dependence on pH, temperature, pressure, and hydrophobicity was altered, indicating the invasion of water molecules into the β-barrel. Peak shifts in the emission spectrum were observed in glycine-inserted eGFP, suggesting a change of the electric state in the excited chromophore. A comparative investigation of the spectral shift among variants under different conditions demonstrated that glycine insertion rearranged the hydrogen bond network between His148 and the chromophore. The present results provide important insights for further understanding the fluorescence mechanism in GFPs and suggest that glycine insertion could be a potent approach for investigating the relationship between water molecules and the intra-protein chromophore.
Collapse
Affiliation(s)
- Takamitsu J Morikawa
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo 650-0047, Japan.,Graduate School of Frontier Bioscience, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masayoshi Nishiyama
- Department of Physics, Kindai University, Higashiosaka, Osaka 577-8502, Japan
| | - Keiko Yoshizawa
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo 650-0047, Japan
| | - Hideaki Fujita
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo 650-0047, Japan.,Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Tomonobu M Watanabe
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo 650-0047, Japan.,Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
22
|
Augustine G, Aarthy M, Thiagarajan H, Selvaraj S, Kamini NR, Shanmugam G, Ayyadurai N. Self-Assembly and Mechanical Properties of Engineered Protein Based Multifunctional Nanofiber for Accelerated Wound Healing. Adv Healthc Mater 2021; 10:e2001832. [PMID: 33480482 DOI: 10.1002/adhm.202001832] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/05/2020] [Indexed: 12/15/2022]
Abstract
The present work reports a new route for preparing tunable multifunctional biomaterials through the combination of synthetic biology and material chemistry. Genetically encoded catechol moiety is evolved in a nanofiber mat with defined surface and secondary reactive functional chemistry, which promotes self-assembly and wet adhesion property of the protein. The catechol moiety is further exploited for the controlled release of boric acid that provides a congenial cellular microenvironment for accelerated wound healing. The presence of 3,4-dihydroxyphenylalanine in the nanofiber mat act as a stimulus to trigger cell proliferation, migration, and vascularization to accelerate wound healing. Electron paramagnetic resonance, NMR, FTIR, and circular dichroism spectroscopy confirm the structural integrity, antioxidant property, and controlled release of boric acid. Fluorescent and scanning electron microscopy reveals the 3D architecture of nanofiber mat, which favors fibroblast growth, endothelial cell attachment, and tube formation, which are the desirable properties of a wound-healing material. Animal studies in the murine wound healing model assert that the multifunctional biomaterial significantly improve re-epithelialization and accelerate wound closure.
Collapse
Affiliation(s)
- George Augustine
- Department of Biochemistry and Biotechnology Council of Scientific and Industrial Research (CSIR)—Central Leather Research Institute (CLRI) Chennai 600020 India
| | - Mayilvahanan Aarthy
- Department of Biochemistry and Biotechnology Council of Scientific and Industrial Research (CSIR)—Central Leather Research Institute (CLRI) Chennai 600020 India
| | - Hemalatha Thiagarajan
- Department of Biochemistry and Biotechnology Council of Scientific and Industrial Research (CSIR)—Central Leather Research Institute (CLRI) Chennai 600020 India
| | - Sowmya Selvaraj
- Inorganic and Physical Chemistry Laboratory Council of Scientific and Industrial Research—Central Leather Research Institute Adyar Chennai 600020 India
| | - Numbi Ramdu Kamini
- Department of Biochemistry and Biotechnology Council of Scientific and Industrial Research (CSIR)—Central Leather Research Institute (CLRI) Chennai 600020 India
| | - Ganesh Shanmugam
- Department of Organic and Bioorganic chemistry Council of Scientific and Industrial Research (CSIR)—Central Leather Research Institute (CLRI) Chennai 600020 India
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology Council of Scientific and Industrial Research (CSIR)—Central Leather Research Institute (CLRI) Chennai 600020 India
| |
Collapse
|
23
|
Han Q, Ryan TM, Rosado CJ, Drummond CJ, Greaves TL. Effect of ionic liquids on the fluorescence properties and aggregation of superfolder green fluorescence protein. J Colloid Interface Sci 2021; 591:96-105. [PMID: 33596505 DOI: 10.1016/j.jcis.2021.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/24/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Proteins generally tend to aggregate with less desirable properties in numerous solvents, which is one of the major challenges in the development of solvents for functional proteins. This work aims to utilize fluorescence spectroscopy and small angle X-ray scattering (SAXS) to understand the effects of ionic liquids (ILs) on the fluorescence and aggregation behavior of superfolder green fluorescent protein (sfGFP). The studied ILs consisted of four different anions coupled with primary, tertiary and quaternary ammonium cations. The results show that the chromophore fluorescence was generally maintained in 1 mol% IL-water mixtures, then decreased with increasing IL concentration. We primarily employed the pseudo-radius of gyration (pseudo-Rg) to evaluate sfGFP aggregation. The sfGFP was less aggregated with nitrate-based ILs compared to in buffer, and more aggregated in the mesylate-based ILs. Further, we show that the polyol additives of glycerol and glucose in IL-water mixtures slightly decreased the sfGFP propensity to aggregate. Size-exclusion chromatography (SEC)-SAXS was used to characterize the monomeric sfGFP in ethylammonium nitrate (EAN) and triethylammonium mesylate (TEAMs)-water mixtures. The presence of 1 mol% TEAMs maintained the sfGFP fluorescence, promoted the compact structure, but slightly increased the amount of large aggregates, which contrasted with that of EAN.
Collapse
Affiliation(s)
- Qi Han
- School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Timothy M Ryan
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Carlos J Rosado
- Department of Diabetes, Central Clinical School, Monash University, VIC 3004, Australia
| | - Calum J Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Tamar L Greaves
- School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| |
Collapse
|
24
|
Liput DJ, Nguyen TA, Augustin SM, Lee JO, Vogel SS. A Guide to Fluorescence Lifetime Microscopy and Förster's Resonance Energy Transfer in Neuroscience. CURRENT PROTOCOLS IN NEUROSCIENCE 2020; 94:e108. [PMID: 33232577 PMCID: PMC8274369 DOI: 10.1002/cpns.108] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fluorescence lifetime microscopy (FLIM) and Förster's resonance energy transfer (FRET) are advanced optical tools that neuroscientists can employ to interrogate the structure and function of complex biological systems in vitro and in vivo using light. In neurobiology they are primarily used to study protein-protein interactions, to study conformational changes in protein complexes, and to monitor genetically encoded FRET-based biosensors. These methods are ideally suited to optically monitor changes in neurons that are triggered optogenetically. Utilization of this technique by neuroscientists has been limited, since a broad understanding of FLIM and FRET requires familiarity with the interactions of light and matter on a quantum mechanical level, and because the ultra-fast instrumentation used to measure fluorescent lifetimes and resonance energy transfer are more at home in a physics lab than in a biology lab. In this overview, we aim to help neuroscientists overcome these obstacles and thus feel more comfortable with the FLIM-FRET method. Our goal is to aid researchers in the neuroscience community to achieve a better understanding of the fundamentals of FLIM-FRET and encourage them to fully leverage its powerful ability as a research tool. Published 2020. U.S. Government.
Collapse
Affiliation(s)
- Daniel J. Liput
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Tuan A. Nguyen
- Laboratory of Biophotonics and Quantum Biology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Shana M. Augustin
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Jeong Oen Lee
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Steven S. Vogel
- Laboratory of Biophotonics and Quantum Biology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
- Corresponding author:
| |
Collapse
|
25
|
Campbell BC, Nabel EM, Murdock MH, Lao-Peregrin C, Tsoulfas P, Blackmore MG, Lee FS, Liston C, Morishita H, Petsko GA. mGreenLantern: a bright monomeric fluorescent protein with rapid expression and cell filling properties for neuronal imaging. Proc Natl Acad Sci U S A 2020; 117:30710-30721. [PMID: 33208539 PMCID: PMC7720163 DOI: 10.1073/pnas.2000942117] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Although ubiquitous in biological studies, the enhanced green and yellow fluorescent proteins (EGFP and EYFP) were not specifically optimized for neuroscience, and their underwhelming brightness and slow expression in brain tissue limits the fidelity of dendritic spine analysis and other indispensable techniques for studying neurodevelopment and plasticity. We hypothesized that EGFP's low solubility in mammalian systems must limit the total fluorescence output of whole cells, and that improving folding efficiency could therefore translate into greater brightness of expressing neurons. By introducing rationally selected combinations of folding-enhancing mutations into GFP templates and screening for brightness and expression rate in human cells, we developed mGreenLantern, a fluorescent protein having up to sixfold greater brightness in cells than EGFP. mGreenLantern illuminates neurons in the mouse brain within 72 h, dramatically reducing lag time between viral transduction and imaging, while its high brightness improves detection of neuronal morphology using widefield, confocal, and two-photon microscopy. When virally expressed to projection neurons in vivo, mGreenLantern fluorescence developed four times faster than EYFP and highlighted long-range processes that were poorly detectable in EYFP-labeled cells. Additionally, mGreenLantern retains strong fluorescence after tissue clearing and expansion microscopy, thereby facilitating superresolution and whole-brain imaging without immunohistochemistry. mGreenLantern can directly replace EGFP/EYFP in diverse systems due to its compatibility with GFP filter sets, recognition by EGFP antibodies, and excellent performance in mouse, human, and bacterial cells. Our screening and rational engineering approach is broadly applicable and suggests that greater potential of fluorescent proteins, including biosensors, could be unlocked using a similar strategy.
Collapse
Affiliation(s)
- Benjamin C Campbell
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021;
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021
| | - Elisa M Nabel
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Mitchell H Murdock
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021
| | - Cristina Lao-Peregrin
- Department of Psychiatry, Weill Cornell Medicine, Cornell University, New York, NY 10021
| | - Pantelis Tsoulfas
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53211
| | - Murray G Blackmore
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medicine, Cornell University, New York, NY 10021
- Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, Cornell University, New York, NY 10021
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10021
| | - Conor Liston
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021
- Department of Psychiatry, Weill Cornell Medicine, Cornell University, New York, NY 10021
- Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, Cornell University, New York, NY 10021
| | - Hirofumi Morishita
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Gregory A Petsko
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021;
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021
| |
Collapse
|
26
|
Gieniec M, Siwek J, Oleszkiewicz T, Maćkowska K, Klimek-Chodacka M, Grzebelus E, Baranski R. Real-time detection of somatic hybrid cells during electrofusion of carrot protoplasts with stably labelled mitochondria. Sci Rep 2020; 10:18811. [PMID: 33139848 PMCID: PMC7608668 DOI: 10.1038/s41598-020-75983-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
Abstract
Somatic hybridisation in the carrot, as in other plant species, enables the development of novel plants with unique characteristics. This process can be induced by the application of electric current to isolated protoplasts, but such electrofusion requires an effective hybrid cell identification method. This paper describes the non-toxic fluorescent protein (FP) tagging of protoplasts which allows discrimination of fusion components and identification of hybrids in real-time during electrofusion. One of four FPs: cyan (eCFP), green (sGFP), yellow (eYFP) or the mCherry variant of red FP (RFP), with a fused mitochondrial targeting sequence, was introduced to carrot cell lines of three varieties using Agrobacterium-mediated transformation. After selection, a set of carrot callus lines with either GFP, YFP or RFP-labelled mitochondria that showed stable fluorescence served as protoplast sources. Various combinations of direct current (DC) parameters on protoplast integrity and their ability to form hybrid cells were assessed during electrofusion. The protoplast response and hybrid cell formation depended on DC voltage and pulse time, and varied among protoplast sources. Heterofusants (GFP + RFP or YFP + RFP) were identified by detection of a dual-colour fluorescence. This approach enabled, for the first time, a comprehensive assessment of the carrot protoplast response to the applied electric field conditions as well as identification of the DC parameters suitable for hybrid formation, and an estimation of the electrofusion success rate by performing real-time observations of protoplast fluorescence.
Collapse
Affiliation(s)
- Miron Gieniec
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, AL. 29 Listopada 54, 31-425, Krakow, Poland
| | - Julianna Siwek
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, AL. 29 Listopada 54, 31-425, Krakow, Poland
| | - Tomasz Oleszkiewicz
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, AL. 29 Listopada 54, 31-425, Krakow, Poland
| | - Katarzyna Maćkowska
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, AL. 29 Listopada 54, 31-425, Krakow, Poland
| | - Magdalena Klimek-Chodacka
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, AL. 29 Listopada 54, 31-425, Krakow, Poland
| | - Ewa Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, AL. 29 Listopada 54, 31-425, Krakow, Poland
| | - Rafal Baranski
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, AL. 29 Listopada 54, 31-425, Krakow, Poland.
| |
Collapse
|
27
|
Prabhu D, Rajamanikandan S, Anusha SB, Chowdary MS, Veerapandiyan M, Jeyakanthan J. In silico Functional Annotation and Characterization of Hypothetical Proteins from Serratia marcescens FGI94. BIOL BULL+ 2020; 47:319-331. [PMID: 32834707 PMCID: PMC7394047 DOI: 10.1134/s1062359020300019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 01/16/2023]
Abstract
Serratia marcescens, rod-shaped Gram-negative bacteria is classified as an opportunistic pathogen in the family Enterobacteriaceae. It causes a wide variety of infections in humans, including urinary, respiratory, ocular lens and ear infections, osteomyelitis, endocarditis, meningitis and septicemia. Unfortunately, over the past decade, antibiotic resistance has become a serious health care issue; the effective means to control and dissemination of S. marcescens resistance is the need of hour. The whole genome sequencing of S. marcescens FGI94 strain contains 4434 functional proteins, among which 690 (15.56%) proteins were classified under hypothetical. In the present study, we applied the power of various bioinformatics tools on the basis of protein family comparison, motifs, functional properties of amino acids and genome context to assign the possible functions for the HPs. The pseudo sequences (protein sequence that contain ≤100 amino acid residues) are eliminated from the study. Although we have successfully predicted the function for 483 proteins, we were able to infer the high level of confidence only for 108 proteins. The predicted HPs were classified into various classes such as enzymes, transporters, binding proteins, cell division, cell regulatory and other proteins. The outcome of the study could be helpful to understand the molecular mechanism in bacterial pathogenesis and also provide an insight into the identification of potential targets for drug and vaccine development.
Collapse
Affiliation(s)
- D Prabhu
- Department of Bioinformatics, Alagappa University, Science Campus, 630004 Karaikudi, Tamil Nadu India
| | - S Rajamanikandan
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, 560064 Yelahanka, Bengaluru India
| | - S Baby Anusha
- Department of Bioinformatics, Sathyabama University, 600119 Chennai, Tamil Nadu India
| | - M Sushma Chowdary
- Department of Bioinformatics, Sathyabama University, 600119 Chennai, Tamil Nadu India
| | - M Veerapandiyan
- Department of Bioinformatics, Alagappa University, Science Campus, 630004 Karaikudi, Tamil Nadu India
| | - J Jeyakanthan
- Department of Bioinformatics, Alagappa University, Science Campus, 630004 Karaikudi, Tamil Nadu India
| |
Collapse
|
28
|
Hellner B, Stegmann AE, Pushpavanam K, Bailey MJ, Baneyx F. Phase Control of Nanocrystalline Inclusions in Bioprecipitated Titania with a Panel of Mutant Silica-Binding Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8503-8510. [PMID: 32614593 DOI: 10.1021/acs.langmuir.0c01108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The biomimetic route to inorganic synthesis presents an opportunity to produce complex materials with superior properties under ambient conditions and from nontoxic precursors. While there has been significant progress in using solid-binding peptides (SBPs), proteins, and organisms to produce a variety of inorganic and hybrid structures, it has been more challenging to understand the interplay of solution conditions and solid-binding peptide (SBP) sequence, structure, and self-association on synthetic outcomes. Here, we show that fusing the Car9 silica-binding peptide-but not the silaffin-derived R5 peptide-to superfolder green fluorescent protein (sfGFP) enhances the ability of micromolar concentrations of protein to induce rapid titania (TiO2) precipitation from acidified solutions of tetrakis(di-lactato)-oxo-titanate (TiBALDH). TiO2 is produced stoichiometrically and although predominantly amorphous, contains nanosized anatase and monoclinic TiO2(B) inclusions. Remarkably, the phase of these nanocrystallites can be tuned from about 80% TiO2(B) to about 65% anatase by using Car9 mutants impaired in their ability to drive the formation of higher-order sfGFP-Car9 oligomers. Our results suggest that the presentation of multiple basic side chains in an extended plane formed by SBP self-association is critical to template the formation of monoclinic crystallites and underscore the subtle influence that single or dual substitutions in dodecameric SBPs can exert on the yield and crystallinity of biomineralized inorganics.
Collapse
Affiliation(s)
- Brittney Hellner
- Department of Chemical Engineering, University of Washington, P.O. Box 351750, Seattle, Washington 98195, United States
| | - Amy E Stegmann
- Department of Chemical Engineering and Molecular Engineering & Sciences Institute, University of Washington, P.O. Box 351750, Seattle, Washington 98195, United States
| | - Karthik Pushpavanam
- Department of Chemical Engineering, University of Washington, P.O. Box 351750, Seattle, Washington 98195, United States
| | - Matthew J Bailey
- Department of Chemical Engineering, University of Washington, P.O. Box 351750, Seattle, Washington 98195, United States
| | - François Baneyx
- Department of Chemical Engineering, University of Washington, P.O. Box 351750, Seattle, Washington 98195, United States
| |
Collapse
|
29
|
Rodriguez-Alvarez M, Kim D, Khobta A. EGFP Reporters for Direct and Sensitive Detection of Mutagenic Bypass of DNA Lesions. Biomolecules 2020; 10:biom10060902. [PMID: 32545792 PMCID: PMC7357151 DOI: 10.3390/biom10060902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
The sustainment of replication and transcription of damaged DNA is essential for cell survival under genotoxic stress; however, the damage tolerance of these key cellular functions comes at the expense of fidelity. Thus, translesion DNA synthesis (TLS) over damaged nucleotides is a major source of point mutations found in cancers; whereas erroneous bypass of damage by RNA polymerases may contribute to cancer and other diseases by driving accumulation of proteins with aberrant structure and function in a process termed “transcriptional mutagenesis” (TM). Here, we aimed at the generation of reporters suited for direct detection of miscoding capacities of defined types of DNA modifications during translesion DNA or RNA synthesis in human cells. We performed a systematic phenotypic screen of 25 non-synonymous base substitutions in a DNA sequence encoding a functionally important region of the enhanced green fluorescent protein (EGFP). This led to the identification of four loss-of-fluorescence mutants, in which any ulterior base substitution at the nucleotide affected by the primary mutation leads to the reversal to a functional EGFP. Finally, we incorporated highly mutagenic abasic DNA lesions at the positions of primary mutations and demonstrated a high sensitivity of detection of the mutagenic DNA TLS and TM in this system.
Collapse
Affiliation(s)
- Marta Rodriguez-Alvarez
- Unit “Responses to DNA Lesions", Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55131 Mainz, Germany;
| | - Daria Kim
- Novosibirsk State University, 1 Pirogova St., 630090 Novosibirsk, Russia;
- Laboratory of Genome and Protein Engineering, SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Andriy Khobta
- Unit “Responses to DNA Lesions", Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55131 Mainz, Germany;
- Correspondence:
| |
Collapse
|
30
|
Glukhova KA, Klyashtorny VG, Uversky VN, Melnik BS. Natural container for drug storage and delivery: chimeric GFP with embedded xenogenic peptide. J Biomol Struct Dyn 2020; 39:4192-4197. [PMID: 32425113 DOI: 10.1080/07391102.2020.1771423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | | | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russian Federation
| | - Bogdan S Melnik
- Institute of Protein research RAS, Pushchino, Russian Federation
| |
Collapse
|
31
|
Miller RC, Aplin CP, Kay TM, Leighton R, Libal C, Simonet R, Cembran A, Heikal AA, Boersma AJ, Sheets ED. FRET Analysis of Ionic Strength Sensors in the Hofmeister Series of Salt Solutions Using Fluorescence Lifetime Measurements. J Phys Chem B 2020; 124:3447-3458. [PMID: 32267692 DOI: 10.1021/acs.jpcb.9b10498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Living cells are complex, crowded, and dynamic and continually respond to environmental and intracellular stimuli. They also have heterogeneous ionic strength with compartmentalized variations in both intracellular concentrations and types of ions. These challenges would benefit from the development of quantitative, noninvasive approaches for mapping the heterogeneous ionic strength fluctuations in living cells. Here, we investigated a class of recently developed ionic strength sensors that consists of mCerulean3 (a cyan fluorescent protein) and mCitrine (a yellow fluorescent protein) tethered via a linker made of two charged α-helices and a flexible loop. The two helices are designed to bear opposite charges, which is hypothesized to increase the ionic screening and therefore a larger intermolecular distance. In these protein constructs, mCerulean3 and mCitrine act as a donor-acceptor pair undergoing Förster resonance energy transfer (FRET) that is dependent on both the linker amino acids and the environmental ionic strength. Using time-resolved fluorescence of the donor (mCerulean3), we determined the sensitivity of the energy transfer efficiencies and the donor-acceptor distances of these sensors at variable concentrations of the Hofmeister series of salts (KCl, LiCl, NaCl, NaBr, NaI, Na2SO4). As controls, similar measurements were carried out on the FRET-incapable, enzymatically cleaved counterparts of these sensors as well as a construct designed with two electrostatically neutral α-helices (E6G2). Our results show that the energy transfer efficiencies of these sensors are sensitive to both the linker amino acid sequence and the environmental ionic strength, whereas the sensitivity of these sensors to the identity of the dissolved ions of the Hofmeister series of salts seems limited. We also developed a theoretical framework to explain the observed trends as a function of the ionic strength in terms of the Debye screening of the electrostatic interaction between the two charged α-helices in the linker region. These controlled solution studies represent an important step toward the development of rationally designed FRET-based environmental sensors while offering different models for calculating the energy transfer efficiency using time-resolved fluorescence that is compatible with future in vivo studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Arnold J Boersma
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056 Aachen, Germany
| | | |
Collapse
|
32
|
Zamora RA, Fuentes-Lemus E, Barrias P, Herrera-Morande A, Mura F, Guixé V, Castro-Fernandez V, Rojas T, López-Alarcón C, Aguirre P, Rivas-Aravena A, Aspée A. Free radicals derived from γ-radiolysis of water and AAPH thermolysis mediate oxidative crosslinking of eGFP involving Tyr-Tyr and Tyr-Cys bonds: the fluorescence of the protein is conserved only towards peroxyl radicals. Free Radic Biol Med 2020; 150:40-52. [PMID: 32081747 DOI: 10.1016/j.freeradbiomed.2020.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/29/2020] [Accepted: 02/08/2020] [Indexed: 10/25/2022]
Abstract
The enhanced green fluorescent protein (eGFP) is one of the most employed variants of fluorescent proteins. Nonetheless little is known about the oxidative modifications that this protein can undergo in the cellular milieu. The present work explored the consequences of the exposure of eGFP to free radicals derived from γ-radiolysis of water, and AAPH thermolysis. Results demonstrated that protein crosslinking was the major pathway of modification of eGFP towards these oxidants. As evidenced by HPLC-FLD and UPLC-MS, eGFP crosslinking would occur as consequence of a mixture of pathways including the recombination of two protein radicals, as well as secondary reactions between nucleophilic residues (e.g. lysine, Lys) with protein carbonyls. The first mechanism was supported by detection of dityrosine and cysteine-tyrosine bonds, whilst evidence of formation of protein carbonyls, along with Lys consumption, would suggest the formation and participation of Schiff bases in the crosslinking process. Despite of the degree of oxidative modifications elicited by peroxyl radicals (ROO•) generated from the thermolysis of AAPH, and free radicals generated from γ-radiolysis of water, that were evidenced at amino acidic level, only the highest dose of γ-irradiation (10 kGy) triggered significant changes in the secondary structure of eGFP. These results were accompanied by the complete loss of fluorescence arising from the chromophore unit of eGFP in γ-irradiation-treated samples, whereas it was conserved in ROO•-treated samples. These data have potential biological significance, as this fluorescent protein is widely employed to study interactions between cytosolic proteins; consequently, the formation of fluorescent eGFP dimers could act as artifacts in such experiments.
Collapse
Affiliation(s)
- Ricardo A Zamora
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40 Correo 33, Santiago, Chile
| | - Eduardo Fuentes-Lemus
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40 Correo 33, Santiago, Chile
| | - Pablo Barrias
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40 Correo 33, Santiago, Chile
| | - Alejandra Herrera-Morande
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40 Correo 33, Santiago, Chile; Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Francisco Mura
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40 Correo 33, Santiago, Chile
| | - Victoria Guixé
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | - Tomás Rojas
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40 Correo 33, Santiago, Chile
| | - Camilo López-Alarcón
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Aguirre
- Comisión Chilena de Energía Nuclear, Departamento de Tecnología Nucleares, Nueva Bilbao 12501, Santiago, 7600713, Chile
| | - Andrea Rivas-Aravena
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Providencia, Santiago, 7510157, Chile.
| | - Alexis Aspée
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40 Correo 33, Santiago, Chile.
| |
Collapse
|
33
|
|
34
|
Rojano-Nisimura AM, Haning K, Janovsky J, Vasquez KA, Thompson JP, Contreras LM. Codon Selection Affects Recruitment of Ribosome-Associating Factors during Translation. ACS Synth Biol 2020; 9:329-342. [PMID: 31769967 DOI: 10.1021/acssynbio.9b00344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An intriguing aspect of protein synthesis is how cotranslational events are managed inside the cell. In this study, we developed an in vivo bimolecular fluorescence complementation assay coupled to SecM stalling (BiFC-SecM) to study how codon usage influences the interactions of ribosome-associating factors that occur cotranslationally. We profiled ribosomal associations of a number of proteins, and observed differential association of chaperone proteins TF, DnaK, GroEL, and translocation factor Ffh as a result of introducing synonymous codon substitutions that change the affinity of the translating sequence to the ribosomal anti-Shine-Dalgarno (aSD) sequence. The use of pausing sequences within proteins regulates their transit within the translating ribosome. Our results indicate that the dynamics between cellular factors and the new polypeptide chain are affected by how codon composition is designed. Furthermore, associating factors may play a role in processes including protein quality control (folding and degradation) and cellular respiration.
Collapse
Affiliation(s)
- Alejandra M. Rojano-Nisimura
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Stop A4800, Austin, Texas 78712, United States
| | - Katie Haning
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Justin Janovsky
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Stop A4800, Austin, Texas 78712, United States
| | - Kevin A. Vasquez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Jeffrey P. Thompson
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Lydia M. Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| |
Collapse
|
35
|
Maynard SA, Triller A. Inhibitory Receptor Diffusion Dynamics. Front Mol Neurosci 2019; 12:313. [PMID: 31920541 PMCID: PMC6930922 DOI: 10.3389/fnmol.2019.00313] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/04/2019] [Indexed: 11/13/2022] Open
Abstract
The dynamic modulation of receptor diffusion-trapping at inhibitory synapses is crucial to synaptic transmission, stability, and plasticity. In this review article, we will outline the progression of understanding of receptor diffusion dynamics at the plasma membrane. We will discuss how regulation of reversible trapping of receptor-scaffold interactions in combination with theoretical modeling approaches can be used to quantify these chemical interactions at the postsynapse of living cells.
Collapse
Affiliation(s)
- Stephanie A Maynard
- Institute of Biology of Ecole Normale Supérieure (IBENS), PSL Research University, CNRS, Inserm, Paris, France
| | - Antoine Triller
- Institute of Biology of Ecole Normale Supérieure (IBENS), PSL Research University, CNRS, Inserm, Paris, France
| |
Collapse
|
36
|
Complete inclusion of bioactive molecules and particles in polydimethylsiloxane: a straightforward process under mild conditions. Sci Rep 2019; 9:17575. [PMID: 31772250 PMCID: PMC6879495 DOI: 10.1038/s41598-019-54155-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/17/2019] [Indexed: 11/18/2022] Open
Abstract
By applying a slow curing process, we show that biomolecules can be incorporated via a simple process as liquid stable phases inside a polydimethylsiloxane (PDMS) matrix. The process is carried out under mild conditions with regards to temperature, pH and relative humidity, and is thus suitable for application to biological entities. Fluorescence and enzymatic activity measurements show that the biochemical properties of the proteins and enzyme tested are preserved, without loss due to adsorption at the liquid-polymer interface. Protected from external stimuli by the PDMS matrix, these soft liquid composite materials are new tools of interest for robotics, microfluidics, diagnostics and chemical microreactors.
Collapse
|
37
|
Tinoco A, Antunes E, Martins M, Gonçalves F, Gomes AC, Silva C, Cavaco-Paulo A, Ribeiro A. Fusion proteins with chromogenic and keratin binding modules. Sci Rep 2019; 9:14044. [PMID: 31575960 PMCID: PMC6773707 DOI: 10.1038/s41598-019-50283-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/02/2019] [Indexed: 01/30/2023] Open
Abstract
The present research relates to a fusion protein comprising a chromogenic blue ultramarine protein (UM) bound to a keratin-based peptide (KP). The KP-UM fusion protein explores UM chromogenic nature together with KP affinity towards hair. For the first time a fusion protein with a chromogenic nature is explored as a hair coloring agent. The KP-UM protein colored overbleached hair, being the color dependent on the formulation polarity. The protein was able to bind to the hair cuticle and even to penetrate throughout the hair fibre. Molecular dynamics studies demonstrated that the interaction between the KP-UM protein and the hair was mediated by the KP sequence. All the formulations recovered the mechanical properties of overbleached hair and KP-UM proved to be safe when tested in human keratinocytes. Although based on a chromogenic non-fluorescent protein, the KP-UM protein presented a photoswitch phenomenon, changing from chromogenic to fluorescent depending on the wavelength selected for excitation. KP-UM protein shows the potential to be incorporated in new eco-friendly cosmetic formulations for hair coloration, decreasing the use of traditional dyes and reducing its environmental impact.
Collapse
Affiliation(s)
- Ana Tinoco
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Egipto Antunes
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Madalena Martins
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Filipa Gonçalves
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Andreia C Gomes
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - Carla Silva
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Artur Ribeiro
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
38
|
Özyurt C, Üstükarcı H, Evran S, Telefoncu A. MerR‐fluorescent protein chimera biosensor for fast and sensitive detection of Hg
2+
in drinking water. Biotechnol Appl Biochem 2019; 66:731-737. [DOI: 10.1002/bab.1805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/12/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Canan Özyurt
- Department of Biochemistry Faculty of Science Ege University Bornova‐Izmir 35100 Turkey
- Department of Chemistry and Chemical Processing Technologies Lapseki Vocational School Canakkale Onsekiz Mart University Canakkale Lapseki Turkey
| | - Handan Üstükarcı
- Department of Biochemistry Faculty of Science Ege University Bornova‐Izmir 35100 Turkey
| | - Serap Evran
- Department of Biochemistry Faculty of Science Ege University Bornova‐Izmir 35100 Turkey
| | - Azmi Telefoncu
- Department of Biochemistry Faculty of Science Ege University Bornova‐Izmir 35100 Turkey
- Bio‐sensing and Bioinformatics Nanotechnologies R & D Trade & Ind. Ltd Co TECHNOPARK EGE, Ege University 35100 Izmir Turkey
| |
Collapse
|
39
|
Induction of T7 Promoter at Higher Temperatures May Be Counterproductive. Indian J Clin Biochem 2019; 34:357-360. [PMID: 31391729 DOI: 10.1007/s12291-019-0813-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/08/2019] [Indexed: 10/27/2022]
Abstract
Bacterial expression of recombinant proteins is the most popular and convenient method for obtaining large quantities of pure protein. The induction of T7 promoter with isopropyl-β-d-thiogalactopyranoside (IPTG) is widely used for expression of large quantities of proteins in Escherichia coli. It has been reported that basic T7 promoter is leaky and expresses cloned genes without induction. The effect of T7 promoter induction on expression of proteins at different temperature using flow cytometry has not yet been investigated. Green fluorescent protein (GFP) as a non-peptide tag can be used for protein solubility screening and for high-throughput optimization of expression conditions using flow cytometry. Therefore, flow cytometry was used to study the effect of induction on the expression of T7 promoter driven emerald GFP (emGFP) at various temperatures. We noticed that percentage of emGFP positive cells decreased instead of increasing upon induction at higher temperatures. Western blot analysis confirmed that the amount of total and soluble emGFP decreased in induced cells compared uninduced cells at higher temperatures. Our results indicate that induction of basic T7 promoter at higher temperature may not necessarily increase protein expression. While using a basic T7 promoter it is highly recommended to analyze the effect of induction on protein expression at various temperatures.
Collapse
|
40
|
Pavlenko OS, Gra OA, Mustafaev ON, Kabarbaeva KV, Sadovskaya NS, Tyurin AA, Fadeev VS, Goldenkova-Pavlova IV. Thermostable Lichenase from Clostridium thermocellum as a Host Protein in the Domain Insertion Approach. BIOCHEMISTRY. BIOKHIMIIA 2019; 84:931-940. [PMID: 31522675 DOI: 10.1134/s0006297919080091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2023]
Abstract
Clostridium thermocellum lichenase (endo-β-1,3;1,4-glucan-D-glycosyl hydrolase, EC 3.2.1.73 (P29716)) has been tested for the insertion of two model fluorescent proteins (EGFP and TagRFP) into two regions of this enzyme. Functional folding of the resulting proteins was confirmed by retention of lichenase activity and EGFP and TagRFP fluorescence. These results convincingly demonstrate that (i) the two experimentally selected lichenase loop regions may serve as the areas for domain insertion without disturbing enzyme folding in vivo; (ii) lichenase permits not only single but also tandem insertions of large protein domains. High specific activity, outstanding thermostability, and efficient in vitro refolding of thermostable lichenase make it an attractive new host protein for the insertional fusion of domains in the engineering of multifunctional proteins.
Collapse
Affiliation(s)
- O S Pavlenko
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia.
| | - O A Gra
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - O N Mustafaev
- Baku State University, Department of Biophysics and Molecular Biology, Baku, AZ1106, Azerbaijan.
| | - K V Kabarbaeva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - N S Sadovskaya
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - A A Tyurin
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - V S Fadeev
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - I V Goldenkova-Pavlova
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia.
| |
Collapse
|
41
|
Otero C, Carreño A, Polanco R, Llancalahuen FM, Arratia-Pérez R, Gacitúa M, Fuentes JA. Rhenium (I) Complexes as Probes for Prokaryotic and Fungal Cells by Fluorescence Microscopy: Do Ligands Matter? Front Chem 2019; 7:454. [PMID: 31297366 PMCID: PMC6606945 DOI: 10.3389/fchem.2019.00454] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/07/2019] [Indexed: 12/22/2022] Open
Abstract
Re(I) complexes have exposed highly suitable properties for cellular imaging (especially for fluorescent microscopy) such as low cytotoxicity, good cellular uptake, and differential staining. These features can be modulated or tuned by modifying the ligands surrounding the metal core. However, most of Re(I)-based complexes have been tested for non-walled cells, such as epithelial cells. In this context, it has been proposed that Re(I) complexes are inefficient to stain walled cells (i.e., cells protected by a rigid cell wall, such as bacteria and fungi), presumably due to this physical barrier hampering cellular uptake. More recently, a series of studies have been published showing that a suitable combination of ligands is useful for obtaining Re(I)-based complexes able to stain walled cells. This review summarizes the main characteristics of different fluorophores used in bioimage, remarking the advantages of d6-based complexes, and focusing on Re(I) complexes. In addition, we explored different structural features of these complexes that allow for obtaining fluorophores especially designed for walled cells (bacteria and fungi), with especial emphasis on the ligand choice. Since many pathogens correspond to bacteria and fungi (yeasts and molds), and considering that these organisms have been increasingly used in several biotechnological applications, development of new tools for their study, such as the design of new fluorophores, is fundamental and attractive.
Collapse
Affiliation(s)
- Carolina Otero
- Facultad de Medicina, Escuela de Química y Farmacia, Universidad Andres Bello, Santiago, Chile
| | - Alexander Carreño
- Center for Applied Nanosciences (CANS), Universidad Andres Bello, Santiago, Chile
| | - Rubén Polanco
- Facultad de Ciencias de la Vida, Centro de Biotecnología Vegetal, Universidad Andres Bello, Santiago, Chile
| | - Felipe M Llancalahuen
- Facultad de Medicina, Escuela de Química y Farmacia, Universidad Andres Bello, Santiago, Chile
| | - Ramiro Arratia-Pérez
- Center for Applied Nanosciences (CANS), Universidad Andres Bello, Santiago, Chile
| | - Manuel Gacitúa
- Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Juan A Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
42
|
Ferreira AV, Antunes E, Ribeiro A, Matamá T, Azoia NG, Cunha J, Cavaco-Paulo A. Design of a chromogenic substrate for elastase based on split GFP system-Proof of concept for colour switch sensors. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2019; 22:e00324. [PMID: 31049301 PMCID: PMC6479270 DOI: 10.1016/j.btre.2019.e00324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/15/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Recent studies have demonstrated that human neutrophil elastase (HNE) can be used as marker for inflammation/infection of chronic wounds since it was found to be present in high concentration in exudate collected from chronic wounds. Biosensors used in wound care benefit from a chromogenic signalling due to the readiness of signal interpretation, but the most common use faint yellow chromogenic molecules such as p-nitroaniline (pNa). In addition, if to be converted into smart dressings, the colour of the detection system should not be masked by the exudate's colour. In this work, we designed a chromogenic substrate for HNE aiming to be incorporated in a smart dressing as a colour switch sensor. The substrate was developed using the GFP-like chromoprotein ultramarine (UM), following the split GFP technology. The cleavage sequence for HNE (Ala-Ala-Pro-Val) was embedded into the sensing moiety of the substrate corresponding to the 11th β-sheet. In the presence of HNE, the 11th β-sheet is able to interact to the signalling moiety composed of the β1-β10 incomplete barrel, allowing the re-establishment of the chromophore environment and, hence, the colour production. Structural homology and molecular dynamics simulations were conducted to aid on the disclosure of the structural changes that are the base of the mechanism of action of this HNE switch substrate. Our findings explore the possible application of GFP-like chromogenic sensors in point-of-care devices for the evaluation of the wounds status, representing a major step in the medical field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Artur Cavaco-Paulo
- Centre of Biological Engineering (CEB), University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
43
|
Garapaty A, Champion JA. Shape of ligand immobilized particles dominates and amplifies the macrophage cytokine response to ligands. PLoS One 2019; 14:e0217022. [PMID: 31100081 PMCID: PMC6524819 DOI: 10.1371/journal.pone.0217022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/02/2019] [Indexed: 12/26/2022] Open
Abstract
Macrophages aid in clearing synthetic particulates introduced into the body and bridge innate and adaptive immunity through orchestrated secretion of cytokines and chemokines. While the field has made tremendous progress in understanding the effect of particle physicochemical properties on particle-macrophage interactions, it is not known how macrophage functions like cytokine production are affected while presenting active ligands on particles with altered physical properties. Moreover, it is unknown if ligand presentation through an altered particle shape can elicit differential macrophage cytokine responses and if responses are ligand dependent. Therefore, we investigated the influence of geometric particle presentation of diverse ligands, bovine serum albumin, immunoglobulin-G and ovalbumin, on macrophage inflammatory cytokine response. Our results indicate that for similar ligand densities, ligand presentation on rods enhanced production of inflammatory cytokine tumor necrosis factor-alpha (TNF-α) compared to spheres regardless of the nature of the ligand and its cellular receptor. Surprisingly, TNF-α responses were affected by ligand density in a shape-dependent manner and did not correlate to total particle-macrophage association. This study demonstrates the ability of geometric manipulation of particle ligands to alter macrophage cytokine response irrespective of the nature of the ligand.
Collapse
Affiliation(s)
- Anusha Garapaty
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Julie A. Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
44
|
Golub M, Guillon V, Gotthard G, Zeller D, Martinez N, Seydel T, Koza MM, Lafaye C, Clavel D, von Stetten D, Royant A, Peters J. Dynamics of a family of cyan fluorescent proteins probed by incoherent neutron scattering. J R Soc Interface 2019; 16:20180848. [PMID: 30836899 DOI: 10.1098/rsif.2018.0848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cyan fluorescent proteins (CFPs) are variants of green fluorescent proteins in which the central tyrosine of the chromophore has been replaced by a tryptophan. The increased bulk of the chromophore within a compact protein and the change in the positioning of atoms capable of hydrogen bonding have made it difficult to optimize their fluorescence properties, which took approximately 15 years between the availability of the first useable CFP, enhanced cyan fluorescent protein (ECFP), and that of a variant with almost perfect fluorescence efficiency, mTurquoise2. To understand the molecular bases of the progressive improvement in between these two CFPs, we have studied by incoherent neutron scattering the dynamics of five different variants exhibiting progressively increased fluorescence efficiency along the evolution pathway. Our results correlate well with the analysis of the previously determined X-ray crystallographic structures, which show an increase in flexibility between ECFP and the second variant, Cerulean, which is then hindered in the three later variants, SCFP3A (Super Cyan Fluorescent Protein 3A), mTurquoise and mTurquoise2. This confirms that increasing the rigidity of the direct environment of the fluorescent chromophore is not the sole parameter leading to brighter fluorescent proteins and that increased flexibility in some cases may be helpful.
Collapse
Affiliation(s)
- Maksym Golub
- 1 Institut Laue Langevin , 71 avenue des Martyrs, 38042 Grenoble Cedex 9 , France.,2 Univ. Grenoble Alpes, CNRS, CEA, IBS (Institut de Biologie Structurale) , 38000 Grenoble , France
| | - Virginia Guillon
- 2 Univ. Grenoble Alpes, CNRS, CEA, IBS (Institut de Biologie Structurale) , 38000 Grenoble , France
| | | | - Dominik Zeller
- 1 Institut Laue Langevin , 71 avenue des Martyrs, 38042 Grenoble Cedex 9 , France.,4 Laboratoire Interdisciplinaire de Physique, Univ. Grenoble Alpes, CNRS , 38000 Grenoble , France
| | - Nicolas Martinez
- 1 Institut Laue Langevin , 71 avenue des Martyrs, 38042 Grenoble Cedex 9 , France.,2 Univ. Grenoble Alpes, CNRS, CEA, IBS (Institut de Biologie Structurale) , 38000 Grenoble , France
| | - Tilo Seydel
- 1 Institut Laue Langevin , 71 avenue des Martyrs, 38042 Grenoble Cedex 9 , France
| | - Michael M Koza
- 1 Institut Laue Langevin , 71 avenue des Martyrs, 38042 Grenoble Cedex 9 , France
| | - Céline Lafaye
- 2 Univ. Grenoble Alpes, CNRS, CEA, IBS (Institut de Biologie Structurale) , 38000 Grenoble , France
| | - Damien Clavel
- 2 Univ. Grenoble Alpes, CNRS, CEA, IBS (Institut de Biologie Structurale) , 38000 Grenoble , France
| | | | - Antoine Royant
- 2 Univ. Grenoble Alpes, CNRS, CEA, IBS (Institut de Biologie Structurale) , 38000 Grenoble , France.,3 European Synchrotron Radiation Facility , 38043 Grenoble , France
| | - Judith Peters
- 1 Institut Laue Langevin , 71 avenue des Martyrs, 38042 Grenoble Cedex 9 , France.,4 Laboratoire Interdisciplinaire de Physique, Univ. Grenoble Alpes, CNRS , 38000 Grenoble , France
| |
Collapse
|
45
|
Himmelstoß SF, Hirsch T. A critical comparison of lanthanide based upconversion nanoparticles to fluorescent proteins, semiconductor quantum dots, and carbon dots for use in optical sensing and imaging. Methods Appl Fluoresc 2019; 7:022002. [PMID: 30822759 DOI: 10.1088/2050-6120/ab0bfa] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The right choice of a fluorescent probe is essential for successful luminescence imaging and sensing and especially concerning in vivo and in vitro applications, the development of new classes have gained more and more attention in the last years. One of the most promising class are upconversion nanoparticles (UCNPs)-inorganic nanocrystals capable to convert near-infrared light in high energy radiation. In this review we will compare UCNPs with other fluorescent probes in terms of (a) the optical properties of the probes, such as their brightness, photostability and excitation wavelength; (b) their chemical properties such as the dispersibility, stability under experimental or physiological conditions, availability of chemical modification strategies for labelling; and (c) the potential toxicity and biocompatibility of the probe. Thereby we want to provide a better understanding of the advantages and drawbacks of UCNPs and address future challenges in the design of the nanocrystals.
Collapse
Affiliation(s)
- Sandy F Himmelstoß
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | | |
Collapse
|
46
|
Dai L, Zhang B, Cui S, Yu J. Inspecting fluctuation and coordination around chromophore inside green fluorescent protein from water to nonpolar solvent. Proteins 2019; 87:531-540. [PMID: 30788862 DOI: 10.1002/prot.25676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/06/2019] [Accepted: 02/17/2019] [Indexed: 11/06/2022]
Abstract
Green fluorescent protein (GFP) is a widely used biomarker that demands systematical rational approaches to its structure function redesign. In this work, we mainly utilized atomistic molecular dynamics simulations to inspect and visualize internal fluctuation and coordination around chromophore inside GFP, from water to nonpolar octane solvent. We found that GFP not only maintains its β-barrel structure well into the octane, but also sustains internal residue and water coordination to position the chromophore stably while suppress dihedral fluctuations of the chromophore, so that functional robustness of GFP is achieved. Our accompanied fluorescence microscope measurements accordingly confirmed the GFP functioning into the octane. Furthermore, we identified that crucial water sites inside GFP along with permeable pores on the β-barrel of the protein are largely preserved from the water to the octane solvent, which allows sufficiently fast exchanges of internal water with the bulk or with the water layer kept on the surface of the protein. By additionally pulling GFP from bulk water to octane, we suggest that the GFP function can be well maintained into the nonpolar solvent as long as, first, the protein does not denature in the nonpolar solvent nor across the polar-nonpolar solvent interface; second, a minimal set of water molecules are in accompany with the protein; third, the nonpolar solvent molecules may need to be large enough to be nonpermeable via the water pores on the β-barrel.
Collapse
Affiliation(s)
- Liqiang Dai
- Complex System Research Division, Beijing Computational Science Research Center, Beijing, China
| | - Bo Zhang
- Key Lab of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, China
| | - Shuxun Cui
- Key Lab of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, China
| | - Jin Yu
- Complex System Research Division, Beijing Computational Science Research Center, Beijing, China
| |
Collapse
|
47
|
Schermelleh L, Ferrand A, Huser T, Eggeling C, Sauer M, Biehlmaier O, Drummen GPC. Super-resolution microscopy demystified. Nat Cell Biol 2019; 21:72-84. [PMID: 30602772 DOI: 10.1038/s41556-018-0251-8] [Citation(s) in RCA: 619] [Impact Index Per Article: 103.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 11/12/2018] [Indexed: 02/08/2023]
Abstract
Super-resolution microscopy (SRM) bypasses the diffraction limit, a physical barrier that restricts the optical resolution to roughly 250 nm and was previously thought to be impenetrable. SRM techniques allow the visualization of subcellular organization with unprecedented detail, but also confront biologists with the challenge of selecting the best-suited approach for their particular research question. Here, we provide guidance on how to use SRM techniques advantageously for investigating cellular structures and dynamics to promote new discoveries.
Collapse
Affiliation(s)
- Lothar Schermelleh
- Micron Oxford Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Alexia Ferrand
- Imaging Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Thomas Huser
- Biomolecular Photonics, Department of Physics, University of Bielefeld, Bielefeld, Germany
| | - Christian Eggeling
- MRC Human Immunology Unit and Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Institute for Applied Optics, Friedrich-Schiller-University Jena & Leibniz Institute of Photonic Technology, Jena, Germany
| | - Markus Sauer
- Department of Biotechnology & Biophysics, Biocenter, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Oliver Biehlmaier
- Imaging Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Gregor P C Drummen
- Advanced Bio-Imaging Program, Bio&Nano Solutions‒LAB3BIO, Bielefeld, Germany.
- ICON-Europe.org, Exxilon Scientific Events, Steinhagen, Germany.
| |
Collapse
|
48
|
Wang X, Guo Y, Li Z, Ying W, Chen D, Deng Z, Peng X. Dual emission from nanoconfined R-phycoerythrin fluorescent proteins for white light emission diodes. RSC Adv 2019; 9:9777-9782. [PMID: 35520706 PMCID: PMC9062197 DOI: 10.1039/c9ra00161a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/11/2019] [Indexed: 11/21/2022] Open
Abstract
A facile strategy to encapsulate R-phycoerythrin (R-PE) proteins and CdSexS1−x/ZnS quantum dots (QDs) in ZIF-8 thin films is developed through a one-pot solid-confinement conversion process. The resultant R-PE/CdSexS1−x/ZnS@ZIF-8 thin film exhibits high-quality white light emission and good thermal stability up to 80 °C. The nanoconfined R-phycoerythrin protein in ZIF-8 shows dual color emissions and exhibits high-quality white light emission and good thermal stability.![]()
Collapse
Affiliation(s)
- Xiaobin Wang
- State Key Laboratory of Silicon Materials
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Yi Guo
- State Key Laboratory of Silicon Materials
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Zhuoyi Li
- State Key Laboratory of Silicon Materials
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Wen Ying
- State Key Laboratory of Silicon Materials
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Danke Chen
- State Key Laboratory of Silicon Materials
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Zheng Deng
- State Key Laboratory of Silicon Materials
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Xinsheng Peng
- State Key Laboratory of Silicon Materials
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
49
|
Hamed MB, Vrancken K, Bilyk B, Koepff J, Novakova R, van Mellaert L, Oldiges M, Luzhetskyy A, Kormanec J, Anné J, Karamanou S, Economou A. Monitoring Protein Secretion in Streptomyces Using Fluorescent Proteins. Front Microbiol 2018; 9:3019. [PMID: 30581427 PMCID: PMC6292873 DOI: 10.3389/fmicb.2018.03019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/22/2018] [Indexed: 01/25/2023] Open
Abstract
Fluorescent proteins are a major cell biology tool to analyze protein sub-cellular topology. Here we have applied this technology to study protein secretion in the Gram-positive bacterium Streptomyces lividans TK24, a widely used host for heterologous protein secretion biotechnology. Green and monomeric red fluorescent proteins were fused behind Sec (SPSec) or Tat (SPTat) signal peptides to direct them through the respective export pathway. Significant secretion of fluorescent eGFP and mRFP was observed exclusively through the Tat and Sec pathways, respectively. Plasmid over-expression was compared to a chromosomally integrated spSec-mRFP gene to allow monitoring secretion under high and low level synthesis in various media. Fluorimetric detection of SPSec-mRFP recorded folded states, while immuno-staining detected even non-folded topological intermediates. Secretion of SPSec-mRFP is unexpectedly complex, is regulated independently of cell growth phase and is influenced by the growth regime. At low level synthesis, highly efficient secretion occurs until it is turned off and secretory preforms accumulate. At high level synthesis, the secretory pathway overflows and proteins are driven to folding and subsequent degradation. High-level synthesis of heterologous secretory proteins, whether secretion competent or not, has a drastic effect on the endogenous secretome, depending on their secretion efficiency. These findings lay the foundations of dissecting how protein targeting and secretion are regulated by the interplay between the metabolome, secretion factors and stress responses in the S. lividans model.
Collapse
Affiliation(s)
- Mohamed Belal Hamed
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium.,Molecular Biology Department, National Research Centre, Dokki, Egypt
| | - Kristof Vrancken
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | | | - Joachim Koepff
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Renata Novakova
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lieve van Mellaert
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Marco Oldiges
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Andriy Luzhetskyy
- Helmholtz-Zentrum für Infektionsforschung GmbH, Braunschweig, Germany
| | - Jan Kormanec
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jozef Anné
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Spyridoula Karamanou
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Anastassios Economou
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
50
|
Comparative Analysis of TM and Cytoplasmic β-barrel Conformations Using Joint Descriptor. Sci Rep 2018; 8:14185. [PMID: 30242187 PMCID: PMC6155101 DOI: 10.1038/s41598-018-32136-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/16/2018] [Indexed: 01/01/2023] Open
Abstract
Macroscopic descriptors have become valuable as coarse-grained features of complex proteins and are complementary to microscopic descriptors. Proteins macroscopic geometric features provide effective clues in the quantification of distant similarity and close dissimilarity searches for structural comparisons. In this study, we performed a systematic comparison of β-barrels, one of the important classes of protein folds in various transmembrane (TM) proteins against cytoplasmic barrels to estimate the conformational features using a joint-based descriptor. The approach uses joint coordinates and dihedral angles (β and γ) based on the β-strand joints and loops to determine the arrangements and propensities at the local and global levels. We then confirmed that there is a clear preference in the overall β and γ distribution, arrangements of β-strands and loops, signature patterns, and the number of strand effects between TM and cytoplasmic β-barrel geometries. As a robust and simple approach, we determine that the joint-based descriptor could provide a reliable static structural comparison aimed at macroscopic level between complex protein conformations.
Collapse
|