1
|
Palukaitis P, Akbarimotlagh M, Astaraki S, Shams-Bakhsh M, Yoon JY. The Forgotten Tobamovirus Genes Encoding the 54 kDa Protein and the 4-6 kDa Proteins. Viruses 2024; 16:1680. [PMID: 39599795 PMCID: PMC11599109 DOI: 10.3390/v16111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
This article reviews the literature concerning the largely forgotten tobamovirus gene products for which no functions have been ascribed. One of these gene products is the 54 kDa protein, representing the RNA-dependent RNA polymerase segment of the 183 kDa protein translated from the I1-subgenomic mRNA, but which has been found only by in vitro translation and not in plants. The other is a collection of small proteins, expressed from alternative reading frames (likely from internal ribosome entry sites) in either or both the movement protein gene or the capsid protein gene. Previously, two small proteins were referred to as the 4-6 kDa proteins, since only single proteins of such size had been characterized from tobacco mosaic virus and tomato mosaic virus genomes. Such putative proteins will be referred to here as P6 proteins, since many new proposed P6 open reading frames could be discerned, from an analysis of 45 of 47 tobamovirus genomes, with a coding capacity of >15 amino acids up to 94 amino acids, whereas other peptides with ≤15 amino acids were not considered here. The distribution of the putative P6 proteins among these tobamoviruses is described, as well as the various classes they fall into, based on their distribution with regard to the organization of other genes in the viral genomes. Models also are presented for possible functions of the 54 kDa protein and the P6 proteins, based on data in the literature.
Collapse
Affiliation(s)
- Peter Palukaitis
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Masoud Akbarimotlagh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-111, Iran; (M.A.); (S.A.); (M.S.-B.)
| | - Sajad Astaraki
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-111, Iran; (M.A.); (S.A.); (M.S.-B.)
| | - Masoud Shams-Bakhsh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-111, Iran; (M.A.); (S.A.); (M.S.-B.)
| | - Ju-Yeon Yoon
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
2
|
Hu C, Deng B, Fang W, Guo B, Chen P, Lu C, Dong Z, Pan M. Transgenic overexpression of bmo-miR-6498-5p increases resistance to Nosema bombycis in the silkworm, Bombyx mori. Appl Environ Microbiol 2024; 90:e0027024. [PMID: 39240120 PMCID: PMC11497792 DOI: 10.1128/aem.00270-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/23/2024] [Indexed: 09/07/2024] Open
Abstract
Microsporidia are unfriendly microorganisms, and their infections cause considerable damage to economically or environmentally important insects like silkworms and honeybees. Thus, the identification of measures to improve host resistance to microsporidia infections is critically needed. Here, an overexpressed miR-6498-5p transgenic silkworm line was constructed. Importantly, the survival rates and median lethal doses of the transgenic line were clearly higher after infection with Nosema bombycis. H&E staining and RT-qPCR analyses revealed an inhibitory effect on the proliferation of N. bombycis in the transgenic larvae. Metabolomics analysis further revealed the presence of 56 differential metabolites between the two lines. KEGG analysis of these 56 metabolites found that they were involved in various amino acid and vitamin metabolism pathways. Notably, VB6 metabolism was enriched among the metabolites, and the pathway was well known for its involvement in the synthesis, interconversion, and degradation of amino acids. These suggest that miR-6498-5p modifies parasitic environments to inhibit the proliferation of N. bombycis by affecting the host amino acid metabolism. These results demonstrate the potential of microRNAs as biomolecules that can promote resistance to microsporidia and provide new insights and a new approach to generate microsporidia-resistant biological materials.IMPORTANCEMicrosporidia have an extremely wide host range and are capable of infecting a wide variety of insects and vertebrates, including humans, and their lethality to multiple species often poses significant environmental management challenge. Here, we successfully constructed a microsporidium-resistant line in the silkworm, based on the overexpression of miR-6498-5p. Our results strongly support the hypothesis that miR-6498-5p efficiently suppresses the proliferation of Nosema bombycis by regulating the host VB6 metabolism, a key pathway for enzymes involved in amino acid transport and protein metabolism. Our study provides new insights for understanding host anti-pathogen defenses toward microsporidia.
Collapse
Affiliation(s)
- Congwu Hu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan, China
| | - Boyuan Deng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Wenxuan Fang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Bingyu Guo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Peng Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Zhanqi Dong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Minhui Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Carr JP. Engineered Resistance to Tobamoviruses. Viruses 2024; 16:1007. [PMID: 39066170 PMCID: PMC11281658 DOI: 10.3390/v16071007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Tobacco mosaic virus (TMV) was the first virus to be studied in detail and, for many years, TMV and other tobamoviruses, particularly tomato mosaic virus (ToMV) and tobamoviruses infecting pepper (Capsicum spp.), were serious crop pathogens. By the end of the twentieth and for the first decade of the twenty-first century, tobamoviruses were under some degree of control due to introgression of resistance genes into commercial tomato and pepper lines. However, tobamoviruses remained important models for molecular biology, biotechnology and bio-nanotechnology. Recently, tobamoviruses have again become serious crop pathogens due to the advent of tomato brown rugose fruit virus, which overcomes tomato resistance against TMV and ToMV, and the slow but apparently inexorable worldwide spread of cucumber green mottle mosaic virus, which threatens all cucurbit crops. This review discusses a range of mainly molecular biology-based approaches for protecting crops against tobamoviruses. These include cross-protection (using mild tobamovirus strains to 'immunize' plants against severe strains), expressing viral gene products in transgenic plants to inhibit the viral infection cycle, inducing RNA silencing against tobamoviruses by expressing virus-derived RNA sequences in planta or by direct application of double-stranded RNA molecules to non-engineered plants, gene editing of host susceptibility factors, and the transfer and optimization of natural resistance genes.
Collapse
Affiliation(s)
- John Peter Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
4
|
Kaur N, Lozada DN, Bhatta M, Barchenger DW, Khokhar ES, Nourbakhsh SS, Sanogo S. Insights into the genetic architecture of Phytophthora capsici root rot resistance in chile pepper (Capsicum spp.) from multi-locus genome-wide association study. BMC PLANT BIOLOGY 2024; 24:416. [PMID: 38760676 PMCID: PMC11100198 DOI: 10.1186/s12870-024-05097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Phytophthora root rot, a major constraint in chile pepper production worldwide, is caused by the soil-borne oomycete, Phytophthora capsici. This study aimed to detect significant regions in the Capsicum genome linked to Phytophthora root rot resistance using a panel consisting of 157 Capsicum spp. genotypes. Multi-locus genome wide association study (GWAS) was conducted using single nucleotide polymorphism (SNP) markers derived from genotyping-by-sequencing (GBS). Individual plants were separately inoculated with P. capsici isolates, 'PWB-185', 'PWB-186', and '6347', at the 4-8 leaf stage and were scored for disease symptoms up to 14-days post-inoculation. Disease scores were used to calculate disease parameters including disease severity index percentage, percent of resistant plants, area under disease progress curve, and estimated marginal means for each genotype. RESULTS Most of the genotypes displayed root rot symptoms, whereas five accessions were completely resistant to all the isolates and displayed no symptoms of infection. A total of 55,117 SNP markers derived from GBS were used to perform multi-locus GWAS which identified 330 significant SNP markers associated with disease resistance. Of these, 56 SNP markers distributed across all the 12 chromosomes were common across the isolates, indicating association with more durable resistance. Candidate genes including nucleotide-binding site leucine-rich repeat (NBS-LRR), systemic acquired resistance (SAR8.2), and receptor-like kinase (RLKs), were identified within 0.5 Mb of the associated markers. CONCLUSIONS Results will be used to improve resistance to Phytophthora root rot in chile pepper by the development of Kompetitive allele-specific markers (KASP®) for marker validation, genomewide selection, and marker-assisted breeding.
Collapse
Affiliation(s)
- Navdeep Kaur
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
- Current address: Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Dennis N Lozada
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA.
- Chile Pepper Institute, New Mexico State University, Las Cruces, NM, 88003, USA.
| | | | | | - Ehtisham S Khokhar
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Seyed Shahabeddin Nourbakhsh
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
- Department of Extension Plant Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Soum Sanogo
- Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM, 88003, USA
| |
Collapse
|
5
|
Lee YR, Siddique MI, Kim DS, Lee ES, Han K, Kim SG, Lee HE. CRISPR/Cas9-mediated gene editing to confer turnip mosaic virus (TuMV) resistance in Chinese cabbage ( Brassica rapa). HORTICULTURE RESEARCH 2023; 10:uhad078. [PMID: 37323233 PMCID: PMC10261878 DOI: 10.1093/hr/uhad078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/10/2023] [Indexed: 06/17/2023]
Abstract
Genome editing approaches, particularly the CRISPR/Cas9 technology, are becoming state-of-the-art for trait development in numerous breeding programs. Significant advances in improving plant traits are enabled by this influential tool, especially for disease resistance, compared to traditional breeding. One of the potyviruses, the turnip mosaic virus (TuMV), is the most widespread and damaging virus that infects Brassica spp. worldwide. We generated the targeted mutation at the eIF(iso)4E gene in the TuMV-susceptible cultivar "Seoul" using CRISPR/Cas9 to develop TuMV-resistant Chinese cabbage. We detected several heritable indel mutations in the edited T0 plants and developed T1 through generational progression. It was indicated in the sequence analysis of the eIF(iso)4E-edited T1 plants that the mutations were transferred to succeeding generations. These edited T1 plants conferred resistance to TuMV. It was shown with ELISA analysis the lack of accumulation of viral particles. Furthermore, we found a strong negative correlation (r = -0.938) between TuMV resistance and the genome editing frequency of eIF(iso)4E. Consequently, it was revealed in this study that CRISPR/Cas9 technique can expedite the breeding process to improve traits in Chinese cabbage plants.
Collapse
Affiliation(s)
- Ye-Rin Lee
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Muhammad Irfan Siddique
- Department of Horticultural Sciences, North Carolina State University Mountain Horticultural Crops Research, Extension Center 455 Research Drive, Mills River, NC 28759, USA
| | - Do-Sun Kim
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Eun Su Lee
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Koeun Han
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, 34141, Republic of Korea
| | | |
Collapse
|
6
|
Nishiguchi M, Ali ME, Kaya T, Kobayashi K. Plant virus disease control by vaccination and transgenic approaches: Current status and perspective. PLANT RNA VIRUSES 2023:373-424. [DOI: 10.1016/b978-0-323-95339-9.00028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
7
|
Palukaitis P, Akbarimotlagh M, Baek E, Yoon JY. The Secret Life of the Inhibitor of Virus Replication. Viruses 2022; 14:2782. [PMID: 36560786 PMCID: PMC9787567 DOI: 10.3390/v14122782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
The inhibitor of virus replication (IVR) is an inducible protein that is not virus-target-specific and can be induced by several viruses. The GenBank was interrogated for sequences closely related to the tobacco IVR. Various RNA fragments from tobacco, tomato, and potato and their genomic DNA contained IVR-like sequences. However, IVRs were part of larger proteins encoded by these genomic DNA sequences, which were identified in Arabidopsis as being related to the cyclosome protein designated anaphase-promoting complex 7 (APC7). Sequence analysis of the putative APC7s of nine plant species showed proteins of 558-561 amino acids highly conserved in sequence containing at least six protein-binding elements of 34 amino acids called tetratricopeptide repeats (TPRs), which form helix-turn-helix structures. The structures of Arabidopsis APC7 and the tobacco IVR proteins were modeled using the AlphaFold program and superimposed, showing that IVR had the same structure as the C-terminal 34% of APC7, indicating that IVR was a product of the APC7 gene. Based on the presence of various transcription factor binding sites in the APC7 sequences upstream of the IVR coding sequences, we propose that IVR could be expressed by these APC7 gene sequences involving the transcription factor SHE1.
Collapse
Affiliation(s)
- Peter Palukaitis
- Department of Horticulture Sciences, Seoul Women’s University, Seoul 01797, Republic of Korea
| | - Masoud Akbarimotlagh
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-111, Iran
| | - Eseul Baek
- Department of Horticulture Sciences, Seoul Women’s University, Seoul 01797, Republic of Korea
| | - Ju-Yeon Yoon
- Department of Plant Protection and Quarantine, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
8
|
Voloudakis AE, Kaldis A, Patil BL. RNA-Based Vaccination of Plants for Control of Viruses. Annu Rev Virol 2022; 9:521-548. [PMID: 36173698 DOI: 10.1146/annurev-virology-091919-073708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant viruses cause nearly half of the emerging plant diseases worldwide, contributing to 10-15% of crop yield losses. Control of plant viral diseases is mainly accomplished by extensive chemical applications targeting the vectors (i.e., insects, nematodes, fungi) transmitting these viruses. However, these chemicals have a significant negative effect on human health and the environment. RNA interference is an endogenous, cellular, sequence-specific RNA degradation mechanism in eukaryotes induced by double-stranded RNA molecules that has been exploited as an antiviral strategy through transgenesis. Because genetically modified crop plants are not accepted for cultivation in several countries globally, there is an urgent demand for alternative strategies. This has boosted research on exogenous application of the RNA-based biopesticides that are shown to exhibit significant protective effect against viral infections. Such environment-friendly and efficacious antiviral agents for crop protection will contribute to global food security, without adverse effects on human health.
Collapse
Affiliation(s)
- Andreas E Voloudakis
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece;
| | - Athanasios Kaldis
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece;
| | - Basavaprabhu L Patil
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka State, India
| |
Collapse
|
9
|
Samarfard S, Ghorbani A, Karbanowicz TP, Lim ZX, Saedi M, Fariborzi N, McTaggart AR, Izadpanah K. Regulatory non-coding RNA: The core defense mechanism against plant pathogens. J Biotechnol 2022; 359:82-94. [PMID: 36174794 DOI: 10.1016/j.jbiotec.2022.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 12/13/2022]
Abstract
Plant pathogens damage crops and threaten global food security. Plants have evolved complex defense networks against pathogens, using crosstalk among various signaling pathways. Key regulators conferring plant immunity through signaling pathways include protein-coding genes and non-coding RNAs (ncRNAs). The discovery of ncRNAs in plant transcriptomes was first considered "transcriptional noise". Recent reviews have highlighted the importance of non-coding RNAs. However, understanding interactions among different types of noncoding RNAs requires additional research. This review attempts to consider how long-ncRNAs, small-ncRNAs and circular RNAs interact in response to pathogenic diseases within different plant species. Developments within genomics and bioinformatics could lead to the further discovery of plant ncRNAs, knowledge of their biological roles, as well as an understanding of their importance in exploiting the recent molecular-based technologies for crop protection.
Collapse
Affiliation(s)
- Samira Samarfard
- Department of Primary Industries and Regional Development, DPIRD Diagnostic Laboratory Services, South Perth, WA, Australia
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, the Islamic Republic of Iran.
| | | | - Zhi Xian Lim
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Mahshid Saedi
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, the Islamic Republic of Iran
| | - Niloofar Fariborzi
- Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, the Islamic Republic of Iran
| | - Alistair R McTaggart
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Keramatollah Izadpanah
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, the Islamic Republic of Iran
| |
Collapse
|
10
|
Tsai WA, Brosnan CA, Mitter N, Dietzgen RG. Perspectives on plant virus diseases in a climate change scenario of elevated temperatures. STRESS BIOLOGY 2022; 2:37. [PMID: 37676437 PMCID: PMC10442010 DOI: 10.1007/s44154-022-00058-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/15/2022] [Indexed: 09/08/2023]
Abstract
Global food production is at risk from many abiotic and biotic stresses and can be affected by multiple stresses simultaneously. Virus diseases damage cultivated plants and decrease the marketable quality of produce. Importantly, the progression of virus diseases is strongly affected by changing climate conditions. Among climate-changing variables, temperature increase is viewed as an important factor that affects virus epidemics, which may in turn require more efficient disease management. In this review, we discuss the effect of elevated temperature on virus epidemics at both macro- and micro-climatic levels. This includes the temperature effects on virus spread both within and between host plants. Furthermore, we focus on the involvement of molecular mechanisms associated with temperature effects on plant defence to viruses in both susceptible and resistant plants. Considering various mechanisms proposed in different pathosystems, we also offer a view of the possible opportunities provided by RNA -based technologies for virus control at elevated temperatures. Recently, the potential of these technologies for topical field applications has been strengthened through a combination of genetically modified (GM)-free delivery nanoplatforms. This approach represents a promising and important climate-resilient substitute to conventional strategies for managing plant virus diseases under global warming scenarios. In this context, we discuss the knowledge gaps in the research of temperature effects on plant-virus interactions and limitations of RNA-based emerging technologies, which should be addressed in future studies.
Collapse
Affiliation(s)
- Wei-An Tsai
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Christopher A Brosnan
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Neena Mitter
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Ralf G Dietzgen
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
11
|
Race against Time between the Virus and Host: Actin-Assisted Rapid Biogenesis of Replication Organelles is Used by TBSV to Limit the Recruitment of Cellular Restriction Factors. J Virol 2022; 96:e0016821. [PMID: 35638821 DOI: 10.1128/jvi.00168-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Positive-strand RNA viruses build large viral replication organelles (VROs) with the help of coopted host factors. Previous works on tomato bushy stunt virus (TBSV) showed that the p33 replication protein subverts the actin cytoskeleton by sequestering the actin depolymerization factor, cofilin, to reduce actin filament disassembly and stabilize the actin filaments. Then, TBSV utilizes the stable actin filaments as "trafficking highways" to deliver proviral host factors into the protective VROs. In this work, we show that the cellular intrinsic restriction factors (CIRFs) also use the actin network to reach VROs and inhibit viral replication. Disruption of the actin filaments by expression of the Legionella RavK protease inhibited the recruitment of plant CIRFs, including the CypA-like Roc1 and Roc2 cyclophilins, and the antiviral DDX17-like RH30 DEAD box helicase into VROs. Conversely, temperature-sensitive actin and cofilin mutant yeasts with stabilized actin filaments reduced the levels of copurified CIRFs, including cyclophilins Cpr1, CypA, Cyp40-like Cpr7, cochaperones Sgt2, the Hop-like Sti1, and the RH30 helicase in viral replicase preparations. Dependence of the recruitment of both proviral and antiviral host factors into VROs on the actin network suggests that there is a race going on between TBSV and its host to exploit the actin network and ultimately to gain the upper hand during infection. We propose that, in the highly susceptible plants, tombusviruses efficiently subvert the actin network for rapid delivery of proviral host factors into VROs and ultimately overcome host restriction factors via winning the recruitment race and overwhelming cellular defenses. IMPORTANCE Replication of positive-strand RNA viruses is affected by the recruitment of host components, which provide either proviral or antiviral functions during virus invasion of infected cells. The delivery of these host factors into the viral replication organelles (VROs), which represent the sites of viral RNA replication, depends on the cellular actin network. Using TBSV, we uncover a race between the virus and its host with the actin network as the central player. We find that in susceptible plants, tombusviruses exploit the actin network for rapid delivery of proviral host factors into VROs and ultimately overcome host restriction factors. In summary, this work demonstrates that the actin network plays a major role in determining the outcome of viral infections in plants.
Collapse
|
12
|
Comparative evaluation of resistance to potato virus Y (PVY) in three different RNAi-based transgenic potato plants. Transgenic Res 2022; 31:313-323. [PMID: 35262867 DOI: 10.1007/s11248-022-00302-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
Abstract
Small interfering RNAs (siRNAs) produced from template double-stranded RNAs (dsRNAs) can activate the immune system in transgenic plants by detecting virus transcripts to degrade. In the present study, an RNA interference (RNAi) gene silencing mechanism was used for the development of transgenic potato plants resistant to potato virus Y (PVY), the most harmful viral disease. Three RNAi gene constructs were designed based on the coat protein (CP) and the untranslated region parts of the PVY genome, being highly conserved among all strains of the PVY viruses. Transgenic potato plants were generated using Agrobacterium containing pCAMRNAiCP, pCAMRNAiUR, and pCAMRNAiCP-UR constructs. The transgene insertions were confirmed by molecular analysis containing polymerase chain reaction (PCR) and southern blotting. The resistance of transgenic plants to PVY virus was determined using bioassay and evaluating the amount of viral RNA in plants by RT-PCR, dot blotting of PVY coating protein, and enzyme-linked immunosorbent assay (ELISA). Bioassay analysis revealed that more than 67% of transgenic potato plants were resistant to PVY compared with the non-transgenic plants, which showed viral disease symptoms. No phenotypic abnormalities were observed in transgenic plants. Out of six lines in southern blot analysis, four lines had one copy of the transgene and two lines had two copies of the target genes. No correlation was detected between the copy number of the genes and the resistance level of the plant to PVY. Transgenic lines obtained from all three constructs indicated more or less similar levels of resistance against viral infection; however, CP-UR lines exhibited relatively high resistance followed by CP and UR expressing lines, respectively. Meanwhile, some lines showed a delay in symptoms 35 days after infection which were classified as susceptible.
Collapse
|
13
|
Miao S, Liang C, Li J, Baker B, Luo L. Polycistronic Artificial microRNA-Mediated Resistance to Cucumber Green Mottle Mosaic Virus in Cucumber. Int J Mol Sci 2021; 22:ijms222212237. [PMID: 34830122 PMCID: PMC8620374 DOI: 10.3390/ijms222212237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Cucumber green mottle mosaic virus (CGMMV), as a typical seed-borne virus, causes costly and devastating diseases in the vegetable trade worldwide. Genetic sources for resistance to CGMMV in cucurbits are limited, and environmentally safe approaches for curbing the accumulation and spread of seed-transmitted viruses and cultivating completely resistant plants are needed. Here, we describe the design and application of RNA interference-based technologies, containing artificial microRNA (amiRNA) and synthetic trans-acting small interfering RNA (syn-tasiRNA), against conserved regions of different strains of the CGMMV genome. We used a rapid transient sensor system to identify effective anti-CGMMV amiRNAs. A virus seed transmission assay was developed, showing that the externally added polycistronic amiRNA and syn-tasiRNA can successfully block the accumulation of CGMMV in cucumber, but different virulent strains exhibited distinct influences on the expression of amiRNA due to the activity of the RNA-silencing suppressor. We also established stable transgenic cucumber plants expressing polycistronic amiRNA, which conferred disease resistance against CGMMV, and no sequence mutation was observed in CGMMV. This study demonstrates that RNA interference-based technologies can effectively prevent the occurrence and accumulation of CGMMV. The results provide a basis to establish and fine-tune approaches to prevent and treat seed-based transmission viral infections.
Collapse
Affiliation(s)
- Shuo Miao
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.M.); (J.L.)
- Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing 100193, China
| | | | - Jianqiang Li
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.M.); (J.L.)
- Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing 100193, China
| | - Barbara Baker
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service, Albany, CA 94710, USA
- Correspondence: (B.B.); (L.L.)
| | - Laixin Luo
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.M.); (J.L.)
- Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing 100193, China
- Correspondence: (B.B.); (L.L.)
| |
Collapse
|
14
|
Taliansky M, Samarskaya V, Zavriev SK, Fesenko I, Kalinina NO, Love AJ. RNA-Based Technologies for Engineering Plant Virus Resistance. PLANTS 2021; 10:plants10010082. [PMID: 33401751 PMCID: PMC7824052 DOI: 10.3390/plants10010082] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/25/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023]
Abstract
In recent years, non-coding RNAs (ncRNAs) have gained unprecedented attention as new and crucial players in the regulation of numerous cellular processes and disease responses. In this review, we describe how diverse ncRNAs, including both small RNAs and long ncRNAs, may be used to engineer resistance against plant viruses. We discuss how double-stranded RNAs and small RNAs, such as artificial microRNAs and trans-acting small interfering RNAs, either produced in transgenic plants or delivered exogenously to non-transgenic plants, may constitute powerful RNA interference (RNAi)-based technology that can be exploited to control plant viruses. Additionally, we describe how RNA guided CRISPR-CAS gene-editing systems have been deployed to inhibit plant virus infections, and we provide a comparative analysis of RNAi approaches and CRISPR-Cas technology. The two main strategies for engineering virus resistance are also discussed, including direct targeting of viral DNA or RNA, or inactivation of plant host susceptibility genes. We also elaborate on the challenges that need to be overcome before such technologies can be broadly exploited for crop protection against viruses.
Collapse
Affiliation(s)
- Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.S.); (S.K.Z.); (I.F.); (N.O.K.)
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Correspondence: (M.T.); (A.J.L.)
| | - Viktoria Samarskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.S.); (S.K.Z.); (I.F.); (N.O.K.)
| | - Sergey K. Zavriev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.S.); (S.K.Z.); (I.F.); (N.O.K.)
| | - Igor Fesenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.S.); (S.K.Z.); (I.F.); (N.O.K.)
| | - Natalia O. Kalinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.S.); (S.K.Z.); (I.F.); (N.O.K.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Andrew J. Love
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Correspondence: (M.T.); (A.J.L.)
| |
Collapse
|
15
|
Maksimov IV, Sorokan AV, Shein MY, Khairullin RM. Biological Methods of Plant Protection against Viruses: Problems and Prospects. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820060101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Walking Together: Cross-Protection, Genome Conservation, and the Replication Machinery of Citrus tristeza virus. Viruses 2020; 12:v12121353. [PMID: 33256049 PMCID: PMC7760907 DOI: 10.3390/v12121353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/25/2020] [Indexed: 01/23/2023] Open
Abstract
"Cross-protection", a nearly 100 years-old virological term, is suggested to be changed to "close protection". Evidence for the need of such change has accumulated over the past six decades from the laboratory experiments and field tests conducted by plant pathologists and plant virologists working with different plant viruses, and, in particular, from research on Citrus tristeza virus (CTV). A direct confirmation of such close protection came with the finding that "pre-immunization" of citrus plants with the variants of the T36 strain of CTV but not with variants of other virus strains was providing protection against a fluorescent protein-tagged T36-based recombinant virus variant. Under natural conditions close protection is functional and is closely associated both with the conservation of the CTV genome sequence and prevention of superinfection by closely similar isolates. It is suggested that the mechanism is primarily directed to prevent the danger of virus population collapse that could be expected to result through quasispecies divergence of large RNA genomes of the CTV variants continuously replicating within long-living and highly voluminous fruit trees. This review article provides an overview of the CTV cross-protection research, along with a discussion of the phenomenon in the context of the CTV biology and genetics.
Collapse
|
17
|
Bagheri LM, Nasr-Esfahani M, Abdossi V, Naderi D. Analysis of candidate genes expression associated with defense responses to root and collar rot disease caused by Phytophthora capsici in peppers Capsicum annuum. Genomics 2020; 112:2309-2317. [DOI: 10.1016/j.ygeno.2020.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/14/2019] [Accepted: 01/06/2020] [Indexed: 10/25/2022]
|
18
|
Mushtaq M, Mukhtar S, Sakina A, Dar AA, Bhat R, Deshmukh R, Molla K, Kundoo AA, Dar MS. Tweaking genome-editing approaches for virus interference in crop plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:242-250. [PMID: 31881433 DOI: 10.1016/j.plaphy.2019.12.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 05/13/2023]
Abstract
Plant viruses infect various economically important crops and cause a serious threat to agriculture. As of now, conventional strategies employed are inadequate to circumvent the proliferation of rapidly evolving plant viruses. In this regard, recent advancement in genome-editing approach looks promising to produce plants resistant to DNA/RNA virus infections. Clustered regularly interspaced palindromic repeats (CRISPR) system has been emerged as a promising genome-editing tool that has received special interest because of its ease, competence and reproducibility. Recent studies have demonstrated that CRISPR/Cas9 system has great potential to confer plant immunity by either directly targeting or cleaving the viral genome in both RNA and DNA viruses. Similarly, the approach can be used for targeting the host susceptibility genes more particularly in case of RNA viruses. In the present review, different approaches and strategies being used to improve plant resistance against devastating viruses are discussed in view of recent advances in CRISPR systems. This review also describes the major pitfalls of CRISPR/Cas9 system that utilizes highly efficient and novel platforms to engineer interference to single and multiple plant RNA viruses.
Collapse
Affiliation(s)
- Muntazir Mushtaq
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, J&K, 180009, India
| | - Shazia Mukhtar
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, J&K, 180009, India
| | - Aafreen Sakina
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, J&K, 190025, India
| | - Aejaz Ahmad Dar
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, J&K, 180009, India.
| | - Rohini Bhat
- ICAR-Directorate of Onion and Garlic Research, Rajagurunagar, Pune, Maharashtra, 410505, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar, Punjab, 140308, India
| | - Kutubuddin Molla
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, 16801, USA
| | - Ajaz Ahmad Kundoo
- Division of Entomology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, J&K, 190025, India
| | - Mohd Saleem Dar
- Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, J&K, 190025, India
| |
Collapse
|
19
|
Mendoza-Figueroa JS, Badillo-Ramírez I, Kvarnheden A, Rosas-Ramírez DG, Rodríguez-Negrete EA, Méndez-Lozano J, Saniger JM, Soriano-García M. The Peptide AmPep1 Derived from Amaranth Recognizes the Replication Hairpin of TYLCV Disturbing Its Replication Process in Host Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9241-9253. [PMID: 31369258 DOI: 10.1021/acs.jafc.9b02526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antiviral compounds targeting viral replicative processes have been studied as an alternative for the control of begomoviruses. Previously, we have reported that the peptide AmPep1 has strong affinity binding to the replication origin sequence of tomato yellow leaf curl virus (TYLCV). In this study, we describe the mechanism of action of this peptide as a novel alternative for control of plant-infecting DNA viruses. When AmPep1 was applied exogenously to tomato and Nicotiana benthamiana plants infected with TYLCV, a decrease in the synthesis of the two viral DNA strands (CS and VS) was observed, with a consequent delay in the development of disease progress in treated plants. The chemical mechanism of action of AmPep1 was deduced using Raman spectroscopy and molecular modeling showing the formation of chemical interactions such as H bonds and electrostatic interactions and the formation of π-π interactions between both biomolecules contributing to tampering with the viral replication.
Collapse
Affiliation(s)
- José S Mendoza-Figueroa
- Departmento de Química de Biomacromoleculas, Instituto de Química , Universidad Nacional Autónoma de México , 04510 Mexico City , Mexico
| | - Isidro Badillo-Ramírez
- Instituto de Ciencias Aplicadas y Tecnología , Universidad Nacional Autónoma de México , Circuíto Exterior S/N, Ciudad Universitaria , 04510 Mexico City , Mexico
| | - Anders Kvarnheden
- Department of Plant Biology , Swedish University of Agricultural Sciences , 75651 Uppsala , Sweden
| | - Daniel G Rosas-Ramírez
- Departmento de Química de Biomacromoleculas, Instituto de Química , Universidad Nacional Autónoma de México , 04510 Mexico City , Mexico
| | - Edgar A Rodríguez-Negrete
- CONACYT, Department of Agrobiotechnology, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional-Sinaloa , Instituto Politécnico Nacional , Guasave , 81049 Sinaloa , Mexico
| | - Jesús Méndez-Lozano
- Department of Agrobiotechnology, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional-Sinaloa , Instituto Politécnico Nacional , Guasave , 81049 Sinaloa , Mexico
| | - José M Saniger
- Instituto de Ciencias Aplicadas y Tecnología , Universidad Nacional Autónoma de México , Circuíto Exterior S/N, Ciudad Universitaria , 04510 Mexico City , Mexico
| | - Manuel Soriano-García
- Departmento de Química de Biomacromoleculas, Instituto de Química , Universidad Nacional Autónoma de México , 04510 Mexico City , Mexico
| |
Collapse
|
20
|
Chen TY, Pai H, Hou LY, Lee SC, Lin TT, Chang CH, Hsu FC, Hsu YH, Lin NS. Dual resistance of transgenic plants against Cymbidium mosaic virus and Odontoglossum ringspot virus. Sci Rep 2019; 9:10230. [PMID: 31308424 PMCID: PMC6629631 DOI: 10.1038/s41598-019-46695-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 07/03/2019] [Indexed: 12/30/2022] Open
Abstract
Taxonomically distinct Cymbidium mosaic potexvirus (CymMV) and Odontoglossum ringspot tobamovirus (ORSV) are two of the most prevalent viruses worldwide; when co-infecting orchids, they cause synergistic symptoms. Because of the huge economic loss in quality and quantity in the orchid industry with virus-infected orchids, virus-resistant orchids are urgently needed. To date, no transgenic resistant lines against these two viruses have been reported. In this study, we generated transgenic Nicotiana benthamiana expressing various constructs of partial CymMV and ORSV genomes. Several transgenic lines grew normally and remained symptomless after mixed inoculation with CymMV and ORSV. The replication of CymMV and ORSV was approximately 70-90% lower in protoplasts of transgenic lines than wild-type (WT) plants. Of note, we detected extremely low or no viral RNA or capsid protein of CymMV and ORSV in systemic leaves of transgenic lines after co-infection. Grafting experiments further revealed that CymMV and ORSV trafficked extremely inefficiently from co-infected WT stocks to transgenic scions, presumably due to RNA-mediated interference. This study reports the first successful creation of dual resistant transgenic lines against CymMV and ORSV. Our studies shed light on the commercial development of transgenic orchid production to combat the global viral threat.
Collapse
Affiliation(s)
- Ting-Yu Chen
- Institute of Plant and Microbial Biology, Academia Sinica, 11529, Taiwan
| | - Hsuan Pai
- Institute of Plant and Microbial Biology, Academia Sinica, 11529, Taiwan
| | - Liang-Yu Hou
- Institute of Plant and Microbial Biology, Academia Sinica, 11529, Taiwan
| | - Shu-Chuan Lee
- Institute of Plant and Microbial Biology, Academia Sinica, 11529, Taiwan
| | - Tzu-Tung Lin
- Institute of Plant and Microbial Biology, Academia Sinica, 11529, Taiwan
| | - Chih-Hao Chang
- Institute of Plant and Microbial Biology, Academia Sinica, 11529, Taiwan
| | - Fu-Chen Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, 11529, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40027, Taiwan
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, 11529, Taiwan.
| |
Collapse
|
21
|
Tetreau G, Wang P. Chitinous Structures as Potential Targets for Insect Pest Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:273-292. [PMID: 31102251 DOI: 10.1007/978-981-13-7318-3_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chitinous structures are physiologically fundamental in insects. They form the insect exoskeleton, play important roles in physiological systems and provide physical, chemical and biological protections in insects. As critically important structures in insects, chitinous structures are attractive target sites for the development of new insect-pest-control strategies. Chitinous structures in insects are complex and their formation and maintenance are dynamically regulated with the growth and development of insects. In the past few decades, studies on insect chitinous structures have shed lights on the physiological functions, compositions, structural formation, and regulation of the chitinous structures. Current understanding of the chitinous structures has indicated opportunities for exploring new target sites for insect control. Mechanisms to disrupt chitinous structures in insects have been studied and strategies for the potential development of new means of insect control by targeting chitinous structures have been proposed and are practically to be explored.
Collapse
Affiliation(s)
- Guillaume Tetreau
- University of Grenoble Alpes, CNRS, CEA, IBS, 38000, Grenoble, France
| | - Ping Wang
- Department of Entomology, Cornell University, Geneva, NY, 14456, USA.
| |
Collapse
|
22
|
Wang J, Zeng X, Tian D, Yang X, Wang L, Yin Z. The pepper Bs4C proteins are localized to the endoplasmic reticulum (ER) membrane and confer disease resistance to bacterial blight in transgenic rice. MOLECULAR PLANT PATHOLOGY 2018; 19:2025-2035. [PMID: 29603592 PMCID: PMC6638055 DOI: 10.1111/mpp.12684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/21/2018] [Accepted: 03/25/2018] [Indexed: 05/07/2023]
Abstract
Transcription activator-like effector (TALE)-dependent dominant disease resistance (R) genes in plants, also referred to as executor R genes, are induced on infection by phytopathogenic bacteria of the genus Xanthomonas harbouring the corresponding TALE genes. Unlike the traditional R proteins, the executor R proteins do not determine the resistance specificity and may function broadly in different plant species. The executor R gene Bs4C-R in the resistant genotype PI 235047 of the pepper species Capsicum pubescens (CpBs4C-R) confers disease resistance to Xanthomonas campestris pv. vesicatoria (Xcv) harbouring the TALE genes avrBsP/avrBs4. In this study, the synthetic genes of CpBs4C-R and two other Bs4C-like genes, the susceptible allele in the genotype PI585270 of C. pubescens (CpBs4C-S) and the CaBs4C-R homologue gene in the cultivar 'CM334' of Capsicum annum (CaBs4C), were characterized in tobacco (Nicotiana benthamiana) and rice (Oryza sativa). The Bs4C genes induced cell death in N. benthamiana. The functional Bs4C-eCFP fusion proteins were localized to the endoplasmic reticulum (ER) membrane in the leaf epidermal cells of N. benthamiana. The Xa10 promoter-Bs4C fusion genes in transgenic rice conferred strain-specific disease resistance to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight in rice, and were specifically induced by the Xa10-incompatible Xoo strain PXO99A (pHM1avrXa10). The results indicate that the Bs4C proteins from pepper species function broadly in rice and the Bs4C protein-mediated cell death from the ER is conserved between dicotyledonous and monocotyledonous plants, which can be utilized to engineer novel and enhanced disease resistance in heterologous plants.
Collapse
Affiliation(s)
- Jun Wang
- Temasek Life Sciences LaboratoryNational University of SingaporeSingapore 117604Singapore
| | - Xuan Zeng
- Temasek Life Sciences LaboratoryNational University of SingaporeSingapore 117604Singapore
| | - Dongsheng Tian
- Temasek Life Sciences LaboratoryNational University of SingaporeSingapore 117604Singapore
| | - Xiaobei Yang
- Temasek Life Sciences LaboratoryNational University of SingaporeSingapore 117604Singapore
| | - Lanlan Wang
- Temasek Life Sciences LaboratoryNational University of SingaporeSingapore 117604Singapore
| | - Zhongchao Yin
- Temasek Life Sciences LaboratoryNational University of SingaporeSingapore 117604Singapore
- Department of Biological SciencesNational University of SingaporeSingapore 117543Singapore
| |
Collapse
|
23
|
Kachroo A, Vincelli P, Kachroo P. Signaling Mechanisms Underlying Resistance Responses: What Have We Learned, and How Is It Being Applied? PHYTOPATHOLOGY 2017; 107:1452-1461. [PMID: 28609156 DOI: 10.1094/phyto-04-17-0130-rvw] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plants have evolved highly specific mechanisms to resist pathogens including preformed barriers and the induction of elaborate signaling pathways. Induced signaling requires recognition of the pathogen either via conserved pathogen-derived factors or specific pathogen-encoded proteins called effectors. Recognition of these factors by host encoded receptor proteins can result in the elicitation of different tiers of resistance at the site of pathogen infection. In addition, plants induce a type of systemic immunity which is effective at the whole plant level and protects against a broad spectrum of pathogens. Advances in our understanding of pathogen-recognition mechanisms, identification of the underlying molecular components, and their significant conservation across diverse plant species has enabled the development of novel strategies to combat plant diseases. This review discusses key advances in plant defense signaling that have been adapted or have the potential to be adapted for plant protection against microbial diseases.
Collapse
Affiliation(s)
- Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington 40546
| | - Paul Vincelli
- Department of Plant Pathology, University of Kentucky, Lexington 40546
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington 40546
| |
Collapse
|
24
|
Fuchs M. Pyramiding resistance-conferring gene sequences in crops. Curr Opin Virol 2017; 26:36-42. [DOI: 10.1016/j.coviro.2017.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 12/26/2022]
|
25
|
Nagy PD. Exploitation of a surrogate host, Saccharomyces cerevisiae, to identify cellular targets and develop novel antiviral approaches. Curr Opin Virol 2017; 26:132-140. [PMID: 28843111 DOI: 10.1016/j.coviro.2017.07.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 07/30/2017] [Indexed: 12/16/2022]
Abstract
Plant RNA viruses are widespread pathogens that need to interact intricately with their hosts to co-opt numerous cellular factors to facilitate their replication. Currently, there are only a limited number of plant resistance genes against a limited number of viruses. To develop novel antiviral approaches, the interaction network between the given virus and the host cell could be targeted. Yeast (Saccharomyces cerevisiae) has been developed as a surrogate host for tomato bushy stunt virus (TBSV), allowing systematic genome-wide screens to identify both susceptibility and restriction factors for TBSV. Importantly, pro-viral or antiviral functions of several of the characterized yeast proteins have been validated in plant hosts. This paper describes how yeast susceptibility and restriction factors of TBSV could be used as antiviral approaches. The gained knowledge on host factors could lead to novel, inducible, broad-range, and durable antiviral tools against plant viruses.
Collapse
Affiliation(s)
- Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
26
|
Pooggin MM. RNAi-mediated resistance to viruses: a critical assessment of methodologies. Curr Opin Virol 2017; 26:28-35. [PMID: 28753441 DOI: 10.1016/j.coviro.2017.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/05/2017] [Accepted: 07/11/2017] [Indexed: 01/07/2023]
Abstract
In plants, RNA interference (RNAi)-based antiviral defense is mediated by multigenic families of Dicer-like enzymes generating small interfering (si)RNAs from double-stranded RNA (dsRNA) produced during replication and/or transcription of RNA and DNA viruses, and Argonaute enzymes binding viral siRNAs and targeting viral RNA and DNA for siRNA-directed posttranscriptional and transcriptional silencing. Successful viruses are able to suppress or evade the production or action of viral siRNAs. In antiviral biotech approaches based on RNAi, transgenic expression or non-transgenic delivery of dsRNA cognate to a target virus pre-activates or boosts the natural plant antiviral defenses. Design of more effective antiviral RNAi strategies requires better understanding of viral siRNA biogenesis and viral anti-silencing strategies in virus-infected plants.
Collapse
|
27
|
Wu S, Huang Z, Rebeca CL, Zhu X, Guo Y, Lin Q, Hu X, Wang R, Liang G, Guan X, Zhang F. De novo characterization of the pine aphid Cinara pinitabulaeformis Zhang et Zhang transcriptome and analysis of genes relevant to pesticides. PLoS One 2017; 12:e0178496. [PMID: 28570707 PMCID: PMC5453536 DOI: 10.1371/journal.pone.0178496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/14/2017] [Indexed: 12/25/2022] Open
Abstract
The pine aphid Cinara pinitabulaeformis Zhang et Zhang is the main pine pest in China, it causes pine needles to produce dense dew (honeydew) which can lead to sooty mold (black filamentous saprophytic ascomycetes). Although common chemical and physical strategies are used to prevent the disease caused by C. pinitabulaeformis Zhang et Zhang, new strategies based on biological and/or genetic approaches are promising to control and eradicate the disease. However, there is no information about genomics, proteomics or transcriptomics to allow the design of new control strategies for this pine aphid. We used next generation sequencing technology to sequence the transcriptome of C. pinitabulaeformis Zhang et Zhang and built a transcriptome database. We identified 80,259 unigenes assigned for Gene Ontology (GO) terms and information for a total of 11,609 classified unigenes was obtained in the Clusters of Orthologous Groups (COGs). A total of 10,806 annotated unigenes were analyzed to identify the represented biological pathways, among them 8,845 unigenes matched with 228 KEGG pathways. In addition, our data describe propagative viruses, nutrition-related genes, detoxification related molecules, olfactory related receptors, stressed-related protein, putative insecticide resistance genes and possible insecticide targets. Moreover, this study provides valuable information about putative insecticide resistance related genes and for the design of new genetic/biological based strategies to manage and control C. pinitabulaeformis Zhang et Zhang populations.
Collapse
Affiliation(s)
- Songqing Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Zhicheng Huang
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | | | - Xiaoli Zhu
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yajie Guo
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Qiannan Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Xia Hu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Rong Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Guanghong Liang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Xiong Guan
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Feiping Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| |
Collapse
|
28
|
Gonzales-Salazar R, Cecere B, Ruocco M, Rao R, Corrado G. A comparison between constitutive and inducible transgenic expression of the PhRIP I gene for broad-spectrum resistance against phytopathogens in potato. Biotechnol Lett 2017; 39:1049-1058. [PMID: 28365881 DOI: 10.1007/s10529-017-2335-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/29/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To engineer broad spectrum resistance in potato using different expression strategies. RESULTS The previously identified Ribosome-Inactivating Protein from Phytolacca heterotepala was expressed in potato under a constitutive or a wound-inducible promoter. Leaves and tubers of the plants constitutively expressing the transgene were resistant to Botrytis cinerea and Rhizoctonia solani, respectively. The wound-inducible promoter was useful in driving the expression upon wounding and fungal damage, and conferred resistance to B. cinerea. The observed differences between the expression strategies are discussed considering the benefits and features offered by the two systems. CONCLUSIONS Evidence is provided of the possible impact of promoter sequences to engineer BSR in plants, highlighting that the selection of a suitable expression strategy has to balance specific needs and target species.
Collapse
Affiliation(s)
- Romel Gonzales-Salazar
- Dipartimento di Agraria, Università degli Studi di Napoli "Federico II", Portici, NA, Italy
| | - Bianca Cecere
- Dipartimento di Agraria, Università degli Studi di Napoli "Federico II", Portici, NA, Italy
| | - Michelina Ruocco
- Istituto per la Protezione Sostenibile delle Piante, CNR, Portici, NA, Italy
| | - Rosa Rao
- Dipartimento di Agraria, Università degli Studi di Napoli "Federico II", Portici, NA, Italy
| | - Giandomenico Corrado
- Dipartimento di Agraria, Università degli Studi di Napoli "Federico II", Portici, NA, Italy.
| |
Collapse
|
29
|
Fondong VN, Nagalakshmi U, Dinesh-Kumar SP. Novel Functional Genomics Approaches: A Promising Future in the Combat Against Plant Viruses. PHYTOPATHOLOGY 2016; 106:1231-1239. [PMID: 27392181 DOI: 10.1094/phyto-03-16-0145-fi] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Advances in functional genomics and genome editing approaches have provided new opportunities and potential to accelerate plant virus control efforts through modification of host and viral genomes in a precise and predictable manner. Here, we discuss application of RNA-based technologies, including artificial micro RNA, transacting small interfering RNA, and Cas9 (clustered regularly interspaced short palindromic repeat-associated protein 9), which are currently being successfully deployed in generating virus-resistant plants. We further discuss the reverse genetics approach, targeting induced local lesions in genomes (TILLING) and its variant, known as EcoTILLING, that are used in the identification of plant virus recessive resistance gene alleles. In addition to describing specific applications of these technologies in plant virus control, this review discusses their advantages and limitations.
Collapse
Affiliation(s)
- Vincent N Fondong
- First author: Department of Biological Sciences, Delaware State University, Dover; second author: Department of Plant Biology, College of Biological Sciences, University of California, Davis; and third author: Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis
| | - Ugrappa Nagalakshmi
- First author: Department of Biological Sciences, Delaware State University, Dover; second author: Department of Plant Biology, College of Biological Sciences, University of California, Davis; and third author: Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis
| | - Savithramma P Dinesh-Kumar
- First author: Department of Biological Sciences, Delaware State University, Dover; second author: Department of Plant Biology, College of Biological Sciences, University of California, Davis; and third author: Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis
| |
Collapse
|
30
|
Andika IB, Kondo H, Sun L. Interplays between Soil-Borne Plant Viruses and RNA Silencing-Mediated Antiviral Defense in Roots. Front Microbiol 2016; 7:1458. [PMID: 27695446 PMCID: PMC5023674 DOI: 10.3389/fmicb.2016.01458] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/31/2016] [Indexed: 12/18/2022] Open
Abstract
Although the majority of plant viruses are transmitted by arthropod vectors and invade the host plants through the aerial parts, there is a considerable number of plant viruses that infect roots via soil-inhabiting vectors such as plasmodiophorids, chytrids, and nematodes. These soil-borne viruses belong to diverse families, and many of them cause serious diseases in major crop plants. Thus, roots are important organs for the life cycle of many viruses. Compared to shoots, roots have a distinct metabolism and particular physiological characteristics due to the differences in development, cell composition, gene expression patterns, and surrounding environmental conditions. RNA silencing is an important innate defense mechanism to combat virus infection in plants, but the specific information on the activities and molecular mechanism of RNA silencing-mediated viral defense in root tissue is still limited. In this review, we summarize and discuss the current knowledge regarding RNA silencing aspects of the interactions between soil-borne viruses and host plants. Overall, research evidence suggests that soil-borne viruses have evolved to adapt to the distinct mechanism of antiviral RNA silencing in roots.
Collapse
Affiliation(s)
- Ida Bagus Andika
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
- Group of Plant-Microbe Interactions, Institute of Plant Science and Resources, Okayama UniversityKurashiki, Japan
| | - Hideki Kondo
- Group of Plant-Microbe Interactions, Institute of Plant Science and Resources, Okayama UniversityKurashiki, Japan
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| |
Collapse
|
31
|
Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. MOLECULAR PLANT PATHOLOGY 2016; 17:1140-53. [PMID: 26808139 PMCID: PMC6638350 DOI: 10.1111/mpp.12375] [Citation(s) in RCA: 384] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 05/17/2023]
Abstract
Genome editing in plants has been boosted tremendously by the development of CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) technology. This powerful tool allows substantial improvement in plant traits in addition to those provided by classical breeding. Here, we demonstrate the development of virus resistance in cucumber (Cucumis sativus L.) using Cas9/subgenomic RNA (sgRNA) technology to disrupt the function of the recessive eIF4E (eukaryotic translation initiation factor 4E) gene. Cas9/sgRNA constructs were targeted to the N' and C' termini of the eIF4E gene. Small deletions and single nucleotide polymorphisms (SNPs) were observed in the eIF4E gene targeted sites of transformed T1 generation cucumber plants, but not in putative off-target sites. Non-transgenic heterozygous eif4e mutant plants were selected for the production of non-transgenic homozygous T3 generation plants. Homozygous T3 progeny following Cas9/sgRNA that had been targeted to both eif4e sites exhibited immunity to Cucumber vein yellowing virus (Ipomovirus) infection and resistance to the potyviruses Zucchini yellow mosaic virus and Papaya ring spot mosaic virus-W. In contrast, heterozygous mutant and non-mutant plants were highly susceptible to these viruses. For the first time, virus resistance has been developed in cucumber, non-transgenically, not visibly affecting plant development and without long-term backcrossing, via a new technology that can be expected to be applicable to a wide range of crop plants.
Collapse
Affiliation(s)
| | - Marina Brumin
- Department of Plant Pathology and Weed Research, ARO, Volcani Center, Bet-Dagan, 50250, Israel
| | - Dalia Wolf
- Department of Vegetable Research, ARO, Volcani Center, Bet-Dagan, 50250, Israel
| | - Diana Leibman
- Department of Plant Pathology and Weed Research, ARO, Volcani Center, Bet-Dagan, 50250, Israel
| | - Chen Klap
- Department of Plant Pathology and Weed Research, ARO, Volcani Center, Bet-Dagan, 50250, Israel
| | - Mali Pearlsman
- Department of Plant Pathology and Weed Research, ARO, Volcani Center, Bet-Dagan, 50250, Israel
| | - Amir Sherman
- Department of Fruit Tree Sciences, ARO, Volcani Center, Bet-Dagan, 50250, Israel
| | - Tzahi Arazi
- Department of Ornamental Plants and Agricultural Biotechnology, ARO, Volcani Center, Bet-Dagan, 50250, Israel
| | - Amit Gal-On
- Department of Plant Pathology and Weed Research, ARO, Volcani Center, Bet-Dagan, 50250, Israel
| |
Collapse
|
32
|
Zaidi SSEA, Mansoor S, Ali Z, Tashkandi M, Mahfouz MM. Engineering Plants for Geminivirus Resistance with CRISPR/Cas9 System. TRENDS IN PLANT SCIENCE 2016; 21:279-281. [PMID: 26880316 DOI: 10.1016/j.tplants.2016.01.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/27/2016] [Accepted: 01/30/2016] [Indexed: 05/21/2023]
Abstract
The CRISPR/Cas9 system is an efficient genome-editing platform for diverse eukaryotic species, including plants. Recent work harnessed CRISPR/Cas9 technology to engineer resistance to geminiviruses. Here, we discuss opportunities, emerging developments, and potential pitfalls for using this technology to engineer resistance against single and multiple geminivirus infections in plants.
Collapse
Affiliation(s)
- Syed Shan-E-Ali Zaidi
- Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Zahir Ali
- Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Manal Tashkandi
- Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
33
|
Kis A, Tholt G, Ivanics M, Várallyay É, Jenes B, Havelda Z. Polycistronic artificial miRNA-mediated resistance to Wheat dwarf virus in barley is highly efficient at low temperature. MOLECULAR PLANT PATHOLOGY 2016; 17:427-37. [PMID: 26136043 PMCID: PMC6638354 DOI: 10.1111/mpp.12291] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Infection of Wheat dwarf virus (WDV) strains on barley results in dwarf disease, imposing severe economic losses on crop production. As the natural resistance resources against this virus are limited, it is imperative to elaborate a biotechnological approach that will provide effective and safe immunity to a wide range of WDV strains. Because vector insect-mediated WDV infection occurs during cool periods in nature, it is important to identify a technology which is effective at lower temperature. In this study, we designed artificial microRNAs (amiRNAs) using a barley miRNA precursor backbone, which target different conservative sequence elements of the WDV strains. Potential amiRNA sequences were selected to minimize the off-target effects and were tested in a transient sensor system in order to select the most effective constructs at low temperature. On the basis of the data obtained, a polycistronic amiRNA precursor construct (VirusBuster171) was built expressing three amiRNAs simultaneously. The construct was transformed into barley under the control of a constitutive promoter. The transgenic lines were kept at 12-15 °C to mimic autumn and spring conditions in which major WDV infection and accumulation take place. We were able to establish a stable barley transgenic line displaying resistance to insect-mediated WDV infection. Our study demonstrates that amiRNA technology can be an efficient tool for the introduction of highly efficient resistance in barley against a DNA virus belonging to the Geminiviridae family, and this resistance is effective at low temperature where the natural insect vector mediates the infection process.
Collapse
Affiliation(s)
- András Kis
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Szent-Györgyi A. út 4, Gödöllő, H-2100, Hungary
- Crop Science PhD School, Plant Protection Programme, Szent István University, Páter Károly u. 1, Gödöllő, H-2100, Hungary
| | - Gergely Tholt
- Plant Protection Institute, Centre for Agricultural Research, , Hungarian Academy of Sciences, Herman Ottó út 15, Budapest, H-1022, Hungary
- Department of Systematic Zoology and Ecology, Faculty of Science, Institute of Biology, Eötvös Loránd University, 1/C Pázmány Péter Sétány, Budapest, H-1117, Hungary
| | - Milán Ivanics
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Szent-Györgyi A. út 4, Gödöllő, H-2100, Hungary
| | - Éva Várallyay
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Szent-Györgyi A. út 4, Gödöllő, H-2100, Hungary
| | - Barnabás Jenes
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Szent-Györgyi A. út 4, Gödöllő, H-2100, Hungary
| | - Zoltán Havelda
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Szent-Györgyi A. út 4, Gödöllő, H-2100, Hungary
| |
Collapse
|
34
|
Leibman D, Prakash S, Wolf D, Zelcer A, Anfoka G, Haviv S, Brumin M, Gaba V, Arazi T, Lapidot M, Gal-On A. Immunity to tomato yellow leaf curl virus in transgenic tomato is associated with accumulation of transgene small RNA. Arch Virol 2015; 160:2727-39. [PMID: 26255053 DOI: 10.1007/s00705-015-2551-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 07/20/2015] [Indexed: 12/11/2022]
Abstract
Gene silencing is a natural defense response of plants against invading RNA and DNA viruses. The RNA post-transcriptional silencing system has been commonly utilized to generate transgenic crop plants that are "immune" to plant virus infection. Here, we applied this approach against the devastating DNA virus tomato yellow leaf curl virus (TYLCV) in its host tomato (Solanum lycopersicum L.). To generate broad resistance to a number of different TYLCV viruses, three conserved sequences (the intergenic region [NCR], V1-V2 and C1-C2 genes) from the genome of the severe virus (TYLCV) were synthesized as a single insert and cloned into a hairpin configuration in a binary vector, which was used to transform TYLCV-susceptible tomato plants. Eight of 28 independent transgenic tomato lines exhibited immunity to TYLCV-Is and to TYLCV-Mld, but not to tomato yellow leaf curl Sardinia virus, which shares relatively low sequence homology with the transgene. In addition, a marker-free (nptII-deleted) transgenic tomato line was generated for the first time by Agrobacterium-mediated transformation without antibiotic selection, followed by screening of 1180 regenerated shoots by whitefly-mediated TYLCV inoculation. Resistant lines showed a high level of transgene-siRNA (t-siRNA) accumulation (22% of total small RNA) with dominant sizes of 21 nt (73%) and 22 nt (22%). The t-siRNA displayed hot-spot distribution ("peaks") along the transgene, with different distribution patterns than the viral-siRNA peaks observed in TYLCV-infected tomato. A grafting experiment demonstrated the mobility of 0.04% of the t-siRNA from transgenic rootstock to non-transformed scion, even though scion resistance against TYLCV was not achieved.
Collapse
Affiliation(s)
- Diana Leibman
- Department of Plant Pathology and Weed Science, ARO, Volcani Center, 50250, Bet Dagan, Israel
| | - Shanmugam Prakash
- Department of Plant Pathology and Weed Science, ARO, Volcani Center, 50250, Bet Dagan, Israel
| | - Dalia Wolf
- Department of Vegetable Research, ARO, Volcani Center, 50250, Bet Dagan, Israel
| | - Aaron Zelcer
- Department of Vegetable Research, ARO, Volcani Center, 50250, Bet Dagan, Israel
| | - Ghandi Anfoka
- Department of Biotechnology, Al-Balqa' Applied University, Al-Salt, 19117, Jordan
| | - Sabrina Haviv
- Department of Plant Pathology and Weed Science, ARO, Volcani Center, 50250, Bet Dagan, Israel
| | - Marina Brumin
- Department of Plant Pathology and Weed Science, ARO, Volcani Center, 50250, Bet Dagan, Israel
| | - Victor Gaba
- Department of Plant Pathology and Weed Science, ARO, Volcani Center, 50250, Bet Dagan, Israel
| | - Tzahi Arazi
- Department of Ornamental Horticulture, ARO, Volcani Center, 50250, Bet Dagan, Israel
| | - Moshe Lapidot
- Department of Vegetable Research, ARO, Volcani Center, 50250, Bet Dagan, Israel
| | - Amit Gal-On
- Department of Plant Pathology and Weed Science, ARO, Volcani Center, 50250, Bet Dagan, Israel.
| |
Collapse
|