1
|
Bisht N, Singh T, Ansari MM, Joshi H, Mishra SK, Chauhan PS. Plant growth-promoting Bacillus amyloliquefaciens orchestrate homeostasis under nutrient deficiency exacerbated drought and salinity stress in Oryza sativa L. seedlings. PLANTA 2024; 261:8. [PMID: 39643822 DOI: 10.1007/s00425-024-04585-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
MAIN CONCLUSION Nutrient deficiency intensifies drought and salinity stress on rice growth. Bacillus amyloliquefaciens inoculation provides resilience through modulation in metabolic and gene regulation to enhance growth, nutrient uptake, and stress tolerance. Soil nutrient deficiencies amplify the detrimental effects of abiotic stresses, such as drought and salinity, creating substantial challenges for overall plant health and crop productivity. Traditional methods for developing stress-resistant varieties are often slow and labor-intensive. Previously, we demonstrated that plant growth-promoting rhizobacteria Bacillus amyloliquefaciens strain SN13 effectively alleviates stress induced by sub-optimum nutrient conditions in rice. In this study, we evaluated the effectiveness of SN13 in reducing the compounded impacts of drought and salinity under varying nutrient regimes in rice seedlings. The results demonstrated that PGPR inoculation not only improved the growth parameters, nutrient content, and physio-biochemical characteristics under nutrient-limited conditions, but also reduced the oxidative stress markers. The altered expression of stress-related and transcription factor genes (USP, DEF, CYP450, GST, MYB, and bZIP) revealed the regulatory effect of PGPR in enhancing stress tolerance through these genes. GC-MS-based untargeted metabolomic analysis revealed that PGPR significantly influenced various metabolic pathways, including galactose metabolism, fructose and mannose metabolism, and fatty acid biosynthesis pathways, suggesting that PGPR affects both energy production and stress-protective mechanisms, facilitating better growth and survival of rice seedlings.
Collapse
Affiliation(s)
- Nikita Bisht
- Microbial Technologies Division, CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Tanya Singh
- Microbial Technologies Division, CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mohd Mogees Ansari
- Microbial Technologies Division, CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Harshita Joshi
- Microbial Technologies Division, CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Shahank Kumar Mishra
- Microbial Technologies Division, CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Puneet Singh Chauhan
- Microbial Technologies Division, CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
2
|
Rajendran S, Domalachenpa T, Arora H, Li P, Sharma A, Rajauria G. Hydroponics: Exploring innovative sustainable technologies and applications across crop production, with Emphasis on potato mini-tuber cultivation. Heliyon 2024; 10:e26823. [PMID: 38434318 PMCID: PMC10907780 DOI: 10.1016/j.heliyon.2024.e26823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
There is an urgent need to explore climate-resilient alternative agriculture production systems that focus on resilience, resource efficiency, and disease management. Hydroponics, a soilless cultivation system, gaining interest as it reduces the dependency on agricultural land, and pesticides, and can be implemented in areas with poor soil quality, thus mitigating the negative effects of extreme weather events. Potato is an essential dietary staple crop grown throughout the world and is a major source of food security in underdeveloped countries. However, due to the climatic changes, it is predicted that a significant loss in the suitability of land for potato production would occur, thus leading to potato yield loss. Recently, many case studies have emerged to highlight the advancement of agricultural hydroponic systems that provide a promising solution to the massive production of potato mini tuber at high efficiency. This review paper evaluates popular hydroponic methods and demonstrates how hydroponic has emerged as the go-to, long-term, sustainable answer to the perennial problem of insufficient access to high-quality potato seed stock. The paper discusses the research and innovation possibilities (such as artificial intelligence, nanoparticles, and plant growth-promoting rhizobacteria) that potentially increase tuber production per plant under optimal hydroponic growth circumstances. These approaches are examined considering new scientific discoveries and practical applications. Furthermore, it emphasizes that by enduring significant reforms in soilless food production systems (particularly for potatoes), the food supply of a rapidly growing population can be addressed. Since hydroponics systems are productive and easily automated without soil and optimal environmental conditions, future hydroponics farming is promising. In conclusion, the hydroponics system provides better yield and crop productivity by saving water, energy, and space. Henceforth, it can be the alternate choice for modern sustainable agriculture.
Collapse
Affiliation(s)
| | - Tenzing Domalachenpa
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida, 201313, India
| | - Himanshu Arora
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi, 110016, India
| | - Pai Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Abhishek Sharma
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida, 201313, India
| | - Gaurav Rajauria
- School of Microbiology, School of Food and Nutritional Sciences, and SUSFERM Fermentation Science and Bioprocess Engineering Centre, University College Cork, Cork, T12 K8AF, Ireland
| |
Collapse
|
3
|
Escudero-Martinez C, Bulgarelli D. Engineering the Crop Microbiota Through Host Genetics. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:257-277. [PMID: 37196364 DOI: 10.1146/annurev-phyto-021621-121447] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The microbiota populating the plant-soil continuum defines an untapped resource for sustainable crop production. The host plant is a driver for the taxonomic composition and function of these microbial communities. In this review, we illustrate how the host genetic determinants of the microbiota have been shaped by plant domestication and crop diversification. We discuss how the heritable component of microbiota recruitment may represent, at least partially, a selection for microbial functions underpinning the growth, development, and health of their host plants and how the magnitude of this heritability is influenced by the environment. We illustrate how host-microbiota interactions can be treated as an external quantitative trait and review recent studies associating crop genetics with microbiota-based quantitative traits. We also explore the results of reductionist approaches, including synthetic microbial communities, to establish causal relationships between microbiota and plant phenotypes. Lastly, we propose strategies to integrate microbiota manipulation into crop selection programs. Although a detailed understanding of when and how heritability for microbiota composition can be deployed for breeding purposes is still lacking, we argue that advances in crop genomics are likely to accelerate wider applications of plant-microbiota interactions in agriculture.
Collapse
Affiliation(s)
| | - Davide Bulgarelli
- Plant Sciences, School of Life Sciences, University of Dundee, Dundee, United Kingdom; ,
| |
Collapse
|
4
|
Gulzar S, Manzoor MA, Liaquat F, Zahid MS, Arif S, Zhou X, Zhang Y. Endophytic bacterial diversity by 16S rRNA gene sequencing of Pak choi roots under fluazinam, Trichoderma harzianum, and Sophora flavescens inoculation. Funct Integr Genomics 2023; 23:194. [PMID: 37266724 DOI: 10.1007/s10142-023-01119-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Affiliation(s)
- Shazma Gulzar
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai, China
| | - Muhammad Aamir Manzoor
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai, China
| | - Fiza Liaquat
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai, China
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, Seoul, South Korea
| | - Muhammad Salman Zahid
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai, China
| | - Samiah Arif
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai, China
| | - Xuanwei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai, China
| | - Yidong Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai, China.
| |
Collapse
|
5
|
Zhai W, Jiang W, Guo Q, Wang Z, Liu D, Zhou Z, Wang P. Existence of antibiotic pollutant in agricultural soil: Exploring the correlation between microbiome and pea yield. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162152. [PMID: 36775170 DOI: 10.1016/j.scitotenv.2023.162152] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Due to sewage irrigation, manure fertilizer application or other agricultural activities, antibiotics have been introduced into farmland as an emerging contaminant, existing with other agrochemicals. However, the potential influences of antibiotics on the efficiency of agrochemicals and crops health are still unclear. In this work, the effect of antibiotics on fertilization efficiency and pea yield was evaluated, and the mechanism was explored in view of soil microbiome. Nitrogen utilization and pea yield were decreased by antibiotics. In specific, the weight of seeds decreased 9.5 % by 5 mg/kg antibiotics and decreased 25.1 % by 50 mg/kg antibiotics. For N nutrient in pea, antibiotics resulted in 62.5 %-63.7 % decrease in amino acid content and 8.3 %-35.3 % decrease in inorganic-N content. Further research showed that antibiotics interfered with N cycle in soil, inhibiting urea decomposition and denitrification process by reducing function genes ureC, nirK and norB in soil, thus decreasing N availability. Meanwhile, antibiotics destroyed the enzyme function in N assimilation. This work evaluated the environmental risk of antibiotics from fertilization efficiency and N utilization in crop. Antibiotics could not only affect N cycle, limiting the decomposition of N fertilizer, but also affect N utilization in plants, thus affecting the yield and even the quality of leguminous crops.
Collapse
Affiliation(s)
- Wangjing Zhai
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Wenqi Jiang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Qiqi Guo
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Zhixuan Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Peng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China.
| |
Collapse
|
6
|
Montejano-Ramírez V, Valencia-Cantero E. Cross-Talk between Iron Deficiency Response and Defense Establishment in Plants. Int J Mol Sci 2023; 24:ijms24076236. [PMID: 37047208 PMCID: PMC10094134 DOI: 10.3390/ijms24076236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Plants are at risk of attack by various pathogenic organisms. During pathogenesis, microorganisms produce molecules with conserved structures that are recognized by plants that then initiate a defense response. Plants also experience iron deficiency. To address problems caused by iron deficiency, plants use two strategies focused on iron absorption from the rhizosphere. Strategy I is based on rhizosphere acidification and iron reduction, whereas Strategy II is based on iron chelation. Pathogenic defense and iron uptake are not isolated phenomena: the antimicrobial phenols are produced by the plant during defense, chelate and solubilize iron; therefore, the production and secretion of these molecules also increase in response to iron deficiency. In contrast, phytohormone jasmonic acid and salicylic acid that induce pathogen-resistant genes also modulate the expression of genes related to iron uptake. Iron deficiency also induces the expression of defense-related genes. Therefore, in the present review, we address the cross-talk that exists between the defense mechanisms of both Systemic Resistance and Systemic Acquired Resistance pathways and the response to iron deficiency in plants, with particular emphasis on the regulation genetic expression.
Collapse
|
7
|
Bioinoculant mediated regulation of signalling cascades in various stress responses in plants. Heliyon 2023; 9:e12953. [PMID: 36711264 PMCID: PMC9873674 DOI: 10.1016/j.heliyon.2023.e12953] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/26/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Bio-inoculation involves the association of plant with some beneficial microorganisms, and among these microbiotas, those bacteria which can promote plant growth and development are known as Plant Growth Promoting Rhizobacteria (PGPR). It can help a plant directly or indirectly, which includes root development, biological nitrogen (N2) fixation, stress tolerance, cell division and elongation, solubilization of Zinc, Phosphate, Potassium, soil health improvement and many more. PGPR have gained attention as it can be used as biofertilizers and helpful in bioremediation techniques, which in turn can reduce the chemical dependency in agriculture. PGPR mediated plant growth and stress management is developed by the virtue of the interaction of plant and microbial signalling pathways. On the other hand, environmental stresses are something to which a plant is always exposed irrespective of other factors. The present review is all about the better understanding of the convergence strategies of these signalling molecules and the ambiguities of signalling activities occurring in the host due to the interaction with PGPR under environmental stressed conditions.
Collapse
|
8
|
Zhao L, He Y, Zheng Y, Xu Y, Shi S, Fan M, Gu S, Li G, Tianli W, Wang J, Li J, Deng X, Liao X, Du J, Nian F. Differences in soil physicochemical properties and rhizosphere microbial communities of flue-cured tobacco at different transplantation stages and locations. Front Microbiol 2023; 14:1141720. [PMID: 37152740 PMCID: PMC10157256 DOI: 10.3389/fmicb.2023.1141720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/03/2023] [Indexed: 05/09/2023] Open
Abstract
Rhizosphere microbiota play an important role in regulating soil physical and chemical properties and improving crop production performance. This study analyzed the relationship between the diversity of rhizosphere microbiota and the yield and quality of flue-cured tobacco at different transplant times (D30 group, D60 group and D90 group) and in different regions [Linxiang Boshang (BS) and Linxiang ZhangDuo (ZD)] by high-throughput sequencing technology. The results showed that there were significant differences in the physicochemical properties and rhizosphere microbiota of flue-cured tobacco rhizosphere soil at different transplanting times, and that the relative abundance of Bacillus in the rhizosphere microbiota of the D60 group was significantly increased. RDA and Pearson correlation analysis showed that Bacillus, Streptomyces and Sphingomonas were significantly correlated with soil physical and chemical properties. PIGRUSt2 function prediction results showed that compared with the D30 group, the D60 group had significantly increased metabolic pathways such as the superpathway of pyrimidine deoxyribonucleoside salvage, allantoin degradation to glyoxylate III and pyrimidine deoxyribonucleotides de novo biosynthesis III metabolic pathways. The D90 group had significantly increased metabolic pathways such as ubiquitol-8 biosynthesis (prokaryotic), ubiquitol-7 biosynthesis (prokaryotic) and ubiquitol-10 biosynthesis (prokaryotic) compared with the D60 group. In addition, the yield and quality of flue-cured tobacco in the BS region were significantly higher than those in the ZD region, and the relative abundance of Firmicutes and Bacillus in the rhizosphere microbiota of flue-cured tobacco in the BS region at the D60 transplant stage was significantly higher than that in the ZD region. In addition, the results of the hierarchical sample metabolic pathway abundance map showed that the PWY-6572 metabolic pathway was mainly realized by Paenibacillus, and that the relative abundance of flue-cured tobacco rhizosphere microbiota (Paenibacillus) participating in PWY-6572 in the D60 transplant period in the BS region was significantly higher than that in the ZD region. In conclusion, different transplanting periods of flue-cured tobacco have important effects on soil physical and chemical properties and rhizosphere microbial communities. There were significant differences in the rhizosphere microbiota and function of flue-cured tobacco in different regions, which may affect the performance and quality of this type of tobacco.
Collapse
Affiliation(s)
- Leifeng Zhao
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yuansheng He
- Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Yuanxian Zheng
- Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Yinlian Xu
- Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Shoujie Shi
- Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Meixun Fan
- Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Shaolong Gu
- Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Guohong Li
- Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Wajie Tianli
- Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Jiming Wang
- Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Junying Li
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Xiaopeng Deng
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Xiaolin Liao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jun Du
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
- *Correspondence: Jun Du,
| | - Fuzhao Nian
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, China
- Fuzhao Nian,
| |
Collapse
|
9
|
Defining Composition and Function of the Rhizosphere Microbiota of Barley Genotypes Exposed to Growth-Limiting Nitrogen Supplies. mSystems 2022; 7:e0093422. [PMID: 36342125 PMCID: PMC9765016 DOI: 10.1128/msystems.00934-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The microbiota populating the rhizosphere, the interface between roots and soil, can modulate plant growth, development, and health. These microbial communities are not stochastically assembled from the surrounding soil, but their composition and putative function are controlled, at least partially, by the host plant. Here, we use the staple cereal barley as a model to gain novel insights into the impact of differential applications of nitrogen, a rate-limiting step for global crop production, on the host genetic control of the rhizosphere microbiota. Using a high-throughput amplicon sequencing survey, we determined that nitrogen availability for plant uptake is a factor promoting the selective enrichment of individual taxa in the rhizosphere of wild and domesticated barley genotypes. Shotgun sequencing and metagenome-assembled genomes revealed that this taxonomic diversification is mirrored by a functional specialization, manifested by the differential enrichment of multiple Gene Ontology terms, of the microbiota of plants exposed to nitrogen conditions limiting barley growth. Finally, a plant soil feedback experiment revealed that host control of the barley microbiota underpins the assembly of a phylogenetically diverse group of bacteria putatively required to sustain plant performance under nitrogen-limiting supplies. Taken together, our observations indicate that under nitrogen conditions limiting plant growth, host-microbe and microbe-microbe interactions fine-tune the host genetic selection of the barley microbiota at both taxonomic and functional levels. The disruption of these recruitment cues negatively impacts plant growth. IMPORTANCE The microbiota inhabiting the rhizosphere, the thin layer of soil surrounding plant roots, can promote the growth, development, and health of their host plants. Previous research indicated that differences in the genetic composition of the host plant coincide with variations in the composition of the rhizosphere microbiota. This is particularly evident when looking at the microbiota associated with input-demanding modern cultivated varieties and their wild relatives, which have evolved under marginal conditions. However, the functional significance of these differences remains to be fully elucidated. We investigated the rhizosphere microbiota of wild and cultivated genotypes of the global crop barley and determined that nutrient conditions limiting plant growth amplify the host control on microbes at the root-soil interface. This is reflected in a plant- and genotype-dependent functional specialization of the rhizosphere microbiota, which appears to be required for optimal plant growth. These findings provide novel insights into the significance of the rhizosphere microbiota for plant growth and sustainable agriculture.
Collapse
|
10
|
Song X, Fang C, Yuan ZQ, Li FM, Sardans J, Penuelas J. Long-term alfalfa (Medicago sativa L.) establishment could alleviate phosphorus limitation induced by nitrogen deposition in the carbonate soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116346. [PMID: 36166863 DOI: 10.1016/j.jenvman.2022.116346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Phosphorus (P) limitation is a widespread problem of primary production in dryland submitted to persistent nitrogen (N) deposition. The legume alfalfa (Medicago sativa L.), which can fix N2, might potentially strengthen P limitation in dryland ecosystems and is widely distributed as forage. However, there is still unclear how alfalfa grassland mobilizes the soil P to meet its demand. In this experiment, alfalfa introduction was used for long-term revegetation to evaluate the P uptake of plants from deep soil and assess the P limitation induced by N deposition compared with fallow. Our results showed that alfalfa introduction increased the soil P storage significantly at 0-2.4 m soil depth (+0.74 Mg ha-1), whereas it decreased at 2.4-4.8 m soil depth (-0.21 Mg ha-1) after 15-year establishment. Alfalfa establishment increased soil organic P concentration (180.9 mg kg-1 vs. 67.2 mg kg-1) and its relative contribution to total P (19.64% vs. 8.08%) at 0-4.8 m. Alfalfa establishment also increased the concentration and proportion of labile and intermediate P fractions at 0-4.8 m (9.12 mg kg-1 vs. 6.87 mg kg-1, 1.12% vs. 0.98%; 16.06 mg kg-1 vs. 8.39 mg kg-1, 1.69% vs. 1.17%). Alfalfa introduction decreased the concentrated HCl-Pi (250.66 mg kg-1 vs. 229.32 mg kg-1, 36.81% vs. 28.91%) in 2.4-4.8 m soil depth. These results indicated that the deep root system of alfalfa grassland could promote the P mobilization from deep to shallow soil. The concentrated HCl-Pi may be the main potential P source of alfalfa from 2.4-4.8 m to 0-2.4 m of soil depth, and long-term establishment of alfalfa can alleviate P limitation caused by N deposition in carbonate soil. Our results suggested that species with deep roots (such as alfalfa) could be selected as an economical way to mitigate nitrogen deposition in drylands.
Collapse
Affiliation(s)
- Xin Song
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, College of Ecology, Lanzhou University, No. 222, South Tianshui Road, Lanzhou, Gansu, 730000, China; CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| | - Chao Fang
- Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Zi-Qiang Yuan
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, College of Ecology, Lanzhou University, No. 222, South Tianshui Road, Lanzhou, Gansu, 730000, China.
| | - Feng-Min Li
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, College of Ecology, Lanzhou University, No. 222, South Tianshui Road, Lanzhou, Gansu, 730000, China; College of Agriculture, Nanjing Agricultural University, Nanjing, 210095 China.
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| | - Josep Penuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| |
Collapse
|
11
|
Escudero-Martinez C, Coulter M, Alegria Terrazas R, Foito A, Kapadia R, Pietrangelo L, Maver M, Sharma R, Aprile A, Morris J, Hedley PE, Maurer A, Pillen K, Naclerio G, Mimmo T, Barton GJ, Waugh R, Abbott J, Bulgarelli D. Identifying plant genes shaping microbiota composition in the barley rhizosphere. Nat Commun 2022; 13:3443. [PMID: 35710760 PMCID: PMC9203816 DOI: 10.1038/s41467-022-31022-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/30/2022] [Indexed: 12/13/2022] Open
Abstract
A prerequisite to exploiting soil microbes for sustainable crop production is the identification of the plant genes shaping microbiota composition in the rhizosphere, the interface between roots and soil. Here, we use metagenomics information as an external quantitative phenotype to map the host genetic determinants of the rhizosphere microbiota in wild and domesticated genotypes of barley, the fourth most cultivated cereal globally. We identify a small number of loci with a major effect on the composition of rhizosphere communities. One of those, designated the QRMC-3HS, emerges as a major determinant of microbiota composition. We subject soil-grown sibling lines harbouring contrasting alleles at QRMC-3HS and hosting contrasting microbiotas to comparative root RNA-seq profiling. This allows us to identify three primary candidate genes, including a Nucleotide-Binding-Leucine-Rich-Repeat (NLR) gene in a region of structural variation of the barley genome. Our results provide insights into the footprint of crop improvement on the plant's capacity of shaping rhizosphere microbes.
Collapse
Affiliation(s)
| | - Max Coulter
- University of Dundee, Plant Sciences, School of Life Sciences, Dundee, UK
- University of Dundee, Computational Biology, School of Life Sciences, Dundee, UK
| | - Rodrigo Alegria Terrazas
- University of Dundee, Plant Sciences, School of Life Sciences, Dundee, UK
- Mohammed VI Polytechnic University, Agrobiosciences Program, Plant & Soil Microbiome Subprogram, Bengurir, Morocco
| | | | - Rumana Kapadia
- University of Dundee, Plant Sciences, School of Life Sciences, Dundee, UK
| | - Laura Pietrangelo
- University of Dundee, Plant Sciences, School of Life Sciences, Dundee, UK
- Department of Biosciences and Territory, University of Molise, Campobasso, Italy
| | - Mauro Maver
- University of Dundee, Plant Sciences, School of Life Sciences, Dundee, UK
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
- Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bolzano, Italy
| | | | - Alessio Aprile
- University of Dundee, Plant Sciences, School of Life Sciences, Dundee, UK
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | | | | | - Andreas Maurer
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University, Halle-Wittenberg, Germany
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University, Halle-Wittenberg, Germany
| | - Gino Naclerio
- Department of Biosciences and Territory, University of Molise, Campobasso, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
- Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Geoffrey J Barton
- University of Dundee, Computational Biology, School of Life Sciences, Dundee, UK
| | - Robbie Waugh
- University of Dundee, Plant Sciences, School of Life Sciences, Dundee, UK
- The James Hutton Institute, Invergowrie, UK
| | - James Abbott
- University of Dundee, Computational Biology, School of Life Sciences, Dundee, UK
| | - Davide Bulgarelli
- University of Dundee, Plant Sciences, School of Life Sciences, Dundee, UK.
| |
Collapse
|
12
|
The Application of Mixed Organic and Inorganic Fertilizers Drives Soil Nutrient and Bacterial Community Changes in Teak Plantations. Microorganisms 2022; 10:microorganisms10050958. [PMID: 35630402 PMCID: PMC9145699 DOI: 10.3390/microorganisms10050958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Appropriate fertilization can enhance forest productivity by maintaining soil fertility and improving the structure of the bacterial community. However, there is still uncertainty surrounding the effects of combined application of organic and inorganic fertilizers on soil nutrient status and bacterial community structure. A fertilization experiment was set up in an eight-year-old teak plantation with five treatments involved: mixed organic and NPK compound fertilizers (OCF), mixed organic and phosphorus fertilizers (OPF), mixed organic, NPK and phosphorus fertilizers (OCPF), mixed NPK and phosphorus fertilizers (CPF) and no fertilization (CK). Soil chemical properties and bacterial communities were investigated, and the co-occurrence pattern of the bacterial community under different fertilization treatments was compared. The results showed that the contents of soil organic matter and nitrate nitrogen, and the soil pH values were the highest after OCPF treatment, which were 20.39%, 90.91% and 8.16% higher than CK, respectively. The richness and diversity of bacteria underwent no obvious changes, but the structure of the soil’s bacterial community was significantly altered by fertilization. Of the dominant bacteria taxa, the relative abundance increased for Gemmatimonadetes, Myxococcota, ADurb.Bin063-13 and Candidatus_Koribacter, and decreased for Chloroflexi, Proteobacteria, JG30-KF-AS9 and Acidothermus under OCPF treatment in comparison to CK. The number of nodes and edges, the average degree and the network density of bacterial community co-occurrence networks were the greatest in OCPF treatment, indicating that application of OCPF could make the network structure of soil bacteria more stable and complex. Moreover, soil pH and organic matter were significantly correlated with bacterial community structure and were considered the main influencing factors. These findings highlight that the combined application of organic, NPK and phosphorus fertilizers is highly beneficial for improving soil quality and optimizing bacterial community structure in teak plantations.
Collapse
|
13
|
Vassileva M, Mocali S, Canfora L, Malusá E, García del Moral LF, Martos V, Flor-Peregrin E, Vassilev N. Safety Level of Microorganism-Bearing Products Applied in Soil-Plant Systems. FRONTIERS IN PLANT SCIENCE 2022; 13:862875. [PMID: 35574066 PMCID: PMC9096872 DOI: 10.3389/fpls.2022.862875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/18/2022] [Indexed: 05/17/2023]
Abstract
The indiscriminate use of chemical fertilizers adversely affects ecological health and soil microbiota provoking loss of soil fertility and greater pathogen and pest presence in soil-plant systems, which further reduce the quality of food and human health. Therefore, the sustainability, circular economy, environmental safety of agricultural production, and health concerns made possible the practical realization of eco-friendly biotechnological approaches like organic matter amendments, biofertilizers, biopesticides, and reuse of agro-industrial wastes by applying novel and traditional methods and processes. However, the advancement in the field of Biotechnology/Agriculture is related to the safety of these microorganism-bearing products. While the existing regulations in this field are well-known and are applied in the preparation and application of waste organic matter and microbial inoculants, more attention should be paid to gene transfer, antibiotic resistance, contamination of the workers and environment in farms and biotech-plants, and microbiome changes. These risks should be carefully assessed, and new analytical tools and regulations should be applied to ensure safe and high-quality food and a healthy environment for people working in the field of bio-based soil amendments.
Collapse
Affiliation(s)
- Maria Vassileva
- Department of Chemical Engineering, Institute of Biotechnology, University of Granada, Granada, Spain
| | - Stefano Mocali
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, Rome, Italy
| | - Loredana Canfora
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, Rome, Italy
| | - Eligio Malusá
- Research Institute of Horticulture, Skierniewice, Poland
- Council for Agricultural Research and Economics, Center for Viticulture and Enology, Conegliano, Italy
| | | | - Vanessa Martos
- Department of Plant Physiology, University of Granada, Granada, Spain
| | - Elena Flor-Peregrin
- Department of Chemical Engineering, Institute of Biotechnology, University of Granada, Granada, Spain
| | - Nikolay Vassilev
- Department of Chemical Engineering, Institute of Biotechnology, University of Granada, Granada, Spain
- Institute of Biotechnology, University of Granada, Granada, Spain
| |
Collapse
|
14
|
Maver M, Escudero-Martinez C, Abbott J, Morris J, Hedley PE, Mimmo T, Bulgarelli D. Applications of the indole-alkaloid gramine modulate the assembly of individual members of the barley rhizosphere microbiota. PeerJ 2021; 9:e12498. [PMID: 34900424 PMCID: PMC8614190 DOI: 10.7717/peerj.12498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/25/2021] [Indexed: 12/30/2022] Open
Abstract
Microbial communities proliferating at the root-soil interface, collectively referred to as the rhizosphere microbiota, represent an untapped beneficial resource for plant growth, development and health. Integral to a rational manipulation of the microbiota for sustainable agriculture is the identification of the molecular determinants of these communities. In plants, biosynthesis of allelochemicals is centre stage in defining inter-organismal relationships in the environment. Intriguingly, this process has been moulded by domestication and breeding selection. The indole-alkaloid gramine, whose occurrence in barley (Hordeum vulgare L.) is widespread among wild genotypes but has been counter selected in several modern varieties, is a paradigmatic example of this phenomenon. This prompted us to investigate how exogenous applications of gramine impacted on the rhizosphere microbiota of two, gramine-free, elite barley varieties grown in a reference agricultural soil. High throughput 16S rRNA gene amplicon sequencing revealed that applications of gramine interfere with the proliferation of a subset of soil microbes with a relatively broad phylogenetic assignment. Strikingly, growth of these bacteria appeared to be rescued by barley plants in a genotype- and dosage-independent manner. In parallel, we discovered that host recruitment cues can interfere with the impact of gramine application in a host genotype-dependent manner. Interestingly, this latter effect displayed a bias for members of the phyla Proteobacteria. These initial observations indicate that gramine can act as a determinant of the prokaryotic communities inhabiting the root-soil interface.
Collapse
Affiliation(s)
- Mauro Maver
- Plant Sciences, School of Life Sciences, University of Dundee, Dundee, United Kingdom.,Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy.,Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bolzano, Italy
| | | | - James Abbott
- Data Analysis Group, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Jenny Morris
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Pete E Hedley
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy.,Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Davide Bulgarelli
- Plant Sciences, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
15
|
Rhizospheric microbiome: Bio-based emerging strategies for sustainable agriculture development and future perspectives. Microbiol Res 2021; 254:126901. [PMID: 34700186 DOI: 10.1016/j.micres.2021.126901] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
In the light of intensification of cropping practices and changing climatic conditions, nourishing a growing global population requires optimizing environmental sustainability and reducing ecosystem impacts of food production. The use of microbiological systems to ameliorate the agricultural production in a sustainable and eco-friendly way is widespread accepted as a future key-technology. However, the multitude of interaction possibilities between the numerous beneficial microbes and plants in their habitat calls for systematic analysis and management of the rhizospheric microbiome. This review exploits present and future strategies for rhizospheric microbiome management with the aim to generate a comprehensive understanding of the known tools and techniques. Significant information on the structure and dynamics of rhizospheric microbiota of isolated microbial communities is now available. These microbial communities have beneficial effects including increased plant growth, essential nutrient acquisition, pathogens tolerance, and increased abiotic as well as biotic stress tolerance such as drought, temperature, salinity and antagonistic activities against the phyto-pathogens. A better and comprehensive understanding of the various effects and microbial interactions can be gained by application of molecular approaches as extraction of DNA/RNA and other biochemical markers to analyze microbial soil diversity. Novel techniques like interactome network analysis and split-ubiquitin system framework will enable to gain more insight into communication and interactions between the proteins from microbes and plants. The aim of the analysis tasks leads to the novel approach of Rhizosphere microbiome engineering. The capability of forming the rhizospheric microbiome in a defined way will allow combining several microbes (e.g. bacteria and fungi) for a given environment (soil type and climatic zone) in order to exert beneficial influences on specific plants. This integration will require a large-scale effort among academic researchers, industry researchers and farmers to understand and manage interactions of plant-microbiomes within modern farming systems, and is clearly a multi-domain approach and can be mastered only jointly by microbiology, mathematics and information technology. These innovations will open up a new avenue for designing and implementing intensive farming microbiome management approaches to maximize resource productivity and stress tolerance of agro-ecosystems, which in return will create value to the increasing worldwide population, for both food production and consumption.
Collapse
|
16
|
Terzano R, Rascio I, Allegretta I, Porfido C, Spagnuolo M, Khanghahi MY, Crecchio C, Sakellariadou F, Gattullo CE. Fire effects on the distribution and bioavailability of potentially toxic elements (PTEs) in agricultural soils. CHEMOSPHERE 2021; 281:130752. [PMID: 34015649 DOI: 10.1016/j.chemosphere.2021.130752] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
In the last years, uncontrolled fires are frequently occurring in forest and agricultural areas as an indirect effect of the rising aridity and global warming or caused by intentional illegal burnings. In addition, controlled burning is still largely used by farmers as an agricultural practice in many parts of the world. During fire events, soil can reach very high temperatures at the soil surface, causing dramatic changes of soil properties and elements biogeochemistry. Among soil elements, also potentially toxic elements (PTEs) can be affected by fires, becoming more or less mobile and bioavailable, depending on fire severity and soil characteristics. Such transformations could be particularly relevant in agricultural soils used for crop productions since fire events could modify PTEs speciation and uptake by plants and associated (micro)organisms thus endangering the whole food-chain. In this review, after describing the effects of fire on soil minerals and organic matter, the impact of fires on PTEs distribution and speciation in soils is presented, as well as their influence on soil microorganisms and plants uptake. The most common experimental methods used to simulate fires at the laboratory and field scale are briefly illustrated, and finally the impact that traditional and innovative agricultural practices can have on PTEs availability in burned agricultural soils is discussed in a future research perspective.
Collapse
Affiliation(s)
- Roberto Terzano
- Department of Soil, Plant and Food Sciences, University of Bari, Via Amendola 165/A, 70126, Bari, Italy.
| | - Ida Rascio
- Department of Soil, Plant and Food Sciences, University of Bari, Via Amendola 165/A, 70126, Bari, Italy.
| | - Ignazio Allegretta
- Department of Soil, Plant and Food Sciences, University of Bari, Via Amendola 165/A, 70126, Bari, Italy.
| | - Carlo Porfido
- Department of Soil, Plant and Food Sciences, University of Bari, Via Amendola 165/A, 70126, Bari, Italy.
| | - Matteo Spagnuolo
- Department of Soil, Plant and Food Sciences, University of Bari, Via Amendola 165/A, 70126, Bari, Italy.
| | | | - Carmine Crecchio
- Department of Soil, Plant and Food Sciences, University of Bari, Via Amendola 165/A, 70126, Bari, Italy.
| | - Fani Sakellariadou
- Department of Maritime Studies, Piraeus University, Grigoriou Lampraki 21 & Distomou, 18533, Piraeus, Greece.
| | - Concetta Eliana Gattullo
- Department of Soil, Plant and Food Sciences, University of Bari, Via Amendola 165/A, 70126, Bari, Italy.
| |
Collapse
|
17
|
Kalu CM, Rauwane ME, Ntushelo K. Microbial Spectra, Physiological Response and Bioremediation Potential of Phragmites australis for Agricultural Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.696196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Common reed (Phragmites australis) can invade and dominate in its natural habitat which is mainly wetlands. It can tolerate harsh environments as well as remediate polluted and environmental degraded sites such as mine dumps and other polluted wastelands. For this reason, this can be a very critical reed to reclaim wastelands for agricultural use to ensure sustainability. The present review manuscript examined the microbial spectra of P. australis as recorded in various recent studies, its physiological response when growing under stress as well as complementation between rhizosphere microbes and physiological responses which result in plant growth promotion in the process of phytoremediation. Microbes associated with P. australis include Proteobacteria, Bacteriodetes, and Firmicutes, Fusobacteria, Actinobacteria, and Planctomycetes families of bacteria among others. Some of these microbes and arbuscular mycorrhizal fungi have facilitated plant growth and phytoremediation by P. australis. This is worthwhile considering that there are vast areas of polluted and wasted land which require reclamation for agricultural use. Common reed with its associated rhizosphere microbes can be utilized in these land reclamation efforts. This present study suggests further work to identify microbes which when administered to P. australis can stimulate its growth in polluted environments and help in land reclamation efforts for agricultural use.
Collapse
|
18
|
Pereira EC, Vazquez de Aldana BR, Arellano JB, Zabalgogeazcoa I. The Role of Fungal Microbiome Components on the Adaptation to Salinity of Festuca rubra subsp. pruinosa. FRONTIERS IN PLANT SCIENCE 2021; 12:695717. [PMID: 34305985 PMCID: PMC8299104 DOI: 10.3389/fpls.2021.695717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/25/2021] [Indexed: 06/02/2023]
Abstract
Festuca rubra subsp. pruinosa is a perennial grass that inhabits sea cliffs, a habitat where salinity and low nutrient availability occur. These plants have a rich fungal microbiome, and particularly common are their associations with Epichloë festucae in aboveground tissues and with Fusarium oxysporum and Periconia macrospinosa in roots. In this study, we hypothesized that these fungi could affect the performance of F. rubra plants under salinity, being important complements for plant habitat adaptation. Two lines of F. rubra, each one consisting of Epichloë-infected and Epichloë-free clones, were inoculated with the root endophytes (F. oxysporum and P. macrospinosa) and subjected to a salinity treatment. Under salinity, plants symbiotic with Epichloë had lower Na+ content than non-symbiotic plants, but this effect was not translated into plant growth. P. macrospinosa promoted leaf and root growth in the presence and absence of salinity, and F. oxysporum promoted leaf and root growth in the presence and absence of salinity, plus a decrease in leaf Na+ content under salinity. The growth responses could be due to functions related to improved nutrient acquisition, while the reduction of Na+ content might be associated with salinity tolerance and plant survival in the long term. Each of these three components of the F. rubra core mycobiome contributed with different functions, which are beneficial and complementary for plant adaptation to its habitat in sea cliffs. Although our results do not support an obvious role of Epichloë itself in FRP salt tolerance, there is evidence that Epichloë can interact with root endophytes, affecting host plant performance.
Collapse
Affiliation(s)
| | | | | | - Iñigo Zabalgogeazcoa
- Plant-Microorganism Interaction Research Group, Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
19
|
Martos S, Busoms S, Pérez-Martín L, Llugany M, Cabot C, Poschenrieder C. Identifying the Specific Root Microbiome of the Hyperaccumulator Noccaea brachypetala Growing in Non-metalliferous Soils. Front Microbiol 2021; 12:639997. [PMID: 34054748 PMCID: PMC8160108 DOI: 10.3389/fmicb.2021.639997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/06/2021] [Indexed: 12/02/2022] Open
Abstract
Noccaea brachypetala is a close relative of Noccaea caerulescens, a model plant species used in metal hyperaccumulation studies. In a previous survey in the Catalan Pyrenees, we found two occidental and two oriental N. brachypetala populations growing on non-metalliferous soils, with accumulated high concentrations of Cd and Zn. Our hypothesis was that the microbiome companion of the plant roots may influence the ability of these plants to absorb metals. We performed high-throughput sequencing of the bacterial and fungal communities in the rhizosphere soil and rhizoplane fractions. The rhizobiomes and shoot ionomes of N. brachypetala plants were analyzed along with those from other non-hyperaccumulator Brassicaceae species found at the same sampling locations. The analyses revealed that microbiome richness and relative abundance tended to increase in N. brachypetala plants compared to non-hyperaccumulator species, regardless of plant location. We confirmed that the root compartment is a key factor in describing the community composition linked to the cohabiting Brassicaceae species, and the rhizoplane fraction contained the specific and rare taxa associated with each species. N. brachypetala plants harbored a similar relative abundance of fungi compared to the other plant hosts, but there was a notable reduction in some specific taxa. Additionally, we observed an enrichment in the hyperaccumulator rhizoplane of previously described metal-tolerant bacteria and bacteria involved in nitrogen cycling. The bacteria involved in the nitrogen cycle could contribute indirectly to the hyperaccumulator phenotype by improving soil quality and fertility. Our results indicate that N. brachypetala captures a particular prokaryotic community from the soil. This particular prokaryotic community may benefit the extraction of metal ions and/or improve plant nutrition. Our research identified satellite groups associated with the root niche of a hyperaccumulator plant that may assist in improving biological strategies in heavy metal remediation.
Collapse
Affiliation(s)
- Soledad Martos
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Sílvia Busoms
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laura Pérez-Martín
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mercè Llugany
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Catalina Cabot
- Department of Biology, Universitat de les Illes Balears, Palma, Spain
| | - Charlotte Poschenrieder
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
20
|
Liu Y, Qu ZL, Liu B, Ma Y, Xu J, Shen WX, Sun H. The Impact of Pine Wood Nematode Infection on the Host Fungal Community. Microorganisms 2021; 9:microorganisms9050896. [PMID: 33922224 PMCID: PMC8146488 DOI: 10.3390/microorganisms9050896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 01/29/2023] Open
Abstract
Pine wilt disease (PWD), caused by pinewood nematode (PWN) Bursaphelenchus xylophilus, is globally one of the most destructive diseases of pine forests, especially in China. However, little is known about the effect of PWD on the host microbiome. In this study, the fungal community and functional structures in the needles, roots, and soil of and around Pinus thunbergii naturally infected by PWN were investigated by using high-throughput sequencing coupled with the functional prediction (FUNGuild). The results showed that fungal richness, diversity, and evenness in the needles of diseased trees were significantly lower than those of healthy ones (p < 0.05), whereas no differences were found in the roots and soil. Principal coordinate analysis (PCoA) showed that the fungal community and functional structures significantly differed only in the needles of diseased and healthy trees, but not in the soil and roots. Functionally, the saprotrophs had a higher abundance in the needles of diseased trees, whereas symbiotrophs abundance was higher in the needles of healthy trees (linear discriminant analysis (LDA) > 2.0, p < 0.05). These results indicated that PWN infection primarily affected the fungal community and functional structures in the needles of P. thunbergii, but not the roots and soil.
Collapse
Affiliation(s)
- Yi Liu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (Z.-L.Q.); (B.L.); (Y.M.); (J.X.)
| | - Zhao-Lei Qu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (Z.-L.Q.); (B.L.); (Y.M.); (J.X.)
| | - Bing Liu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (Z.-L.Q.); (B.L.); (Y.M.); (J.X.)
| | - Yang Ma
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (Z.-L.Q.); (B.L.); (Y.M.); (J.X.)
| | - Jie Xu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (Z.-L.Q.); (B.L.); (Y.M.); (J.X.)
| | - Wen-Xiao Shen
- School of Foreign Language, Nanjing University of Finance and Economics, Nanjing 210046, China;
| | - Hui Sun
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (Z.-L.Q.); (B.L.); (Y.M.); (J.X.)
- Correspondence: ; Tel.: +86-13-851-724-350
| |
Collapse
|
21
|
Scagliola M, Valentinuzzi F, Mimmo T, Cesco S, Crecchio C, Pii Y. Bioinoculants as Promising Complement of Chemical Fertilizers for a More Sustainable Agricultural Practice. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.622169] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plant Growth Promoting Rhizobacteria (PGPR) represent a heterogeneous group of bacteria, which have been characterized for their ability to influence the growth and the fitness of agricultural plants. In the quest of more sustainable practices, PGPR have been suggested as a valid complement for the agronomical practices, since they can influence several biochemical and molecular mechanisms related to the mineral nutrients uptake, the plant pathogens suppression, and the phytohormones production. Within the present work, three bacterial strains, namely Enterobacter asburiae BFD160, Pseudomonas koreensis TFD26, and Pseudomonas lini BFS112, previously characterized on the basis of distinctive PGPR traits, were tested to evaluate: (i) their persistence in soil microcosms; (ii) their effects on seeds germination; (iii) their possible influence on biochemical and physiological parameters related to plant growth, fruit quality, and plant nutrient acquisition and allocation. To these aims, two microcosms experiments featuring different complexities, i.e., namely a growth chamber and a tunnel, were used to compare the effects of the microbial inoculum to those of chemical fertilization on Cucumis sativus L. plants. In the growth experiment, the Pseudomonas spp. induced positive effects on both growth and physiological parameters; TFD26, in particular, induced an enhanced accumulation of mineral nutrients (Fe, Ca, Mn, Ni, Zn) in plant tissues. In the tunnel experiment, only P. koreensis TFD26 was selected as inoculum for cucumber plants used in combination or in alternative to a chemical fertilizer. Interestingly, the inoculation with TFD26 alone or in combination with half-strength chemical fertilizer could induce similar (e.g., Ca accumulation) or enhanced (e.g., micronutrients concentration in plant tissues and fruits) effects as compared to plants treated with full-strength chemical fertilizers. Overall, the results hereby presented show that the use of PGPR can lead to comparable, and in some cases improved, effects on biochemical and physiological parameters of cucumber plants and fruits. Although these data are referred to experiments carried out in controlled condition, though different from an open filed cultivation, our observations suggest that the application of PGPR and fertilizers mixtures might help shrinking the use of chemical fertilization and potentially leading to a more sustainable agricultural practice.
Collapse
|
22
|
A Smart and Sustainable Future for Viticulture Is Rooted in Soil: How to Face Cu Toxicity. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11030907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In recent decades, agriculture has faced the fundamental challenge of needing to increase food production and quality in order to meet the requirements of a growing global population. Similarly, viticulture has also been undergoing change. Several countries are reducing their vineyard areas, and several others are increasing them. In addition, viticulture is moving towards higher altitudes and latitudes due to climate change. Furthermore, global warming is also exacerbating the incidence of fungal diseases in vineyards, forcing farmers to apply agrochemicals to preserve production yields and quality. The repeated application of copper (Cu)-based fungicides in conventional and organic farming has caused a stepwise accumulation of Cu in vineyard soils, posing environmental and toxicological threats. High Cu concentrations in soils can have multiple impacts on agricultural systems. In fact, it can (i) alter the chemical-physical properties of soils, thus compromising their fertility; (ii) induce toxicity phenomena in plants, producing detrimental effects on growth and productivity; and (iii) affect the microbial biodiversity of soils, thereby influencing some microbial-driven soil processes. However, several indirect (e.g., management of rhizosphere processes through intercropping and/or fertilization strategies) and direct (e.g., exploitation of vine resistant genotypes) strategies have been proposed to restrain Cu accumulation in soils. Furthermore, the application of precision and smart viticulture paradigms and their related technologies could allow a timely, localized and balanced distribution of agrochemicals to achieve the required goals. The present review highlights the necessity of applying multidisciplinary approaches to meet the requisites of sustainability demanded of modern viticulture.
Collapse
|
23
|
Paterson E, Mwafulirwa L. Root–Soil–Microbe Interactions Mediating Nutrient Fluxes in the Rhizosphere. RHIZOSPHERE BIOLOGY: INTERACTIONS BETWEEN MICROBES AND PLANTS 2021. [DOI: 10.1007/978-981-15-6125-2_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
24
|
Zhang H, Shi L, Lu H, Shao Y, Liu S, Fu S. Drought promotes soil phosphorus transformation and reduces phosphorus bioavailability in a temperate forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139295. [PMID: 32438146 DOI: 10.1016/j.scitotenv.2020.139295] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Drought can substantially alter ecosystem functions, especially biogeochemical cycles of key nutrients. As an essential but often limiting nutrient, P plays a central role in critical ecosystem processes (i.e. primary productivity). However, little is known about how drought can affect the soil phosphorus (P) cycle and its bioavailability in forest ecosystems. Here, we conducted a four-year field drought experiment using throughfall reduction approach to examine how drought can alter soil P dynamics and bioavailability in a warm temperate forest. We found that the P held in calcium phosphate was significantly decreased under drought, which was accompanied by the increases of inorganic and organic P bound with secondary minerals (Fe/Al oxides). These drought-induced P transformations can be well explained by the soil pH. The significant decline in soil pH under drought can drive the solubilization of P held in calcium phosphate. Our study further showed that drought directly decreased soil P bioavailability and altered the potential mechanisms of the replenishment of inorganic P into the soil solution. The potential of the inorganic P release driven by protons was reduced, while inorganic P release potentials driven by enzyme and organic acid were increased under drought. Therefore, our results strongly suggested that drought can significantly alter the soil P biogeochemical cycles and change the biological mechanisms underlying P bioavailability.
Collapse
Affiliation(s)
- Hongzhi Zhang
- Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Environment and Planning, Henan University, Jinming Avenue, Kaifeng 475004, China; Henan Key Laboratory of Integrated Air Pollution Control and Ecological Security, Henan University, Kaifeng, Jinming Avenue, Henan 475004, China
| | - Leilei Shi
- Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Environment and Planning, Henan University, Jinming Avenue, Kaifeng 475004, China; Henan Key Laboratory of Integrated Air Pollution Control and Ecological Security, Henan University, Kaifeng, Jinming Avenue, Henan 475004, China
| | - Haibo Lu
- School of Atmospheric Sciences, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China; Key Laboratory of Forest Ecology and Environment, China's State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, No. 2 Dongxiaofu, Haidian District, Beijing 100091, China.
| | - Yuanhu Shao
- Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Environment and Planning, Henan University, Jinming Avenue, Kaifeng 475004, China; Henan Key Laboratory of Integrated Air Pollution Control and Ecological Security, Henan University, Kaifeng, Jinming Avenue, Henan 475004, China.
| | - Shirong Liu
- Key Laboratory of Forest Ecology and Environment, China's State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, No. 2 Dongxiaofu, Haidian District, Beijing 100091, China.
| | - Shenglei Fu
- Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Environment and Planning, Henan University, Jinming Avenue, Kaifeng 475004, China; Henan Key Laboratory of Integrated Air Pollution Control and Ecological Security, Henan University, Kaifeng, Jinming Avenue, Henan 475004, China.
| |
Collapse
|
25
|
Zhang M, Chai L, Huang M, Jia W, Guo J, Huang Y. Deciphering the archaeal communities in tree rhizosphere of the Qinghai-Tibetan plateau. BMC Microbiol 2020; 20:235. [PMID: 32738877 PMCID: PMC7395985 DOI: 10.1186/s12866-020-01913-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/19/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The Qinghai-Tibetan Plateau represents one of the most important component of the terrestrial ecosystem and a particularly vulnerable region, which harbouring complex and diverse microbiota. The knowledge about their underground microorganisms have largely been studied, but the characteristics of rhizosphere microbiota, particularly archaeal communities remains unclear. RESULTS High-throughput Illumina sequencing was used to investigate the rhizosphere archaeal communities of two native alpine trees (Picea crassifolia and Populus szechuanica) living on the Qinghai-Tibetan Plateau. The archaeal community structure in rhizospheres significantly differed from that in bulk soil. Thaumarchaeota was the dominant archaeal phylum in all soils tested (92.46-98.01%), while its relative abundance in rhizospheres were significantly higher than that in bulk soil. Ammonium nitrogen, soil organic matter, available phosphorus and pH were significantly correlated with the archaeal community structure, and the deterministic processes dominated the assembly of archaeal communities across all soils. In addition, the network structures of the archaeal community in the rhizosphere were less complex than they were in the bulk soil, and an unclassified archaeal group (Unclassified_k_norank) was identified as the keystone species in all archaeal networks. CONCLUSIONS Overall, the structure, assembly and co-occurrence patterns of archaeal communities are significantly affected by the presence of roots of alpine trees living on the Qinghai-Tibetan Plateau. This study provides new insights into our understanding of archaeal communities in vulnerable ecosystems.
Collapse
Affiliation(s)
- Mengjun Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, P.R. China, 10087
| | - Liwei Chai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, P.R. China, 10087
| | - Muke Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, P.R. China, 10087
| | - Weiqian Jia
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, P.R. China, 10087
| | - Jiabao Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, P.R. China, 10087
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, P.R. China, 10087.
| |
Collapse
|
26
|
de la Fuente Cantó C, Simonin M, King E, Moulin L, Bennett MJ, Castrillo G, Laplaze L. An extended root phenotype: the rhizosphere, its formation and impacts on plant fitness. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:951-964. [PMID: 32324287 DOI: 10.1111/tpj.14781] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 05/13/2023]
Abstract
Plants forage soil for water and nutrients, whose distribution is patchy and often dynamic. To improve their foraging activities, plants have evolved mechanisms to modify the physicochemical properties and microbial communities of the rhizosphere, i.e. the soil compartment under the influence of the roots. This dynamic interplay in root-soil-microbiome interactions creates emerging properties that impact plant nutrition and health. As a consequence, the rhizosphere can be considered an extended root phenotype, a manifestation of the effects of plant genes on their environment inside and/or outside of the organism. Here, we review current understanding of how plants shape the rhizosphere and the benefits it confers to plant fitness. We discuss future research challenges and how applying their solutions in crops will enable us to harvest the benefits of the extended root phenotype.
Collapse
Affiliation(s)
- Carla de la Fuente Cantó
- UMR DIADE, Université de Montpellier, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Marie Simonin
- UMR DIADE, Université de Montpellier, Institut de Recherche pour le Développement (IRD), Montpellier, France
- UMR IPME, IRD, Cirad, Université de Montpellier, Montpellier, France
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Eoghan King
- UMR IPME, IRD, Cirad, Université de Montpellier, Montpellier, France
| | - Lionel Moulin
- UMR IPME, IRD, Cirad, Université de Montpellier, Montpellier, France
| | - Malcolm J Bennett
- Future Food Beacon of Excellence, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Gabriel Castrillo
- Future Food Beacon of Excellence, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Laurent Laplaze
- UMR DIADE, Université de Montpellier, Institut de Recherche pour le Développement (IRD), Montpellier, France
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE), Dakar, Senegal
| |
Collapse
|
27
|
Alegria Terrazas R, Balbirnie-Cumming K, Morris J, Hedley PE, Russell J, Paterson E, Baggs EM, Fridman E, Bulgarelli D. A footprint of plant eco-geographic adaptation on the composition of the barley rhizosphere bacterial microbiota. Sci Rep 2020; 10:12916. [PMID: 32737353 PMCID: PMC7395104 DOI: 10.1038/s41598-020-69672-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
Abstract
The microbiota thriving in the rhizosphere, the thin layer of soil surrounding plant roots, plays a critical role in plant’s adaptation to the environment. Domestication and breeding selection have progressively differentiated the microbiota of modern crops from the ones of their wild ancestors. However, the impact of eco-geographical constraints faced by domesticated plants and crop wild relatives on recruitment and maintenance of the rhizosphere microbiota remains to be fully elucidated. Here we performed a comparative 16S rRNA gene survey of the rhizosphere of 4 domesticated and 20 wild barley (Hordeum vulgare) genotypes grown in an agricultural soil under controlled environmental conditions. We demonstrated the enrichment of individual bacteria mirrored the distinct eco-geographical constraints faced by their host plants. Unexpectedly, Elite varieties exerted a stronger genotype effect on the rhizosphere microbiota when compared with wild barley genotypes adapted to desert environments with a preferential enrichment for members of Actinobacteria. Finally, in wild barley genotypes, we discovered a limited, but significant, correlation between microbiota diversity and host genomic diversity. Our results revealed a footprint of the host’s adaptation to the environment on the assembly of the bacteria thriving at the root–soil interface. In the tested conditions, this recruitment cue layered atop of the distinct evolutionary trajectories of wild and domesticated plants and, at least in part, is encoded by the barley genome. This knowledge will be critical to design experimental approaches aimed at elucidating the recruitment cues of the barley microbiota across a range of soil types.
Collapse
Affiliation(s)
| | | | - Jenny Morris
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, UK
| | - Pete E Hedley
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, UK
| | - Joanne Russell
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, UK
| | - Eric Paterson
- Ecological Sciences, The James Hutton Institute, Aberdeen, UK
| | - Elizabeth M Baggs
- Global Academy of Agriculture and Food Security, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Eyal Fridman
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan, Israel
| | - Davide Bulgarelli
- Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
28
|
Astolfi S, Pii Y, Mimmo T, Lucini L, Miras-Moreno MB, Coppa E, Violino S, Celletti S, Cesco S. Single and Combined Fe and S Deficiency Differentially Modulate Root Exudate Composition in Tomato: A Double Strategy for Fe Acquisition? Int J Mol Sci 2020; 21:ijms21114038. [PMID: 32516916 PMCID: PMC7312093 DOI: 10.3390/ijms21114038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 11/16/2022] Open
Abstract
Fe chlorosis is considered as one of the major constraints on crop growth and yield worldwide, being particularly worse when associated with S shortage, due to the tight link between Fe and S. Plant adaptation to inadequate nutrient availabilities often relies on the release of root exudates that enhance nutrients, mobilization from soil colloids and favour their uptake by roots. This work aims at characterizing the exudomic profile of hydroponically grown tomato plants subjected to either single or combined Fe and S deficiency, as well as at shedding light on the regulation mechanisms underlying Fe and S acquisition processes by plants. Root exudates have been analysed by untargeted metabolomics, through liquid chromatography-mass spectrometry as well as gas chromatography-mass spectrometry following derivatization. More than 200 metabolites could be putatively annotated. Venn diagrams show that 23%, 10% and 21% of differential metabolites are distinctively modulated by single Fe deficiency, single S deficiency or combined Fe-S deficiency, respectively. Interestingly, for the first time, a mugineic acid derivative is detected in dicot plants root exudates. The results seem to support the hypothesis of the co-existence of the two Fe acquisition strategies in tomato plants.
Collapse
Affiliation(s)
- Stefania Astolfi
- Department of Agricultural and Forestry Sciences, University of Tuscia, 01100 Viterbo, Italy; (E.C.); (S.V.); (S.C.)
- Correspondence:
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (Y.P.); (T.M.); (S.C.)
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (Y.P.); (T.M.); (S.C.)
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (L.L.); (M.B.M.-M.)
| | - Maria B. Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (L.L.); (M.B.M.-M.)
| | - Eleonora Coppa
- Department of Agricultural and Forestry Sciences, University of Tuscia, 01100 Viterbo, Italy; (E.C.); (S.V.); (S.C.)
| | - Simona Violino
- Department of Agricultural and Forestry Sciences, University of Tuscia, 01100 Viterbo, Italy; (E.C.); (S.V.); (S.C.)
| | - Silvia Celletti
- Department of Agricultural and Forestry Sciences, University of Tuscia, 01100 Viterbo, Italy; (E.C.); (S.V.); (S.C.)
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (Y.P.); (T.M.); (S.C.)
| |
Collapse
|
29
|
Taghinasab M, Jabaji S. Cannabis Microbiome and the Role of Endophytes in Modulating the Production of Secondary Metabolites: An Overview. Microorganisms 2020; 8:E355. [PMID: 32131457 PMCID: PMC7143057 DOI: 10.3390/microorganisms8030355] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/19/2022] Open
Abstract
Plants, including cannabis (Cannabis sativa subsp. sativa), host distinct beneficial microbial communities on and inside their tissues and organs, including seeds. They contribute to plant growth, facilitating mineral nutrient uptake, inducing defence resistance against pathogens, and modulating the production of plant secondary metabolites. Understanding the microbial partnerships with cannabis has the potential to affect the agricultural practices by improving plant fitness and the yield of cannabinoids. Little is known about this beneficial cannabis-microbe partnership, and the complex relationship between the endogenous microbes associated with various tissues of the plant, and the role that cannabis may play in supporting or enhancing them. This review will consider cannabis microbiota studies and the effects of endophytes on the elicitation of secondary metabolite production in cannabis plants. The review aims to shed light on the importance of the cannabis microbiome and how cannabinoid compound concentrations can be stimulated through symbiotic and/or mutualistic relationships with endophytes.
Collapse
Affiliation(s)
| | - Suha Jabaji
- Plant Science Department, Faculty of Agricultural and Environmental Sciences, MacDonald Campus of McGill University, QC H9X 3V9, Canada;
| |
Collapse
|
30
|
Li X, Ye L, Zhang X, Tan H, Li Q. Root-tip cutting and uniconazole treatment improve the colonization rate of Tuber indicum on Pinus armandii seedlings in the greenhouse. Microb Biotechnol 2020; 13:535-547. [PMID: 31920011 PMCID: PMC7017816 DOI: 10.1111/1751-7915.13511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/23/2019] [Accepted: 10/26/2019] [Indexed: 11/30/2022] Open
Abstract
The Chinese black truffle Tuber indicum is commercially valuable. The main factors influencing the success or failure of a truffle crop include the mycorrhizal colonization rate and host plant quality. The effects of a plant growth regulator (uniconazole) and plant growth management technique (root‐tip cutting) on T. indicum colonization rate and Pinus armandii seedling growth were assessed under greenhouse conditions. The results indicated that 10 mg l−1 uniconazole or the combination of 5 mg l−1 uniconazole and root‐tip cutting constitutes an effective method for ectomycorrhizal synthesis based on an overall evaluation of colonization rate, plant biomass, plant height, root weight, stem circumference and antioxidant enzyme activities (SOD and POD) of P. armandii. The abundance of Proteobacteria in the rhizosphere of colonized seedlings might serve as an indicator of stable mycorrhizal colonization. This research inspires the potential application of uniconazole and root‐tip cutting treatments for mycorrhizal synthesis and truffle cultivation.
Collapse
Affiliation(s)
- Xiaolin Li
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Lei Ye
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Xiaoping Zhang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Hao Tan
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| |
Collapse
|
31
|
Deng S, Wipf HML, Pierroz G, Raab TK, Khanna R, Coleman-Derr D. A Plant Growth-Promoting Microbial Soil Amendment Dynamically Alters the Strawberry Root Bacterial Microbiome. Sci Rep 2019; 9:17677. [PMID: 31776356 PMCID: PMC6881409 DOI: 10.1038/s41598-019-53623-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/01/2019] [Indexed: 12/22/2022] Open
Abstract
Despite growing interest in utilizing microbial-based methods for improving crop growth, much work still remains in elucidating how beneficial plant-microbe associations are established, and what role soil amendments play in shaping these interactions. Here, we describe a set of experiments that test the effect of a commercially available soil amendment, VESTA, on the soil and strawberry (Fragaria x ananassa Monterey) root bacterial microbiome. The bacterial communities of the soil, rhizosphere, and root from amendment-treated and untreated fields were profiled at four time points across the strawberry growing season using 16S rRNA gene amplicon sequencing on the Illumina MiSeq platform. In all sample types, bacterial community composition and relative abundance were significantly altered with amendment application. Importantly, time point effects on composition are more pronounced in the root and rhizosphere, suggesting an interaction between plant development and treatment effect. Surprisingly, there was slight overlap between the taxa within the amendment and those enriched in plant and soil following treatment, suggesting that VESTA may act to rewire existing networks of organisms through an, as of yet, uncharacterized mechanism. These findings demonstrate that a commercial microbial soil amendment can impact the bacterial community structure of both roots and the surrounding environment.
Collapse
Affiliation(s)
- Siwen Deng
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.,Plant Gene Expression Center, USDA-ARS, Albany, CA, USA
| | - Heidi M-L Wipf
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.,Plant Gene Expression Center, USDA-ARS, Albany, CA, USA
| | - Grady Pierroz
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.,Plant Gene Expression Center, USDA-ARS, Albany, CA, USA
| | - Ted K Raab
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, USA
| | - Rajnish Khanna
- i-Cultiver, Inc., 404 Clipper Cove Way, San Francisco, CA, USA
| | - Devin Coleman-Derr
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA. .,Plant Gene Expression Center, USDA-ARS, Albany, CA, USA.
| |
Collapse
|
32
|
Sambo P, Nicoletto C, Giro A, Pii Y, Valentinuzzi F, Mimmo T, Lugli P, Orzes G, Mazzetto F, Astolfi S, Terzano R, Cesco S. Hydroponic Solutions for Soilless Production Systems: Issues and Opportunities in a Smart Agriculture Perspective. FRONTIERS IN PLANT SCIENCE 2019; 10:923. [PMID: 31396245 PMCID: PMC6668597 DOI: 10.3389/fpls.2019.00923] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/01/2019] [Indexed: 05/19/2023]
Abstract
Soilless cultivation represent a valid opportunity for the agricultural production sector, especially in areas characterized by severe soil degradation and limited water availability. Furthermore, this agronomic practice embodies a favorable response toward an environment-friendly agriculture and a promising tool in the vision of a general challenge in terms of food security. This review aims therefore at unraveling limitations and opportunities of hydroponic solutions used in soilless cropping systems focusing on the plant mineral nutrition process. In particular, this review provides information (1) on the processes and mechanisms occurring in the hydroponic solutions that ensure an adequate nutrient concentration and thus an optimal nutrient acquisition without leading to nutritional disorders influencing ultimately also crop quality (e.g., solubilization/precipitation of nutrients/elements in the hydroponic solution, substrate specificity in the nutrient uptake process, nutrient competition/antagonism and interactions among nutrients); (2) on new emerging technologies that might improve the management of soilless cropping systems such as the use of nanoparticles and beneficial microorganism like plant growth-promoting rhizobacteria (PGPRs); (3) on tools (multi-element sensors and interpretation algorithms based on machine learning logics to analyze such data) that might be exploited in a smart agriculture approach to monitor the availability of nutrients/elements in the hydroponic solution and to modify its composition in realtime. These aspects are discussed considering what has been recently demonstrated at the scientific level and applied in the industrial context.
Collapse
Affiliation(s)
- Paolo Sambo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Carlo Nicoletto
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Andrea Giro
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Fabio Valentinuzzi
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Paolo Lugli
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Guido Orzes
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Fabrizio Mazzetto
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Stefania Astolfi
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Roberto Terzano
- Department of Soil, Plant and Food Sciences, University of Bari, Bari, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|
33
|
Dai J, Qiu W, Wang N, Wang T, Nakanishi H, Zuo Y. From Leguminosae/Gramineae Intercropping Systems to See Benefits of Intercropping on Iron Nutrition. FRONTIERS IN PLANT SCIENCE 2019; 10:605. [PMID: 31139203 PMCID: PMC6527889 DOI: 10.3389/fpls.2019.00605] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/25/2019] [Indexed: 05/26/2023]
Abstract
To achieve sustainable development with a growing population while sustaining natural resources, a sustainable intensification of agriculture is necessary. Intercropping is useful for low-input/resource-limited agricultural systems. Iron (Fe) deficiency is a worldwide agricultural problem owing to the low solubility and bioavailability of Fe in alkaline and calcareous soils. Here, we summarize the effects of intercropping systems on Fe nutrition. Several cases showed that intercropping with graminaceous plants could be used to correct Fe nutrition of Leguminosae such as peanut and soybean or fruits such as Psidium guajava L., Citrus, grape and pear in calcareous soils. Intercropping systems have strong positive effects on the physicochemical and biochemical characteristics of soil and the microbial community due to interspecific differences and interactions in the rhizosphere. Rhizosphere interactions can increase the bioavailability of Fe with the help of phytosiderophores. Enriched microorganisms may also facilitate the Fe nutrition of crops. A peanut/maize intercropping system could help us understand the dynamics in rhizosphere and molecular mechanism. However, the role of microbiome in regulating Fe acquisition of root and the mechanisms underlying these phenomena in other intercropping system except peanut/maize need further work, which will help better utilize intercropping to increase the efficiency of Fe foraging.
Collapse
Affiliation(s)
- Jing Dai
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Lab of Plant-Soil Interaction, MOE, China Agricultural University, Beijing, China
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wei Qiu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Lab of Plant-Soil Interaction, MOE, China Agricultural University, Beijing, China
| | - Nanqi Wang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Lab of Plant-Soil Interaction, MOE, China Agricultural University, Beijing, China
| | - Tianqi Wang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Lab of Plant-Soil Interaction, MOE, China Agricultural University, Beijing, China
| | - Hiromi Nakanishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuanmei Zuo
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Lab of Plant-Soil Interaction, MOE, China Agricultural University, Beijing, China
| |
Collapse
|
34
|
Marastoni L, Pii Y, Maver M, Valentinuzzi F, Cesco S, Mimmo T. Role of Azospirillum brasilense in triggering different Fe chelate reductase enzymes in cucumber plants subjected to both nutrient deficiency and toxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 136:118-126. [PMID: 30660677 DOI: 10.1016/j.plaphy.2019.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 05/17/2023]
Abstract
Azospirillum brasilense was reported to up-regulate iron (Fe) uptake mechanisms, such as Fe reduction and rhizosphere acidification, in both Fe sufficient and deficient cucumber plants (Cucumis sativus L.). Strategy I plants take up both Fe and copper (Cu) after their reduction mediated by the ferric-chelate reductase oxidase (FRO) enzyme. Interestingly, in cucumber genome only one FRO gene is reported. Thus, in the present study we applied a bioinformatics approach to identify the member of cucumber FRO gene family and allowed the identification of at least three CsFRO genes, one of which was the already identified, i.e. CsFRO1. The expression patterns of the newly identified transcripts were investigated in hydroponically grown cucumber plants treated with different Fe and Cu nutritional regimes. Gene expression was then correlated with morphological (i.e. root architecture) and physiological (Fe(III) reducing activity) parameters to shed light on: i) the CsFRO homologue responsible of the increased reduction activity in Fe-sufficient plants inoculated with A. brasilense cucumber plants, and ii) the possible effect of A. brasilense in ameliorating the symptoms of Cu toxicity in cucumber plants. The data obtained showed that all the CsFRO genes were expressed in the root tissues of cucumber plants and responded to Cu starvation, combined Cu/Fe deficiency and Cu toxicity. Only CsFRO3 was modulated by the A. brasilense in Fe-sufficient plants suggesting for the first time a different specificity of action of the three isoenzymes depending not only on the nutritional regime (either deficiency or toxicity) but also on the presence of the PGPR. Furthermore, results suggest that the PGPR could even ameliorate the stress symptoms caused by both the double (i.e. Cu and Fe) and Cu deficiency as well as Cu toxicity modulating, on one hand, the growth of the root system and, on the other hand, the root nutrient uptake.
Collapse
Affiliation(s)
- Laura Marastoni
- Faculty of Science and Technology, Free University of Bozen-Bolzano, I-39100, Bolzano, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bozen-Bolzano, I-39100, Bolzano, Italy.
| | - Mauro Maver
- Faculty of Science and Technology, Free University of Bozen-Bolzano, I-39100, Bolzano, Italy
| | - Fabio Valentinuzzi
- Faculty of Science and Technology, Free University of Bozen-Bolzano, I-39100, Bolzano, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bozen-Bolzano, I-39100, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, I-39100, Bolzano, Italy
| |
Collapse
|
35
|
Pii Y, Aldrighetti A, Valentinuzzi F, Mimmo T, Cesco S. Azospirillum brasilense inoculation counteracts the induction of nitrate uptake in maize plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1313-1324. [PMID: 30715422 DOI: 10.1093/jxb/ery433] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/11/2019] [Indexed: 05/27/2023]
Abstract
Nitrogen (N) represents one of the limiting factors for crop growth and productivity and to date has been widely supplied via external application of fertilizers. However, the use of plant growth-promoting rhizobacteria (PGPR) might represent a valuable tool to further improve plant nutrition. This study examines the influence of Azospirillum brasilense strain Cd on nitrate uptake in maize (Zea mays) plants, focusing on the high-affinity transport system (HATS). Plants were induced with nitrate (500 µM) and either inoculated or not with Azospirillum. Inoculation decreased the nitrate uptake rate in induced plants, suggesting that Azospirillum may negatively affect HATS in the short term. The expression dynamics of ZmNF-YA and ZmLBD37 suggested that Azospirillum affected the N balance in the plants, most probably by supplying them with reduced N, i.e. NH4+. This was further corroborated by measurements of total N and the expression of ammonium transporter genes. Overall, our data demonstrate that Azospirillum can counteract the plant response to nitrate induction, albeit without compromising N nutrition. This suggests that the agricultural application of microbial inoculants requires fine-tuning of external fertilizer inputs.
Collapse
Affiliation(s)
- Youry Pii
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Anna Aldrighetti
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Fabio Valentinuzzi
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|
36
|
Pietrangelo L, Bucci A, Maiuro L, Bulgarelli D, Naclerio G. Unraveling the Composition of the Root-Associated Bacterial Microbiota of Phragmites australis and Typha latifolia. Front Microbiol 2018; 9:1650. [PMID: 30116224 PMCID: PMC6083059 DOI: 10.3389/fmicb.2018.01650] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/02/2018] [Indexed: 01/08/2023] Open
Abstract
Phragmites australis and Typha latifolia are two macrophytes commonly present in natural and artificial wetlands. Roots of these plants engage in interactions with a broad range of microorganisms, collectively referred to as the microbiota. The microbiota contributes to the natural process of phytodepuration, whereby pollutants are removed from contaminated water bodies through plants. The outermost layer of the root corpus, the rhizoplane, is a hot-spot for these interactions where microorganisms establish specialized aggregates designated biofilm. Earlier studies suggest that biofilm-forming members of the microbiota play a crucial role in the process of phytodepuration. However, the composition and recruitment cue of the Phragmites, and Typha microbiota remain poorly understood. We therefore decided to investigate the composition and functional capacities of the bacterial microbiota thriving at the P. australis and T. latifolia root–soil interface. By using 16S rRNA gene Illumina MiSeq sequencing approach we demonstrated that, despite a different composition of the initial basin inoculum, the microbiota associated with the rhizosphere and rhizoplane of P. australis and T. latifolia tends to converge toward a common taxonomic composition dominated by members of the phyla Actinobacteria, Firmicutes, Proteobacteria, and Planctomycetes. This indicates the existence of a selecting process acting at the root–soil interface of these aquatic plants reminiscent of the one observed for land plants. The magnitude of this selection process is maximum at the level of the rhizoplane, where we identified different bacteria enriched in and discriminating between rhizoplane and rhizosphere fractions in a species-dependent and -independent way. This led us to hypothesize that the structural diversification of the rhizoplane community underpins specific metabolic capabilities of the microbiota. We tested this hypothesis by complementing the sequencing survey with a biochemical approach and scanning electron microscopy demonstrating that rhizoplane-enriched bacteria have a bias for biofilm-forming members. Together, our data will be critical to facilitate the rational exploitation of plant–microbiota interactions for phytodepuration.
Collapse
Affiliation(s)
- Laura Pietrangelo
- Department of Biosciences and Territory, University of Molise, Campobasso, Italy.,Plant Sciences, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Antonio Bucci
- Department of Biosciences and Territory, University of Molise, Campobasso, Italy
| | - Lucia Maiuro
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Davide Bulgarelli
- Plant Sciences, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Gino Naclerio
- Department of Biosciences and Territory, University of Molise, Campobasso, Italy
| |
Collapse
|
37
|
Bouffaud ML, Renoud S, Dubost A, Moënne-Loccoz Y, Muller D. 1-Aminocyclopropane-1-carboxylate deaminase producers associated to maize and other Poaceae species. MICROBIOME 2018; 6:114. [PMID: 29925415 PMCID: PMC6011333 DOI: 10.1186/s40168-018-0503-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/14/2018] [Indexed: 05/16/2023]
Abstract
BACKGROUND Complex plant-microbe interactions have been established throughout evolutionary time, many of them with beneficial effects on the host in terms of plant growth, nutrition, or health. Some of the corresponding modes of action involve a modulation of plant hormonal balance, such as the deamination of the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC). Despite its ecological importance, our understanding of ACC deamination is impaired by a lack of direct molecular tools. Here, we developed PCR primers to quantify the ACC deaminase gene acdS and its mRNA in soil communities and assessed acdS+ microorganisms colonizing maize and other Poaceae species. RESULTS Effective acdS primers suitable for soil microbial communities were obtained, enabling recovery of bona fida acdS genes and transcripts of diverse genetic backgrounds. High numbers of acdS genes and transcripts were evidenced in the rhizosphere of Poaceae, and numbers fluctuated according to plant genotype. Illumina sequencing revealed taxonomic specificities of acdS+ microorganisms according to plant host. The phylogenetic distance between Poaceae genotypes correlated with acdS transcript numbers, but not with acdS gene numbers or the genetic distance between acdS functional groups. CONCLUSION The development of acdS primers enabled the first direct analysis of ACC deaminase functional group in soil and showed that plant ability to interact with soil-inhabiting acdS+ microorganisms could also involve particular plant traits unrelated to the evolutionary history of Poaceae species.
Collapse
Affiliation(s)
- Marie-Lara Bouffaud
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, VetAgro Sup, UMR5557 Ecologie Microbienne, F-69622, Villeurbanne, France
- Helmholtz Center for Environmental Research UFZ, Theodor-Lieser-Straβe 4, 06120, Halle, Germany
| | - Sébastien Renoud
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, VetAgro Sup, UMR5557 Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Audrey Dubost
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, VetAgro Sup, UMR5557 Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, VetAgro Sup, UMR5557 Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Daniel Muller
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, VetAgro Sup, UMR5557 Ecologie Microbienne, F-69622, Villeurbanne, France.
| |
Collapse
|
38
|
Bacterial community structure associated with the rhizosphere soils and roots of Stellera chamaejasme L. along a Tibetan elevation gradient. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1336-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
39
|
Singh BN, Dwivedi P, Sarma BK, Singh GS, Singh HB. Trichoderma asperellum T42 Reprograms Tobacco for Enhanced Nitrogen Utilization Efficiency and Plant Growth When Fed with N Nutrients. FRONTIERS IN PLANT SCIENCE 2018; 9:163. [PMID: 29527216 PMCID: PMC5829606 DOI: 10.3389/fpls.2018.00163] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/29/2018] [Indexed: 05/29/2023]
Abstract
Trichoderma spp., are saprophytic fungi that can improve plant growth through increased nutrient acquisition and change in the root architecture. In the present study, we demonstrate that Trichoderma asperellum T42 mediate enhancement in host biomass, total nitrogen content, nitric oxide (NO) production and cytosolic Ca2+ accumulation in tobacco. T42 inoculation enhanced lateral root, root hair length, root hair density and root/shoot dry mass in tobacco under deprived nutrients condition. Interestingly, these growth attributes were further elevated in presence of T42 and supplementation of NO3- and NH4+ nutrients to tobacco at 40 and 70 days, particularly in NO3- supplementation, whereas no significant increment was observed in nia30 mutant. In addition, NO production was more in tobacco roots in T42 inoculated plants fed with NO3- nutrient confirming NO generation was dependent on NR pathway. NO3- dependent NO production contributed to increase in lateral root initiation, Ca2+ accumulation and activities of nitrate transporters (NRTs) in tobacco. Higher activities of several NRT genes in response to T42 and N nutrients and suppression of ammonium transporter (AMT1) suggested that induction of high affinity NRTs help NO3- acquisition through roots of tobacco. Among the NRTs NRT2.1 and NRT2.2 were more up-regulated compared to the other NRTs. Addition of sodium nitroprusside (SNP), relative to those supplied with NO3-/NH4+ nutrition and T42 treated plants singly, and with application of NO inhibitor, cPTIO, confirmed the altered NO fluorescence intensity in tobacco roots. Our findings suggest that T42 promoted plant growth significantly ant N content in the tobacco plants grown under N nutrients, notably higher in NO3-, providing insight of the strategy for not only tobacco but probably for other crops as well to adapt to fluctuating nitrate availability in soil.
Collapse
Affiliation(s)
- Bansh N. Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Birinchi K. Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Gopal S. Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Harikesh B. Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
40
|
Martin BC, Gleeson D, Statton J, Siebers AR, Grierson P, Ryan MH, Kendrick GA. Low Light Availability Alters Root Exudation and Reduces Putative Beneficial Microorganisms in Seagrass Roots. Front Microbiol 2018; 8:2667. [PMID: 29375529 PMCID: PMC5768916 DOI: 10.3389/fmicb.2017.02667] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/21/2017] [Indexed: 01/05/2023] Open
Abstract
Seagrass roots host a diverse microbiome that is critical for plant growth and health. Composition of microbial communities can be regulated in part by root exudates, but the specifics of these interactions in seagrass rhizospheres are still largely unknown. As light availability controls primary productivity, reduced light may impact root exudation and consequently the composition of the root microbiome. Hence, we analyzed the influence of light availability on root exudation and community structure of the root microbiome of three co-occurring seagrass species, Halophila ovalis, Halodule uninervis and Cymodocea serrulata. Plants were grown under four light treatments in mesocosms for 2 weeks; control (100% surface irradiance (SI), medium (40% SI), low (20% SI) and fluctuating light (10 days 20% and 4 days 100%). 16S rDNA amplicon sequencing revealed that microbial diversity, composition and predicted function were strongly influenced by the presence of seagrass roots, such that root microbiomes were unique to each seagrass species. Reduced light availability altered seagrass root exudation, as characterized using fluorescence spectroscopy, and altered the composition of seagrass root microbiomes with a reduction in abundance of potentially beneficial microorganisms. Overall, this study highlights the potential for above-ground light reduction to invoke a cascade of changes from alterations in root exudation to a reduction in putative beneficial microorganisms and, ultimately, confirms the importance of the seagrass root environment - a critical, but often overlooked space.
Collapse
Affiliation(s)
- Belinda C. Martin
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
- UWA Oceans Institute, The University of Western Australia, Crawley, WA, Australia
| | - Deirdre Gleeson
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
| | - John Statton
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
- UWA Oceans Institute, The University of Western Australia, Crawley, WA, Australia
- Western Australian Marine Science Institution, Perth, WA, Australia
| | - Andre R. Siebers
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Pauline Grierson
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
- West Australian Biogeochemistry Centre, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Megan H. Ryan
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
| | - Gary A. Kendrick
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
- UWA Oceans Institute, The University of Western Australia, Crawley, WA, Australia
- Western Australian Marine Science Institution, Perth, WA, Australia
| |
Collapse
|
41
|
Sheshukova EV, Komarova TV, Ershova NM, Shindyapina AV, Dorokhov YL. An Alternative Nested Reading Frame May Participate in the Stress-Dependent Expression of a Plant Gene. FRONTIERS IN PLANT SCIENCE 2017; 8:2137. [PMID: 29312392 PMCID: PMC5742262 DOI: 10.3389/fpls.2017.02137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
Although plants as sessile organisms are affected by a variety of stressors in the field, the stress factors for the above-ground and underground parts of the plant and their gene expression profiles are not the same. Here, we investigated NbKPILP, a gene encoding a new member of the ubiquitous, pathogenesis-related Kunitz peptidase inhibitor (KPI)-like protein family, that we discovered in the genome of Nicotiana benthamiana and other representatives of the Solanaceae family. The NbKPILP gene encodes a protein that has all the structural elements characteristic of KPI but in contrast to the proven A. thaliana KPI (AtKPI), it does not inhibit serine peptidases. Unlike roots, NbKPILP mRNA and its corresponding protein were not detected in intact leaves, but abiotic and biotic stressors drastically affected NbKPILP mRNA accumulation. In search of the causes of suppressed NbKPILP mRNA accumulation in leaves, we found that the NbKPILP gene is "matryoshka," containing an alternative nested reading frame (ANRF) encoding a 53-amino acid (aa) polypeptide (53aa-ANRF) which has an amphipathic helix (AH). We confirmed ANRF expression experimentally. A vector containing a GFP-encoding sequence was inserted into the NbKPILP gene in frame with 53aa-ANRF, resulting in a 53aa-GFP fused protein that localized in the membrane fraction of cells. Using the 5'-RACE approach, we have shown that the expression of ANRF was not explained by the existence of a cryptic promoter within the NbKPILP gene but was controlled by the maternal NbKPILP mRNA. We found that insertion of mutations destroying the 53aa-ANRF AH resulted in more than a two-fold increase of the NbKPILP mRNA level. The NbKPILP gene represents the first example of ANRF functioning as a repressor of a maternal gene in an intact plant. We proposed a model where the stress influencing the translation initiation promotes the accumulation of NbKPILP and its mRNA in leaves.
Collapse
Affiliation(s)
- Ekaterina V. Sheshukova
- Department of Genetics and Biotechnology, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana V. Komarova
- Department of Genetics and Biotechnology, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia M. Ershova
- Department of Genetics and Biotechnology, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia V. Shindyapina
- Department of Genetics and Biotechnology, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri L. Dorokhov
- Department of Genetics and Biotechnology, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
42
|
Fu L, Zhu Q, Sun Y, Du W, Pan Z, Peng S. Physiological and Transcriptional Changes of Three Citrus Rootstock Seedlings under Iron Deficiency. FRONTIERS IN PLANT SCIENCE 2017; 8:1104. [PMID: 28694816 PMCID: PMC5483480 DOI: 10.3389/fpls.2017.01104] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/07/2017] [Indexed: 05/06/2023]
Abstract
Iron is an essential micronutrient for plants, and plants have evolved adaptive mechanisms to improve iron acquisition from soils. Grafting on iron deficiency-tolerant rootstock is an effective strategy to prevent iron deficiency-chlorosis in fruit-tree crops. To determine the mechanisms underlying iron uptake in iron deficiency, two iron deficiency-tolerant citrus rootstocks, Zhique (ZQ) and Xiangcheng (XC), as well as iron deficiency-sensitive rootstock trifoliate orange (TO) seedlings were studied. Plants were grown in hydroponics system for 100 days, having 50 μM iron (control) and 0 μM iron (iron deficiency) nutrient solution. Under iron deficiency, more obvious visual symptoms of iron chlorosis were observed in the leaves of TO, whereas slight symptoms were observed in ZQ and XC. This was further supported by the lower chlorophyll concentration in the leaves of TO than in leaves of ZQ and XC. Ferrous iron showed no differences among the three citrus rootstock roots, whereas ferrous iron was significantly higher in leaves of ZQ and XC than TO. The specific iron absorption rate and leaf iron proportion were significantly higher in ZQ and XC than in TO, suggesting the iron deficiency tolerance can be explained by increased iron uptake in roots of ZQ and XC, allowed by subsequent translocation to shoots. In transcriptome analysis, 29, 298, and 500 differentially expressed genes (DEGs) in response to iron deficiency were identified in ZQ, XC, and TO, respectively (Fold change ≥ 2 and Probability ≥ 0.8 were used as thresholds to identify DEGs). A Gene Ontology analysis suggested that several genotype-specific biological processes are involved in response to iron deficiency. Genes associated with cell wall biosynthesis, ethylene and abscisic acid signal transduction pathways were involved in iron deficiency responses in citrus rootstocks. The results of this study provide a basis for future analyses of the physiological and molecular mechanisms of the tolerance of different citrus rootstocks to iron deficiency.
Collapse
Affiliation(s)
- Lina Fu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural UniversityWuhan, China
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), Ministry of AgricultureWuhan, China
| | - Qingqing Zhu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural UniversityWuhan, China
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), Ministry of AgricultureWuhan, China
| | - Yinya Sun
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural UniversityWuhan, China
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), Ministry of AgricultureWuhan, China
| | - Wei Du
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural UniversityWuhan, China
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), Ministry of AgricultureWuhan, China
| | - Zhiyong Pan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural UniversityWuhan, China
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), Ministry of AgricultureWuhan, China
- *Correspondence: Zhiyong Pan, Shu’ang Peng,
| | - Shu’ang Peng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural UniversityWuhan, China
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), Ministry of AgricultureWuhan, China
- *Correspondence: Zhiyong Pan, Shu’ang Peng,
| |
Collapse
|
43
|
Robertson-Albertyn S, Alegria Terrazas R, Balbirnie K, Blank M, Janiak A, Szarejko I, Chmielewska B, Karcz J, Morris J, Hedley PE, George TS, Bulgarelli D. Root Hair Mutations Displace the Barley Rhizosphere Microbiota. FRONTIERS IN PLANT SCIENCE 2017; 8:1094. [PMID: 28694814 PMCID: PMC5483447 DOI: 10.3389/fpls.2017.01094] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/06/2017] [Indexed: 05/03/2023]
Abstract
The rhizosphere, the thin layer of soil surrounding and influenced by plant roots, defines a distinct and selective microbial habitat compared to unplanted soil. The microbial communities inhabiting the rhizosphere, the rhizosphere microbiota, engage in interactions with their host plants which span from parasitism to mutualism. Therefore, the rhizosphere microbiota emerges as one of the determinants of yield potential in crops. Studies conducted with different plant species have unequivocally pointed to the host plant as a driver of the microbiota thriving at the root-soil interface. Thus far, the host genetic traits shaping the rhizosphere microbiota are not completely understood. As root hairs play a critical role in resource exchanges between plants and the rhizosphere, we hypothesized that they can act as a determinant of the microbiota thriving at the root-soil interface. To test this hypothesis, we took advantage of barley (Hordeum vulgare) mutant lines contrasting for their root hair characteristics. Plants were grown in two agricultural soils, differentiating in their organic matter contents, under controlled environmental conditions. At early stem elongation rhizosphere specimens were collected and subjected to high-resolution 16S rRNA gene profiling. Our data revealed that the barley rhizosphere microbiota is largely dominated by members of the phyla Bacteroidetes and Proteobacteria, regardless of the soil type and the root hair characteristics of the host plant. Conversely, ecological indices calculated using operational taxonomic units (OTUs) presence, abundance, and phylogeny revealed a significant impact of root hair mutations on the composition of the rhizosphere microbiota. In particular, our data indicate that mutant plants host a reduced-complexity community compared to wild-type genotypes and unplanted soil controls. Congruently, the host genotype explained up to 18% of the variation in ecological distances computed for the rhizosphere samples. Importantly, this effect is manifested in a soil-dependent manner. A closer inspection of the sequencing profiles revealed that the root hair-dependent diversification of the microbiota is supported by a taxonomically narrow group of bacteria, with a bias for members of the orders Actinomycetales, Burkholderiales, Rhizobiales, Sphingomonadales, and Xanthomonadales. Taken together, our results indicate that the presence and function of root hairs are a determinant of the bacterial community thriving in the rhizosphere and their perturbations can markedly impact on the recruitment of individual members of the microbiota.
Collapse
Affiliation(s)
| | | | - Katharin Balbirnie
- Plant Sciences, School of Life Sciences, University of DundeeDundee, United Kingdom
| | - Manuel Blank
- Plant Sciences, School of Life Sciences, University of DundeeDundee, United Kingdom
| | - Agnieszka Janiak
- Department of Genetics, University of Silesia in KatowiceKatowice, Poland
| | - Iwona Szarejko
- Department of Genetics, University of Silesia in KatowiceKatowice, Poland
| | - Beata Chmielewska
- Department of Genetics, University of Silesia in KatowiceKatowice, Poland
| | - Jagna Karcz
- Scanning Electron Microscopy Laboratory, University of Silesia in KatowiceKatowice, Poland
| | - Jenny Morris
- Cell and Molecular Sciences, The James Hutton InstituteDundee, United Kingdom
| | - Pete E. Hedley
- Cell and Molecular Sciences, The James Hutton InstituteDundee, United Kingdom
| | - Timothy S. George
- Ecological Sciences, The James Hutton InstituteDundee, United Kingdom
| | - Davide Bulgarelli
- Plant Sciences, School of Life Sciences, University of DundeeDundee, United Kingdom
- *Correspondence: Davide Bulgarelli,
| |
Collapse
|
44
|
Gopal M, Gupta A. Microbiome Selection Could Spur Next-Generation Plant Breeding Strategies. Front Microbiol 2016; 7:1971. [PMID: 28003808 PMCID: PMC5141590 DOI: 10.3389/fmicb.2016.01971] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 11/24/2016] [Indexed: 12/16/2022] Open
Abstract
“No plant is an island too…” Plants, though sessile, have developed a unique strategy to counter biotic and abiotic stresses by symbiotically co-evolving with microorganisms and tapping into their genome for this purpose. Soil is the bank of microbial diversity from which a plant selectively sources its microbiome to suit its needs. Besides soil, seeds, which carry the genetic blueprint of plants during trans-generational propagation, are home to diverse microbiota that acts as the principal source of microbial inoculum in crop cultivation. Overall, a plant is ensconced both on the outside and inside with a diverse assemblage of microbiota. Together, the plant genome and the genes of the microbiota that the plant harbors in different plant tissues, i.e., the ‘plant microbiome,’ form the holobiome which is now considered as unit of selection: ‘the holobiont.’ The ‘plant microbiome’ not only helps plants to remain fit but also offers critical genetic variability, hitherto, not employed in the breeding strategy by plant breeders, who traditionally have exploited the genetic variability of the host for developing high yielding or disease tolerant or drought resistant varieties. This fresh knowledge of the microbiome, particularly of the rhizosphere, offering genetic variability to plants, opens up new horizons for breeding that could usher in cultivation of next-generation crops depending less on inorganic inputs, resistant to insect pest and diseases and resilient to climatic perturbations. We surmise, from ever increasing evidences, that plants and their microbial symbionts need to be co-propagated as life-long partners in future strategies for plant breeding. In this perspective, we propose bottom–up approach to co-propagate the co-evolved, the plant along with the target microbiome, through – (i) reciprocal soil transplantation method, or (ii) artificial ecosystem selection method of synthetic microbiome inocula, or (iii) by exploration of microRNA transfer method – for realizing this next-generation plant breeding approach. Our aim, thus, is to bring closer the information accrued through the advanced nucleotide sequencing and bioinformatics in conjunction with conventional culture-dependent isolation method for practical application in plant breeding and overall agriculture.
Collapse
Affiliation(s)
- Murali Gopal
- Microbiology Section, ICAR-Central Plantation Crops Research Institute Kasaragod, India
| | - Alka Gupta
- Microbiology Section, ICAR-Central Plantation Crops Research Institute Kasaragod, India
| |
Collapse
|
45
|
Lee S, An R, Grewal P, Yu Z, Borherova Z, Lee J. High-Performing Windowfarm Hydroponic System: Transcriptomes of Fresh Produce and Microbial Communities in Response to Beneficial Bacterial Treatment. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:965-976. [PMID: 28035839 DOI: 10.1094/mpmi-08-16-0162-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Beneficial microorganisms play an important role in enhancing plant health, especially by promoting resistance to plant pathogen infection. The purpose of this study was to gain an understanding of such protection by i) examining the responses of fresh produce (lettuce) to beneficial treatments in their transcriptomes, ii) comparing biological (bacteria, fungi, and oomycete) communities and their diversity when treated with Pseudomonas chlororaphis (beneficial bacterium) in windowfarm hydroponic systems, and iii) identifying the microorganisms in root areas and water. P. chlororaphis treatment was for increasing plant growth and fighting for Pythium ultimum infection. In addition, two more treatments were conducted: i) adding supporting media for increasing bacterial colonizing areas around roots and ii) UV irradiation in water for controlling nuisance biofilm buildup. Changes in gene regulation and expression in lettuce in response to these treatments were investigated. Comparisons of microbial profiles among the treatments and microbial identification were conducted using samples of supporting media (around roots) and water. The results demonstrated that i) P. chlororaphis enhanced lettuce growth, ii) P. chlororaphis-treated lettuce showed dominantly expressed genes for membrane, catalytic activity, cellular process, and metabolic process categories, iii) P. chlororaphis treatment induced genes related to growth promotion and defense pathways, and iv) the microbial community of the root area was affected significantly by P. chlororaphis treatment and microbial diversity in water was significantly changed by UV irradiation. This study provided insight into how beneficial treatments affects the fresh produce growth in root areas and water in a vertical hydroponic system.
Collapse
Affiliation(s)
- Seungjun Lee
- 1 Environmental Sciences Graduate Program, The Ohio State University, Columbus, U.S.A
| | - Ruisheng An
- 2 Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, U.S.A
| | - Parwinder Grewal
- 2 Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, U.S.A
| | - Zhongtang Yu
- 1 Environmental Sciences Graduate Program, The Ohio State University, Columbus, U.S.A
- 3 Department of Animal Sciences
| | | | - Jiyoung Lee
- 1 Environmental Sciences Graduate Program, The Ohio State University, Columbus, U.S.A
- 5 Department of Food Science and Technology, and
- 6 College of Public Health, Division of Environmental Health Sciences, The Ohio State University
| |
Collapse
|
46
|
Shen P, Murphy DV, George SJ, Lapis-Gaza H, Xu M, Gleeson DB. Increasing the Size of the Microbial Biomass Altered Bacterial Community Structure which Enhances Plant Phosphorus Uptake. PLoS One 2016; 11:e0166062. [PMID: 27893833 PMCID: PMC5125581 DOI: 10.1371/journal.pone.0166062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/21/2016] [Indexed: 11/19/2022] Open
Abstract
Agricultural production can be limited by low phosphorus (P) availability, with soil P being constrained by sorption and precipitation reactions making it less available for plant uptake. There are strong links between carbon (C) and nitrogen (N) availability and P cycling within soil P pools, with microorganisms being an integral component of soil P cycling mediating the availability of P to plants. Here we tested a conceptual model that proposes (i) the addition of readily-available organic substrates would increase the size of the microbial biomass thus exhausting the pool of easily-available P and (ii) this would cause the microbial biomass to access P from more recalcitrant pools. In this model it is hypothesised that the size of the microbial population is regulating access to less available P rather than the diversity of organisms contained within this biomass. To test this hypothesis we added mixtures of simple organic compounds that reflect typical root exudates at different C:N ratios to a soil microcosm experiment and assessed changes in soil P pools, microbial biomass and bacterial diversity measures. We report that low C:N ratio (C:N = 12.5:1) artificial root exudates increased the size of the microbial biomass while high C:N ratio (C:N = 50:1) artificial root exudates did not result in a similar increase in microbial biomass. Interestingly, addition of the root exudates did not alter bacterial diversity (measured via univariate diversity indices) but did alter bacterial community structure. Where C, N and P supply was sufficient to support plant growth the increase observed in microbial biomass occurred with a concurrent increase in plant yield.
Collapse
Affiliation(s)
- Pu Shen
- Soil Biology and Molecular Ecology Group, School of Earth and Environment, Faculty of Science, The University of Western Australia, Crawley, Perth, Western Australia, Australia
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, P. R. China
| | - Daniel Vaughan Murphy
- Soil Biology and Molecular Ecology Group, School of Earth and Environment, Faculty of Science, The University of Western Australia, Crawley, Perth, Western Australia, Australia
| | - Suman J. George
- Soil Biology and Molecular Ecology Group, School of Earth and Environment, Faculty of Science, The University of Western Australia, Crawley, Perth, Western Australia, Australia
| | - Hazel Lapis-Gaza
- Soil Biology and Molecular Ecology Group, School of Earth and Environment, Faculty of Science, The University of Western Australia, Crawley, Perth, Western Australia, Australia
| | - Minggang Xu
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, P. R. China
| | - Deirdre Bridget Gleeson
- Soil Biology and Molecular Ecology Group, School of Earth and Environment, Faculty of Science, The University of Western Australia, Crawley, Perth, Western Australia, Australia
- * E-mail:
| |
Collapse
|