1
|
Dylag KA, Wieczorek-Stawinska W, Burkot K, Drzewiecki L, Przybyszewska K, Tokarz A, Dumnicka P. Exploring Nutritional Status and Metabolic Imbalances in Children with FASD: A Cross-Sectional Study. Nutrients 2024; 16:3401. [PMID: 39408368 PMCID: PMC11478469 DOI: 10.3390/nu16193401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Malnutrition is a significant concern in paediatric populations, particularly among children with neurodevelopmental disorders such as foetal alcohol spectrum disorder (FASD). This study aimed to examine macronutrient and micronutrient imbalances and assess the nutritional status of a group of patients with FASD. METHODS This study involved an analysis of the serum levels of key nutrients in a group of children diagnosed with FASD. Macronutrients and micronutrients were measured to identify any imbalances, including vitamin D, B12, E, A, albumin, and serum protein, among others. RESULTS The study found a high prevalence of vitamin D deficiency among the patients. Additionally, elevated serum concentrations of micronutrients such as vitamin B12, E, and A were observed in 8%, 7%, and 19% of patients, respectively. Macronutrient imbalances were noted, including high levels of albumin and serum protein, indicating a possible metabolic disturbance. Unexpectedly, high rates of hypercholesterolemia were observed, raising concerns about an increased risk of metabolic syndrome in this population. CONCLUSIONS These findings suggest that the principal issue among patients with FASD is an altered metabolism rather than nutritional deficiencies. Potential causes of these abnormalities could include oxidative stress and changes in body composition. The results underline the need for further research to better understand the unique nutritional challenges in children with FASD and to guide the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Katarzyna Anna Dylag
- Department of Pathophysiology, Jagiellonian University Medical College, 31-121 Krakow, Poland
- St. Louis Children Hospital, 31-503 Krakow, Poland (A.T.)
| | | | | | | | | | | | - Paulina Dumnicka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 31-034 Krakow, Poland
| |
Collapse
|
2
|
Villalba NM, Madarnas C, Bressano J, Sanchez V, Brusco A. Perinatal ethanol exposure affects cell populations in adult dorsal hippocampal neurogenic niche. Neurosci Res 2024; 198:8-20. [PMID: 37419388 DOI: 10.1016/j.neures.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Neurodevelopment is highly affected by perinatal ethanol exposure (PEE). In the adult brain, neurogenesis takes place in the dentate gyrus (DG) of the hippocampus and in the subventricular zone. This work aimed to analyze the effect of PEE on the cellular types involved in adult dorsal hippocampal neurogenesis phases using a murine model. For this purpose, primiparous female CD1 mice consumed only ethanol 6% v/v from 20 days prior to mating and along pregnancy and lactation to ensure that the pups were exposed to ethanol throughout pre- and early postnatal development. After weaning, pups had no further contact with ethanol. Cell types of the adult male dorsal DG were studied by immunofluorescence. A lower percentage of type 1 cells and immature neurons and a higher percentage of type 2 cells were observed in PEE animals. This decrease in type 1 cells suggests that PEE reduces the population of remnant progenitors of the dorsal DG present in adulthood. The increase in type 2 cells and the decrease in immature neurons indicate that, during neurodevelopment, ethanol alters the capacity of neuroblasts to become neurons in the adult neurogenic niche. These results suggest that pathways implicated in cell determination are affected by PEE and remain affected in adulthood.
Collapse
Affiliation(s)
- Nerina M Villalba
- Universidad de Buenos Aires, CONICET, Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, 1° Unidad Académica del Departamento de Histología, Biología Celular, Embriología y Genética, Buenos Aires, Argentina
| | - Catalina Madarnas
- Universidad de Buenos Aires, CONICET, Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN), Buenos Aires, Argentina
| | - Julieta Bressano
- Universidad de Buenos Aires, CONICET, Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN), Buenos Aires, Argentina
| | - Viviana Sanchez
- Universidad de Buenos Aires, Facultad de Medicina, 1° Unidad Académica del Departamento de Histología, Biología Celular, Embriología y Genética, Buenos Aires, Argentina
| | - Alicia Brusco
- Universidad de Buenos Aires, CONICET, Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, 1° Unidad Académica del Departamento de Histología, Biología Celular, Embriología y Genética, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Pfefferbaum A, Sullivan EV, Pohl KM, Bischoff-Grethe A, Stoner SA, Moore EM, Riley EP. Brain Volume in Fetal Alcohol Spectrum Disorders Over a 20-Year Span. JAMA Netw Open 2023; 6:e2343618. [PMID: 37976065 PMCID: PMC10656646 DOI: 10.1001/jamanetworkopen.2023.43618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023] Open
Abstract
Importance Anomalous brain development and mental health problems are prevalent in fetal alcohol spectrum disorders (FASD), but there is a paucity of longitudinal brain imaging research into adulthood. This study presents long-term follow-up of brain volumetrics in a cohort of participants with FASD. Objective To test whether brain tissue declines faster with aging in individuals with FASD compared with control participants. Design, Setting, and Participants This cohort study used magnetic resonance imaging (MRI) data collected from individuals with FASD and control individuals (age 13-37 years at first magnetic resonance imaging [MRI1] acquired 1997-2000) compared with data collected 20 years later (MRI2; 2018-2021). Participants were recruited for MRI1 through the University of Washington Fetal Alcohol Syndrome (FAS) Follow-Up Study. For MRI2, former participants were recruited by the University of Washington Fetal Alcohol and Drug Unit. Data were analyzed from October 2022 to August 2023. Main Outcomes and Measures Intracranial volume (ICV) and regional cortical and cerebellar gray matter, white matter, and cerebrospinal fluid volumes were quantified automatically and analyzed, with group and sex as between-participant factors and age as a within-participant variable. Results Of 174 individuals with MRI1 data, 48 refused participation, 36 were unavailable, and 24 could not be located. The remaining 66 individuals (37.9%) were rescanned for MRI2, including 26 controls, 18 individuals with nondysmorphic heavily exposed fetal alcohol effects (FAE; diagnosed prior to MRI1), and 22 individuals with FAS. Mean (SD) age was 22.9 (5.6) years at MRI1 and 44.7 (6.5) years at MRI2, and 35 participants (53%) were male. The FAE and FAS groups exhibited enduring stepped volume deficits at MRI1 and MRI2; volumes among control participants were greater than among participants with FAE, which were greater than volumes among participants with FAS (eg, mean [SD] ICV: control, 1462.3 [119.3] cc at MRI1 and 1465.4 [129.4] cc at MRI2; FAE, 1375.6 [134.1] cc at MRI1 and 1371.7 [120.3] cc at MRI2; FAS, 1297.3 [163.0] cc at MRI1 and 1292.7 [172.1] cc at MRI2), without diagnosis-by-age interactions. Despite these persistent volume deficits, the FAE participants and FAS participants showed patterns of neurodevelopment within reference ranges: increase in white matter and decrease in gray matter of the cortex and decrease in white matter and increase in gray matter of the cerebellum. Conclusions and Relevance The findings of this cohort study support a nonaccelerating enduring, brain structural dysmorphic spectrum following prenatal alcohol exposure and a diagnostic distinction based on the degree of dysmorphia. FASD was not a progressive brain structural disorder by middle age, but whether accelerated decline occurs in later years remains to be determined.
Collapse
Affiliation(s)
- Adolf Pfefferbaum
- Center for Health Sciences, SRI International, Menlo Park, California
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Edith V. Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Kilian M. Pohl
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | | | - Susan A. Stoner
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle
| | - Eileen M. Moore
- Department of Psychology, San Diego State University, San Diego, California
| | - Edward P. Riley
- Department of Psychology, San Diego State University, San Diego, California
| |
Collapse
|
4
|
Xia Y, Rebello V, Bodison SC, Jonker D, Steigelmann B, Donald KA, Charles W, Stein DJ, Ipser J, Ahmadi H, Kan E, Sowell ER, Narr KL, Joshi SH, Odendaal HJ, Uban KA. Contextualizing the impact of prenatal alcohol and tobacco exposure on neurodevelopment in a South African birth cohort: an analysis from the socioecological perspective. Front Integr Neurosci 2023; 17:1104788. [PMID: 37534335 PMCID: PMC10390790 DOI: 10.3389/fnint.2023.1104788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/19/2023] [Indexed: 08/04/2023] Open
Abstract
Background Alcohol and tobacco are known teratogens. Historically, more severe prenatal alcohol exposure (PAE) and prenatal tobacco exposure (PTE) have been examined as the principal predictor of neurodevelopmental alterations, with little incorporation of lower doses or ecological contextual factors that can also impact neurodevelopment, such as socioeconomic resources (SER) or adverse childhood experiences (ACEs). Here, a novel analytical approach informed by a socio-ecological perspective was used to examine the associations between SER, PAE and/or PTE, and ACEs, and their effects on neurodevelopment. Methods N = 313 mother-child dyads were recruited from a prospective birth cohort with maternal report of PAE and PTE, and cross-sectional structural brain neuroimaging of child acquired via 3T scanner at ages 8-11 years. In utero SER was measured by maternal education, household income, and home utility availability. The child's ACEs were measured by self-report assisted by the researcher. PAE was grouped into early exposure (<12 weeks), continued exposure (>=12 weeks), and no exposure controls. PTE was grouped into exposed and non-exposed controls. Results Greater access to SER during pregnancy was associated with fewer ACEs (maternal education: β = -0.293,p = 0.01; phone access: β = -0.968,p = 0.05). PTE partially mediated the association between SER and ACEs, where greater SER reduced the likelihood of PTE, which was positively associated with ACEs (β = 1.110,p = 0.01). SER was associated with alterations in superior frontal (β = -1336.036, q = 0.046), lateral orbitofrontal (β = -513.865, q = 0.046), caudal anterior cingulate volumes (β = -222.982, q = 0.046), with access to phone negatively associated with all three brain volumes. Access to water was positively associated with superior frontal volume (β=1569.527, q = 0.013). PTE was associated with smaller volumes of lateral orbitofrontal (β = -331.000, q = 0.033) and nucleus accumbens regions (β = -34.800, q = 0.033). Conclusion Research on neurodevelopment following community-levels of PAE and PTE should more regularly consider the ecological context to accelerate understanding of teratogenic outcomes. Further research is needed to replicate this novel conceptual approach with varying PAE and PTE patterns, to disentangle the interplay between dose, community-level and individual-level risk factors on neurodevelopment.
Collapse
Affiliation(s)
- Yingjing Xia
- Public Health, University of California, Irvine, Irvine, CA, United States
| | - Vida Rebello
- Public Health, University of California, Irvine, Irvine, CA, United States
| | - Stefanie C. Bodison
- Department of Occupational Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Deborah Jonker
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | | | - Kirsten A. Donald
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Weslin Charles
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Dan J. Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC), Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
| | - Jonathan Ipser
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Hedyeh Ahmadi
- University Statistical Consulting, LLC, Irvine, CA, United States
| | - Eric Kan
- Department of Pediatrics, Keck School of Medicine, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Elizabeth R. Sowell
- Department of Pediatrics, Keck School of Medicine, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Katherine L. Narr
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shantanu H. Joshi
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hein J. Odendaal
- Department of Obstetrics and Gynaecology, Stellenbosch University, Cape Town, South Africa
| | - Kristina A. Uban
- Public Health, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
5
|
Terracina S, Ferraguti G, Tarani L, Messina MP, Lucarelli M, Vitali M, De Persis S, Greco A, Minni A, Polimeni A, Ceccanti M, Petrella C, Fiore M. Transgenerational Abnormalities Induced by Paternal Preconceptual Alcohol Drinking: Findings from Humans and Animal Models. Curr Neuropharmacol 2022; 20:1158-1173. [PMID: 34720083 PMCID: PMC9886817 DOI: 10.2174/1570159x19666211101111430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/14/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Alcohol consumption during pregnancy and lactation is a widespread preventable cause of neurodevelopmental impairment in newborns. While the harmful effects of gestational alcohol use have been well documented, only recently, the role of paternal preconceptual alcohol consumption (PPAC) prior to copulating has drawn specific epigenetic considerations. Data from human and animal models have demonstrated that PPAC may affect sperm function, eliciting oxidative stress. In newborns, PPAC may induce changes in behavior, cognitive functions, and emotional responses. Furthermore, PPAC may elicit neurobiological disruptions, visuospatial impairments, hyperactivity disorders, motor skill disruptions, hearing loss, endocrine, and immune alterations, reduced physical growth, placental disruptions, and metabolic alterations. Neurobiological studies on PPAC have also disclosed changes in brain function and structure by disrupting the growth factors pathways. In particular, as shown in animal model studies, PPAC alters brain nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF) synthesis and release. This review shows that the crucial topic of lifelong disabilities induced by PPAC and/or gestational alcohol drinking is quite challenging at the individual, societal, and familial levels. Since a nontoxic drinking behavior before pregnancy (for both men and women), during pregnancy, and lactation cannot be established, the only suggestion for couples planning pregnancies is to completely avoid the consumption of alcoholic beverages.
Collapse
Affiliation(s)
- Sergio Terracina
- Department of Experimental Medicine, Medical Faculty, Sapienza University of Rome, RomeItaly
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Medical Faculty, Sapienza University of Rome, RomeItaly
| | - Luigi Tarani
- Department of Pediatrics, Medical Faculty, “Sapienza” University of Rome, Rome, Italy
| | | | - Marco Lucarelli
- Department of Experimental Medicine, Medical Faculty, Sapienza University of Rome, RomeItaly
| | | | | | - Antonio Greco
- Department of Sense Organs, Sapienza University Hospital of Rome, Rome, Italy
| | - Antonio Minni
- Department of Sense Organs, Sapienza University Hospital of Rome, Rome, Italy
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell’Alcolismo e le sue Complicanze, Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Rome, Italy,Address correspondence to this author at the Institute of Biochemistry and Cell Biology (IBBC-CNR), Rome, Italy; E-mail:
| |
Collapse
|
6
|
Prenatal and Postnatal Choline Supplementation in Fetal Alcohol Spectrum Disorder. Nutrients 2022; 14:nu14030688. [PMID: 35277047 PMCID: PMC8837993 DOI: 10.3390/nu14030688] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is common and represents a significant public health burden, yet very few interventions have been tested in FASD. Cognitive deficits are core features of FASD, ranging from broad intellectual impairment to selective problems in attention, executive functioning, memory, visual–perceptual/motor skills, social cognition, and academics. One potential intervention for the cognitive impairments associated with FASD is the essential nutrient choline, which is known to have numerous direct effects on brain and cognition in both typical and atypical development. We provide a summary of the literature supporting the use of choline as a neurodevelopmental intervention in those affected by prenatal alcohol. We first discuss how alcohol interferes with normal brain development. We then provide a comprehensive overview of the nutrient choline and discuss its role in typical brain development and its application in the optimization of brain development following early insult. Next, we review the preclinical literature that provides evidence of choline’s potential as an intervention following alcohol exposure. Then, we review a handful of existing human studies of choline supplementation in FASD. Lastly, we conclude with a review of practical considerations in choline supplementation, including dose, formulation, and feasibility in children.
Collapse
|
7
|
O'Neill J, O'Connor MJ, Kalender G, Ly R, Ng A, Dillon A, Narr KL, Loo SK, Alger JR, Levitt JG. Combining neuroimaging and behavior to discriminate children with attention deficit-hyperactivity disorder with and without prenatal alcohol exposure. Brain Imaging Behav 2022; 16:69-77. [PMID: 34089460 PMCID: PMC8643366 DOI: 10.1007/s11682-021-00477-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2021] [Indexed: 02/03/2023]
Abstract
In many patients, ostensible idiopathic attention deficit-hyperactivity disorder (ADHD) may actually stem from covert prenatal alcohol exposure (PAE), a treatment-relevant distinction. This study attempted a receiver-operator characteristic (ROC) classification of children with ADHD into those with PAE (ADHD+PAE) and those without (ADHD-PAE) using neurobehavioral instruments alongside magnetic resonance spectroscopy (MRS) and diffusion tensor imaging (DTI) of supraventricular brain white matter. Neurobehavioral, MRS, and DTI endpoints had been suggested by prior findings. Participants included children aged 8-13 years, 23 with ADHD+PAE, 19 with familial ADHD-PAE, and 28 typically developing (TD) controls. With area-under-the-curve (AUC) >0.90, the Conners 3 Parent Rating Scale Inattention (CIn) and Hyperactivity/Impulsivity (CHp) scores and the Behavioral Regulation Index (BRI) of the Behavior Rating Inventory of Executive Function (BRIEF2) excellently distinguished the clinical groups from TD, but not from each other (AUC < 0.70). Combinations of MRS glutamate (Glu) and N-acetyl-compounds (NAA) and DTI mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), and fractional anisotropy (FA) yielded "good" (AUC > 0.80) discrimination. Neuroimaging combined with CIn and BRI achieved AUC 0.72 and AUC 0.84, respectively. But neuroimaging combined with CHp yielded 14 excellent combinations with AUC ≥ 0.90 (all p < 0.0005), the best being Glu·AD·RD·CHp/(NAA·FA) (AUC 0.92, sensitivity 1.00, specificity 0.82, p < 0.0005). Using Cho in lieu of Glu yielded AUC 0.83. White-matter microstructure and metabolism may assist efforts to discriminate ADHD etiologies and to detect PAE, beyond the ability of commonly used neurobehavioral measures alone.
Collapse
Affiliation(s)
- Joseph O'Neill
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Institute for Neuroscience, University of California Los Angeles, Los Angeles, CA, USA.
| | - Mary J O'Connor
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Institute for Neuroscience, University of California Los Angeles, Los Angeles, CA, USA
| | - Guldamla Kalender
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Institute for Neuroscience, University of California Los Angeles, Los Angeles, CA, USA
| | - Ronald Ly
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Institute for Neuroscience, University of California Los Angeles, Los Angeles, CA, USA
| | - Andrea Ng
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Institute for Neuroscience, University of California Los Angeles, Los Angeles, CA, USA
| | - Andrea Dillon
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Institute for Neuroscience, University of California Los Angeles, Los Angeles, CA, USA
| | - Katherine L Narr
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Sandra K Loo
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Institute for Neuroscience, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeffry R Alger
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
- Neurospectroscopics, LLC, Sherman Oaks, CA, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jennifer G Levitt
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Institute for Neuroscience, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
8
|
Fiore M, Petrella C, Coriale G, Rosso P, Fico E, Ralli M, Greco A, De Vincentiis M, Minni A, Polimeni A, Vitali M, Messina MP, Ferraguti G, Tarani F, de Persis S, Ceccanti M, Tarani L. Markers of Neuroinflammation in the Serum of Prepubertal Children with Fetal Alcohol Spectrum Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:854-868. [PMID: 34852752 DOI: 10.2174/1871527320666211201154839] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Fetal Alcohol Spectrum Disorders (FASD) are the manifestation of the damage caused by alcohol consumption during pregnancy. Children with Fetal Alcohol Syndrome (FAS), the extreme FASD manifestation, show both facial dysmorphology and mental retardation. Alcohol consumed during gestational age prejudices brain development by reducing, among others, the synthesis and release of neurotrophic factors and neuroinflammatory markers. Alcohol drinking also induces oxidative stress. HYPOTHESIS/OBJECTIVE The present study aimed to investigate the potential association between neurotrophins, neuroinflammation, and oxidative stress in 12 prepubertal male and female FASD children diagnosed as FAS or partial FAS (pFAS). METHODS Accordingly, we analyzed, in the serum, the level of BDNF and NGF and the oxidative stress, as Free Oxygen Radicals Test (FORT) and Free Oxygen Radicals Defense (FORD). Moreover, serum levels of inflammatory mediators (IL-1α, IL-2, IL-6, IL-10, IL-12, MCP-1, TGF-β, and TNF-α) involved in neuroinflammatory and oxidative processes have been investigated. RESULTS We demonstrated low serum levels of NGF and BDNF in pre-pubertal FASD children with respect to healthy controls. These changes were associated with higher serum presence of TNF- α and IL-1α. Quite interestingly, an elevation in the FORD was also found despite normal FORT levels. Moreover, we found a potentiation of IL-1α, IL-2, IL-10, and IL-1α1 in the analyzed female compared to male children. CONCLUSION The present investigation shows an imbalance in the peripheral neuroimmune pathways that could be used in children as early biomarkers of the deficits observed in FASD.
Collapse
Affiliation(s)
- Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Giovanna Coriale
- Centro Riferimento Alcologico Regione Lazio, ASL Roma 1, Rome, Italy
| | - Pamela Rosso
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Elena Fico
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Italy
| | | | - Antonio Minni
- Department of Sense Organs, Sapienza University of Rome, Italy
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, Italy
| | | | | | | | - Francesca Tarani
- Department of Pediatrics, Sapienza University Hospital of Rome, Italy
| | | | - Mauro Ceccanti
- SITAC, Societa' Italiana per il Trattamento dell'Alcolismo, Roma Italy SIFASD, Società Italiana Sindrome Feto-Alcolica, Roma, Italy
| | - Luigi Tarani
- Department of Pediatrics, Sapienza University Hospital of Rome, Italy
| |
Collapse
|
9
|
Niedzwiedz-Massey VM, Douglas JC, Rafferty T, Kane CJ, Drew PD. Ethanol effects on cerebellar myelination in a postnatal mouse model of fetal alcohol spectrum disorders. Alcohol 2021; 96:43-53. [PMID: 34358666 DOI: 10.1016/j.alcohol.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/12/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
Fetal alcohol spectrum disorders (FASD) are alarmingly common, result in significant personal and societal loss, and there are no effective treatments for these disorders. Cerebellar neuropathology is common in FASD and can cause impaired cognitive and motor function. The current study evaluates the effects of ethanol on oligodendrocyte-lineage cells, as well as molecules that modulate oligodendrocyte differentiation and function in the cerebellum in a postnatal mouse model of FASD. Neonatal mice were treated with ethanol from P4-P9 (postnatal day), the cerebellum was isolated at P10, and mRNAs encoding oligodendrocyte-associated molecules were quantitated by qRT-PCR. Our studies demonstrated that ethanol significantly reduced the expression of markers for multiple stages of oligodendrocyte maturation, including oligodendrocyte precursor cells, pre-myelinating oligodendrocytes, and mature myelinating oligodendrocytes. Additionally, we determined that ethanol significantly decreased the expression of molecules that play critical roles in oligodendrocyte differentiation. Interestingly, we also observed that ethanol significantly reduced the expression of myelin-associated inhibitors, which may act as a compensatory mechanism to ethanol toxicity. Furthermore, we demonstrate that ethanol alters the expression of a variety of molecules important in oligodendrocyte function and myelination. Collectively, our studies increase our understanding of specific mechanisms by which ethanol modulates myelination in the developing cerebellum, and potentially identify novel targets for FASD therapy.
Collapse
|
10
|
Jacobson JL, Akkaya-Hocagil T, Ryan LM, Dodge NC, Richardson GA, Olson HC, Coles CD, Day NL, Cook RJ, Jacobson SW. Effects of prenatal alcohol exposure on cognitive and behavioral development: Findings from a hierarchical meta-analysis of data from six prospective longitudinal U.S. cohorts. Alcohol Clin Exp Res 2021; 45:2040-2058. [PMID: 34342030 PMCID: PMC8602737 DOI: 10.1111/acer.14686] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/13/2021] [Accepted: 07/23/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cognitive and behavioral sequelae of prenatal alcohol exposure (PAE) continue to be prevalent in the United States and worldwide. Because these sequelae are also common in other neurodevelopmental disorders, researchers have attempted to identify a distinct neurobehavioral profile to facilitate the differential diagnosis of fetal alcohol spectrum disorders (FASD). We used an innovative, individual participant meta-analytic technique to combine data from six large U.S. longitudinal cohorts to provide a more comprehensive and reliable characterization of the neurobehavioral deficits seen in FASD than can be obtained from smaller samples. METHODS Meta-analyses were performed on data from 2236 participants to examine effects of PAE (measured as oz absolute alcohol/day (AA/day)) on IQ, four domains of cognition function (learning and memory, executive function, reading achievement, and math achievement), sustained attention, and behavior problems, after adjusting for potential confounders using propensity scores. RESULTS The effect sizes for IQ and the four domains of cognitive function were strikingly similar to one another and did not differ at school age, adolescence, or young adulthood. Effect sizes were smaller in the more middle-class Seattle cohort and larger in the three cohorts that obtained more detailed and comprehensive assessments of AA/day. PAE effect sizes were somewhat weaker for parent- and teacher-reported behavior problems and not significant for sustained attention. In a meta-analysis of five aspects of executive function, the strongest effect was on set-shifting. CONCLUSIONS The similarity in the effect sizes for the four domains of cognitive function suggests that PAE affects an underlying component or components of cognition involving learning and memory and executive function that are reflected in IQ and academic achievement scores. The weaker effects in the more middle-class cohort may reflect a more cognitively stimulating environment, a different maternal drinking pattern (lower alcohol dose/occasion), and/or better maternal prenatal nutrition. These findings identify two domains of cognition-learning/memory and set-shifting-that are particularly affected by PAE, and one, sustained attention, which is apparently spared.
Collapse
Affiliation(s)
- Joseph L. Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine
| | | | - Louise M. Ryan
- School of Mathematical and Physical Sciences, University of Technology Sydney
- ARC Centre of Excellence for Mathematical and Statistical Frontiers
| | - Neil C. Dodge
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine
| | | | | | - Claire D. Coles
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine
| | - Nancy L. Day
- Department of Psychiatry, University of Pittsburgh School of Medicine
| | - Richard J. Cook
- Department of Statistics and Actuarial Science, University of Waterloo
| | - Sandra W. Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine
| |
Collapse
|
11
|
Niedzwiedz-Massey VM, Douglas JC, Rafferty T, Wight PA, Kane CJM, Drew PD. Ethanol modulation of hippocampal neuroinflammation, myelination, and neurodevelopment in a postnatal mouse model of fetal alcohol spectrum disorders. Neurotoxicol Teratol 2021; 87:107015. [PMID: 34256161 PMCID: PMC8440486 DOI: 10.1016/j.ntt.2021.107015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 01/15/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) are alarmingly common and result in significant personal and societal loss. Neuropathology of the hippocampus is common in FASD leading to aberrant cognitive function. In the current study, we evaluated the effects of ethanol on the expression of a targeted set of molecules involved in neuroinflammation, myelination, neurotransmission, and neuron function in the developing hippocampus in a postnatal model of FASD. Mice were treated with ethanol from P4-P9, hippocampi were isolated 24 h after the final treatment at P10, and mRNA levels were quantitated by qRT-PCR. We evaluated the effects of ethanol on both pro-inflammatory and anti-inflammatory molecules in the hippocampus and identified novel mechanisms by which ethanol induces neuroinflammation. We further demonstrated that ethanol decreased expression of molecules associated with mature oligodendrocytes and greatly diminished expression of a lacZ reporter driven by the first half of the myelin proteolipid protein (PLP) gene (PLP1). In addition, ethanol caused a decrease in genes expressed in oligodendrocyte progenitor cells (OPCs). Together, these studies suggest ethanol may modulate pathogenesis in the developing hippocampus through effects on cells of the oligodendrocyte lineage, resulting in altered oligodendrogenesis and myelination. We also observed differential expression of molecules important in synaptic plasticity, neurogenesis, and neurotransmission. Collectively, the molecules evaluated in these studies may play a role in ethanol-induced pathology in the developing hippocampus and contribute to cognitive impairment associated with FASD. A better understanding of these molecules and their effects on the developing hippocampus may lead to novel treatment strategies for FASD.
Collapse
Affiliation(s)
- Victoria M Niedzwiedz-Massey
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - James C Douglas
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Tonya Rafferty
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Patricia A Wight
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Cynthia J M Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paul D Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
12
|
Alger JR, O'Neill J, O'Connor MJ, Kalender G, Ly R, Ng A, Dillon A, Narr KL, Loo SK, Levitt JG. Neuroimaging of Supraventricular Frontal White Matter in Children with Familial Attention-Deficit Hyperactivity Disorder and Attention-Deficit Hyperactivity Disorder Due to Prenatal Alcohol Exposure. Neurotox Res 2021; 39:1054-1075. [PMID: 33751467 PMCID: PMC8442735 DOI: 10.1007/s12640-021-00342-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is common in patients with (ADHD+PAE) and without (ADHD-PAE) prenatal alcohol exposure (PAE). Many patients diagnosed with idiopathic ADHD actually have covert PAE, a treatment-relevant distinction. To improve differential diagnosis, we sought to identify brain differences between ADHD+PAE and ADHD-PAE using neurobehavioral, magnetic resonance spectroscopy, and diffusion tensor imaging metrics that had shown promise in past research. Children 8-13 were recruited in three groups: 23 ADHD+PAE, 19 familial ADHD-PAE, and 28 typically developing controls (TD). Neurobehavioral instruments included the Conners 3 Parent Behavior Rating Scale and the Delis-Kaplan Executive Function System (D-KEFS). Two dimensional magnetic resonance spectroscopic imaging was acquired from supraventricular white matter to measure N-acetylaspartate compounds, glutamate, creatine + phosphocreatine (creatine), and choline-compounds (choline). Whole brain diffusion tensor imaging was acquired and used to to calculate fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity from the same superventricular white matter regions that produced magnetic resonance spectroscopy data. The Conners 3 Parent Hyperactivity/Impulsivity Score, glutamate, mean diffusivity, axial diffusivity, and radial diffusivity were all higher in ADHD+PAE than ADHD-PAE. Glutamate was lower in ADHD-PAE than TD. Within ADHD+PAE, inferior performance on the D-KEFS Tower Test correlated with higher neurometabolite levels. These findings suggest white matter differences between the PAE and familial etiologies of ADHD. Abnormalities detected by magnetic resonance spectroscopy and diffusion tensor imaging co-localize in supraventricular white matter and are relevant to executive function symptoms of ADHD.
Collapse
Affiliation(s)
- Jeffry R Alger
- Department of Neurology, University of California Los Angeles, MC 708522, Los Angeles, CA, 90024, USA.
- Neurospectroscopics, LLC, Sherman Oaks, CA, USA.
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Hura Imaging Inc, Calabas, CA, USA.
| | - Joseph O'Neill
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Mary J O'Connor
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Guldamla Kalender
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Ronald Ly
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Andrea Ng
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Andrea Dillon
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Katherine L Narr
- Department of Neurology, University of California Los Angeles, MC 708522, Los Angeles, CA, 90024, USA
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Sandra K Loo
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Jennifer G Levitt
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| |
Collapse
|
13
|
Kane CJ, Douglas JC, Rafferty T, Johnson JW, Niedzwiedz-Massey VM, Phelan KD, Majewska AK, Drew PD. Ethanol modulation of cerebellar neuroinflammation in a postnatal mouse model of fetal alcohol spectrum disorders. J Neurosci Res 2021; 99:1986-2007. [PMID: 33533128 PMCID: PMC8326304 DOI: 10.1002/jnr.24797] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/28/2020] [Indexed: 01/02/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) are alarmingly common, result in significant personal and societal loss, and there is no effective treatment for these disorders. Cerebellar neuropathology is common in FASD and causes aberrant cognitive and motor function. Ethanol-induced neuroinflammation is believed to contribute to neuropathological sequelae of FASD, and was previously demonstrated in the cerebellum in animal models of FASD. We now demonstrate neuroinflammation persists in the cerebellum several days following cessation of ethanol treatment in an early postnatal mouse model, with meaningful implications for timing of therapeutic intervention in FASD. We also demonstrate by Sholl analysis that ethanol decreases ramification of microglia cell processes in cells located near the Purkinje cell layer but not those near the external granule cell layer. Ethanol did not alter the expression of anti-inflammatory molecules or molecules that constitute NLRP1 and NLRP3 inflammasomes. Interestingly, ethanol decreased the expression of IL-23a (P19) and IL-12Rβ1 suggesting that ethanol may suppress IL-12 and IL-23 signaling. Fractalkine-fractalkine receptor (CX3CL1-CX3CR1) signaling is believed to suppress microglial activation and our demonstration that ethanol decreases CX3CL1 expression suggests that ethanol modulation of CX3CL1-CX3CR1 signaling may contribute to cerebellar neuroinflammation and neuropathology. We demonstrate ethanol alters the expression of specific molecules in the cerebellum understudied in FASD, but crucial for immune responses. Ethanol increases the expression of NOX-2 and NGP and decreases the expression of RAG1, NOS1, CD59a, S1PR5, PTPN22, GPR37, and Serpinb1b. These molecules represent a new horizon as potential targets for development of FASD therapy.
Collapse
Affiliation(s)
- Cynthia J.M. Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - James C. Douglas
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Tonya Rafferty
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jennifer W. Johnson
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Victoria M. Niedzwiedz-Massey
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kevin D. Phelan
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ania K. Majewska
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Paul D. Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
14
|
Assessing the needs of caregivers of children and adolescents with fetal alcohol spectrum disorders: Results from a survey among families and professionals in Germany. Eur J Paediatr Neurol 2021; 33:1-8. [PMID: 33971449 DOI: 10.1016/j.ejpn.2021.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/15/2021] [Accepted: 04/27/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Caring for individuals with fetal alcohol spectrum disorders (FASD) puts a substantial and often life-long burden on affected families. Caregivers' specific needs and demands are, however, not well understood so far. We thus aimed at systematically collecting data on the needs of individuals caring for children and adolescents with FASD. MATERIALS AND METHODS Between May 2019 and November 2020, a quantitative survey among caregivers and professionals from across Germany was performed. Participants completed a questionnaire collecting information on the perceived support caregivers receive from various sources as well as the current fulfilment of caregivers' needs. Specifically, the fulfilment of a variety of specific needs summarised in five categories was rated by the participants on a scale ranging from 1 (very good) to 6 (insufficient). RESULTS Both caregivers and professionals rated the overall fulfilment of needs rather poorly (mean: 3.94 and 4.27, respectively). Caregivers indicated needs concerning coordination of support (4.74) and relief services (4.44) to be fulfilled the least while needs in the relief services category also received the lowest average grade among professionals (4.57). The needs that the caregivers regarded as most sufficiently fulfilled were their own knowledge about FASD (mean: 1.95) and their knowledge about the causes of their child's problems (mean: 1.87). CONCLUSIONS The results of the present study indicate that FASD caregivers are supported insufficiently, while most of their needs remain unmet. Health care planners and providers thus urgently need to identify and implement measures to better address FASD caregivers' needs and demands.
Collapse
|
15
|
Abstract
We describe an 8-year-old white boy with a history of fetal alcohol syndrome and pica, who was found dead on the floor by his mother. The child died from massive intestinal dilatation causing asphyxia. We discuss the potential pathogenetic mechanisms of intestinal dilation in patients with fetal alcohol syndrome.
Collapse
|
16
|
Wang Y, Wen W, Li H, Clementino M, Xu H, Xu M, Ma M, Frank J, Luo J. MANF is neuroprotective against ethanol-induced neurodegeneration through ameliorating ER stress. Neurobiol Dis 2021; 148:105216. [PMID: 33296727 PMCID: PMC7856049 DOI: 10.1016/j.nbd.2020.105216] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/18/2020] [Accepted: 12/03/2020] [Indexed: 12/23/2022] Open
Abstract
Fetal alcohol spectrum disorders (FASD) are a spectrum of developmental disorders caused by prenatal alcohol exposure. Neuronal loss or neurodegeneration in the central nervous system (CNS) is one of the most devastating features in FASD. It is imperative to delineate the underlying mechanisms to facilitate the treatment of FASD. Endoplasmic reticulum (ER) stress is a hallmark and an underlying mechanism of many neurodegenerative diseases, including ethanol-induced neurodegeneration. Mesencephalic astrocyte-derived neurotrophic factor (MANF) responds to ER stress and has been identified as a protein upregulated in response to ethanol exposure during the brain development. To investigate the role of MANF in ethanol-induced neurodegeneration and its association with ER stress regulation, we established a CNS-specific Manf knockout mouse model and examined the effects of MANF deficiency on ethanol-induced neuronal apoptosis and ER stress using a third-trimester equivalent mouse model. We found MANF deficiency exacerbated ethanol-induced neuronal apoptosis and ER stress and that blocking ER stress abrogated the harmful effects of MANF deficiency on ethanol-induced neuronal apoptosis. Moreover, using an animal model of ER-stress-induced neurodegeneration, we demonstrated that MANF deficiency potentiated tunicamycin (TM)-induced ER stress and neurodegeneration. A whole transcriptome RNA sequencing also supported the functionality of MANF in ER stress modulation and revealed targets that may mediate the ER stress-buffering capacity of MANF. Collectively, these results suggest that MANF is a neurotrophic factor that can protect neurons against ethanol-induced neurodegeneration by ameliorating ER stress.
Collapse
Affiliation(s)
- Yongchao Wang
- Department of Cell and Development Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States of America
| | - Wen Wen
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States of America
| | - Hui Li
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States of America
| | - Marco Clementino
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Hong Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Murong Ma
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Jacqueline Frank
- Department of Neurology, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States of America; Iowa City VA Health Care System, Iowa City, IA 52246, United States of America.
| |
Collapse
|
17
|
Kane CJM, Drew PD. Neuroinflammatory contribution of microglia and astrocytes in fetal alcohol spectrum disorders. J Neurosci Res 2020; 99:1973-1985. [PMID: 32959429 DOI: 10.1002/jnr.24735] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 12/12/2022]
Abstract
Ethanol exposure to the fetus during pregnancy can result in fetal alcohol spectrum disorders (FASD). These disorders vary in severity, can affect multiple organ systems, and can lead to lifelong disabilities. Damage to the central nervous system (CNS) is common in FASD, and can result in altered behavior and cognition. The incidence of FASD is alarmingly high, resulting in significant personal and societal costs. There are no cures for FASD. Alcohol can directly alter the function of neurons in the developing CNS. In addition, ethanol can alter the function of CNS glial cells including microglia and astrocytes which normally maintain homeostasis in the CNS. These glial cells can function as resident immune cells in the CNS to protect against pathogens and other insults. However, activation of glia can also damage CNS cells and lead to aberrant CNS function. Ethanol exposure to the developing brain can result in the activation of glia and neuroinflammation, which may contribute to the pathology associated with FASD. This suggests that anti-inflammatory agents may be effective in the treatment of FASD.
Collapse
Affiliation(s)
- Cynthia J M Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paul D Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
18
|
Relationship Between Task-Based and Parent Report-Based Measures of Attention and Executive Function in Children with Fetal Alcohol Spectrum Disorders (FASD). JOURNAL OF PEDIATRIC NEUROPSYCHOLOGY 2020; 6:176-188. [PMID: 33585167 DOI: 10.1007/s40817-020-00089-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A majority of children with fetal alcohol spectrum disorders (FASD) have demonstrated attention and executive function deficits as measured by both parent report measures and performance on tasks requiring sustained levels of attention. However, prior studies have consistently reported a lack of association between parental report-based and task-based performance measures. The current study investigated whether changes in performance over time within-task (i.e., first-half versus second-half) better correspond to parental reports of executive function and temperament in children with FASD. Greater differences in split-half performance during a continuous performance task were found to be associated with higher parent-reported levels of behavioral regulation and inhibitory control. These findings suggest that within-task performance differences may more accurately reflect individual differences in executive function and temperament as measured by parental report and help to further inform the way in which cognitive processes are measured in children with FASD.
Collapse
|
19
|
Ferraguti G, Merlino L, Battagliese G, Piccioni MG, Barbaro G, Carito V, Messina MP, Scalese B, Coriale G, Fiore M, Ceccanti M. Fetus morphology changes by second-trimester ultrasound in pregnant women drinking alcohol. Addict Biol 2020; 25:e12724. [PMID: 30811093 DOI: 10.1111/adb.12724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/10/2019] [Accepted: 01/13/2019] [Indexed: 12/16/2022]
Abstract
Fetal alcohol spectrum disorders (FASDs) are a group of negative conditions occurring in children exposed to alcohol during gestation. The early discovery of FASD is crucial for mother and infant follow-ups. In this study, we investigated in pregnant women the association between urine ethylglucuronide (EtG-a biomarker of alcohol drinking) and indicators of the physical characteristics of FASD by prenatal ultrasound in the second trimester of gestation. We also correlated these data with the AUDIT-C, T-ACE/TACER-3, TWEAK, and food habit diary, screening questionnaires used to disclose alcohol drinking during pregnancy. Forty-four pregnant women were randomly enrolled and examined for ultrasound investigation during the second trimester of gestation. Urine samples were provided by pregnant women immediately after the routine interviews. EtG determinations were performed with a cutoff established at 100 ng/mL, a value indicating occasional alcohol drinking. Fifteen of the enrolled pregnant women overcame the EtG cutoff (34.09%). Analysis of variance (ANOVA) revealed that the fetuses of the positive EtG pregnant women had significantly longer interorbital distance and also significantly increased frontothalamic distance (P's < 0.02). Quite interestingly, no direct correlation was found between EtG data and both food diary and AUDIT-C. However, a significant correlation was observed between urinary EtG and T-ACE (r = 0.375; P = 0.012) and between urinary EtG and TWEAK (r = 0.512; P < 0.001) and a concordance with all questionnaire for EtG values higher than 500 ng/mL. This study provides clinical evidence that the diagnosis of maternal alcohol consumption during pregnancy by urine EtG may disclose FASD-related damage in the fetus.
Collapse
Affiliation(s)
- Giampiero Ferraguti
- Department of Experimental MedicineSapienza University Hospital of Rome Rome Italy
| | - Lucia Merlino
- Department of Gynecological‐Obstetric Sciences and Urological SciencesSapienza University Hospital of Rome Rome Italy
| | - Gemma Battagliese
- Centro Riferimento Alcologico Regione LazioSapienza University of Rome Rome Italy
| | - Maria Grazia Piccioni
- Department of Gynecological‐Obstetric Sciences and Urological SciencesSapienza University Hospital of Rome Rome Italy
| | - Greta Barbaro
- Department of Gynecological‐Obstetric Sciences and Urological SciencesSapienza University Hospital of Rome Rome Italy
| | - Valentina Carito
- Institute of Cell Biology and Neurobiology (IBCN)National Research Council (CNR) Rome Italy
| | | | - Bruna Scalese
- Centro Riferimento Alcologico Regione LazioSapienza University of Rome Rome Italy
| | - Giovanna Coriale
- Centro Riferimento Alcologico Regione LazioSapienza University of Rome Rome Italy
| | - Marco Fiore
- Institute of Cell Biology and Neurobiology (IBCN)National Research Council (CNR) Rome Italy
| | - Mauro Ceccanti
- Centro Riferimento Alcologico Regione LazioSapienza University of Rome Rome Italy
| |
Collapse
|
20
|
Ieraci A, Herrera DG. Early Postnatal Ethanol Exposure in Mice Induces Sex-Dependent Memory Impairment and Reduction of Hippocampal NMDA-R2B Expression in Adulthood. Neuroscience 2019; 427:105-115. [PMID: 31874240 DOI: 10.1016/j.neuroscience.2019.11.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022]
Abstract
Drinking alcohol during pregnancy is particularly detrimental for the developing brain and may cause a broad spectrum of cognitive and behavioral impairments, collectively known as fetal alcohol spectrum disorder (FASD). While behavioral abnormalities and brain damage have been widely investigated in animal models of FASD, the sex differences in the vulnerability to perinatal ethanol exposure have received less consideration. Here we investigated the long-term behavioral and molecular effects of acute ethanol-binge like exposure during the early postnatal period (equivalent to the third trimester of human pregnancy) in adult male and female mice. CD1 mice received a single ethanol exposure on P7 and were analyzed starting from P60. We found that ethanol-exposed mice showed increased activity in the open field test and in the plus-maze test, regardless of the sex. Interestingly, only ethanol-exposed adult male mice exhibited memory impairment in the water maze and fear-conditioning tests. Remarkably, hippocampal levels of NMDA-R2B were reduced only in ethanol-exposed male, while total BDNF levels were increased in both male and female ethanol-exposed mice. Our data suggest a different susceptibility of early postnatal ethanol exposure in male and female CD1 mice.
Collapse
Affiliation(s)
- Alessandro Ieraci
- Department of Psychiatry, Weill Medical College of Cornell University, New York, NY 10065, USA.
| | - Daniel G Herrera
- Department of Psychiatry, Weill Medical College of Cornell University, New York, NY 10065, USA
| |
Collapse
|
21
|
Collier AD, Halkina V, Min SS, Roberts MY, Campbell SD, Camidge K, Leibowitz SF. Embryonic Ethanol Exposure Affects the Early Development, Migration, and Location of Hypocretin/Orexin Neurons in Zebrafish. Alcohol Clin Exp Res 2019; 43:1702-1713. [PMID: 31206717 PMCID: PMC6677602 DOI: 10.1111/acer.14126] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/03/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Embryonic ethanol (EtOH) exposure is known to increase alcohol drinking later in life and have long-term effects on neurochemical systems in the brain. With zebrafish having marked advantages for elucidating neural mechanisms underlying brain disorders, we recently tested and showed in these fish, similar to rodents, that low-dose embryonic EtOH stimulates voluntary consumption of EtOH while increasing expression of hypocretin/orexin (hcrt) neurons, a neuropeptide that promotes consummatory and reward-related behaviors. The goal of the present study was to characterize how embryonic EtOH affects early development of the hcrt system and produces persistent changes at older ages that may contribute to this increase in EtOH consumption. METHODS We utilized live imaging and Imaris software to investigate how low-dose embryonic EtOH (0.5%), administered from 22 to 24 hours postfertilization, affects specific properties of hcrt neurons in hcrt:EGFP transgenic zebrafish at different ages. RESULTS Time-lapse imaging from 24 to 28 hpf showed that embryonic EtOH increased the number of hcrt neurons, reduced the speed, straightness, and displacement of their migratory paths, and altered their direction early in development. At older ages up to 6 dpf, the embryonic EtOH-induced increase in hcrt neurons was persistent, and the neurons became more widely dispersed. These effects of embryonic EtOH were found to be asymmetric, occurring predominantly on the left side of the brain, and at 6 dpf, they resulted in marked changes in the anatomical location of the hcrt neurons, with some detected outside their normal position in the anterior hypothalamus again primarily on the left side. CONCLUSIONS Our findings demonstrate that low-dose embryonic EtOH has diverse, persistent, and asymmetric effects on the early development of hypothalamic hcrt neurons, which lead to abnormalities in their ultimate location that may contribute to behavioral disturbances, including an increase in EtOH consumption.
Collapse
Affiliation(s)
- Adam D. Collier
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY
| | - Viktoriya Halkina
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY
| | - Soe S. Min
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY
| | - Mia Y. Roberts
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY
| | | | - Kaylin Camidge
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY
| | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY
| |
Collapse
|
22
|
Chiodo LM, Cosmian C, Pereira K, Kent N, Sokol RJ, Hannigan JH. Prenatal Alcohol Screening During Pregnancy by Midwives and Nurses. Alcohol Clin Exp Res 2019; 43:1747-1758. [PMID: 31184777 PMCID: PMC6772020 DOI: 10.1111/acer.14114] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 05/06/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Alcohol use during pregnancy can have a variety of harmful consequences on the fetus. Lifelong effects include growth restriction, characteristic facial anomalies, and neurobehavioral dysfunction. This range of effects is known as fetal alcohol spectrum disorders (FASD). There is no amount, pattern, or timing of alcohol use during pregnancy proven safe for a developing embryo or fetus. Therefore, it is important to screen patients for alcohol use, inform them about alcohol's potential effects during pregnancy, encourage abstinence, and refer for intervention if necessary. However, how and how often nurses and midwives inquire about alcohol drinking during pregnancy or use recommended screening tools and barriers they perceive to alcohol screening has not been well established. METHODS This survey was sent to about 6,000 American midwives, nurse practitioners, and nurses who provide prenatal care about their knowledge of the effects of prenatal alcohol exposure, the prevalence of alcohol use during pregnancy, and practices for screening patients' alcohol use. Participants were recruited by e-mail from the entire membership roster of the American College of Nurse-Midwives. RESULTS There were 578 valid surveys returned (about 9.6%). Analyses showed that 37.7% of the respondents believe drinking alcohol is safe during at least one trimester of pregnancy. Only 35.2% of respondents reported screening to assess patient alcohol use. Only 23.3% reported using a specific screening tool, and few of those were validated screens recommended for use in pregnant women. Respondents who believe alcohol is safe at some point in pregnancy were significantly less likely to screen their patients. CONCLUSIONS Respondents who reported that pregnancy alcohol use is unsafe felt more prepared to educate and intervene with patients regarding alcohol use during pregnancy and FASD than respondents who reported drinking in pregnancy was safe. Perceived alcohol safety and perceived barriers to screening appeared to influence screening practices. Improving prenatal care provider knowledge about the effects of prenatal alcohol exposure and the availability of valid alcohol screening tools will improve detection of drinking during pregnancy, provide more opportunities for meaningful intervention, and ultimately reduce the incidence of FASD.
Collapse
Affiliation(s)
- Lisa M. Chiodo
- College of NursingUniversity of MassachusettsAmherstMassachusetts
| | - Caitlin Cosmian
- College of NursingUniversity of MassachusettsAmherstMassachusetts
| | - Kristy Pereira
- College of NursingUniversity of MassachusettsAmherstMassachusetts
| | - Nicole Kent
- College of NursingUniversity of MassachusettsAmherstMassachusetts
| | - Robert J. Sokol
- Department of Obstetrics & GynecologyWayne State UniversityDetroitMichigan
- C.S. Mott Center for Human Growth & DevelopmentWayne State UniversityDetroitMichigan
| | - John H. Hannigan
- Department of Obstetrics & GynecologyWayne State UniversityDetroitMichigan
- C.S. Mott Center for Human Growth & DevelopmentWayne State UniversityDetroitMichigan
- Merrill Palmer Skillman Institute for Child and Family DevelopmentWayne State UniversityDetroitMichigan
- Department of PsychologyWayne State UniversityDetroitMichigan
| |
Collapse
|
23
|
Clinical presentation, diagnosis, and management of fetal alcohol spectrum disorder. Lancet Neurol 2019; 18:760-770. [PMID: 31160204 DOI: 10.1016/s1474-4422(19)30150-4] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 12/21/2022]
Abstract
Although prenatal alcohol exposure causes craniofacial anomalies, growth retardation, neurological abnormalities, cognitive impairment, and birth defects, fetal alcohol spectrum disorder is underdiagnosed. Global prevalence of fetal alcohol spectrum disorder is 0·77%, with a higher prevalence of 2-5% in Europe and North America, highlighting the need for increased diagnosis and treatment. However, diagnosis remains challenging because of the poor reliability of self-reported maternal drinking histories, an absence of sensitive biomarkers, and the infrequency of diagnostic dysmorphic facial features among individuals with fetal alcohol spectrum disorder. Different diagnostic systems and disagreements over criteria have slowed progress in the diagnosis and management of the disorder. Neuroimaging shows abnormalities in brain structure, cortical development, white matter microstructure, and functional connectivity in individuals with fetal alcohol spectrum disorder. These abnormalities modify developmental trajectories and are associated with deficits in cognition, executive function, memory, vision, hearing, motor skills, behaviour, and social adaptation. Promising trials of nutritional interventions and cognitive rehabilitation therapies are underway, with the aim of treating cognitive deficits in fetal alcohol spectrum disorders.
Collapse
|
24
|
Bandoli G, Coles CD, Kable JA, Wertelecki W, Yevtushok L, Zymak-Zakutnya N, Wells A, Granovska IV, Pashtepa AO, Chambers CD. Patterns of Prenatal Alcohol Use That Predict Infant Growth and Development. Pediatrics 2019; 143:peds.2018-2399. [PMID: 30610099 PMCID: PMC6361345 DOI: 10.1542/peds.2018-2399] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Previous studies have had inconsistent findings regarding the quantity and frequency of prenatal alcohol exposure (PAE) that lead to deficits in growth and neurodevelopment. This may be due to imprecise methods of exposure classification. Our objective in this study was to employ longitudinal trajectory modeling of maternal drinking patterns associated with infant growth or neurodevelopmental deficits to a homogenous sample of mothers and infants. METHODS From a sample of 471 pregnant women prospectively enrolled in a longitudinal study in the Ukraine, we performed a longitudinal cluster analysis of drinking patterns across gestation. We employed multivariable regression analyses to determine if each trajectory group was associated with infant weight, length, or head circumference at birth or psychomotor or mental deficits in infancy. RESULTS We identified 5 distinct PAE trajectory groups: minimal or no PAE throughout gestation, low-to-moderate PAE with discontinuation early in gestation, low-to-moderate PAE sustained across gestation, moderate-to-high PAE with reduction early in gestation, and high PAE sustained across gestation. The highest-trajectory group was associated with deficits in infant weight and length at birth and deficits in psychomotor and mental performance at 6 to 12 months of age. Although confidence intervals overlapped, low-to-moderate sustained use was more strongly associated with most negative infant outcomes than moderate-to-high PAE with early reduction. CONCLUSIONS With these findings, we confirm that high, sustained PAE confers the highest risk for adverse infant outcomes but demonstrate that even low-to-moderate PAE continued across gestation is associated with certain deficits. This approach may be used to help clinicians identify high-risk infants for targeted early intervention.
Collapse
Affiliation(s)
- Gretchen Bandoli
- Departments of Pediatrics and .,Family Medicine and Public Health, University of California, San Diego, La Jolla, California
| | - Claire D. Coles
- Departments of Psychiatry and Pediatrics, School of Medicine, Emory University, Atlanta, Georgia
| | - Julie A. Kable
- Departments of Psychiatry and Pediatrics, School of Medicine, Emory University, Atlanta, Georgia
| | - Wladimir Wertelecki
- Departments of Pediatrics and,Omni-Net for Children International Charitable Fund and Rivne Regional Medical Diagnostic Center, Rivne, Ukraine;,Omni-Net for Children International Charitable Fund and Khmelnytsky Perinatal Center, Khmelnytskyi, Ukraine;,Department of Medical Genetics, University of South Alabama, Mobile, Alabama; and
| | - Lyubov Yevtushok
- Omni-Net for Children International Charitable Fund and Rivne Regional Medical Diagnostic Center, Rivne, Ukraine;,Lviv National Medical University, Lviv, Ukraine
| | - Natalya Zymak-Zakutnya
- Omni-Net for Children International Charitable Fund and Rivne Regional Medical Diagnostic Center, Rivne, Ukraine
| | | | - Irina V. Granovska
- Omni-Net for Children International Charitable Fund and Rivne Regional Medical Diagnostic Center, Rivne, Ukraine
| | - Alla O. Pashtepa
- Omni-Net for Children International Charitable Fund and Khmelnytsky Perinatal Center, Khmelnytskyi, Ukraine
| | - Christina D. Chambers
- Departments of Pediatrics and,Family Medicine and Public Health, University of California, San Diego, La Jolla, California
| | | |
Collapse
|
25
|
Li Y, Shen M, Stockton ME, Zhao X. Hippocampal deficits in neurodevelopmental disorders. Neurobiol Learn Mem 2018; 165:106945. [PMID: 30321651 DOI: 10.1016/j.nlm.2018.10.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022]
Abstract
Neurodevelopmental disorders result from impaired development or maturation of the central nervous system. Both genetic and environmental factors can contribute to the pathogenesis of these disorders; however, the exact causes are frequently complex and unclear. Individuals with neurodevelopmental disorders may have deficits with diverse manifestations, including challenges with sensory function, motor function, learning, memory, executive function, emotion, anxiety, and social ability. Although these functions are mediated by multiple brain regions, many of them are dependent on the hippocampus. Extensive research supports important roles of the mammalian hippocampus in learning and cognition. In addition, with its high levels of activity-dependent synaptic plasticity and lifelong neurogenesis, the hippocampus is sensitive to experience and exposure and susceptible to disease and injury. In this review, we first summarize hippocampal deficits seen in several human neurodevelopmental disorders, and then discuss hippocampal impairment including hippocampus-dependent behavioral deficits found in animal models of these neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yue Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Minjie Shen
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Michael E Stockton
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
26
|
Ornoy A, Koren G, Yanai J. Is post exposure prevention of teratogenic damage possible: Studies on diabetes, valproic acid, alcohol and anti folates in pregnancy: Animal studies with reflection to human. Reprod Toxicol 2018; 80:92-104. [DOI: 10.1016/j.reprotox.2018.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/06/2018] [Accepted: 05/25/2018] [Indexed: 12/20/2022]
|
27
|
Louw KA. Substance use in pregnancy: The medical challenge. Obstet Med 2018; 11:54-66. [PMID: 29997687 PMCID: PMC6038015 DOI: 10.1177/1753495x17750299] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/20/2017] [Indexed: 01/04/2023] Open
Abstract
Substance use contributes significantly to the global burden of disease. Growing numbers of women use nicotine, alcohol, and illicit substances. Women are the most vulnerable to problematic substance use in their reproductive years. The first 1000 days of life, starting at conception, have been established as a critical window of time for long-term health and development. Substance use in pregnancy is associated with negative pregnancy and child health outcomes. The impact of antenatal substance use on these outcomes needs to be considered within a challenging and complex context. This review provides an overview of the current literature on the impact of substances on pregnancy and child outcomes as well as the evidence and guidelines on screening and interventions for women using substances during pregnancy.
Collapse
Affiliation(s)
- Kerry-Ann Louw
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| |
Collapse
|
28
|
Taggart TC, Simmons RW, Thomas JD, Riley EP. Children with Heavy Prenatal Alcohol Exposure Exhibit Atypical Gait Characteristics. Alcohol Clin Exp Res 2017; 41:1648-1655. [PMID: 28727159 DOI: 10.1111/acer.13450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/13/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Impaired motor function in children with histories of prenatal exposure to alcohol has been previously reported but, to date, no studies using quantitatively based analyses have been performed to assess gait in these children. METHODS Gait of children with (n = 18) or without (n = 26) prenatal alcohol exposure was assessed using an electronically instrumented walkway. Children completed blocks of trials traversing the walkway with different combinations of walking condition (increased, self-paced, and decreased cadence) and direction (forward and backward). Gait velocity, cadence, stride length, step width, foot angle, and double support time, as well as the variability of these temporal-spatial markers, were used to assess gait. RESULTS Results indicated that, in comparison with typically developing children, alcohol-exposed children produced exaggerated foot angle and increased step width. Additionally, alcohol-exposed children produced greater intrasubject variability of gait velocity and walking cadence while walking forward and backward, and greater variability in step width when walking backward and for all 3 walking conditions. CONCLUSIONS The results indicate that selected gait markers are adversely affected by prenatal exposure to alcohol. Clinicians and front-line personnel (e.g., teachers) should provide movement enriched experiences to help ameliorate these alcohol-related deficits.
Collapse
Affiliation(s)
- Tenille C Taggart
- Center for Behavioral Teratology , Department of Psychology, San Diego State University, San Diego, California.,Clinical Psychology Doctoral Program , Department of Psychology, Stony Brook University, Stony Brook, New York
| | - Roger W Simmons
- Motor Control Laboratory , School of Exercise and Nutritional Sciences, San Diego State University, San Diego, California
| | - Jennifer D Thomas
- Center for Behavioral Teratology , Department of Psychology, San Diego State University, San Diego, California
| | - Edward P Riley
- Center for Behavioral Teratology , Department of Psychology, San Diego State University, San Diego, California
| |
Collapse
|
29
|
Ingram DG, Churchill SS. Sleep Problems in Children With Agenesis of the Corpus Callosum. Pediatr Neurol 2017; 67:85-90. [PMID: 28089768 DOI: 10.1016/j.pediatrneurol.2016.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/21/2016] [Accepted: 10/01/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND Very little is known about sleep habits in children with agenesis of the corpus callosum (ACC). The purpose of this investigation was to evaluate sleep problems in children with ACC and examine the association with quality of life. METHODS We performed a cross-sectional, anonymous, internet-based survey offered to parents of children with ACC, aged five to 18 years. The Children's Sleep Habits Questionnaire (CSHQ) and pediatric quality of life (PedsQL) were used to assess sleep habits and quality of life, respectively. Associations between the total and all subdomains of CSHQ and PedsQL were tested. RESULTS The final sample included 66 parents of children with ACC. Overall, 78% of the children had clinically significant sleep problems, using a cutoff score of 41 on the CSHQ. Compared with a prior national sample of typically developing children, children with ACC scored significantly higher overall and in all subdomains of the CSHQ. The overall CSHQ and PedsQL were moderately correlated (r = -0.485, P < 0.001), indicating that children with more sleep problems had worse quality of life. In addition, the total CSHQ correlated with all subdomains of the pediatric quality of life, including emotional (r = -0.515, P < 0.01), social (r = -0.394, P < 0.01), physical (r = -0.263, P < 0.01), and school (r = -0.362, P < 0.01). These associations remained statistically significant in multivariable regression models controlling for age and gender. CONCLUSIONS Sleep problems are common and associated with lower quality of life in children with ACC.
Collapse
Affiliation(s)
- David G Ingram
- Division of Pulmonary and Sleep Medicine, Children's Mercy Hospital, Kansas City, Missouri.
| | - Shervin S Churchill
- Department of Family and Child Nursing, University of Washington, Seattle, Washington
| |
Collapse
|
30
|
Abstract
This grand rounds manuscript reviews important considerations in developing case conceptualizations for individuals with a history of prenatal alcohol exposure. This case study provides an introduction to fetal alcohol spectrum disorders, diagnostic issues, a detailed description of the individual's history, presenting symptoms, neuropsychological test results, and an integrated summary. We describe a 9-year old girl diagnosed with a fetal alcohol spectrum disorder (FASD): Neurobehavioral Disorder Associated with Prenatal Alcohol Exposure (ND-PAE). This patient is a composite of a prototypical child who participated as part of a research project at the Center for Behavioral Teratology who was subsequently seen at an outpatient child psychiatry facility.
Collapse
Affiliation(s)
- Leila Glass
- Center for Behavioral Teratology and Department of Psychology, San Diego State University, San Diego, CA 92120
| | - Sarah N Mattson
- Center for Behavioral Teratology and Department of Psychology, San Diego State University, San Diego, CA 92120
| |
Collapse
|
31
|
Drew PD, Kane CJ. Peroxisome Proliferator-Activated Receptor-γ Agonists: Potential Therapeutics for Neuropathology Associated with Fetal Alcohol Spectrum Disorders. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2016; 7:469. [PMID: 28203487 PMCID: PMC5305275 DOI: 10.4172/2155-9899.1000469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) result from fetal exposure to alcohol during pregnancy. These disorders present a variety of sequelae including involvement of the central nervous system (CNS) with lasting impact on cognitive function and behavior. FASD occur at an alarming rate and have significant personal and societal impact. There are currently no effective treatments for FASD. Recent studies demonstrate that ethanol induces potent neuroinflammation in many regions of the developing brain. Furthermore, anti-inflammatory agents such as peroxisome proliferator-activated receptor (PPAR)-γ agonists suppress ethanol-induced neuroinflammation and neurodegeneration. This suggests that anti-inflammatory agents may be effective in treatment of FASD. Future studies designed to determine the specific mechanisms by which alcohol induces neuroinflammation in the developing CNS may lead to targeted therapies for FASD.
Collapse
Affiliation(s)
- Paul D. Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Cynthia J.M. Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|