1
|
Karimi M, Aslanabadi A, Atkinson B, Hojabri M, Munawwar A, Zareidoodeji R, Ray K, Habibzadeh P, Parlayan HNK, DeVico A, Heredia A, Abbasi A, Sajadi MM. Subcutaneous liposomal delivery improves monoclonal antibody pharmacokinetics in vivo. Acta Biomater 2025; 195:522-535. [PMID: 39965705 DOI: 10.1016/j.actbio.2025.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/28/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Background Monoclonal antibodies (mAbs) effectively treat and prevent various diseases, but their clinical application is hindered by issues related to the route of administration and pharmacokinetics (PK). Intravenous (IV) administration is cumbersome, while subcutaneous (SC) administration is hampered by lower bioavailability and potential for immunogenicity. This study evaluated the efficacy of liposomal formulations in enhancing the subcutaneous (SC) delivery and PK of broadly neutralizing antibodies (bNAbs) directed against HIV. METHODS mAbs were encapsulated in liposomes with and without PEGylation. The liposomes were characterized for particle size, polydispersity index, zeta potential, and release. Thereafter, mice were injected with free mAbs or liposome-encapsulated mAbs, and PK was evaluated. RESULTS Liposomes exhibited sizes of 85-92 nm with negative surface charges. Encapsulation efficiencies were 61 % for PEGylated and 58 % for non-PEGylated liposomes. Stability testing over 16 weeks revealed that formulations remained stable at 4 °C but showed leakage at 37 C. Cytotoxicity assays confirmed that the liposomal formulations did not affect cell viability or induce apoptosis in HMEC-1 cells. In vivo, PK studies in humanized FcRn mice indicated that the PEGylated formulations generally had higher half-life, Cmax, AUC, and MRT, and lower CL values compared to their non-PEGylated formulations of the same injection type. Both liposomal formulations showed improvements in bioavailability and extended half-life compared to free mAbs administered via SC and IV routes. Compared to the gold standard of IV free mAb injection, SC injection of antibodies encapsulated in PEGylated liposome had up to 80 % higher bioavailability and 45 % extension of half-life. Compared to the SC free mAb injection, the differences were even more pronounced, with liposomal SC injection having up to 113 % higher bioavailability and 81 % extension of half-life. CONCLUSION Overall, liposomal encapsulation effectively protected SC injected mAbs from degradation, facilitated sustained release, and improved PK profiles, suggesting a promising strategy for enhancing the therapeutic potential of mAbs in conditions that need repeated injections. Future work should further optimize liposomal formulations to increase loading capacity, stability, and release kinetics. STATEMENT OF SIGNIFICANCE This study addresses a challenge in the administration of monoclonal antibodies (mAbs). Intravenous administration requires additional resources, including nursing staff, making it time-consuming and costly. Although subcutaneous (SC) administration offers a less expensive and more patient-friendly option, it suffers from lower bioavailability and potentially shorter half-life. In this study, we encapsulated mAbs in liposomal formulations specifically designed to enhance their pharmacokinetics by promoting efficient lymphatic transport. Compared with both SC and even IV administration of free antibodies, liposomal formulations of mAbs remarkably improve bioavailability and extend the half-life. This innovative approach combines the comfort of SC administration with enhanced pharmacokinetics, addressing the limitations of current SC delivery methods. Liposomal formulations have the ability to greatly improve SC mAb administration by reducing the amount of antibody needed to be administered, reducing the frequency of injections, and potentially protecting against immunogenicity.
Collapse
Affiliation(s)
- Maryam Karimi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Arash Aslanabadi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ben Atkinson
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mahsa Hojabri
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Arshi Munawwar
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Roza Zareidoodeji
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Krishanu Ray
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Parham Habibzadeh
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hanife Nur Karakoc Parlayan
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Infectious Diseases, Karadeniz Technical University School of Medicine, Trabzon, Turkey
| | - Anthony DeVico
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alonso Heredia
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Abdolrahim Abbasi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Mohammad M Sajadi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Zhu Z, Olson KS, Magliery TJ. 50 Years of Antibody Numbering Schemes: A Statistical and Structural Evaluation Reveals Key Differences and Limitations. Antibodies (Basel) 2024; 13:99. [PMID: 39727482 DOI: 10.3390/antib13040099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND The complementarity-determining region (CDR) of antibodies represents the most diverse region both in terms of sequence and structural characteristics, playing the most critical role in antibody recognition and binding for immune responses. Over the past decades, several numbering schemes have been introduced to define CDRs based on sequence. However, the existence of diverse numbering schemes has led to potential confusion, and a comprehensive evaluation of these schemes is lacking. METHODS We employ statistical analyses to quantify the diversity of CDRs compared to the framework regions. RESULTS Comparative analyses across different numbering schemes demonstrate notable variations in CDR definitions. The Kabat and AbM numbering schemes tend to incorporate more conserved residues into their CDR definitions, whereas CDRs defined by the Chothia and IMGT numbering schemes display greater diversity, sometimes missing certain loop residues. Notably, we identify a critical residue, L29, within the kappa light chain CDR1, which appears to act as a pivotal structural point within the loop. In contrast, most numbering schemes designate the topological equivalent point in the lambda light chain as L30, suggesting the need for further refinement in the current numbering schemes. CONCLUSIONS These findings shed light on regional sequence and structural conservation within antibody sequence databases while also highlighting discrepancies stemming from different numbering schemes. These insights yield valuable guidelines for the precise delineation of antibody CDRs and the strategic design of antibody repertoires, with practical implications in developing innovative antibody-based therapeutics and diagnostics.
Collapse
Affiliation(s)
- Zirui Zhu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Chemistry Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Katherine S Olson
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Thomas J Magliery
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Ahuja S, Zaheer S. The evolution of cancer immunotherapy: a comprehensive review of its history and current perspectives. KOREAN JOURNAL OF CLINICAL ONCOLOGY 2024; 20:51-73. [PMID: 39778508 PMCID: PMC11717579 DOI: 10.14216/kjco.24009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/24/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025]
Abstract
Cancer immunotherapy uses the body's immune system to combat cancer, marking a significant advancement in treatment. This review traces its evolution from the late 19th century to its current status. It began with William Coley's pioneering work using bacterial toxins to stimulate the immune system against cancer cells, establishing the foundational concept of immunotherapy. In the mid-20th century, cytokine therapies like interferons and interleukins emerged, demonstrating that altering the immune response could reduce tumors and highlighting the complex interplay between cancer and the immune system. The discovery of immune checkpoints, regulatory pathways that prevent autoimmunity but are exploited by cancer cells to evade detection, was a pivotal development. Another major breakthrough is CAR-T cell therapy, which involves modifying a patient's T cells to target cancer-specific antigens. This personalized treatment has shown remarkable success in certain blood cancers. Additionally, cancer vaccines aim to trigger immune responses against tumor-specific or associated antigens, and while challenging, ongoing research is improving their efficacy. The historical progression of cancer immunotherapy, from Coley's toxins to modern innovations like checkpoint inhibitors and CAR-T cell therapy, underscores its transformative impact on cancer treatment. As research delves deeper into the immune system's complexities, immunotherapy is poised to become even more crucial in oncology, offering renewed hope to patients globally.
Collapse
Affiliation(s)
- Sana Ahuja
- Department of Pathology, Safdarjung Hospital, Vardhman Mahavir Medical College, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Safdarjung Hospital, Vardhman Mahavir Medical College, New Delhi, India
| |
Collapse
|
4
|
Akpinar Adscheid S, Türeli AE, Günday-Türeli N, Schneider M. Nanotechnological approaches for efficient N2B delivery: from small-molecule drugs to biopharmaceuticals. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1400-1414. [PMID: 39559726 PMCID: PMC11572074 DOI: 10.3762/bjnano.15.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024]
Abstract
Central nervous system diseases negatively affect patients and society. Providing successful noninvasive treatments for these diseases is challenging because of the presence of the blood-brain barrier. While protecting the brain's homeostasis, the barrier limits the passage of almost all large-molecule drugs and most small-molecule drugs. A noninvasive method, nose-to-brain delivery (N2B delivery) has been proposed to overcome this challenge. By exploiting the direct anatomical interaction between the nose and the brain, the drugs can reach the target, the brain. Moreover, the drugs can be encapsulated into various drug delivery systems to enhance physicochemical characteristics and targeting success. Many preclinical data show that this strategy can effectively deliver biopharmaceuticals to the brain. Therefore, this review focuses on N2B delivery while giving examples of different drug delivery systems suitable for the applications. In addition, we emphasize the importance of the effective delivery of monoclonal antibodies and RNA and stress the recent literature tackling this challenge. While giving examples of nanotechnological approaches for the effective delivery of small or large molecules from the current literature, we highlight the preclinical studies and their results to prove the strategies' success and limitations.
Collapse
Affiliation(s)
- Selin Akpinar Adscheid
- MyBiotech GmbH; Industriestraße 1B, 66802 Überherrn, Germany
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, PharmaScienceHub, Saarland University, Campus C4 1, Saarbrücken D-66123, Germany
| | | | | | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, PharmaScienceHub, Saarland University, Campus C4 1, Saarbrücken D-66123, Germany
| |
Collapse
|
5
|
Dash SK, Benival D, Jindal AB. Formulation Strategies to Overcome Amphotericin B Induced Toxicity. Mol Pharm 2024; 21:5392-5412. [PMID: 39373243 DOI: 10.1021/acs.molpharmaceut.4c00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Fungal infection poses a major global threat to public health because of its wide prevalence, severe mortality rate, challenges involved in diagnosis and treatment, and the emergence of drug-resistant fungal strains. Millions of people are getting affected by fungal infection, and around 3.8 million people face death per year due to fungal infection, as per the latest report. The polyene antibiotic AmB has an extensive record of use as a therapeutic moiety against systemic fungal infection and leishmaniasis since 1960. AmB has broad-spectrum fungistatic and fungicidal activity. AmB exerts its therapeutic activity at the cellular level by binding to fungal sterol and forming hydrophilic pores, releasing essential cellular components and ions into the extracellular fluid, leading to cell death. Despite using AmB as an antifungal and antileishmanial at a broad scale, its clinical use is limited due to drug-induced nephrotoxicity resulting from binding the aggregated form of the drug to mammalian sterol. To mitigate AmB-induced toxicity and to get better anti-fungal therapeutic outcomes, researchers have developed nanoformulations, self-assembled formulations, prodrugs, cholesterol- and albumin-based AmB formulations, AmB-mAb combination therapy, and AmB cochleates. These formulations have helped to reduce toxicity to a certain extent by controlling the aggregation state of AmB, providing sustained drug release, and altering the physicochemical and pharmacokinetic parameters of AmB. Although the preclinical outcome of AmB formulations is quite satisfactory, its parallel result at the clinical level is insignificant. However, the safety and efficacy of AmB therapy can be improved at the clinical stage by continuous investigation and collaboration among researchers, clinicians, and pharmaceutical companies.
Collapse
Affiliation(s)
- Sanat Kumar Dash
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS Pilani), Pilani Campus, Pilani, Rajasthan 333031, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Gandhinagar, Gujurat 382355, India
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS Pilani), Pilani Campus, Pilani, Rajasthan 333031, India
| |
Collapse
|
6
|
Kumar N, Kalaiselvan V, Arora MK. Neuronal toxicity of monoclonal antibodies (mAbs): an analysis of post-marketing reports from FDA Adverse Event Reporting System (FAERS) safety database. Eur J Clin Pharmacol 2024; 80:1685-1695. [PMID: 39052049 DOI: 10.1007/s00228-024-03727-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Monoclonal antibodies (mAbs) are pivotal in treating various diseases, including cancers and autoimmune disorders. Despite their therapeutic benefits, mAb therapy has been associated with neurological toxicity. OBJECTIVES This study aimed to assess the occurrence of neuronal toxicity associated with mAbs, utilizing data from the FDA Adverse Event Reporting System (FAERS) safety database. The study also sought to delineate the medical characteristics of the reported cases. METHODS A comprehensive analysis of neurological adverse events reported in the FAERS database was conducted, employing computational methodologies such as proportional relative risk (PRR), information component (IC025), and chi-square (χ2). Individual case safety reports (ICSRs) pertaining to neurological disorders linked to mAbs from the date of first global marketing authorization until June 30, 2023, were meticulously examined. RESULTS The FAERS safety database contains 79,022 ICSRs linking mAbs to nervous system disorders. Rituximab, bevacizumab, denosumab, nivolumab, and trastuzumab were frequently cited. Reported adverse events include headache, peripheral neuropathy, dizziness, and cerebrovascular accident. Most ICSRs (85.81%) were serious, mainly affecting females (57.04%) with a 14.09% fatality rate. Panitumumab, atezolizumab, bevacizumab, and trastuzumab showed strong drug-event associations. Signal disproportionate reporting (SDR) analysis flagged myasthenia gravis, peripheral neuropathy, and neurotoxicity across multiple mAbs, suggesting potential signals. CONCLUSIONS Interdisciplinary collaboration between oncologists and neurologists is crucial for safe mAb use. Our study enhances understanding of mAb neurological safety. Disproportionality signal analysis provides valuable evidence for risk mitigation.
Collapse
Affiliation(s)
- Nitin Kumar
- School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun, Uttarakhand, 248 009, India
| | - Vivekanandan Kalaiselvan
- Pharmacovigilance Programme of India (PvPI), National Coordination Centre, Indian Pharmacopoeia Commission, Uttar Pradesh, Ghaziabad, India
| | - Mandeep Kumar Arora
- School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun, Uttarakhand, 248 009, India.
| |
Collapse
|
7
|
Mekala JR, Nalluri HP, Reddy PN, S B S, N S SK, G V S D SK, Dhiman R, Chamarthy S, Komaragiri RR, Manyam RR, Dirisala VR. Emerging trends and therapeutic applications of monoclonal antibodies. Gene 2024; 925:148607. [PMID: 38797505 DOI: 10.1016/j.gene.2024.148607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/02/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Monoclonal antibodies (mAbs) are being used to prevent, detect, and treat a broad spectrum of malignancies and infectious and autoimmune diseases. Over the past few years, the market for mAbs has grown exponentially. They have become a significant part of many pharmaceutical product lines, and more than 250 therapeutic mAbs are undergoing clinical trials. Ever since the advent of hybridoma technology, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some of the benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies, which are affordable versions of therapeutic antibodies. Along with biosimilars, innovations in antibody engineering have helped to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. In the future, mAbs generated by applying next-generation sequencing (NGS) are expected to become a powerful tool in clinical therapeutics. This article describes the methods of mAb production, pre-clinical and clinical development of mAbs, approved indications targeted by mAbs, and novel developments in the field of mAb research.
Collapse
Affiliation(s)
- Janaki Ramaiah Mekala
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram 522502, Guntur, Andhra Pradesh, INDIA.
| | - Hari P Nalluri
- Department of Biotechnology, Vignan's (Deemed to be) University, Guntur 522213, AP, India
| | - Prakash Narayana Reddy
- Department of Microbiology, Dr. V.S. Krishna Government College, Visakhapatnam 530013, India
| | - Sainath S B
- Department of Biotechnology, Vikrama Simhapuri University, Nellore 524320, AP, India
| | - Sampath Kumar N S
- Department of Biotechnology, Vignan's (Deemed to be) University, Guntur 522213, AP, India
| | - Sai Kiran G V S D
- Santhiram Medical College and General Hospital, Nandyal, Kurnool 518501, AP, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Sciences, National Institute of Technology Rourkela-769008, India
| | - Sahiti Chamarthy
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram 522502, Guntur, Andhra Pradesh, INDIA
| | - Raghava Rao Komaragiri
- Department of CSE, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram 522302, Andhra Pradesh, INDIA
| | - Rajasekhar Reddy Manyam
- Amrita School of Computing, Amrita Vishwa Vidyapeetham, Amaravati Campus, Amaravati, Andhra Pradesh, India
| | - Vijaya R Dirisala
- Department of Biotechnology, Vignan's (Deemed to be) University, Guntur 522213, AP, India.
| |
Collapse
|
8
|
Sharma P, Robbel L, Schmitt M, Dikicioglu D, Bracewell DG. Integrated micro-scale protein a chromatography and Low pH viral inactivation unit operations on an automated platform. Biotechnol Prog 2024; 40:e3476. [PMID: 38687144 DOI: 10.1002/btpr.3476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/27/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
High throughput process development (HTPD) is established for time- and resource- efficient chromatographic process development. However, integration with non-chromatographic operations within a monoclonal antibody (mAb) purification train is less developed. An area of importance is the development of low pH viral inactivation (VI) that follows protein A chromatography. However, the lack of pH measurement devices at the micro-scale represents a barrier to implementation, which prevents integration with the surrounding unit operations, limiting overall process knowledge. This study is based upon the design and testing of a HTPD platform for integration of the protein A and low pH VI operations. This was achieved by using a design and simulation software before execution on an automated liquid handler. The operations were successfully translated to the micro-scale, as assessed by analysis of recoveries and molecular weight content. The integrated platform was then used as a tool to assess the effect of pH on HMWC during low pH hold. The laboratory-scale and micro-scale elution pools showed comparable HMWC across the pH range 3.2-3.7. The investigative power of the platform is highlighted by evaluating the resources required to conduct a hypothetical experiment. This results in lower resource demands and increased labor efficiency relative to the laboratory-scale. For example, the experiment can be conducted in 7 h, compared to 105 h, translating to labor hours, 3 h and 28 h for the micro-scale and laboratory-scale, respectively. This presents the opportunity for further integration beyond chromatographic operations within the purification sequence, to establish a fit-to-platform assessment tool for mAb process development.
Collapse
Affiliation(s)
- Paras Sharma
- Department of Biochemical Engineering, University College London, London, UK
| | - Lars Robbel
- Biopharmaceutical Product Development, CSL Behring Innovation GmbH, Marburg, Germany
| | - Michael Schmitt
- Biopharmaceutical Product Development, CSL Behring Innovation GmbH, Marburg, Germany
| | - Duygu Dikicioglu
- Department of Biochemical Engineering, University College London, London, UK
| | - Daniel G Bracewell
- Department of Biochemical Engineering, University College London, London, UK
| |
Collapse
|
9
|
Pavlova LE, Timina MF, Agumava AA, Panchenko AV. Rhesus Macaques: VNTR Polymorphism of the FCGRT Gene. Bull Exp Biol Med 2024; 177:379-382. [PMID: 39134810 DOI: 10.1007/s10517-024-06193-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Indexed: 08/28/2024]
Abstract
Variable number tandem repeat (VNTR) polymorphisms of the human neonatal IgG Fc receptor α-chain gene (FCGRT) are known to influence the expression levels of FCGRT and IgG in serum. Monkeys are considered to be a relevant biological model for studying the effects of immunobiological drugs. The study determined the functional VNTR polymorphisms of the FCGRT gene in 109 male rhesus macaques from the nursery of the Kurchatov Complex of Medical Primatology. PCR amplification of samples was carried out followed by electrophoretic separation of DNA fragments in a 2% agarose gel. Individual DNA amplification products were sequenced (according to Sanger system) in forward and reverse directions to confirm the specificity. The genotyping showed that the VNTR polymorphism of the FCGRT gene in the studied population of rhesus macaques is presented by 9 variants. The frequency of the VNTR5 allele associated with lower IgG levels was 14.2%, and the most common one was the VNTR7 allele (25.2%). We also identified alleles that have not been previously reported: VNTR3, VNTR4, VNTR6, VNTR8, and VNTR9. The study allows to consider rhesus macaques as a potential model for studying the immunological response depending on the genetic VNTR variant of FCGRT.
Collapse
Affiliation(s)
- L E Pavlova
- Kurchatov Complex of Medical Primatology, National Research Center "Kurchatov Institute", Sochi, Russia.
| | - M F Timina
- Kurchatov Complex of Medical Primatology, National Research Center "Kurchatov Institute", Sochi, Russia
| | - A A Agumava
- Kurchatov Complex of Medical Primatology, National Research Center "Kurchatov Institute", Sochi, Russia
| | - A V Panchenko
- Kurchatov Complex of Medical Primatology, National Research Center "Kurchatov Institute", Sochi, Russia
| |
Collapse
|
10
|
Singh S, Kachhawaha K, Singh SK. Comprehensive approaches to preclinical evaluation of monoclonal antibodies and their next-generation derivatives. Biochem Pharmacol 2024; 225:116303. [PMID: 38797272 DOI: 10.1016/j.bcp.2024.116303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/03/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
Biotherapeutics hold great promise for the treatment of several diseases and offer innovative possibilities for new treatments that target previously unaddressed medical needs. Despite successful transitions from preclinical to clinical stages and regulatory approval, there are instances where adverse reactions arise, resulting in product withdrawals. As a result, it is essential to conduct thorough evaluations of safety and effectiveness on an individual basis. This article explores current practices, challenges, and future approaches in conducting comprehensive preclinical assessments to ensure the safety and efficacy of biotherapeutics including monoclonal antibodies, toxin-conjugates, bispecific antibodies, single-chain antibodies, Fc-engineered antibodies, antibody mimetics, and siRNA-antibody/peptide conjugates.
Collapse
Affiliation(s)
- Santanu Singh
- Laboratory of Engineered Therapeutics, School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Kajal Kachhawaha
- Laboratory of Engineered Therapeutics, School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sumit K Singh
- Laboratory of Engineered Therapeutics, School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.
| |
Collapse
|
11
|
Sandeep, Shinde SH, Ahmed S, Sharma SS, Pande AH. Engineered polyspecific antibodies: A new frontier in the field of immunotherapeutics. Immunology 2024; 171:464-496. [PMID: 38140855 DOI: 10.1111/imm.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The 21st-century beginning remarked with the huge success of monospecific MAbs, however, in the last couple of years, polyspecific MAbs (PsAbs) have been an interesting topic and show promise of being biobetter than monospecific MAbs. Polyspecificity, in which a single antibody serves multiple specific target binding, has been hypothesized to contribute to the development of a highly effective antibody repertoire for immune defence. This polyspecific MAb trend represents an explosion that is gripping the whole pharmaceutical industry. This review is concerned with the current development and quality enforcement of PsAbs. All provided literature on monospecific MAbs and polyspecific MAbs (PsAbs) were searched using various electronic databases such as PubMed, Google Scholar, Web of Science, Elsevier, Springer, ACS, Google Patent and books via the keywords Antibody engineering, Polyspecific antibody, Conventional antibody, non-conventional antibody, and Single domain antibody. In the literature, there are more than 100 different formats to construct PsAb by quadroma technology, chemical conjugation and genetic engineering. Till March 2023, nine PsAb have been approved around the world, and around 330 are in advanced developmental stages, showing the dominancy of PsAb in the growing health sector. Recent advancements in protein engineering techniques and the fusion of non-conventional antibodies have made it possible to create complex PsAbs that demonstrate higher stability and enhanced potency. This marks the most significant achievement for cancer immunotherapy, in which PsAbs have immense promise. It is worth mentioning that seven out of the nine PsAbs have been approved as anti-cancer therapy. As PsAbs continue to acquire prominence, they could pave the way for the development of novel immunotherapies for multiple diseases.
Collapse
Affiliation(s)
- Sandeep
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - Suraj H Shinde
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - Sakeel Ahmed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - Shyam Sunder Sharma
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| |
Collapse
|
12
|
Aljassabi A, Zieneldien T, Kim J, Regmi D, Cao C. Alzheimer's Disease Immunotherapy: Current Strategies and Future Prospects. J Alzheimers Dis 2024; 98:755-772. [PMID: 38489183 DOI: 10.3233/jad-231163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Alzheimer's disease (AD) is an extremely complex and heterogeneous pathology influenced by many factors contributing to its onset and progression, including aging, amyloid-beta (Aβ) plaques, tau fibril accumulation, inflammation, etc. Despite promising advances in drug development, there is no cure for AD. Although there have been substantial advancements in understanding the pathogenesis of AD, there have been over 200 unsuccessful clinical trials in the past decade. In recent years, immunotherapies have been at the forefront of these efforts. Immunotherapy alludes to the immunological field that strives to identify disease treatments via the enhancement, suppression, or induction of immune responses. Interestingly, immunotherapy in AD is a relatively new approach for non-infectious disease. At present, antibody therapy (passive immunotherapy) that targets anti-Aβ aimed to prevent the fibrillization of Aβ peptides and disrupt pre-existing fibrils is a predominant AD immunotherapy due to the continuous failure of active immunotherapy for AD. The most rational and safe strategies will be those targeting the toxic molecule without triggering an abnormal immune response, offering therapeutic advantages, thus making clinical trial design more efficient. This review offers a concise overview of immunotherapeutic strategies, including active and passive immunotherapy for AD. Our review encompasses approved methods and those presently under investigation in clinical trials, while elucidating the recent challenges, complications, successes, and potential treatments. Thus, immunotherapies targeting Aβ throughout the disease progression using a mutant oligomer-Aβ stimulated dendritic cell vaccine may offer a promising therapy in AD.
Collapse
Affiliation(s)
- Ali Aljassabi
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Tarek Zieneldien
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Janice Kim
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Deepika Regmi
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Chuanhai Cao
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| |
Collapse
|
13
|
Donnelly RB, Pingali SV, Heroux L, Brinson RG, Wagner NJ, Liu Y. Hydrogen-Deuterium Exchange Dynamics of NISTmAb Measured by Small Angle Neutron Scattering. Mol Pharm 2023; 20:6358-6367. [PMID: 37961914 DOI: 10.1021/acs.molpharmaceut.3c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Understanding protein dynamics and conformational stability holds great significance in biopharmaceutical research. Hydrogen-deuterium exchange (HDX) is a quantitative methodology used to examine these fundamental properties of proteins. HDX involves measuring the exchange of solvent-accessible hydrogens with deuterium, which yields valuable insights into conformational fluctuations and conformational stability. While mass spectrometry is commonly used to measure HDX on the peptide level, we explore a different approach using small-angle neutron scattering (SANS). In this work, SANS is demonstrated as a complementary and noninvasive HDX method (HDX-SANS). By assessing subtle changes in the tertiary and quaternary structure during the exchange process in deuterated buffer, along with the influence of added electrolytes on protein stability, SANS is validated as a complementary HDX technique. The HDX of a model therapeutic antibody, NISTmAb, an IgG1κ, is monitored by HDX-SANS over many hours using several different formulations, including salts from the Hofmeister series of anions, such as sodium perchlorate, sodium thiocyanate, and sodium sulfate. The impact of these formulation conditions on the thermal stability of NISTmAb is probed by differential scanning calorimetry. The more destabilizing salts led to heightened conformational dynamics in mAb solutions even at temperatures significantly below the denaturation point. HDX-SANS is demonstrated as a sensitive and noninvasive technique for quantifying HDX kinetics directly in mAb solution, providing novel information about mAb conformational fluctuations. Therefore, HDX-SANS holds promise as a potential tool for assessing protein stability in formulation.
Collapse
Affiliation(s)
- Róisín B Donnelly
- Department of Biomedical Engineering, College of Engineering, University of Delaware, Newark, Delaware 19711, United States
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, College of Engineering, University of Delaware, Newark, Delaware 19711, United States
| | - Sai Venkatesh Pingali
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Luke Heroux
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Robert G Brinson
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, Maryland 20850, United States
| | - Norman J Wagner
- Department of Biomedical Engineering, College of Engineering, University of Delaware, Newark, Delaware 19711, United States
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, College of Engineering, University of Delaware, Newark, Delaware 19711, United States
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Yun Liu
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, College of Engineering, University of Delaware, Newark, Delaware 19711, United States
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
14
|
Amer EI, Allam SR, Hassan AY, El-Fakharany EM, Agwa MM, Khattab SN, Sheta E, El-Faham MH. Can antibody conjugated nanomicelles alter the prospect of antibody targeted therapy against schistosomiasis mansoni? PLoS Negl Trop Dis 2023; 17:e0011776. [PMID: 38039267 PMCID: PMC10691730 DOI: 10.1371/journal.pntd.0011776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 11/07/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND CLA (conjugated linoleic acid)-mediated activation of the schistosome tegument-associated sphingomyelinase and consequent disruption of the outer membrane might allow host antibodies to access the apical membrane antigens. Here, we investigated a novel approach to enhance specific antibody delivery to concealed surface membrane antigens of Schistosoma mansoni utilising antibody-conjugated-CLA nanomicelle technology. METHODOLOGY/PRINCIPAL FINDINGS We invented and characterised an amphiphilic CLA-loaded whey protein co-polymer (CLA-W) as an IV injectable protein nanocarrier. Rabbit anti-Schistosoma mansoni infection (anti-SmI) and anti-Schistosoma mansoni alkaline phosphatase specific IgG antibodies were purified from rabbit sera and conjugated to the surface of CLA-W co-polymer to form antibody-conjugated-CLA-W nanomicelles (Ab-CLA-W). We investigated the schistosomicidal effects of CLA-W and Ab-CLA-W in a mouse model of Schistosoma mansoni against early and late stages of infection. Results showed that conjugation of nanomicelles with antibodies, namely anti-SmI, significantly enhanced the micelles' schistosomicidal and anti-pathology activities at both the schistosomula and adult worm stages of the infection resulting in 64.6%-89.9% reductions in worm number; 72.5-94% and 66.4-85.2% reductions in hepatic eggs and granulomas, respectively. Treatment induced overall improvement in liver histopathology, reducing granuloma size and fibrosis and significantly affecting egg viability. Indirect immunofluorescence confirmed CLA-W-mediated antigen exposure on the worm surface. Electron microscopy revealed extensive ultrastructural damage in worm tegument induced by anti-SmI-CLA-W. CONCLUSION/SIGNIFICANCE The novel antibody-targeted nano-sized CLA delivery system offers great promise for treatment of Schistosoma mansoni infection and control of its transmission. Our in vivo observations confirm an immune-mediated enhanced effect of the schistosomicidal action of CLA and hints at the prospect of nanotechnology-based immunotherapy, not only for schistosomiasis, but also for other parasitic infections in which chemotherapy has been shown to be immune-dependent. The results propose that the immunodominant reactivity of the anti-SmI serum, Schistosoma mansoni fructose biphosphate aldolase, SmFBPA, merits serious attention as a therapeutic and vaccine candidate.
Collapse
Affiliation(s)
- Eglal I. Amer
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Sonia R. Allam
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Aceel Y. Hassan
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Esmail M. El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt
| | - Mona M. Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Sherine N. Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Marwa H. El-Faham
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
15
|
Beaumont VA, Liu L, Shi H, Rouse JC, Kim HY. Application of NMR and Chemometric Analyses to Better Understand the Quality Attributes in pH and Thermally Degraded Monoclonal Antibodies. Pharm Res 2023; 40:2457-2467. [PMID: 37798537 PMCID: PMC10661726 DOI: 10.1007/s11095-023-03600-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023]
Abstract
PURPOSE Nuclear magnetic resonance (NMR) spectroscopy provides the sensitivity and specificity to probe the higher order structure (HOS) of monoclonal antibodies (mAbs) for potential changes. This study demonstrates an application of chemometric tools to measure differences in the NMR spectra of mAbs after forced degradation relative to the respective unstressed starting materials. METHODS Samples of adalimumab (Humira, ADL-REF) and trastuzumab (Herceptin, TRA-REF) were incubated in three buffer-pH conditions at 40°C for 4 weeks to compare to a control sample that was left unstressed. Replicate 1D 1H and 2D 1H-13C HMQC NMR spectra were collected on all samples. Chemometric analyses such as Easy Comparability of HOS (ECHOS), PROtein FIngerprinting by Lineshape Enhancement (PROFILE), and Principal Component Analysis (PCA) were applied to capture and quantitate differences between the spectra. RESULTS Visual and statistical inspection of the 2D 1H-13C HMQC spectra of adalimumab and trastuzumab after forced degradation conditions shows no changes in the spectra relative to the unstressed material. Chemometric analysis of the 1D 1H NMR spectra shows only minor changes in the spectra of adalimumab after forced degradation, but significant differences in trastuzumab. CONCLUSION The chemometric analyses support the lack of statistical differences in the structure of pH-thermal stressed adalimumab, however, it reveals conformational changes or chemical modifications in trastuzumab after forced degradation. Application of chemometrics in comparative NMR studies enables HOS characterization and showcases the sensitivity and specificity in detecting differences in the spectra of mAbs after pH-thermal forced degradation with respect to local and global protein structure.
Collapse
Affiliation(s)
- Victor A Beaumont
- Pfizer, Inc. BioTherapeutics Pharmaceutical Sciences, Analytical Research and Development, 1 Burtt Road, Andover, MA, 01810, USA.
- Pfizer, Inc. Pharmaceutical Sciences Small Molecules, Analytical Research and Development, Discovery Park, Ramsgate Road, Sandwich, CT13 9FF, UK.
| | - Lucy Liu
- Pfizer, Inc. BioTherapeutics Pharmaceutical Sciences, Analytical Research and Development, 1 Burtt Road, Andover, MA, 01810, USA
| | - Heliang Shi
- Pfizer, Inc. Global Product Development, Oncology & Rare Disease Statistics, New York City, NY, 10001, USA
| | - Jason C Rouse
- Pfizer, Inc. BioTherapeutics Pharmaceutical Sciences, Analytical Research and Development, 1 Burtt Road, Andover, MA, 01810, USA
| | - Hai-Young Kim
- Pfizer, Inc. BioTherapeutics Pharmaceutical Sciences, Analytical Research and Development, 1 Burtt Road, Andover, MA, 01810, USA.
| |
Collapse
|
16
|
Raju R, Abuwatfa WH, Pitt WG, Husseini GA. Liposomes for the Treatment of Brain Cancer-A Review. Pharmaceuticals (Basel) 2023; 16:1056. [PMID: 37630971 PMCID: PMC10458450 DOI: 10.3390/ph16081056] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 08/27/2023] Open
Abstract
Due to their biocompatibility, non-toxicity, and surface-conjugation capabilities, liposomes are effective nanocarriers that can encapsulate chemotherapeutic drugs and facilitate targeted delivery across the blood-brain barrier (BBB). Additionally, strategies have been explored to synthesize liposomes that respond to internal and/or external stimuli to release their payload controllably. Although research into liposomes for brain cancer treatment is still in its infancy, these systems have great potential to fundamentally change the drug delivery landscape. This review paper attempts to consolidate relevant literature regarding the delivery to the brain using nanocarriers, particularly liposomes. The paper first briefly explains conventional treatment modalities for cancer, followed by describing the blood-brain barrier and ways, challenges, and techniques involved in transporting drugs across the BBB. Various nanocarrier systems are introduced, with attention to liposomes, due to their ability to circumvent the challenges imposed by the BBB. Relevant studies involving liposomal systems researched to treat brain tumors are reviewed in vitro, in vivo, and clinical studies. Finally, the challenges associated with the use of liposomes to treat brain tumors and how they can be addressed are presented.
Collapse
Affiliation(s)
- Richu Raju
- Biomedical Engineering Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Waad H. Abuwatfa
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - William G. Pitt
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA;
| | - Ghaleb A. Husseini
- Biomedical Engineering Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
17
|
Sandeep, Shinde SH, Pande AH. Polyspecificity - An emerging trend in the development of clinical antibodies. Mol Immunol 2023; 155:175-183. [PMID: 36827806 DOI: 10.1016/j.molimm.2023.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
The essence of the growth and development of therapeutic conventional monoclonal antibodies (MAbs) for the treatment of various disorders is the aptitude of MAbs to precisely bind a target antigen and neutralise or promote its activity. However, the conventional antibodies are monoclonal i.e., both paratopes bind to the same epitope. But most of the pathophysiological conditions are multifaceted, hence targeting/blocking/inhibition of more than one epitope/antigen is more promising than one epitope/antigen. Polyspecific antibodies (PsAbs) have the potential to concurrently bind to more than one target and are the next-generation antibodies that augment efficacy in both clinical and non-clinical contexts. Thus, the trend of engineering and developing various formats of PsAbs is emerging. In this review, we have briefly discussed the importance of antibody polyspecificity and PsAbs approved for clinical use. Subsequently, we have discussed the role of TNF-α and IL-23 in inflammatory diseases and stressed the need for developing anti-TNF-α and anti-IL-23 bispecific antibodies.
Collapse
Affiliation(s)
- Sandeep
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Suraj H Shinde
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India.
| |
Collapse
|
18
|
Development and Validation of an Artificial Neural-Network-Based Optical Density Soft Sensor for a High-Throughput Fermentation System. Processes (Basel) 2023. [DOI: 10.3390/pr11010297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Optical density (OD) is a critical process parameter during fermentation, this being directly related to cell density, which provides valuable information regarding the state of the process. However, to measure OD, sampling of the fermentation broth is required. This is particularly challenging for high-throughput-microbioreactor (HT-MBR) systems, which require robotic liquid-handling (LiHa) systems for process control tasks, such as pH regulation or carbon feed additions. Bioreactor volume is limited and automated at-line sampling occupies the resources of LiHa systems; this affects their ability to carry out the aforementioned pipetting operations. Minimizing the number of physical OD measurements is therefore of significant interest. However, fewer measurements also result in less process information. This resource conflict has previously represented a challenge. We present an artificial neural-network-based soft sensor developed for the real-time estimation of the OD in an MBR system. This sensor was able to estimate the OD to a high degree of accuracy (>95%), even without informative process variables stemming from, e.g., off-gas analysis only available at larger scales. Furthermore, we investigated and demonstrated scaling of the soft sensor’s generalization capabilities with the data from different antibody fragments expressing Escherichia coli strains. This study contributes to accelerated biopharmaceutical process development.
Collapse
|
19
|
Kaur M, Nagpal M, Aggarwal G. Nanotechnology for Targeted Drug Delivery to Treat Osteoporosis. Curr Drug Targets 2023; 24:2-12. [PMID: 36200208 DOI: 10.2174/1389450123666221004124040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022]
Abstract
Bone diseases such as rheumatoid arthritis, Paget's disease, and osteoporosis cause mortality and mobility limits. Nanomedicine and nano delivery systems have been utilised to deliver active drug moiety to the precisely targeted site in a controlled manner, and it serves as a means of diagnostic tools. The utilisation of nanomedicine is expanding vigorously for assured targeting and efficient drug delivery. Nanotechnology offers various advantages, such as site-specific targeting, precise drug release kinetics, and improved bone mineral density. Recent medications available for osteoporosis are not viable due to the adverse effects associated with them and low patient compliance. There is an urgent need to develop biocompatible and appropriate drug delivery nanocarriers such as nanoparticles, liposomes, hydrogels, dendrimers, micelles, mesoporous particles, etc. These carriers enhance drug delivery and therapeutic effectiveness in bone tissues. The use of nanotechnology is also associated with toxicity. This article presents the review of various reports on nanocarrier systems and biologics for the treatment of osteoporosis. It aims to provide researchers with a clue for inventing a new drug delivery system with site-specific targeting for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Malkiet Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Manju Nagpal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Geeta Aggarwal
- Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| |
Collapse
|
20
|
Dhara AK, Nayak AK. Introduction to antiviral therapy. VIRAL INFECTIONS AND ANTIVIRAL THERAPIES 2023:3-22. [DOI: 10.1016/b978-0-323-91814-5.00025-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
21
|
Saraswat AL, Vartak R, Hegazy R, Patel A, Patel K. Drug delivery challenges and formulation aspects of proteolysis targeting chimera (PROTACs). Drug Discov Today 2023; 28:103387. [PMID: 36184017 DOI: 10.1016/j.drudis.2022.103387] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/21/2022] [Accepted: 09/26/2022] [Indexed: 02/02/2023]
Abstract
Proteolysis targeting chimeras (PROTACs) have been extensively explored for targeted proteasomal degradation of disease-related proteins with enormous potential in the treatment of intractable diseases. However, PROTACs are poorly soluble and permeable bulky molecules facing several bioavailability challenges irrespective of the route of administration. Our review lays out crucial challenges in the delivery of target protein degraders and nanoformulation approaches to overcome physicochemical and biological hurdles that can aid in transporting these target-protein degraders to the disease site. We have elaborated on the current formulation approaches and further highlighted the prospective delivery strategies that could be probed for disease-specific targeted delivery of PROTACs.
Collapse
Affiliation(s)
- Aishwarya L Saraswat
- College of Pharmacy and Health Sciences, St John's University, Queens, NY 11439, USA
| | - Richa Vartak
- College of Pharmacy and Health Sciences, St John's University, Queens, NY 11439, USA
| | - Rehab Hegazy
- College of Pharmacy and Health Sciences, St John's University, Queens, NY 11439, USA; Pharmacology Department, Medical Division, National Research Centre, Giza, Egypt
| | - Akanksha Patel
- College of Pharmacy and Health Sciences, St John's University, Queens, NY 11439, USA
| | - Ketan Patel
- College of Pharmacy and Health Sciences, St John's University, Queens, NY 11439, USA.
| |
Collapse
|
22
|
Ayón C, Castán D, Mora A, Naranjo D, Obando F, Mora JJ. Monoclonal Antibodies: A Therapeutic Option for the Treatment of Ophthalmic Diseases of the Eye Posterior Segment. BORNEO JOURNAL OF PHARMACY 2022. [DOI: 10.33084/bjop.v5i3.2095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The eye is an organ that allows us to observe the outside world. Pathologies of the eye's posterior segment, such as glaucoma, macular degeneration, diabetic retinopathy, uveitis, and retinoblastoma, cause vision loss. Traditional treatments consist of applying topical medications that do not penetrate properly or using high doses that generate adverse effects. Different laser surgeries stop the pathology's progression but do not allow visual improvement. So, an alternative is to use monoclonal antibodies, proteins produced by different processes that selectively bind to metabolites associated with diseases, reducing the adverse effects of traditional treatments and improving the application of the drug in the area. The two main molecular targets are TNF (adalimumab, infliximab, and certolizumab pegol) and VEGF (bevacizumab and ranibizumab); other possibilities are under investigation.
Collapse
|
23
|
A Fully-Human Antibody Specifically Targeting a Membrane-Bound Fragment of CADM1 Potentiates the T Cell-Mediated Death of Human Small-Cell Lung Cancer Cells. Int J Mol Sci 2022; 23:ijms23136895. [PMID: 35805896 PMCID: PMC9266846 DOI: 10.3390/ijms23136895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Small-cell lung cancer (SCLC) is the most aggressive form of lung cancer and the leading cause of global cancer-related mortality. Despite the earlier identification of membrane-proximal cleavage of cell adhesion molecule 1 (CADM1) in cancers, the role of the membrane-bound fragment of CAMD1 (MF-CADM1) is yet to be clearly identified. In this study, we first isolated MF-CADM1-specific fully human single-chain variable fragments (scFvs) from the human synthetic scFv antibody library using the phage display technology. Following the selected scFv conversion to human immunoglobulin G1 (IgG1) scFv-Fc antibodies (K103.1–4), multiple characterization studies, including antibody cross-species reactivity, purity, production yield, and binding affinity, were verified. Finally, via intensive in vitro efficacy and toxicity evaluation studies, we identified K103.3 as a lead antibody that potently promotes the death of human SCLC cell lines, including NCI-H69, NCI-H146, and NCI-H187, by activated Jurkat T cells without severe endothelial toxicity. Taken together, these findings suggest that antibody-based targeting of MF-CADM1 may be an effective strategy to potentiate T cell-mediated SCLC death, and MF-CADM1 may be a novel potential therapeutic target in SCLC for antibody therapy.
Collapse
|
24
|
Formica ML, Awde Alfonso HG, Palma SD. Biological drug therapy for ocular angiogenesis: Anti-VEGF agents and novel strategies based on nanotechnology. Pharmacol Res Perspect 2021; 9:e00723. [PMID: 33694304 PMCID: PMC7947217 DOI: 10.1002/prp2.723] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Currently, biological drug therapy for ocular angiogenesis treatment is based on the administration of anti‐VEGF agents via intravitreal route. The molecules approved with this purpose for ocular use include pegaptanib, ranibizumab, and aflibercept, whereas bevacizumab is commonly off‐label used in the clinical practice. The schedule dosage involves repeated intravitreal injections of anti‐VEGF agents to achieve and maintain effective concentrations in retina and choroids, which are administrated as solutions form. In this review article, we describe the features of different anti‐VEGF agents, major challenges for their ocular delivery and the nanoparticles in development as delivery system of them. In this way, several polymeric and lipid nanoparticles are explored to load anti‐VEGF agents with the aim of achieving sustained drug release and thus, minimize the number of intravitreal injections required. The main challenges were focused in the loading the molecules that maintain their bioactivity after their release from nanoparticulate system, followed the evaluation of them through studies of formulation stability, pharmacokinetic, and efficacy in in vitro and in vivo models. The analysis was based on the information published in peer‐reviewed published papers relevant to anti‐VEGF treatments and nanoparticles developed as ocular anti‐VEGF delivery system.
Collapse
Affiliation(s)
- María L Formica
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, 5000, Argentina
| | - Hamoudi G Awde Alfonso
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, 5000, Argentina
| | - Santiago D Palma
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, 5000, Argentina
| |
Collapse
|