1
|
Okeowo OM, Anadu VE, Ijomone OK, Aschner M, Ijomone OM. Combined Restraint Stress and Metal Exposure Paradigms in Rats: Unravelling Behavioural and Neurochemical Perturbations. Mol Neurobiol 2025; 62:4355-4376. [PMID: 39443350 DOI: 10.1007/s12035-024-04570-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Accumulation of heavy metals (Mn and Ni) and prolonged exposure to stress are associated with adverse health outcomes. Various studies have shown the impacts of stress and metal exposures on brain function. However, no study has examined the effects of co-exposure to stress, Mn, and Ni on the brain. This study addresses this gap by evaluating oxidative and glial responses, apoptotic activity, as well as cognitive processes in a rat model. Adult Wistar rats were exposed to vehicle (control), restraint stress, 25 mg/kg of manganese (Mn) or nickel (Ni), or combined restraint stress plus Mn or Ni. Following treatment, rats were subjected to several behavioural paradigms to assess cognitive function. Enzyme activity, as well as ATPase levels, were evaluated. Thereafter, an immunohistochemical procedure was utilised to evaluate neurochemical markers of glial function, myelination, oxidative stress, and apoptosis in the hippocampus, prefrontal cortex (PFC), and striatum. Results showed that stress and metal exposure increased oxidative stress markers and reduced antioxidant levels. Further, combined stress and metal exposure reduced various forms of learning and memory ability in rats. In addition, there were alterations in Iba1 activity and Nrf2 levels, reduced Olig2 and myelin basic protein (MBP) levels, and increased caspase-3 expression. These neurotoxic outcomes were mostly exacerbated by co-exposure to stress and metals. Overall, our findings establish that stress and metal exposures impaired cognitive performance, induced oxidative stress and apoptosis, and led to demyelination effects which were worsened by combined stress and metal exposure.
Collapse
Affiliation(s)
- Oritoke M Okeowo
- Department of Physiology, School of Basic Medical Sciences, Federal University of Technology, Akure, Nigeria
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria
| | - Victor E Anadu
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria
| | - Olayemi K Ijomone
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Omamuyovwi M Ijomone
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria.
- Department of Human Anatomy, School of Basic Medical Sciences, Federal University of Technology, Akure, Nigeria.
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria.
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
2
|
Gilmour KM, Best C, Currie S. Using the reactive scope model to redefine the concept of social stress in fishes. J Exp Biol 2025; 228:jeb249395. [PMID: 40135434 DOI: 10.1242/jeb.249395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The term 'social stress' has traditionally referred to physiological stress responses induced by the behaviour of conspecifics, particularly aggression or agonistic behaviours. Here, we review the physiological consequences of social status in fishes using the reactive scope model (RSM) to explain the divergent physiological phenotypes of dominant and subordinate fish. The RSM plots levels of different physiological mediators (e.g. behaviour, glucocorticoid hormones) over time, using them to define functional ranges that differ in their consequences for the animal. We discuss differences in growth, reproduction and tolerance of environmental challenges, all of which are suppressed in subordinate individuals, and focus on the underlying mechanisms that give rise to these phenotypes. Repeated and/or continual activation of the hypothalamic-pituitary-interrenal (HPI) axis in subordinate fish can lead to prolonged elevation of cortisol, a key physiological mediator. In turn, this increases physiological 'wear and tear' in these individuals, lowering their reactive scope (i.e. the physiological range of a healthy animal) and increasing their susceptibility to homeostatic overload. That is, they experience social stress and, ultimately, their capacity to cope with environmental challenges is limited. By contrast, reactive scope is maintained in dominant individuals, and hence they are better able to tolerate environmental challenges. Redefining social stress in terms of the RSM allows us to overcome the ambiguities and limitations associated with the concept of stress.
Collapse
Affiliation(s)
- Kathleen M Gilmour
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Carol Best
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Suzanne Currie
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC, Canada, V1V 1V7
| |
Collapse
|
3
|
Sebihi S, Monperrus M, Coste P, Huchet E, Lingrand M, Glise S, Bouchard C, Ortiz-Zarragoitia M, Bolliet V. An optimized whole-body corticosteroid hormones quantification method by LC-MS/MS for assessing stress levels in European glass eels (Anguilla anguilla). J Steroid Biochem Mol Biol 2025; 245:106627. [PMID: 39454895 DOI: 10.1016/j.jsbmb.2024.106627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
The European eel (Anguilla anguilla) juvenile stage exhibits facultative estuarine migration. The causes of this behavior are yet unknown but it may have an impact on the population's fate by altering the sex ratio of the population. Recent studies have highlighted potential stress-related issues in glass eels settling in estuaries but studying stress response in small organisms requires sensitive, accurate and precise analytical methods. The aims of the present study are (i) to develop a whole-body Liquid Chromatography-Mass Spectrometry (LC-MS/MS) method for the simultaneous determination of several stress hormones in low-body mass fish; (ii) to apply this method to glass eels to study their responses to acute stress (iii) to test the effect of anxiolytics (diazepam) on these responses. Our results showed that enhanced LC-MS/MS analysis reduced detection limits and improved accuracy and precision for the quantification at the individual level. Following an acute stress, cortisol concentration significantly increased in glass eels and a 15 h diazepam exposure significantly reduced cortisol levels highlighting a marked anxiolytic effect on this species.
Collapse
Affiliation(s)
- Stellia Sebihi
- Universite de Pau et des Pays de l'Adour, E2S UPPA, INRAE, ECOBIOP, MIRA, UMR 1224, Saint-Pée-sur-Nivelle 64310, France; CBET Research Group, Department of Zoology and Cell Biology, Faculty of Science and Technology and Research Center for Marine Biology and Biotechnology (PiEUPV/EHU), University of the Basque Country, Areatza z/g. 48620, Plentzia, Bizkaia, Basque Country, Spain
| | - Mathilde Monperrus
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, MIRA, UMR 5254, Anglet 64600, France
| | - Pascale Coste
- Universite de Pau et des Pays de l'Adour, E2S UPPA, INRAE, ECOBIOP, MIRA, UMR 1224, Saint-Pée-sur-Nivelle 64310, France
| | - Emmanuel Huchet
- Universite de Pau et des Pays de l'Adour, E2S UPPA, INRAE, ECOBIOP, MIRA, UMR 1224, Saint-Pée-sur-Nivelle 64310, France
| | - Matthieu Lingrand
- Universite de Pau et des Pays de l'Adour, E2S UPPA, INRAE, ECOBIOP, MIRA, UMR 1224, Saint-Pée-sur-Nivelle 64310, France
| | - Stéphane Glise
- Universite de Pau et des Pays de l'Adour, E2S UPPA, INRAE, ECOBIOP, MIRA, UMR 1224, Saint-Pée-sur-Nivelle 64310, France
| | - Colin Bouchard
- Universite de Pau et des Pays de l'Adour, E2S UPPA, INRAE, ECOBIOP, MIRA, UMR 1224, Saint-Pée-sur-Nivelle 64310, France; SCIMABIO Interface, Science-Management Interface for Biodiversity Conservation, Saint-Pée sur Nivelle 64310, France
| | - Maren Ortiz-Zarragoitia
- CBET Research Group, Department of Zoology and Cell Biology, Faculty of Science and Technology and Research Center for Marine Biology and Biotechnology (PiEUPV/EHU), University of the Basque Country, Areatza z/g. 48620, Plentzia, Bizkaia, Basque Country, Spain
| | - Valérie Bolliet
- Universite de Pau et des Pays de l'Adour, E2S UPPA, INRAE, ECOBIOP, MIRA, UMR 1224, Saint-Pée-sur-Nivelle 64310, France.
| |
Collapse
|
4
|
Abdollahpour H, Jafari Pastaki N, Karimzadeh M, Zamani H. Buspirone administration: Influence on growth, spawning, immune response, and stress in female goldfish ( Carassius auratus). Heliyon 2024; 10:e39754. [PMID: 39524707 PMCID: PMC11543890 DOI: 10.1016/j.heliyon.2024.e39754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/09/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The current study evaluated the impact of buspirone supplementation on the growth, physiology, stress response, spawning, and immunity in female goldfish (Carassius auratus). For this purpose, buspirone was dissolved in absolute methanol and sprayed onto the feed to create four experimental groups: B0 (control), B25 (25 mg kg-1), B50 (50 mg kg-1), and B100 (100 mg kg-1). Fish were fed their respective diets for 56 days and subjected to stress using the air exposure method at the end of the experiment. Growth performance analysis revealed that fish in the B100 group exhibited significantly higher final weight, weight gain, specific growth rate, and average daily gain than the other groups (P < 0.05). Plasma stress response indicated that cortisol levels were significantly lower in the B100 group after stress exposure, accompanied by a simultaneous decrease in glucose levels. The mucus stress response also showed lower cortisol and glucose levels in the B100 group compared to the other groups. Immunological analysis revealed significant increases in total protein, albumin, complement C3 and C4, and immunoglobulin M concentrations in both plasma and mucus of the B100 group (P < 0.05). Reproductive performance showed a notable enhancement in the number of eggs, fertilization rate, hatching rate, and survival rate in the B100 group compared to other groups (P < 0.05). Buspirone at higher concentrations, positively impacted various physiological aspects of goldfish, including growth, stress, immune activity, and reproductive performance. The significant improvements observed in growth parameters, cortisol levels, immunological markers, and reproductive outcomes suggest the potential of buspirone supplementation as a beneficial strategy in aquaculture practices.
Collapse
Affiliation(s)
- Hamed Abdollahpour
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran
| | - Naghmeh Jafari Pastaki
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran
| | - Milad Karimzadeh
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran
- Fisheries, Shahid Dr. Beheshti Sturgeon Fishes Restoration and Genetic Conservation Complex, Sangar, Guilan, Iran
| | - Hosseinali Zamani
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran
| |
Collapse
|
5
|
Schneider AE, Esbaugh AJ, Cupp AR, Suski CD. Silver carp experience metabolic and behavioral changes when exposed to water from the Chicago Area Waterway. Sci Rep 2024; 14:24689. [PMID: 39455602 PMCID: PMC11511862 DOI: 10.1038/s41598-024-71442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/28/2024] [Indexed: 10/28/2024] Open
Abstract
One of the hallmarks of invasive species is their propensity to spread. Removing an invasive species after establishment is virtually impossible, and so considerable effort is invested in preventing the range expansion of invaders. Silver carp (Hypophthalmichthys molitrix) were discovered in the Mississippi River in 1981 and have spread throughout the basin. Despite their propensity to expand, the 'leading edge' in the Illinois River has stalled south of Chicago and has remained stable for a decade. Studies have indicated that contaminants in the Chicago Area Waterway System (CAWS) may be contributing to the lack of upstream movement, but this hypothesis has not been tested. This study used a laboratory setting to quantify the role of contaminants in deterring upstream movement of silver carp within the CAWS. For this, water was collected from the CAWS near the upstream edge of the distribution and transported to a fish culture facility. Silver carp and one native species were exposed to CAWS water, and activity, behavior, avoidance, and metabolic rates were quantified. Results showed that silver carp experience an elevated metabolic cost in CAWS water, along with reductions in swimming behavior. Together, results indicate a role for components of CAWS water at deterring range expansion.
Collapse
Affiliation(s)
- Amy E Schneider
- Department of Natural Resources and Environmental Sciences, University of Illinois Urbana-Champaign, Champaign, IL, 61801, USA
| | - A J Esbaugh
- Department of Marine Science, University of Texas Austin, Austin, TX, 78712, USA
| | - Aaron R Cupp
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, 54603, USA
| | - C D Suski
- Department of Natural Resources and Environmental Sciences, University of Illinois Urbana-Champaign, Champaign, IL, 61801, USA.
| |
Collapse
|
6
|
Flatt EE, Alderman SL. 11β-Hydroxysteroid dehydrogenase type 2 may mediate the stress-specific effects of cortisol on brain cell proliferation in adult zebrafish (Danio rerio). J Exp Biol 2024; 227:jeb248020. [PMID: 39092490 PMCID: PMC11418181 DOI: 10.1242/jeb.248020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Stress-induced increases in cortisol can stimulate or inhibit brain cell proliferation, but the mechanisms behind these opposing effects are unknown. We tested the hypothesis that 11β-hydroxysteroid dehydrogenase type 2 (Hsd11b2), a glucocorticoid-inactivating enzyme expressed in neurogenic regions of the adult zebrafish brain, mitigates cortisol-induced changes to brain cell proliferation, using one of three stress regimes: a single 1 min air exposure (acute stress), two air exposures spaced 24 h apart (repeat acute stress) or social subordination (chronic stress). Plasma cortisol was significantly elevated 15 min after air exposure and recovered within 24 h after acute and repeat acute stress, whereas subordinate fish exhibited significant and sustained elevations relative to dominant fish for 24 h. Following acute stress, brain hsd11b2 transcript abundance was elevated up to 6 h after a single air exposure but was unchanged by repeat acute stress or social subordination. A sustained increase in brain Hsd11b2 protein levels occurred after acute stress, but not after repeat or chronic stress. Following acute and repeat acute stress, brain pcna transcript abundance (a marker of cell proliferation) exhibited a prolonged elevation, but was unaffected by social subordination. Interestingly, the number of telencephalic BrdU+ cells increased in fish after a single air exposure but was unchanged by repeat acute stress. Following acute and repeat acute stress, fish expressed lower brain glucocorticoid and mineralocorticoid receptor (gr and mr) transcript abundance while subordinate fish exhibited no changes. Taken together, these results demonstrate stressor-specific regulation of Hsd11b2 in the zebrafish brain that could modulate rates of cortisol catabolism contributing to observed differences in brain cell proliferation.
Collapse
Affiliation(s)
- E. Emma Flatt
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada, N1G 2W1
| | - Sarah L. Alderman
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada, N1G 2W1
| |
Collapse
|
7
|
Aravena-Canales D, Valenzuela-Muñoz V, Gallardo-Escarate C, Molina A, Valdés JA. Transcriptomic and Epigenomic Responses to Cortisol-Mediated Stress in Rainbow Trout ( Oncorhynchus mykiss) Skeletal Muscle. Int J Mol Sci 2024; 25:7586. [PMID: 39062828 PMCID: PMC11276852 DOI: 10.3390/ijms25147586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
The production and release of cortisol during stress responses are key regulators of growth in teleosts. Understanding the molecular responses to cortisol is crucial for the sustainable farming of rainbow trout (Oncorhynchus mykiss) and other salmonid species. While several studies have explored the genomic and non-genomic impacts of cortisol on fish growth and skeletal muscle development, the long-term effects driven by epigenetic mechanisms, such as cortisol-induced DNA methylation, remain unexplored. In this study, we analyzed the transcriptome and genome-wide DNA methylation in the skeletal muscle of rainbow trout seven days after cortisol administration. We identified 550 differentially expressed genes (DEGs) by RNA-seq and 9059 differentially methylated genes (DMGs) via whole-genome bisulfite sequencing (WGBS) analysis. KEGG enrichment analysis showed that cortisol modulates the differential expression of genes associated with nucleotide metabolism, ECM-receptor interaction, and the regulation of actin cytoskeleton pathways. Similarly, cortisol induced the differential methylation of genes associated with focal adhesion, adrenergic signaling in cardiomyocytes, and Wnt signaling. Through integrative analyses, we determined that 126 genes showed a negative correlation between up-regulated expression and down-regulated methylation. KEGG enrichment analysis of these genes indicated participation in ECM-receptor interaction, regulation of actin cytoskeleton, and focal adhesion. Using RT-qPCR, we confirmed the differential expression of lamb3, itga6, limk2, itgb4, capn2, and thbs1. This study revealed for the first time the molecular responses of skeletal muscle to cortisol at the transcriptomic and whole-genome DNA methylation levels in rainbow trout.
Collapse
Affiliation(s)
- Daniela Aravena-Canales
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370035, Chile; (D.A.-C.); (A.M.)
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (V.V.-M.); (C.G.-E.)
| | - Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (V.V.-M.); (C.G.-E.)
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Concepción 4030000, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
| | - Cristian Gallardo-Escarate
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (V.V.-M.); (C.G.-E.)
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
| | - Alfredo Molina
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370035, Chile; (D.A.-C.); (A.M.)
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (V.V.-M.); (C.G.-E.)
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andres Bello, Quintay 2340000, Chile
| | - Juan Antonio Valdés
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370035, Chile; (D.A.-C.); (A.M.)
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (V.V.-M.); (C.G.-E.)
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andres Bello, Quintay 2340000, Chile
| |
Collapse
|
8
|
Mohamad S, Rahmah S, Zainuddin RA, A Thallib Y, Razali RS, Jalilah M, Abd Ghaffar M, Lim LS, Chang YM, Qun Liang L, Das SK, Chen YM, Liew HJ. Hoven's carp Leptobarbus hoevenii strategized metabolism needs to cope with changing environment. Heliyon 2024; 10:e25559. [PMID: 38404778 PMCID: PMC10884815 DOI: 10.1016/j.heliyon.2024.e25559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Current water warming and freshwater acidification undoubtedly affect the life of aquatic animals especially ammonotelic teleost by altering their physiological responses. The effect of temperature (28 °C vs 32 °C) and pH (7 vs. 5) on the metabolic compromising strategies of Hoven's carp (Leptobarbus hoevenii) was investigated in this study. Fishes were conditioned to (i) 28 °C + pH 7 (N28°C); (ii) 32 °C + pH 7 (N32°C); (iii) 28 °C + pH 5 (L28°C) and (iv) 32 °C + pH 5 (L32°C) for 20 days followed by osmorespiration assay. Results showed that feeding performance of Hoven's carp was significantly depressed when exposed to low pH conditions (L28°C and L32°C). However, by exposed Hoven's carp to L32°C induced high metabolic oxygen intake and ammonia excretion to about 2x-folds higher compared to the control group. As for energy mobilization, Hoven's carp mobilized liver and muscle protein under L28°C condition. Whereas under high temperature in both pH, Hoven's carp had the tendency to reserve energy in both of liver and muscle. The findings of this study revealed that Hoven's carp is sensitive to lower water pH and high temperature, thereby they remodeled their physiological needs to cope with the environmental changes condition.
Collapse
Affiliation(s)
- Suhaini Mohamad
- Higher Institution Center of Excellence (HICOE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia
| | - Sharifah Rahmah
- Higher Institution Center of Excellence (HICOE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia
| | - Rabiatul Adawiyyah Zainuddin
- Higher Institution Center of Excellence (HICOE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia
| | - Yusnita A Thallib
- Higher Institution Center of Excellence (HICOE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia
| | - Ros Suhaida Razali
- Higher Institution Center of Excellence (HICOE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia
| | - Mohamad Jalilah
- Higher Institution Center of Excellence (HICOE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia
| | - Mazlan Abd Ghaffar
- Higher Institution Center of Excellence (HICOE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia
| | - Leong-Seng Lim
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Yu Mei Chang
- Heilongjiang Province's Key Laboratory of Fish Stress Resistance Breeding and Germplasm Characteristics on Special Habitats, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Science, Harbin, China
| | - Li Qun Liang
- Heilongjiang Province's Key Laboratory of Fish Stress Resistance Breeding and Germplasm Characteristics on Special Habitats, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Science, Harbin, China
| | - Simon Kumar Das
- Department of Earth Sciences and Environment, Faculty of Science and Technology, National University of Malaysia, 43600, UKM Bangi, Selangor, Malaysia
- Marine Ecosystem Research Centre, Faculty of Science and Technology, National University of Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Young-Mao Chen
- Marine Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Hon Jung Liew
- Higher Institution Center of Excellence (HICOE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia
- Heilongjiang Province's Key Laboratory of Fish Stress Resistance Breeding and Germplasm Characteristics on Special Habitats, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Science, Harbin, China
| |
Collapse
|
9
|
Sánchez-Velázquez J, Peña-Herrejón GA, Aguirre-Becerra H. Fish Responses to Alternative Feeding Ingredients under Abiotic Chronic Stress. Animals (Basel) 2024; 14:765. [PMID: 38473149 DOI: 10.3390/ani14050765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/12/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Aquaculture has become one of the most attractive food production activities as it provides high-quality protein for the growing human population. However, the abiotic chronic stress of fish in intensive fish farming leads to a detrimental condition that affects their health and somatic growth, comprising productive performance. This work aims to comprehensively review the impact of alternative and novel dietary protein sources on fish somatic growth, metabolism, and antioxidative capacity under environmental/abiotic stressors. The documental research indicates that ingredients from rendered animal by-products, insects, bacteria as single-cell proteins, and fungal organisms (e.g., yeast, filamentous fungus, and mushrooms) benefit fish health and performance. A set of responses allows fish growth, health, and survival to remain unaffected by feeding with alternative ingredients during chronic environmental stress. Those ingredients stimulate the production of enzymes such as catalase, glutathione peroxidase, and selenoproteins that counteract ROS effects. In addition, the humoral immune system promotes immunoglobulin production (IgM) and cortisol plasmatic reduction. Further investigation must be carried out to establish the specific effect by species. Additionally, the mixture and the pre-treatment of ingredients such as hydrolysates, solid fermentations, and metabolite extraction potentialize the beneficial effects of diets in chronically stressed fish.
Collapse
Affiliation(s)
- Julieta Sánchez-Velázquez
- Facultad de Ingeniería, Campus Amazcala, Universidad Autónoma de Querétaro, El Marqués 76265, Querétaro, Mexico
| | - Guillermo Abraham Peña-Herrejón
- Centro de Investigación y Desarrollo Tecnológico en Materia Agrícola Pecuaria Acuícola y Forestal (CIDAF), Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Concá, Arroyo Seco 76410, Querétaro, Mexico
| | - Humberto Aguirre-Becerra
- Cuerpo Académico de Bioingeniería Básica y Aplicada, Facultad de Ingeniería, Campus Amazcala, Universidad Autónoma de Querétaro, El Marqués 76265, Querétaro, Mexico
| |
Collapse
|
10
|
Carbajal A, Lawrence MJ, Gilmour KM, Lopez-Bejar M, Cooke SJ. Evaluation of the effects of exogenous cortisol manipulation and the glucocorticoid antagonist, RU486, on the exploratory tendency of bluegill sunfish (Lepomis macrochirus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1187-1198. [PMID: 37819483 PMCID: PMC10757703 DOI: 10.1007/s10695-023-01250-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
In teleost fishes, activation of the hypothalamic-pituitary-interrenal axis leads to an elevation of circulating cortisol levels as a primary stress response. While acute elevation of cortisol is generally beneficial, long-term elevation, a common characteristic of chronic stress, may lead to detrimental effects on health and physiological performance in fishes. Some stress-mediated behavioural shifts, such as variation along the shy-boldness axis in fish, may influence individual fitness. The present study evaluated the role of cortisol and its mechanisms of action in the exploratory behaviour of the bluegill sunfish (Lepomis macrochirus). Fish were implanted with cocoa butter alone (sham treatment), or cocoa butter containing cortisol, or cortisol and the glucocorticoid receptor antagonist, RU486. A control (untreated) group was also used. Animals were held for 48 h following treatment and then were subjected to a Z-maze trial to characterize the exploratory behaviour. Cortisol treatment had no measurable effect on the exploratory behaviour of bluegill sunfish. Despite presenting a higher probability of refuge emergence, fish treated with cortisol combined with RU486 behaved similarly to cortisol-treated and control groups. While these results suggest that cortisol may not be involved in the mechanisms controlling boldness, the influence of cortisol elevation across longer time periods plus validation in different contexts will be necessary to confirm this conclusion.
Collapse
Affiliation(s)
- Annaïs Carbajal
- Department of Animal Health and Anatomy, Veterinary Faculty, UniversitatAutònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Michael J Lawrence
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, Canada
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | - Manel Lopez-Bejar
- Department of Animal Health and Anatomy, Veterinary Faculty, UniversitatAutònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
11
|
da Santa Lopes T, Costas B, Ramos-Pinto L, Reynolds P, Imsland AKD, Fernandes JMO. Exploring the Effects of Acute Stress Exposure on Lumpfish Plasma and Liver Biomarkers. Animals (Basel) 2023; 13:3623. [PMID: 38066974 PMCID: PMC10705318 DOI: 10.3390/ani13233623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 06/22/2024] Open
Abstract
This study aimed to expand knowledge on lumpfish stress physiology by investigating the effects of acute stress on primary (i.e., cortisol) and secondary (e.g., metabolites) stress responses, as well as oxidative stress biomarkers, from stress exposure to a recovery phase. The results showed that the lumpfish physiological response to 1 min air exposure is mild, in line with recent studies, and comparable to that described for white sturgeons. Cortisol seems to be the most reliable acute stress biomarker in lumpfish, with a significant increase in plasma 30 min after stress exposure, returning to resting levels 2 h after exposure. In contrast, glucose and lactate were not significantly altered by short-term air exposure. Effects on hepatic energy mobilisation were also detected following the acute stress. This study showed that acute 1 min air exposure seems tolerable, allowing a swift recovery. However, more studies on the impacts of air exposure and repeated acute stressors on lumpfish stress and immune responses are required to develop industry standards for lumpfish health and welfare monitoring.
Collapse
Affiliation(s)
- Tiago da Santa Lopes
- Gildeskål Forskningsstasjon AS, 8140 Inndyr, Norway; (T.d.S.L.); (P.R.)
- Faculty of Biosciences and Aquaculture, Nord University, 8026 Bodø, Norway
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), 4450-208 Matosinhos, Portugal; (B.C.); (L.R.-P.)
| | - Benjamin Costas
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), 4450-208 Matosinhos, Portugal; (B.C.); (L.R.-P.)
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade do Porto, 4050-313 Porto, Portugal
| | - Lourenço Ramos-Pinto
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), 4450-208 Matosinhos, Portugal; (B.C.); (L.R.-P.)
| | - Patrick Reynolds
- Gildeskål Forskningsstasjon AS, 8140 Inndyr, Norway; (T.d.S.L.); (P.R.)
| | - Albert K. D. Imsland
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway;
- Akvaplan-niva Iceland Office, 201 Kópavogur, Iceland
| | | |
Collapse
|
12
|
Influence of diet changes on the condition and physiological state of juvenile sea trout ( Salmo trutta). ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2023-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Abstract
The aim of the study was to determine the influence of diets (factor D) and the time period (factor T) during which they were applied on the growth performance and physiological condition (blood plasma hematological and biochemical indicators of stress and immunity) in juvenile sea trout (Salmo trutta; initial body weight approximately 73 g). The diet of the fish that was used prior to the experiment (formulated feed; initial fish sample) was modified as follows: a different formulated feed (group B), mixed feed (feed B + prey fish; group B/N), prey fish exclusively (group N). The fish from group A were given the feed that was used prior to the beginning of the experiment. During the 28-day trial neither factors D nor T influenced absolute or relative fish growth rates. Factor D significantly influenced hematological indicators and leukograms, while the phagocytic index and cidal ability were determined by the time test (factor T). Myeloperoxidase (AMPO) was related significantly with the influence of factors D and T and also with the interaction of D×T. A significant decrease in AMPO was noted after two weeks of the test in groups B, N, and B/N, but after four weeks this indicator did not differ from that confirmed in the initial fish sample. The factors tested influenced stress indicators, i.e., cortisol (D and T) and glucose (D). Significant increases in cortisol (group B) and glucose (groups A, B, and B/N) concentrations were noted after two weeks of the test. After the subsequent two weeks (four weeks of the test) these indicators also stabilized. Sea trout from aquaculture readily accept prey fish; however, changes in diet cause stress reactions such as temporarily reduced immunity. Thus, the procedure for preparing sea trout stocking material for release, which is to change the feed from formulated to natural (live fish), should last approximately four weeks.
Collapse
|
13
|
Kennedy EKC, Janz DM. Chronic stress causes cortisol, cortisone and DHEA elevations in scales but not serum in rainbow trout. Comp Biochem Physiol A Mol Integr Physiol 2023; 276:111352. [PMID: 36427661 DOI: 10.1016/j.cbpa.2022.111352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Fish scales have been reported to incorporate cortisol over long periods of time and thus provide a promising means of assessing long-term stress in many species of teleost fish. However, the quantification of other stress related hormones has only been accomplished in our previous study conducted in goldfish (Carassius auratus). DHEA is a precursory androgen with anti-stress effects used alongside cortisol to diagnose chronic stress via the cortisol:DHEA ratio in mammals. Included in DHEA's anti-stress mechanisms are changes in the metabolism of cortisol to its inactive metabolite cortisone suggesting the relationships between cortisol, DHEA and cortisone may be additionally informative in the assessment of long-term stress. Therefore, to further explore these concepts in a native fish species and generate more comprehensive comparisons between scale and serum hormone concentrations than was possible in our previous study we implemented a 14-day stress protocol in adult rainbow trout (Oncorhynchus mykiss) and quantified resulting scale and serum cortisol, cortisone and DHEA concentrations. As predicted, elevations in scale concentrations of all hormones were observed in stressed trout compared to controls but were not reflected in serum samples. Significant differences in the cortisol:DHEA and cortisone:cortisol ratios were also found between control and stressed group scales but not serum. These results suggest not only that scales provide a superior medium for the assessment of long-term stress but also that the addition of scale cortisone and DHEA may provide additional relevant information for such assessments.
Collapse
Affiliation(s)
- Emily K C Kennedy
- Toxicology Graduate Program, University of Saskatchewan, Saskatoon, SK, Canada.
| | - David M Janz
- Western College of Veterinary Medicine and Toxicology Centre, Saskatoon, SK, Canada
| |
Collapse
|
14
|
Kaiser F, Schlachter M, Schulz C, Figueiredo-Silva C. Dietary Supplementation with Chromium DL-Methionine Enhances Growth Performance of African Catfish ( Clarias gariepinus). AQUACULTURE NUTRITION 2023; 2023:7092657. [PMID: 36860968 PMCID: PMC9973147 DOI: 10.1155/2023/7092657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/15/2022] [Accepted: 01/07/2023] [Indexed: 06/18/2023]
Abstract
Sustainable aqua feeds have become an urgent necessity for future-oriented aquaculture sector development, and especially mineral supply could be limited when diets are being prepared with low amounts of animal-based sources. Since knowledge about the efficiency of organic trace mineral supplementation in different species of fish is limited, the effects of chromium DL-methionine in African catfish nutrition were evaluated. Four commercially based diets with increasing chromium DL-methionine supplementation (0, 0.2, 0.4, and 0.6 mg Cr kg-1) in the form of Availa-Cr 1000 were fed to African catfish (Clarias gariepinus B., 1822) in quadruplicate groups for 84 days. Growth performance parameters (final body weight, feed conversion ratio, specific growth rate, daily feed intake, protein efficiency ratio, and protein retention efficiency), biometric indices (mortality, hepatosomatic index, spleen somatic index, and hematocrit), and mineral retention efficiency were assessed at the end of the feeding trial. The specific growth rate was significantly increased in fish-fed diets with 0.2 mg Cr kg-1 and 0.4 mg Cr kg-1 supplementation in comparison with control and based on the second-degree polynomial regression analysis; supplementation with 0.33 mg Cr kg-1 was optimal in commercially based diets for African catfish. Chromium retention efficiency was reduced with increasing supplementation levels; however, the chromium content of the whole body was comparable to literature. The results suggest that organic chromium supplementation is a viable and safe supplement for diets to increase the growth performance of African catfish.
Collapse
Affiliation(s)
- Frederik Kaiser
- Institute of Animal Breeding and Husbandry, Department of Marine Aquaculture, Christian-Albrechts-University Kiel, Olshausenstraße 40, 24098 Kiel, Germany
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, Aquaculture und Aquatic Resources, Hafentörn 3, 25761 Büsum, Germany
| | - Michael Schlachter
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, Aquaculture und Aquatic Resources, Hafentörn 3, 25761 Büsum, Germany
| | - Carsten Schulz
- Institute of Animal Breeding and Husbandry, Department of Marine Aquaculture, Christian-Albrechts-University Kiel, Olshausenstraße 40, 24098 Kiel, Germany
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, Aquaculture und Aquatic Resources, Hafentörn 3, 25761 Büsum, Germany
| | | |
Collapse
|
15
|
Kennedy EKC, Janz DM. Can scale cortisol concentration be quantified non-lethally in wild fish species? CONSERVATION PHYSIOLOGY 2023; 11:coac081. [PMID: 36694596 PMCID: PMC9868526 DOI: 10.1093/conphys/coac081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/17/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Cortisol, the primary glucocorticoid in fishes, is secreted into the bloodstream in response to stress. Circulating cortisol accumulates in scales, a durable calcified structure that can be easily sampled from many fish species. As such, the use of scale cortisol concentration (SCC) is currently being explored as a means of chronic stress biomonitoring in wild fishes. Scales serve an important role in fish physiology and thus the number of scales required for reliable cortisol analysis is a limiting factor in the non-lethal collection of such samples. To date, scale cortisol quantification has also only been performed non-lethally in captive fishes and due to differences in stress responsiveness SCCs likely differ in wild species. As such, this study aimed to (1) apply our fish scale processing and analysis protocol to wild fish species and (2) apply it to five north temperate fish species to provide information useful to future non-lethal scale sampling regimes. Cortisol was successfully measured in scales collected from wild northern pike (Esox lucius), walleye (Sander vitreus), whitefish (Coregonus clupeaformis), white sucker (Catostomus commersonii) and captive rainbow trout (Oncorhynchus mykiss). SCCs were significantly different between species and thus the sample mass required for reliable cortisol analysis differed as well. In addition to the size of the fish and the mass of their scales this is an important consideration for future scale cortisol analyses as these factors could make SCC an attainable non-lethal sample matrix in some species of fish but impractical in others.
Collapse
Affiliation(s)
- Emily K C Kennedy
- Toxicology Undergraduate Program, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7K 5B3, Canada
| | - David M Janz
- Western College of Veterinary Medicine and Toxicology Centre, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| |
Collapse
|
16
|
Prentice PM, Houslay TM, Wilson AJ. Exploiting animal personality to reduce chronic stress in captive fish populations. Front Vet Sci 2022; 9:1046205. [PMID: 36590805 PMCID: PMC9794626 DOI: 10.3389/fvets.2022.1046205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/22/2022] [Indexed: 12/16/2022] Open
Abstract
Chronic stress is a major source of welfare problems in many captive populations, including fishes. While we have long known that chronic stress effects arise from maladaptive expression of acute stress response pathways, predicting where and when problems will arise is difficult. Here we highlight how insights from animal personality research could be useful in this regard. Since behavior is the first line of organismal defense when challenged by a stressor, assays of shy-bold type personality variation can provide information about individual stress response that is expected to predict susceptibility to chronic stress. Moreover, recent demonstrations that among-individual differences in stress-related physiology and behaviors are underpinned by genetic factors means that selection on behavioral biomarkers could offer a route to genetic improvement of welfare outcomes in captive fish stocks. Here we review the evidence in support of this proposition, identify remaining empirical gaps in our understanding, and set out appropriate criteria to guide development of biomarkers. The article is largely prospective: fundamental research into fish personality shows how behavioral biomarkers could be used to achieve welfare gains in captive fish populations. However, translating potential to actual gains will require an interdisciplinary approach that integrates the expertise and viewpoints of researchers working across animal behavior, genetics, and welfare science.
Collapse
Affiliation(s)
- Pamela M. Prentice
- Centre for Ecology and Conservation, University of Exeter, Exeter, United Kingdom,Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Thomas M. Houslay
- Centre for Ecology and Conservation, University of Exeter, Exeter, United Kingdom,Ecology and Environment Research Centre, Department of Natural Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Alastair J. Wilson
- Centre for Ecology and Conservation, University of Exeter, Exeter, United Kingdom,*Correspondence: Alastair J. Wilson
| |
Collapse
|
17
|
Pfalzgraff T, Skov PV. Combined antagonist treatment of glucocorticoid and mineralocorticoid receptor does not affect weight loss of fasting rainbow trout but inhibits a fasting-induced elevation of cortisol secretion. Comp Biochem Physiol A Mol Integr Physiol 2022; 274:111321. [PMID: 36169060 DOI: 10.1016/j.cbpa.2022.111321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
Abstract
The gastrointestinal system of fish reacts rapidly to food deprivation. The relative masses of digestive organs and activities of digestive enzymes decrease within days of fasting. This is believed to be an energy-conserving strategy as the metabolic cost of maintaining digestive capacity is high. Cortisol is known for its role in energy mobilization following stress exposure, and prolonged elevated cortisol levels have been shown to reduce growth rates in fish. Fish experiencing chronic cortisol elevations show structural changes to their digestive tissues and overall reductions in relative digestive tissue masses. In fish fasting for prolonged periods, circulating cortisol levels have been reported to be downregulated, upregulated, or unchanged compared to feeding fish. This study aimed to investigate if RU486 and spironolactone, antagonists of the glucocorticoid receptor (GR), and mineralocorticoid receptor (MR), respectively, alone or in combination affect circulating cortisol levels during prolonged starvation. In addition, we tested the effects of blocking GR and MR, on the down-regulation of relative digestive tissue mass during starvation, and its effects on weight loss. Three treatment groups of rainbow trout were intraperitoneally implanted with either GR, MR, or GR and MR blockers. A fourth group was implanted with cortisol, while a fifth group served as a control. All treatment groups were sampled over a course of four weeks of food deprivation and compared against each other and fed control fish at day 0 of the trial. Starvation for 2 weeks and longer significantly increased circulating cortisol levels in all groups except for the group implanted with GR and MR antagonists. Loss of body mass occurred most rapidly during the first week of starvation. Spironolactone treatment resulted in significantly reduced loss of mass during the first week, however, over the following weeks, no differences in mass loss were observed in the groups implanted with blockers, while cortisol-treated fish showed the highest decrease in body mass over time. Relative digestive tissue mass decreased in all groups but apparently, the fasting-induced elevation in plasma cortisol levels did not affect the relative weight loss of digestive tissues as no differences were observed between control fish and GR + MR antagonist treated fish. Very high cortisol levels caused by cortisol treatment however caused a faster decrease in the relative mass of some digestive organs, particularly the stomach.
Collapse
Affiliation(s)
- Tilo Pfalzgraff
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, 9850 Hirtshals, Denmark.
| | - Peter Vilhelm Skov
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, 9850 Hirtshals, Denmark
| |
Collapse
|
18
|
Tshering G, Pimtong W, Plengsuriyakarn T, Na-Bangchang K. Effects of β-eudesmol and atractylodin on target genes and hormone related to cardiotoxicity, hepatotoxicity, and endocrine disruption in developing zebrafish embryos. Sci Prog 2022; 105:368504221137458. [PMID: 36474426 PMCID: PMC10306152 DOI: 10.1177/00368504221137458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Atractylodes lancea, commonly known as Kod-Kamao in Thai, a traditional medicinal herb, is being developed for clinical use in cholangiocarcinoma. β-eudesmol and atractylodin are the main active components of this herb which possess most of the pharmacological properties. However, the lack of adequate toxicity data would be a significant hindrance to their further development. The present study investigated the toxic effects of selected concentrations of β-eudesmol and atractylodin in the heart, liver, and endocrine systems of zebrafish embryos. Study endpoints included changes in the expression of genes related to Na/K-ATPase activity in the heart, fatty acid-binding protein 10a and cytochrome P450 family 1 subfamily A member 1 in the liver, and cortisol levels in the endocrine system. Both compounds produced inhibitory effects on the Na/K-ATPase gene expressions in the heart. Both also triggered the biomarkers of liver toxicity. While β-eudesmol did not alter the expression of the cytochrome P450 family 1 subfamily A member 1 gene, atractylodin at high concentrations upregulated the gene, suggesting its potential enzyme-inducing activity in this gene. β-eudesmol, but not atractylodin, showed some stress-reducing properties with suppression of cortisol production.
Collapse
Affiliation(s)
- Gyem Tshering
- Graduate Studies, Chulabhorn
International College of Medicine, Thammasat University, Klong Luang, Pathumthani, Thailand
| | - Wittaya Pimtong
- Nano Environmental and Health Safety
Research Team, National Nanotechnology Center, National Science and Technology
Development Agency, Klong Luang, Pathumthani, Thailand
| | - Tullayakorn Plengsuriyakarn
- Graduate Studies, Chulabhorn
International College of Medicine, Thammasat University, Klong Luang, Pathumthani, Thailand
- Center of Excellence in Pharmacology
and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International
College of Medicine, Thammasat University, Klong Luang, Pathumthani, Thailand
| | - Kesara Na-Bangchang
- Graduate Studies, Chulabhorn
International College of Medicine, Thammasat University, Klong Luang, Pathumthani, Thailand
- Center of Excellence in Pharmacology
and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International
College of Medicine, Thammasat University, Klong Luang, Pathumthani, Thailand
- Drug Discovery and Development Center, Thammasat University, Klong Luang, Pathumthani, Thailand
| |
Collapse
|
19
|
Gonçalves AT, Llanos-Rivera A, Ruano M, Avello V, Gallardo-Rodriguez JJ, Astuya-Villalón A. Physiological Response of Atlantic Salmon ( Salmo salar) to Long-Term Exposure to an Anesthetic Obtained from Heterosigma akashiwo. Toxins (Basel) 2022; 14:575. [PMID: 36006237 PMCID: PMC9416519 DOI: 10.3390/toxins14080575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the invaluable role of anesthetics as a tool for ensuring animal welfare in stressful situations, there is currently a lack of anesthetic drugs that meet the requirements of intensive aquaculture. In response to the growing interest in anesthetic substances of natural origin, this study evaluated the physiological and health impact of an anesthetic based on an extract of the microalga Heterosigma akashiwo on juvenile salmon (Salmo salar) exposed for a period of 72 h. To simulate a condition closer to reality where fish are subjected to stimuli (e.g., transport), the animals were exposed to 50 mg L-1 of algal extract and to physical stress. Functional, physiological, and histological parameters were evaluated in blood and tissues at different sampling periods (0, 24, and 72 h). There was no mortality and the induction and recovery times observed were within the established criteria for anesthetic efficacy. The anesthetic extract did not induce any side effects, such as stress or metabolic damage, indicating that this extract is a viable option for supporting fish welfare during deleterious events. This study provides information to support that the anesthetic extract tested, derived from H. akashiwo, is a promising candidate drug for operations requiring sedation (e.g., Salmonid transport).
Collapse
Affiliation(s)
- Ana Teresa Gonçalves
- Interdisciplinary Center for Aquaculture Research, O’Higgins 1695, Concepción 4030000, Chile
- GreenCoLab—Associação Oceano Verde, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Alejandra Llanos-Rivera
- Laboratorio de Biotoxinas de la Universidad de Concepción (LBTx-UdeC), Department of Oceanography, Faculty of Natural and Oceanographic Sciences, Universidad de Concepción, Barrio Universitario s/n, Concepción 4030000, Chile
| | - Miguel Ruano
- Fishsource Units and Science Division M&E, Sustainable Fisheries Partnership, Honolulu, HI 96816, USA
| | - Veronica Avello
- Laboratorio de Biotoxinas de la Universidad de Concepción (LBTx-UdeC), Department of Oceanography, Faculty of Natural and Oceanographic Sciences, Universidad de Concepción, Barrio Universitario s/n, Concepción 4030000, Chile
| | - Juan José Gallardo-Rodriguez
- Departamento de Ingeniería Química, Escuela Superior de Ingeniería, Universidad de Almería, Carretera Sacramento, Calle San Urbano s/n, La Cañada, 04120 Almería, Spain
| | - Allisson Astuya-Villalón
- Laboratorio de Biotoxinas de la Universidad de Concepción (LBTx-UdeC), Department of Oceanography, Faculty of Natural and Oceanographic Sciences, Universidad de Concepción, Barrio Universitario s/n, Concepción 4030000, Chile
- Centro de Investigación Oceanográfica COPAS COASTAL, Universidad de Concepción, Concepción 4030000, Chile
| |
Collapse
|
20
|
Elbialy ZI, Gamal S, Al-Hawary II, Shukry M, Salah AS, Aboshosha AA, Assar DH. Exploring the impacts of different fasting and refeeding regimes on Nile tilapia (Oreochromis niloticus L.): growth performance, histopathological study, and expression levels of some muscle growth-related genes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:973-989. [PMID: 35781858 PMCID: PMC9385825 DOI: 10.1007/s10695-022-01094-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
The current study investigated how different fasting and refeeding regimes would impact Nile tilapia growth performance, histopathological examination, and gene expression of myostatin, myogenin, GH, IGF-1, and NPYa. Nile tilapia fish (n = 120) were randomly allocated into four groups, including the control group fed on a basal diet for 6 weeks (F6), group A starved for 1 week and then refed for 5 weeks (S1F5), group B starved for 2 weeks and then refed for 4 weeks (S2F4), while group C starved for 4 weeks and then refed for 2 weeks (S4F2). Fasting provoked a decrease in body weight coincided with more extended starvation periods. Also, it induced muscle and liver histological alterations; the severity was correlated with the length of fasting periods. Gene expression levels of GH, MSTN, MYOG, and NPYa were significantly increased, while IGF1 was markedly depressed in fasted fish compared to the control group. Interestingly, refeeding after well-planned short fasting period (S1F5) modulated the histopathological alterations. To some extent, these changes were restored after refeeding. Restored IGF-I and opposing fasting expression profiles of the genes mentioned above thus recovered weights almost like the control group and achieved satisfactory growth compensation. Conversely, refeeding following more extended fasting periods failed to restore body weight. In conclusion, refeeding after fasting can induce a compensatory response. Still, the restoration capacity is dependent on the length of fasting and refeeding periods through exhibiting differential morphological structure and expressions pattern for muscle and growth-related genes.
Collapse
Affiliation(s)
- Zizy I. Elbialy
- Fish Processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Shrouk Gamal
- Fish Processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Ibrahim I. Al-Hawary
- Fish Processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Abdallah S. Salah
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA UK
| | - Ali A. Aboshosha
- Department of Genetics, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Doaa H. Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| |
Collapse
|
21
|
Thompson WA, Vijayan MM. Antidepressants as Endocrine Disrupting Compounds in Fish. Front Endocrinol (Lausanne) 2022; 13:895064. [PMID: 35784526 PMCID: PMC9245512 DOI: 10.3389/fendo.2022.895064] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
As antidepressant usage by the global population continues to increase, their persistent detection in aquatic habitats from municipal wastewater effluent release has led to concerns of possible impacts on non-target organisms, including fish. These pharmaceuticals have been marketed as mood-altering drugs, specifically targeting the monoaminergic signaling in the brain of humans. However, the monoaminergic systems are highly conserved and involved in the modulation of a multitude of endocrine functions in vertebrates. While most studies exploring possible impact of antidepressants on fish have focused on behavioural perturbations, a smaller spotlight has been placed on the endocrine functions, especially related to reproduction, growth, and the stress response. The purpose of this review is to highlight the possible role of antidepressants as endocrine disruptors in fish. While studies linking the effects of environmentally relevant levels of antidepressant on the endocrine system in fish are sparse, the emerging evidence suggests that early-life exposure to these compounds have the potential to alter the developmental programming of the endocrine system, which could persist as long-term and multigenerational effects in teleosts.
Collapse
|
22
|
Aragão C, Gonçalves AT, Costas B, Azeredo R, Xavier MJ, Engrola S. Alternative Proteins for Fish Diets: Implications beyond Growth. Animals (Basel) 2022; 12:1211. [PMID: 35565636 PMCID: PMC9103129 DOI: 10.3390/ani12091211] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 12/12/2022] Open
Abstract
Aquaculture has been challenged to find alternative ingredients to develop innovative feed formulations that foster a sustainable future growth. Given the most recent trends in fish feed formulation on the use of alternative protein sources to decrease the dependency of fishmeal, it is fundamental to evaluate the implications of this new paradigm for fish health and welfare. This work intends to comprehensively review the impacts of alternative and novel dietary protein sources on fish gut microbiota and health, stress and immune responses, disease resistance, and antioxidant capacity. The research results indicate that alternative protein sources, such as terrestrial plant proteins, rendered animal by-products, insect meals, micro- and macroalgae, and single cell proteins (e.g., yeasts), may negatively impact gut microbiota and health, thus affecting immune and stress responses. Nevertheless, some of the novel protein sources, such as insects and algae meals, have functional properties and may exert an immunostimulatory activity. Further research on the effects of novel protein sources, beyond growth, is clearly needed. The information gathered here is of utmost importance, in order to develop innovative diets that guarantee the production of healthy fish with high quality standards and optimised welfare conditions, thus contributing to a sustainable growth of the aquaculture industry.
Collapse
Affiliation(s)
- Cláudia Aragão
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; (M.J.X.); (S.E.)
| | - Ana Teresa Gonçalves
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, 8005-139 Faro, Portugal;
- SPAROS Lda, 8700-221 Olhão, Portugal
| | - Benjamín Costas
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), 4450-208 Matosinhos, Portugal; (B.C.); (R.A.)
- School of Medicine and Biomedical Sciences (ICBAS-UP), Universidade do Porto, 4050-313 Porto, Portugal
| | - Rita Azeredo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), 4450-208 Matosinhos, Portugal; (B.C.); (R.A.)
| | - Maria João Xavier
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; (M.J.X.); (S.E.)
| | - Sofia Engrola
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; (M.J.X.); (S.E.)
| |
Collapse
|
23
|
Azeredo R, Machado M, Pereiro P, Barany A, Mancera JM, Costas B. Acute Inflammation Induces Neuroendocrine and Opioid Receptor Genes Responses in the Seabass Dicentrarchus labrax Brain. BIOLOGY 2022; 11:biology11030364. [PMID: 35336737 PMCID: PMC8945561 DOI: 10.3390/biology11030364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 12/05/2022]
Abstract
Simple Summary It is generally accepted (in mammals and in teleost fish, too) that stressful conditions affect the performance of an immune response. What is still far from being known is at what extend does an immune process affects the neuroendocrine system. Vaccination for instance, is nowadays a common practice in aquaculture and little is known about its physiological implications other than immunization. Here is a first approach to the study of the European seabass’ brain gene expression patterns in response to a peripheral inflammatory process. Genes related to the stress response were focused, along with those related to the opioid system. Increased expression of certain genes suggests the activation of a stress response triggered by inflammatory signals. Additionally, contrasting expression patterns of the same gene (increased vs decreased) in the different brain regions (as well as the time needed for changes to happen) point at different functions. These results clearly show the reactivity of different brain responses to an immune response, highlighting the importance of further studies on downstream implications (behavior, feeding, welfare, reproduction). Abstract In fish, as observed in mammals, any stressful event affects the immune system to a larger or shorter extent. The neuroendocrine-immune axis is a bi-directional network of mobile compounds and their receptors that are shared between both systems (neuroendocrine and immune) and that regulate their respective responses. However, how and to what extent immunity modulates the neuroendocrine system is not yet fully elucidated. This study was carried out to understand better central gene expression response patterns in a high-valued farmed fish species to an acute peripheral inflammation, focusing on genes related to the hypothalamus-pituitary-interrenal axis and the opioid system. European seabass, Dicentrarchus labrax, were intra-peritoneally injected with either Freund’s Incomplete Adjuvant to induce a local inflammatory response or Hanks Balances Salt Solution to serve as the control. An undisturbed group was also included to take into account the effects due to handling procedures. To evaluate the outcomes of an acute immune response, fish were sampled at 4, 24, 48, and 72 h post-injection. The brain was sampled and dissected for isolation of different regions: telencephalon, optic tectum, hypothalamus, and pituitary gland. The expression of several genes related to the neuroendocrine response was measured by real-time PCR. Data were statistically analyzed by ANOVA and discriminant analyses to obtain these genes’ responsiveness for the different brain regions. Serotonergic receptors were upregulated in the telencephalon, whereas the optic tectum inhibited these transcription genes. The hypothalamus showed a somewhat delayed response in which serotonin and glucocorticoid receptors were concerned. Still, the hypothalamic corticotropin-releasing hormone played an important role in differentiating fish undergoing an inflammatory response from those not under such conditions. Opioid receptors gene expression increased in both the hypothalamus and the telencephalon, while in the optic tectum, most were downregulated. However, no changes in the pituitary gland were observed. The different brain regions under immune stimulation demonstrated clear, distinct responses regarding gene transcription rates as well as the time period needed for the effect to occur. Further, more integrative studies are required to associate functions to the evaluated genes more safely and better understand the triggering mechanisms.
Collapse
Affiliation(s)
- Rita Azeredo
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.M.); (P.P.)
- Correspondence: (R.A.); (B.C.)
| | - Marina Machado
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.M.); (P.P.)
| | - Patricia Pereiro
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.M.); (P.P.)
- Instituto de Investigaciones Marinas (IIM-CSIC), 36208 Vigo, Spain
| | - Andre Barany
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cadiz, 11519 Puerto Real, Spain; (A.B.); (J.M.M.)
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cadiz, 11519 Puerto Real, Spain; (A.B.); (J.M.M.)
| | - Benjamín Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.M.); (P.P.)
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade do Porto, 4050-313 Porto, Portugal
- Correspondence: (R.A.); (B.C.)
| |
Collapse
|
24
|
Viral Infection Drives the Regulation of Feeding Behavior Related Genes in Salmo salar. Int J Mol Sci 2021; 22:ijms222111391. [PMID: 34768822 PMCID: PMC8583931 DOI: 10.3390/ijms222111391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
The feeding behavior in fish is a complex activity that relies on the ability of the brain to integrate multiple signals to produce appropriate responses in terms of food intake, energy expenditure, and metabolic activity. Upon stress cues including viral infection or mediators such as the proinflammatory cytokines, prostaglandins, and cortisol, both Pomc and Npy/Agrp neurons from the hypothalamus are stimulated, thus triggering a response that controls both energy storage and expenditure. However, how appetite modulators or neuro-immune cues link pathogenesis and energy homeostasis in fish remains poorly understood. Here, we provide the first evidence of a molecular linkage between inflammation and food intake in Salmon salar. We show that in vivo viral challenge with infectious pancreatic necrosis virus (IPNV) impacts food consumption by activating anorexic genes such as mc4r, crf, and pomcb and 5-HT in the brain of S. salar. At the molecular level, viral infection induces an overall reduction in lipid content in the liver, favoring the production of AA and EPA associated with the increment of elovl2 gene. In addition, infection upregulates leptin signaling and inhibits insulin signaling. These changes are accompanied by a robust inflammatory response represented by the increment of Il-1b, Il-6, Tnfa, and Pge2 as well as an increased cortisol level in vivo. Thus, we propose a model in which hypothalamic neurons respond to inflammatory cytokines and stress-related molecules and interact with appetite induction/inhibition. These findings provide evidence of crosstalk between pathogenesis-driven inflammation and hypothalamic-pituitary-adrenocortical axes in stress-induced food intake behavior in fish.
Collapse
|
25
|
Samim AR, Vaseem H. Assessment of the potential threat of nickel(II) oxide nanoparticles to fish Heteropneustes fossilis associated with the changes in haematological, biochemical and enzymological parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54630-54646. [PMID: 34018108 DOI: 10.1007/s11356-021-14451-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
The present study has been conducted to evaluate the potential threat of NiO nanoparticles (NiO NPs) on an edible fish Heteropneustes fossilis. Fishes selected for the study were exposed to four concentrations of NiO NPs (12, 24, 36 and 48 mg/l) for the period of 14 days, and various haematological, biochemical and enzymological changes in the exposed fishes were examined. Results revealed that maximum fluctuations were seen in 48-mg/l-exposed fishes when compared with the control in terms of the haematological parameters (RBC count, WBC count, Hb content, Ht% and O2 carrying capacity of blood), enzymatic activities (AST, ALP, ALT and LDH) and biochemical parameters (level of cholesterol, triglycerides, glucose, total protein, albumin, globulin, bilirubin and creatinine). However, 12 mg/l treatment to the fishes showed its least impact on aforesaid parameters. Furthermore, Ni accumulation and changes in cortisol level in the blood were also noticed in all the treated fishes. Structural changes, such as membrane and nuclear disintegration, micronucleus, deformed and vacuolated cells, and enucleation were also observed in RBCs of NiO NP-treated fishes. Conclusively, our study provides useful information and insight for the possible ecotoxicity of NiO NPs on aquatic organisms and emphasizes upon the importance of treatment of effluents containing nanoparticles before their release into the aquatic system.
Collapse
Affiliation(s)
- Abdur Rouf Samim
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Huma Vaseem
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
26
|
Sheridan MA. Coordinate regulation of feeding, metabolism, and growth: Perspectives from studies in fish. Gen Comp Endocrinol 2021; 312:113873. [PMID: 34329604 DOI: 10.1016/j.ygcen.2021.113873] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 01/15/2023]
Abstract
This paper develops a model for coordinate regulation of feeding, metabolism, and growth based on studies in fish. Many factors involved with the control of feeding [e.g., cholecystokinin (CCK) and ghrelin (GRLN)], energy metabolism [e.g., insulin (INS), glucagon (GLU), glucagon-like peptide (GLP), and somatostatins (SS), produced in the endocrine pancreas; and leptin (LEP) produced broadly], and growth [e.g., GRLN, growth hormone (GH), insulin-like growth factors (IGFs), GH receptors (GHR), IGF receptors (IGFR)] interact at various levels. Many such interactions serve to coordinate these systems to favor anabolic processes (i.e., lipid and protein synthesis, glycogenesis) and growth, including GH promotion of feeding and stimulation of INS production/secretion and the upregulation of GHR and IGFR by GRLN. As nutrient and stored energy status change, various feedbacks serve to curtail feeding and transition the animal from an anabolic/growth state to a catabolic state. Many factors, including LEP and IGF, promote satiety, whereas SS downregulates INS signaling as well as IGF production and GHR and IGFR abundance. As INS and IGF levels fall, GH becomes disconnected from growth as a result of altered linkage of GHR to cell signaling pathways. As a result, the catabolic actions of GH, GLU, GLP, LEP, and SS prevail, mobilizing stored energy reserves. Coordinate regulation involves relative abundances of blood-borne hormones as well as the ability to adjust responsiveness to hormones (via receptor and post-receptor events) in a cell-/tissue-specific manner that results from genetic and epigenetic programming and modulation by the local milieu of hormones, nutrients, and autocrine/paracrine interactions. The proposed model of coordinate regulation demonstrates how feeding, metabolism, and growth are integrated with each other and with other processes, such as reproduction, and how adaptive adjustments can be made to energy allocation during an animal's life history and/or in response to changes in environmental conditions.
Collapse
Affiliation(s)
- Mark A Sheridan
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
27
|
Geffroy B, Gesto M, Clota F, Aerts J, Darias MJ, Blanc MO, Ruelle F, Allal F, Vandeputte M. Parental selection for growth and early-life low stocking density increase the female-to-male ratio in European sea bass. Sci Rep 2021; 11:13620. [PMID: 34193934 PMCID: PMC8245542 DOI: 10.1038/s41598-021-93116-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/21/2021] [Indexed: 11/09/2022] Open
Abstract
In European sea bass (Dicentrarchus labrax), as in many other fish species, temperature is known to influence the sex of individuals, with more males produced at relatively high temperatures. It is however unclear to what extent growth or stress are involved in such a process, since temperature is known to influence both growth rate and cortisol production. Here, we designed an experiment aiming at reducing stress and affecting early growth rate. We exposed larvae and juveniles originating from both captive and wild parents to three different treatments: low stocking density, food supplemented with tryptophan and a control. Low stocking density and tryptophan treatment respectively increased and decreased early growth rate. Each treatment influenced the stress response depending on the developmental stage, although no clear pattern regarding the whole-body cortisol concentration was found. During sex differentiation, fish in the low-density treatment exhibited lower expression of gr1, gr2, mr, and crf in the hypothalamus when compared to the control group. Fish fed tryptophan displayed lower crf in the hypothalamus and higher level of serotonin in the telencephalon compared to controls. Overall, fish kept at low density produced significantly more females than both control and fish fed tryptophan. Parents that have been selected for growth for three generations also produced significantly more females than parents of wild origin. Our findings did not allow to detect a clear effect of stress at the group level and rather point out a key role of early sexually dimorphic growth rate in sex determination.
Collapse
Affiliation(s)
- Benjamin Geffroy
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France.
| | - Manuel Gesto
- Techn Section for Aquaculture, DTU Aqua, Technical University of Denmark, Willemoesvej 2, 9850, Hirtshals, Denmark
| | - Fréderic Clota
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France.,Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Johan Aerts
- Stress Physiology Research Group, Faculty of Sciences, Ghent University, Ostend, Belgium
| | - Maria J Darias
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - Marie-Odile Blanc
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - François Ruelle
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - François Allal
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - Marc Vandeputte
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France.,Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| |
Collapse
|
28
|
Muscle Cortisol Levels, Expression of Glucocorticoid Receptor and Oxidative Stress Markers in the Teleost Fish Argyrosomus regius Exposed to Transport Stress. Animals (Basel) 2021; 11:ani11041160. [PMID: 33919515 PMCID: PMC8072758 DOI: 10.3390/ani11041160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 01/08/2023] Open
Abstract
Fish commercial transport is an ordinary practice in the aquaculture industry. This study aimed to investigate the effect of a 48 h transport stress on stress response of meagre (Argyrosomus regius) juveniles. Radioimmunoassay (RIA) and Real-Time PCR were used to evaluate muscle cortisol levels and to assess glucocorticoid receptor (gr) gene expression in fish muscle and liver, respectively. Presence and localization of various oxidative stress markers were investigated in different tissues by immunohistochemistry. A significant increase in muscle cortisol levels was observed after loading but a significant decrease occurred after 16 h from departure even without returning to control levels. Molecular analysis on stress response revealed an increase in muscle gr expression after fish loading that started decreasing during the travel returning to the control level at the end of the transport. Instead, no differences in liver gr expression were observed along the different sampling points. Immunostaining for heat shock protein 70 (HSP70), 4-hydroxy-2-nonenal (HNE), nitrotyrosine (NT) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) antibodies was detected in several organs. Notably, a higher NT immunostaining intensity was evident in skin and gills of the transported animals with respect to controls. Results demonstrated that cortisol and gr are useful indicators of stressful conditions in transported fish.
Collapse
|
29
|
Zarantoniello M, Bortoletti M, Olivotto I, Ratti S, Poltronieri C, Negrato E, Caberlotto S, Radaelli G, Bertotto D. Salinity, Temperature and Ammonia Acute Stress Response in Seabream ( Sparus aurata) Juveniles: A Multidisciplinary Study. Animals (Basel) 2021; 11:E97. [PMID: 33419050 PMCID: PMC7825456 DOI: 10.3390/ani11010097] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to investigate the acute response of gilthead seabream (Sparus aurata) juveniles exposed to temperature, salinity and ammonia stress. Radioimmunoassay was used to evaluate cortisol levels, whereas insulin-like growth factors (igf1 and igf2), myostatin (mstn), heat-shock protein 70 (hsp70) and glucocorticoid receptor (gr) gene expression was assessed trough Real-Time PCR. The presence and localization of IGF-I and HSP70 were investigated by immunohistochemistry. In all the stress conditions, a significant increase in cortisol levels was observed reaching higher values in the thermic and chemical stress groups. Regarding fish growth markers, igf1 gene expression was significantly higher only in fish subjected to heat shock stress while, at 60 min, igf2 gene expression was significantly lower in all the stressed groups. Temperature and ammonia changes resulted in a higher mstn gene expression. Molecular analyses on stress response evidenced a time dependent increase in hsp70 gene expression, that was significantly higher at 60 min in fish exposed to heat shock and chemical stress. Furthermore, the same experimental groups were characterized by a significantly higher gr gene expression respect to the control one. Immunostaining for IGF-I and HSP70 antibodies was observed in skin, gills, liver, and digestive system of gilthead seabream juveniles.
Collapse
Affiliation(s)
- Matteo Zarantoniello
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (M.Z.); (I.O.); (S.R.)
| | - Martina Bortoletti
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell’Università 16, I-35020 Legnaro, Padova, Italy; (M.B.); (C.P.); (E.N.); (D.B.)
| | - Ike Olivotto
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (M.Z.); (I.O.); (S.R.)
| | - Stefano Ratti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (M.Z.); (I.O.); (S.R.)
| | - Carlo Poltronieri
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell’Università 16, I-35020 Legnaro, Padova, Italy; (M.B.); (C.P.); (E.N.); (D.B.)
| | - Elena Negrato
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell’Università 16, I-35020 Legnaro, Padova, Italy; (M.B.); (C.P.); (E.N.); (D.B.)
| | - Stefano Caberlotto
- Valle Ca’ Zuliani Società Agricola Srl, I-34074 Monfalcone, Gorizia, Italy;
| | - Giuseppe Radaelli
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell’Università 16, I-35020 Legnaro, Padova, Italy; (M.B.); (C.P.); (E.N.); (D.B.)
| | - Daniela Bertotto
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell’Università 16, I-35020 Legnaro, Padova, Italy; (M.B.); (C.P.); (E.N.); (D.B.)
| |
Collapse
|
30
|
Chronic social stress alters protein metabolism in juvenile rainbow trout, Oncorhynchus mykiss. J Comp Physiol B 2021; 191:517-530. [PMID: 33712903 PMCID: PMC8043953 DOI: 10.1007/s00360-021-01340-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/09/2020] [Accepted: 01/13/2021] [Indexed: 01/21/2023]
Abstract
When confined in pairs, juvenile rainbow trout (Oncorhynchus mykiss) form dominance hierarchies in which subordinate fish exhibit characteristic physiological changes including reduced growth rates and chronically elevated plasma cortisol concentrations. We hypothesized that alterations in protein metabolism contribute to the reduced growth rate of socially stressed trout, and predicted that subordinate trout would exhibit reduced rates of protein synthesis coupled with increases in protein degradation. Protein metabolism was assessed in dominant and subordinate fish after 4 days of social interaction, and in fish that were separated after 4 days of interaction for a 4 days recovery period, to determine whether effects on protein metabolism recovered when social stress was alleviated. Protein metabolism was assessed in liver and white muscle by measuring the fractional rate of protein synthesis and markers of protein degradation. In the white muscle of subordinate fish, protein synthesis was inhibited and activities of the ubiquitin-proteasome pathway (UPP) and the autophagy lysosomal system (ALS) were elevated. By contrast, the liver of subordinate fish exhibited increased rates of protein synthesis and activation of the ALS. When allowed to recover from chronic social stress for 4 days, differences in protein metabolism observed in white muscle of subordinate fish during the interaction period disappeared. In liver, protein synthesis returned to baseline levels during recovery from social stress, but markers of protein degradation did not. Collectively, these data support the hypothesis that inhibition of muscle protein synthesis coupled with increases in muscle protein breakdown contribute to the reduced growth rates of subordinate rainbow trout.
Collapse
|
31
|
Evaluation of the Effects of the Enriched-Organic Diets Composition on European Sea Bass Welfare through a Multi-Parametric Approach. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8110934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Three groups of European sea bass (Dicentrarchus labrax) were fed for seven months, with either a conventional diet or two different organic diets, which contain organic vegetables and a natural antioxidant compound. The two organic diets differed themselves in terms of raw proteins, fish oil, and lipid contents. Sea bass welfare condition was assessed in relation to these three diets, using 16 different indicators. These were: swimming activity (recovery test, muscle activity), haematological and serological stress indicators (haematocrit, haemoglobin, red-blood-cell count, cortisol, glucose, lactate), aspecific immunity parameter (lysozyme), indicators of exposure to organic contaminants (7-ethoxyresorufin-O-deethylase and glutathione-S-transferase), and growth parameters (weight gain, specific growth rate, feed conversion ratio, protein efficiency ratio, and hepato-somatic index). Most of these parameters individually did not give consistent responses, but their integration can provide an accurate evaluation of the fish welfare conditions among the three diet experimental groups. The multiparametric approach outlined a comprehensive picture of sea bass physiological state. The principal component analysis and the multi-criteria-decision-analysis were found to be useful tools for an integrated fish welfare assessment, highlighting that the best welfare condition was achieved in the experimental group fed with the protein-rich organic diet.
Collapse
|
32
|
Hou ZS, Xin YR, Zeng C, Zhao HK, Tian Y, Li JF, Wen HS. GHRH-SST-GH-IGF axis regulates crosstalk between growth and immunity in rainbow trout (Oncorhynchus mykiss) infected with Vibrio anguillarum. FISH & SHELLFISH IMMUNOLOGY 2020; 106:887-897. [PMID: 32866610 DOI: 10.1016/j.fsi.2020.08.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/15/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
An energy trade-off is existed between immunological competence and growth. The axis of growth hormone releasing hormone, somatostatin, growth hormone, insulin-like growth factor (GHRH-SST-GH-IGF axis) regulates growth performances and immune competences in rainbow trout (Oncorhynchus mykiss). The salmonid-specific whole genome duplication event is known to result in duplicated copies of several key genes in GHRH-SST-GH-IGF axis. In this study, we evaluated the physiological functions of GHRH-SST-GH-IGF axis in regulating crosstalk between growth and immunity. Based on principal components analysis (PCA), we observed the overall expression profiles of GHRH-SST-GH-IGF axis were significantly altered by Vibrio anguillarum infection. Trout challenged with Vibrio anguillarum showed down-regulated igf1s subtypes and up-regulated igfbp1a1. The brain sst genes (sst1a, sst1b, sst3b and sst5) and igfpbs genes (igfbp4s and igfbp5b2) were significantly affected by V. anguillarum infection, while the igfbp4s, igfbp5s, igfbp6s and igf2bps genes showed significant changes in peripheral immune tissues in response to V. anguillarum infection. Gene enrichment analyses showed functional and signaling pathways associated with apoptosis (such as p53, HIF-1 or FoxO signaling) were activated. We further proposed a possible model that describes the IGF and IGFBPs-regulated interaction between cell growth and programmed death. Our study provided new insights into the physiological functions and potentially regulatory mechanisms of the GHRH-SST-GH-IGF axis, indicating the pleiotropic effects of GHRH-SST-GH-IGF axis in regulating crosstalk between growth and immunity in trout.
Collapse
Affiliation(s)
- Zhi-Shuai Hou
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China.
| | - Yuan-Ru Xin
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China
| | - Chu Zeng
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China
| | - Hong-Kui Zhao
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China
| | - Yuan Tian
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China
| | - Ji-Fang Li
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China
| | - Hai-Shen Wen
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China.
| |
Collapse
|
33
|
Sex-specific responses to competitive environment in the mosquitofish Gambusia holbrooki. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10080-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Stress coping styles: Is the basal level of stress physiological indicators linked to behaviour of sea bream? Appl Anim Behav Sci 2020. [DOI: 10.1016/j.applanim.2020.105085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Chin JSR, Loomis CL, Albert LT, Medina-Trenche S, Kowalko J, Keene AC, Duboué ER. Analysis of stress responses in Astyanax larvae reveals heterogeneity among different populations. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:486-496. [PMID: 32767504 DOI: 10.1002/jez.b.22987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 11/07/2022]
Abstract
Stress responses are conserved physiological and behavioral outcomes as a result of facing potentially harmful stimuli, yet in pathological states, stress becomes debilitating. Stress responses vary considerably throughout the animal kingdom, but how these responses are shaped evolutionarily is unknown. The Mexican cavefish has emerged as a powerful system for examining genetic principles underlying behavioral evolution. Here, we demonstrate that cave Astyanax have reduced behavioral and physiological measures of stress when examined at larval stages. We also find increased expression of the glucocorticoid receptor, a repressible element of the neuroendocrine stress pathway. Additionally, we examine stress in three different cave populations, and find that some, but not all, show reduced stress measures. Together, these results reveal a mechanistic system by which cave-dwelling fish reduced stress, presumably to compensate for a predator poor environment.
Collapse
Affiliation(s)
- Jacqueline S R Chin
- Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida.,Department of Biological Science, Florida Atlantic University, Jupiter, Florida
| | - Cody L Loomis
- Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida.,Department of Biological Science, Florida Atlantic University, Jupiter, Florida
| | - Lydia T Albert
- Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida.,Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | - Shirley Medina-Trenche
- Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida.,Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | - Johanna Kowalko
- Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida.,Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | - Alex C Keene
- Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida.,Department of Biological Science, Florida Atlantic University, Jupiter, Florida
| | - Erik R Duboué
- Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida.,Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| |
Collapse
|
36
|
Hou ZS, Wen HS, Li JF, He F, Li Y, Qi X. Environmental hypoxia causes growth retardation, osteoclast differentiation and calcium dyshomeostasis in juvenile rainbow trout (Oncorhynchus mykiss). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135272. [PMID: 31841926 DOI: 10.1016/j.scitotenv.2019.135272] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/08/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
Hypoxia generally refers to a dissolved oxygen (DO) level that is less than 2-3 mg/L. With ongoing global warming and environment pollution, environmental or geological studies showed hypoxia frequently occurs in global aquatic systems including ocean, river, estuaries and coasts. A preliminary study was performed to evaluate hypoxia tolerant of rainbow trout (Oncorhynchus mykiss) with parameters of mortality, behavior, endocrine and metabolite, identifying three DO levels including normoxia (Ctrl, 7.0 mg/L), non-lethal hypoxia (NH, 4.5 mg/L) and lethal hypoxia (LH, 3.0 mg/L). Furthermore, trout was treated by Ctrl, NH and LH for six hours to mimic the acute hypoxia in wild and/or farming conditions. A significantly higher mortality was observed in LH group. Trout of NH and LH showed stressful responses with unnormal swimming, increased serum cortisol and up-regulated gill hif1α transcription. Despite trout of NH and LH increased the oxygen delivery abilities by increasing the serum hemoglobin levels, the anerobic metabolism were inevitably observed with increased lactate. This study also showed a prolonged influence of NH and LH on growth after 30-days' recovery. Based on RNA-Seq data, different expression genes (DEGs) associated with stress, apoptosis, antioxidant, chaperone, growth, calcium and vitamin D metabolism were identified. Enrichment analysis showed DEGs were clustered in osteoclast differentiation, apoptosis and intracellular signaling transduction pathways. Results further showed NH and LH significantly decreased bone calcium content and disrupted the growth hormone-insulin-like growth factor (GH-IGF) axis. Our study might contribute to a better understanding of the effects of hypoxia on rainbow trout.
Collapse
Affiliation(s)
- Zhi-Shuai Hou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| | - Hai-Shen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China.
| | - Ji-Fang Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| | - Feng He
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| | - Yun Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| | - Xin Qi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| |
Collapse
|
37
|
Ullah I, Zuberi A, Rehman H, Ali Z, Thörnqvist PO, Winberg S. Effects of early rearing enrichments on modulation of brain monoamines and hypothalamic-pituitary-interrenal axis (HPI axis) of fish mahseer (Tor putitora). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:75-88. [PMID: 31515639 DOI: 10.1007/s10695-019-00697-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Enriching rearing environment is the strategy suggested for improving the post release survivorship of captive-reared animals. Here, an attempt has been made to evaluate the impact of early rearing enrichment on the hypothalamic-pituitary-interrenal axis (HPI axis), blood glucose, and brain dopaminergic and serotonergic systems of Tor putitora. Fifteen-day-old hatchlings of T. putitora were reared up to advanced fry stage in barren, semi-natural, and physically enriched environments and compared them with regard to pre-stress and post-stress levels of whole-body cortisol, blood glucose, brain serotonergic activity (5HIAA/5HT ratio), dopaminergic activity (DOPAC/DA and HVA/DA ratios) and norepinephrine (NE) levels. Significantly low basal whole-body cortisol, glucose and brain NE levels were observed in a physically enriched group of fish as compared to the other two groups. However, after acute stress, all rearing groups showed elevated levels of cortisol, blood glucose, brain 5HIAA/5HT, DOPAC/DA and HVA/DA ratios and NE levels but the magnitude of response was different among different rearing groups. The barren reared group showed a higher magnitude of response as compared to semi-natural and physically enriched groups. Similarly, the recovery rate of whole-body cortisol, blood glucose, and whole-brain monoamines were long-lasting in barren-reared mahseer. We illustrate that increased structural complexity (physical enrichment) during the early rearing significantly modulates various physiological and stress-coping mechanisms of mahseer.
Collapse
Affiliation(s)
- Imdad Ullah
- Department of Zoology, Abbottabad University of Science and Technology, Havelian, Abbottabad, Pakistan.
- Department of Neuroscience, Physiology, Uppsala Biomedical Centre, Uppsala University, PO Box 593, 751 24, Uppsala, Sweden.
| | - Amina Zuberi
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| | - Humaira Rehman
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Zulfiqar Ali
- Department of Statistics, Quaid-I-Azam University, Islamabad, Pakistan
| | - Per-Ove Thörnqvist
- Department of Neuroscience, Physiology, Uppsala Biomedical Centre, Uppsala University, PO Box 593, 751 24, Uppsala, Sweden
| | - Svante Winberg
- Department of Neuroscience, Physiology, Uppsala Biomedical Centre, Uppsala University, PO Box 593, 751 24, Uppsala, Sweden
| |
Collapse
|
38
|
Madaro A, Kristiansen TS, Pavlidis MA. How Fish Cope with Stress? Anim Welf 2020. [DOI: 10.1007/978-3-030-41675-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Carbonara P, Alfonso S, Zupa W, Manfrin A, Fiocchi E, Pretto T, Spedicato MT, Lembo G. Behavioral and physiological responses to stocking density in sea bream (Sparus aurata): Do coping styles matter? Physiol Behav 2019; 212:112698. [PMID: 31626890 DOI: 10.1016/j.physbeh.2019.112698] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/09/2019] [Accepted: 10/01/2019] [Indexed: 10/25/2022]
Abstract
Stocking density is considered a stress factor for fish and is therefore one of the numerous concerns about fish welfare in an aquaculture context. Stress coping styles (SCS) are defined as a coherent set of individual physiological and behavioral differences in stress responses that are consistent across time and context and appear to be promising for improving fish welfare in aquaculture. The aim of the present study was to describe the physiological and zootechnical performances of gilthead sea bream (Sparus aurata) at different stocking densities (low density, LD: 15 kg/m3 and high density, HD: 30 kg/m3), depending on individual SCS. To do so, the fish SCS were first screened by measuring boldness (prior to the experiment). Three consecutive samplings were performed over the experiment to measure several blood parameters, including hematocrit (Hct), red blood cell count (RBCC), hemoglobin (Hb), cortisol, adrenalin, noradrenalin, glucose, lactate, and lysozyme, to infer the consequence of the SCS profile on the welfare condition in response to stocking density. Finally, swimming activity was recorded in a subsample of individuals (9 BOLD and 9 SHY individuals per density), and BOLD individuals displayed higher swimming activity than SHY ones at HD, while the opposite pattern was observed at LD. According to principal component analysis, physiological parameters are linked to the SCS profile, mostly at the beginning of the experiment, while density effects on physiology remain during the entire experiment duration. In conclusion, regarding all the variables observed, fish SCS appeared to be promising criteria to select the most adaptive individuals relating to rearing conditions and therefore improve welfare.
Collapse
Affiliation(s)
| | | | | | - Amedeo Manfrin
- Istituto Zooprofilattico delle Venezie, sede di Adria, Italy
| | | | - Tobia Pretto
- Istituto Zooprofilattico delle Venezie, sede di Adria, Italy
| | | | | |
Collapse
|
40
|
Wu L, Han M, Song Z, Xu S, Li J, Li X, Wang Y, Yue X, Li X. Effects of different light spectra on embryo development and the performance of newly hatched turbot (Scophthalmus maximus) larvae. FISH & SHELLFISH IMMUNOLOGY 2019; 90:328-337. [PMID: 31071463 DOI: 10.1016/j.fsi.2019.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/30/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
Light is a key environmental factor that synchronizes various life stages from embryo development to sexual maturation in fish. For turbot, light spectra have the most influence at the larval and juvenile stages. In the current study, differences in the development of embryos and the performance of newly hatched turbot larvae exposed to five different spectra: full spectrum (LDF), blue (LDB, peak at 450 nm), green (LDG, peak at 533 nm), orange (LDO, peak at 595 nm) and red (LDR, peak at 629 nm), were examined. At 62.8 h post fertilization, a higher number of embryos exposed to short-wavelengths (LDG and LDB) had developed a heartbeat in comparison with embryos exposed to other wavelengths. Larvae exposed to the green spectrum had higher malformation rates than larvae exposed to the other spectra, indicating that larvae exposed to green light may have significantly reduced survival rates. The results of non-specific immunity parameters showed that the mRNA expression levels of cathepsin D (CTSD), cathepsin F (CTSF), catalase (CAT) and metallothionein (MT) in larvae exposed to LDB were significantly higher than those exposed to other spectra, but CAT activity in larvae exposed to LDB was significantly lower than larvae exposed to the other spectra. There was no significant difference in MT activity in larvae exposed to the five different spectra. The mRNA expression level of lysozyme (LZM) in larvae exposed to LDR was significantly higher than other spectra, while there was no significant difference in LZM activity observed in larvae exposed to LDR, LDG, LDB and LDF. The difference of the enzyme activity of total superoxide dismutase (T-SOD) was not significant among larvae exposed to the five spectra. mRNA expression of the heat shock protein 70 (HSP70) was significantly higher in newly hatched larvae exposed to LDB, LDR and LDG, indicating that larvae exposed to LDB, LDG and LDR exhibited a stress response. The mRNA expression level of the insulin-like growth factor-1 (IGF-1) and growth parameters in the newly hatched larvae exposed to the different spectra were not significantly different. The results of the present study indicate that LDO and LDF should be used for embryo incubation and newly hatched larvae when rearing turbot. This study provides a theoretical basis for optimizing the incubation light environment for fertilized turbot eggs, promoting immunity and reducing stress responses in newly hatched larvae.
Collapse
Affiliation(s)
- Lele Wu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Mingming Han
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China
| | - Zongcheng Song
- Weihai Shenghang Aquatic Product Science and Technology Co. Ltd, Weihai, 264200, PR China
| | - Shihong Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China
| | - Jun Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China.
| | - Xueqing Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China
| | - Yanfeng Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China
| | - Xinlu Yue
- Weihai Shenghang Aquatic Product Science and Technology Co. Ltd, Weihai, 264200, PR China
| | - Xian Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China.
| |
Collapse
|
41
|
Faught E, Vijayan MM. Loss of the glucocorticoid receptor in zebrafish improves muscle glucose availability and increases growth. Am J Physiol Endocrinol Metab 2019; 316:E1093-E1104. [PMID: 30939052 PMCID: PMC6620571 DOI: 10.1152/ajpendo.00045.2019] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Chronic stress and the associated elevation in corticosteroid levels increase muscle protein catabolism. We hypothesized that the glucocorticoid receptor (GR)-regulated restriction of muscle glucose availability may play a role in the increased protein catabolism during chronic stress. To test this, we generated a ubiquitous GR knockout (GRKO) zebrafish to determine the physiological consequence of glucocorticoid stimulation on muscle metabolism and growth. Adult GRKO zebrafish had higher body mass, and this corresponded to an increased protein and lipid, but not carbohydrate, content. GRKO fish were hypercortisolemic, but they elicited a higher cortisol response to an acute stressor. However, the stressor-induced increase in plasma glucose level observed in the wild type was completely abolished in the GRKO fish. Also, the muscle, but not liver, capacity for glucose uptake was enhanced in the GRKO fish, and this corresponded with a higher hexokinase activity in the mutants. Zebrafish lacking GR also showed a higher capacity for protein synthesis, including increased phosphorylation of eukaryotic initiation factor 4B, higher expression of heat shock protein cognate 70, and total protein content. A chronic fasting stressor reduced body mass and muscle protein content in adult zebrafish, but this decrease was attenuated in the GRKO compared with the wild-type fish. Metabolomics analysis revealed that the free pool of amino acid substrates used for oxidation and gluconeogenesis were lower in the fasted GRKO fish muscle compared with the wild type. Altogether, chronic stressor-mediated GR signaling limits muscle glucose uptake, and this may play a role in protein catabolism, leading to the growth suppression in fish.
Collapse
Affiliation(s)
- Erin Faught
- Department of Biological Sciences, University of Calgary , Calgary, Alberta , Canada
| | - Mathilakath M Vijayan
- Department of Biological Sciences, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
42
|
Sadoul B, Geffroy B. Measuring cortisol, the major stress hormone in fishes. JOURNAL OF FISH BIOLOGY 2019; 94:540-555. [PMID: 30667059 DOI: 10.1111/jfb.13904] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/21/2019] [Indexed: 05/18/2023]
Abstract
Stress in teleosts is an increasingly studied topic because of its interaction with growth, reproduction, immune system and ultimately fitness of the animal. Whether it is for evaluating welfare in aquaculture, adaptive capacities in fish ecology, or to investigate effects of human-induced rapid environmental change, new experimental methods to describe stress physiology in captive or wild fish have flourished. Cortisol has proven to be a reliable indicator of stress and is considered the major stress hormone. Initially principally measured in blood, cortisol measurement methods are now evolving towards lower invasiveness and to allow repeated measurements over time. We present an overview of recent achievements in the field of cortisol measurement in fishes, discussing new alternatives to blood, whole body and eggs as matrices for cortisol measurement, notably mucus, faeces, water, scales and fins. In parallel, new analytical tools are being developed to increase specificity, sensitivity and automation of the measure. The review provides the founding principles of these techniques and introduces their potential as continuous monitoring tools. Finally, we consider promising avenues of research that could be prioritised in the field of stress physiology of fishes.
Collapse
Affiliation(s)
- Bastien Sadoul
- MARBEC, Ifremer, University of Montpellier, CNRS, IRD, Palavas Les-Flots, France
| | - Benjamin Geffroy
- MARBEC, Ifremer, University of Montpellier, CNRS, IRD, Palavas Les-Flots, France
| |
Collapse
|
43
|
Oyarzún R, Martínez D, Soto-Dávila M, Muñoz JLP, Dantagnan P, Vargas-Chacoff L. Effect of ration level on growth performance, body composition, intermediary metabolism and serum parameters in juvenile Patagonian blennie Eleginops maclovinus. Comp Biochem Physiol A Mol Integr Physiol 2019; 230:122-130. [PMID: 30703559 DOI: 10.1016/j.cbpa.2019.01.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/07/2018] [Accepted: 01/15/2019] [Indexed: 02/07/2023]
Abstract
Eleginops maclovinus is an endemic species of the southern cone with beneficial physiological characteristics for aquaculture. However, this species has a low growth rate under captive conditions, and the optimal feed ration together with the metabolic process is unknown. This study aimed to determine the optimum feed ration during 90 days based on growth performance, body composition, intermediary metabolism, and serum parameters. For this, fish were randomly assigned to rations of 0.5, 1, 2 and 4% of body weight. No fish mortality was registered, but all fish, developed fatty liver. The results of weight, length, growth performance (WGR, SGR), and body parameters (HSI, VSI and K) followed a similar pattern, with the lowest values observed in the 0.5% and no significant differences between rations of 1, 2 and 4%. The feed intake and feces increased with the feed ration. However, the percentage of food consumed by the fish decreased with the ration size and the feed conversion ratio was lowest in the 1% ration. Total serum proteins and calcium were lowest in the 0.5% ration and presented no differences in the rations 1, 2 and 4%, while triglyceride content was significantly different only between the rations of 0.5 and 4%. Blood cortisol levels were significantly higher in the rations of 0.5 and 1%, and decreased in rations of 2 and 4%. The lipids, fiber, and energy of the total body mass increased with the feed ration, while dry matter, proteins, and ash of the body decreased to higher feed ration. In liver, triglyceride and protein levels decreased with a larger feed ration, amino acids increased in the rations of 0.5 and 4%, while glucose levels increased in rations of 2 and 4%. Liver enzymes Glucose-6-phosphate dehydrogenase and Glutamate dehydrogenase increased their activity at a higher feed ration, while Glycogen Phosphorylase, Aspartate aminotransferase and 3-Hydroxyacyl-CoA dehydrogenase presented their highest enzymatic activity only in the 4% ration. Fructose-1,6-bisphosphate showed low enzymatic activity in rations of 2 and 4% and Glycerol-3-phosphate dehydrogenase was significantly different only between the ration of 0.5 and 1%. Finally, our results suggests that optimal feed rations for E. maclovinus corresponds to 1% since this ration size produces the highest growth and metabolism with a minimum loss of food and feces present in the environment. Additionally, we recommend to reduce the percentage of fat in the diet to avoid the development of fatty liver.
Collapse
Affiliation(s)
- R Oyarzún
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Escuela de Graduados, Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Av. Los Pinos s/n Balneario Pelluco, Puerto Montt, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, casilla 567, Valdivia, Chile.
| | - D Martínez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Escuela de Graduados, Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Av. Los Pinos s/n Balneario Pelluco, Puerto Montt, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, casilla 567, Valdivia, Chile
| | - M Soto-Dávila
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Master of Science in Aquaculture, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - J L P Muñoz
- Centro I~mar, Universidad de los Lagos, Puerto Montt, Chile
| | - P Dantagnan
- Núcleo de Investigación en Producción Alimentaria, Universidad Católica de Temuco, Temuco, Chile; Facultad de Recursos Naturales, Departamento de Ciencia Agropecuarias y Acuícolas, Universidad Católica de Temuco, Temuco, Chile
| | - L Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, casilla 567, Valdivia, Chile.
| |
Collapse
|
44
|
Jerez-Cepa I, Gorissen M, Mancera JM, Ruiz-Jarabo I. What can we learn from glucocorticoid administration in fish? Effects of cortisol and dexamethasone on intermediary metabolism of gilthead seabream (Sparus aurata L.). Comp Biochem Physiol A Mol Integr Physiol 2019; 231:1-10. [PMID: 30690148 DOI: 10.1016/j.cbpa.2019.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/20/2018] [Accepted: 01/21/2019] [Indexed: 02/06/2023]
Abstract
In aquaculture facilities fish welfare could be compromised due to stressors. Fish deal with stress, inter alia, through the activation of the hypothalamic-pituitary-interrenal endocrine axis and, as a result, corticosteroids are released into the blood. Recent studies have described that corticosteroids actions depend on the specific affinities to their receptors, and the subsequent differentiated responses. Cortisol is the main corticosteroid hormone in teleost fish, being its actions dependent on the intensity and time of exposure to stressors. Short-term effects of corticosteroids are well described, but long-term effects, including changes in the energy management directly affecting growth and survival, are less understood in fish. Here we show the effects of chronic oral administration of cortisol and the synthetic glucocorticoid dexamethasone (DXM) on the intermediary metabolism of the gilthead seabream (Sparus aurata). We described a higher energy expenditure associated to both corticosteroids resulting in lower growth rates of fish. Moreover, the effects of these compounds were tissue-dependant, with differences between both hormones. Thus, cortisol-fed animals accumulated triglycerides in the liver, while DXM treatment led to glycogen storage. Cortisol and DXM stimulated amino acids catabolism and gluconeogenic pathways in muscle and gills, but the effects were significantly enhanced in DXM-fed fish. The described effects highlighted differentiated mechanisms of action associated to both corticosteroids under chronic stress conditions. Further studies should aim at describing those pathways in detail, with special attention to the functionality of glucocorticoid receptor isoforms. The effects described here for S. aurata juveniles, may serve as a basis to assess long-term stress in future comparative studies with other aquaculture species.
Collapse
Affiliation(s)
- I Jerez-Cepa
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEI·MAR), Av. República Saharaui s/n, E-11510 Puerto Real, Cádiz, Spain.
| | - M Gorissen
- Radboud University, Institute for Water and Wetland Research, Department of Animal Ecology and Physiology, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| | - J M Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEI·MAR), Av. República Saharaui s/n, E-11510 Puerto Real, Cádiz, Spain.
| | - I Ruiz-Jarabo
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEI·MAR), Av. República Saharaui s/n, E-11510 Puerto Real, Cádiz, Spain.
| |
Collapse
|
45
|
Palstra AP, Mendez S, Dirks RP, Schaaf MJM. Cortisol Acting Through the Glucocorticoid Receptor Is Not Involved in Exercise-Enhanced Growth, But Does Affect the White Skeletal Muscle Transcriptome in Zebrafish ( Danio rerio). Front Physiol 2019; 9:1889. [PMID: 30692930 PMCID: PMC6339955 DOI: 10.3389/fphys.2018.01889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/12/2018] [Indexed: 11/13/2022] Open
Abstract
Forced sustained swimming exercise at optimal speed enhances growth in many fish species, particularly through hypertrophy of the white skeletal muscle. The exact mechanism of this effect has not been resolved yet. To explore the role of cortisol, we first subjected wild-type zebrafish to an exercise protocol validated for exercise-enhanced growth, and showed that exercised zebrafish, which indeed showed enhanced growth, had higher cortisol levels than the non-exercised controls. A central role was therefore hypothesized for the steroid hormone cortisol acting through the Glucocorticoid receptor (Gr). Second, we subjected wild-type zebrafish and zebrafish with a mutant Gr to exercise at optimal, suboptimal, and super-optimal speeds and compared them with non-exercised controls. Exercised zebrafish showed growth enhancement at all speeds, with highest growth at optimal speeds. In the Gr mutant fish, exercise resulted in growth enhancement similar to wild-type zebrafish, indicating that cortisol signaling through Gr cannot be considered as a main determinant of exercise-enhanced growth. Finally, the transcriptome of white skeletal muscle tissue was analyzed by RNA sequencing. The results of this analysis showed that in the muscle tissue of Gr mutant fish a lower number of genes is regulated by exercise than in wild-type fish (183 vs. 351). A cluster of 36 genes was regulated by exercise in both wild-type and mutant fish, and in this cluster genes involved in transcriptional regulation and protein ubiquitination were overrepresented. Because these two processes appear to be regulated in both wild type and mutant fish, which both display exercise-enhanced growth, we suggest that they play an important role in the growth of muscles upon exercise.
Collapse
Affiliation(s)
- Arjan P Palstra
- Wageningen Marine Research, Wageningen University and Research, Yerseke, Netherlands.,Wageningen University & Research Animal Breeding and Genomics, Wageningen Livestock Research, Wageningen, Netherlands.,Institute of Biology (IBL), Leiden University, Leiden, Netherlands
| | - Silvia Mendez
- Wageningen Marine Research, Wageningen University and Research, Yerseke, Netherlands.,Institute of Biology (IBL), Leiden University, Leiden, Netherlands
| | | | | |
Collapse
|
46
|
Lawrence MJ, Godin JGJ, Cooke SJ. Does experimental cortisol elevation mediate risk-taking and antipredator behaviour in a wild teleost fish? Comp Biochem Physiol A Mol Integr Physiol 2018; 226:75-82. [PMID: 30099116 DOI: 10.1016/j.cbpa.2018.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/06/2018] [Accepted: 08/03/2018] [Indexed: 10/28/2022]
Abstract
The hypothalamic-pituitary-interrenal (HPI) axis is centrally implicated in stressor mitigation in teleost fishes. Sustained HPI axis activation can be detrimental to the physiological functioning of an organism and can result in fitness-related trade-offs. Predator-induced mortality is known to be higher in stressed fish than in unstressed conspecifics, suggesting a role for the HPI axis in mediating fish behaviour. However, the underlying specific mechanism(s) for this phenomenon is(are) unknown. The purpose of the current study was to address how the HPI axis influences risk-taking, and antipredator behaviours in a wild teleost, the pumpkinseed sunfish (Lepomis gibbosus). Here, individual juvenile pumpkinseed were implanted either with cocoa butter as a sham control or with a biologically-relevant concentration of cortisol. Forty-eight hours post-implantation, fish were assessed for behavioural metrics associated with boldness and risk taking in three sequential behavioural tests: (i) a predation-risk test, (ii) an exploration tendency test, and (iii) a shoaling tendency test, with test order randomized among different trials. Cortisol treatment had no influence on antipredator, exploratory, or shoaling behaviours. However, post-attack swimming duration (in predation-risk test) and exploratory activity (in Z-maze exploration test) were significantly affected by body mass. Collectively, our results indicate that cortisol may not have a role in mediating sociability, boldness, and risk-taking behaviours in pumpkinseed sunfish, at least under the current laboratory conditions. However, cortisol may nonetheless play a role in mediating predator-prey interactions in fishes in more natural environmental settings that were not considered here.
Collapse
Affiliation(s)
- Michael J Lawrence
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Jean-Guy J Godin
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
47
|
Thomas JK, Birceanu O, Sadoul B, Vijayan MM. Bisphenol A in Eggs Impairs the Long-Term Stress Performance of Rainbow Trout in Two Generations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7951-7961. [PMID: 29906393 DOI: 10.1021/acs.est.8b01244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Salmonids are ecologically, economically, and culturally important fish species in North America, but whether contaminants in the environment play a role in their population decline is unclear. We tested the hypothesis that bisphenol A (BPA) deposition in eggs, mimicking a maternal transfer scenario, compromises the stress axis functioning and target tissues stress response in two generations of a model salmonid species, rainbow trout ( Oncorhynchus mykiss). Eggs were enriched with 0, 4, or 40 ng of BPA, fertilized, and reared in clean water for two generations. The fish were subjected to an acute stressor after a year in both generations to test their stress performances. Trout raised from BPA-enriched eggs showed impaired stressor-mediated plasma cortisol and lactate response in the F1 and F2 generations, respectively. Key genes involved in cortisol biosynthesis in the head kidney, as well as stress- and growth-related transcripts in the liver and muscle, were impacted either in the F1 and/or F2 generations. Our results underscore the long-term impact associated with BPA in eggs, mimicking a maternal transfer scenario, on the stress performance of trout in two generations. The results highlight the need for developing novel biomarkers to predict long-term and generational toxicities in salmonids.
Collapse
Affiliation(s)
- Jith K Thomas
- Department of Biological Sciences , University of Calgary , Calgary , Alberta , Canada T2N 1N4
| | - Oana Birceanu
- Department of Biology , University of Waterloo , Waterloo , Ontario , Canada N2L 3G
| | - Bastien Sadoul
- Department of Biological Sciences , University of Calgary , Calgary , Alberta , Canada T2N 1N4
| | - Mathilakath M Vijayan
- Department of Biological Sciences , University of Calgary , Calgary , Alberta , Canada T2N 1N4
- Department of Biology , University of Waterloo , Waterloo , Ontario , Canada N2L 3G
| |
Collapse
|
48
|
Skrzynska AK, Maiorano E, Bastaroli M, Naderi F, Míguez JM, Martínez-Rodríguez G, Mancera JM, Martos-Sitcha JA. Impact of Air Exposure on Vasotocinergic and Isotocinergic Systems in Gilthead Sea Bream ( Sparus aurata): New Insights on Fish Stress Response. Front Physiol 2018; 9:96. [PMID: 29487539 PMCID: PMC5816901 DOI: 10.3389/fphys.2018.00096] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/29/2018] [Indexed: 12/20/2022] Open
Abstract
The hypothalamus-pituitary-interrenal (HPI) and hypothalamus-sympathetic-chromaffin cell (HSC) axes are involved in the regulation of the stress response in teleost. In this regard, the activation of a complex network of endocrine players is needed, including corticotrophin-releasing hormone (Crh), Crh binding protein (Crhbp), proopiomelanocortin (Pomc), thyrotropin-releasing hormone (Trh), arginine vasotocin (Avt), and isotocin (It) to finally produce pleiotropic functions. We aimed to investigate, using the gilthead sea bream (Sparus aurata) as a biological model, the transcriptomic response of different endocrine factors (crh, crhbp, pomcs, trh), neuropeptides (avt and it), and their specific receptors (avtrv1a, avtrv2, and itr) in four important target tissues (hypothalamus, pituitary, kidney and liver), after an acute stress situation. We also investigated several stress hormones (catecholamines and cortisol). The stress condition was induced by air exposure for 3 min, and hormonal, metabolic and transcriptomic parameters were analyzed in a time course response (15 and 30 min, and 1, 2, 4, and 8 h post-stress) in a total of 64 fish (n = 8 fish per experimental group; p = 0.05; statistical power = 95%). Our results showed that plasma noradrenaline, adrenaline and cortisol values increased few minutes after stress exposure. At hypothalamic and hypophyseal levels, acute stress affected mRNA expression of all measured precursors and hormonal factors, as well as their receptors (avtrs and itr), showing the activation, at central level, of HPI, HSC, and Avt/It axes in the acute stress response. In addition, stress response also affected mRNA levels of avtrs and itr in the head kidney, as well as the steroidogenic acute regulatory protein (star) and tyrosine hydroxylase (th) expression, suggesting their participation in the HPI and HSC axes activation. Moreover, the pattern of changes in hepatic avtrs and itr gene expression also highlights an important role of vasotocinergic and isotocinergic pathways in liver metabolic organization after acute stress events. Our results demonstrate, both at transcriptional and circulating levels of several hormones, the existence of a complex activation of different endocrine pathways in S. aurata related to the stress pathways, where vasotocinergic and isotocinergic systems can also be considered key players of the acute stress response orchestration.
Collapse
Affiliation(s)
- Arleta K Skrzynska
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
| | - Elisabetta Maiorano
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
| | - Marco Bastaroli
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
| | - Fatemeh Naderi
- Laboratorio de Fisiología animal, Departamento de Biología Funcional y CC. de la Salud, Facultad de Biología, Universidade de Vigo, Pontevedra, Spain
| | - Jesús M Míguez
- Laboratorio de Fisiología animal, Departamento de Biología Funcional y CC. de la Salud, Facultad de Biología, Universidade de Vigo, Pontevedra, Spain
| | - Gonzalo Martínez-Rodríguez
- Department of Marine Biology and Aquacuture, Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas, Cádiz, Spain
| | - Juan M Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
| | - Juan A Martos-Sitcha
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain.,Department of Marine Biology and Aquacuture, Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas, Cádiz, Spain.,Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas, Castellón, Spain
| |
Collapse
|