1
|
Bayramova S, Koç Yekedüz M, Köse E, Eminoğlu FT. Retrospective assessment of hepatic involvement in patients with inherited metabolism disorders: nine-year single-center experience. J Pediatr Endocrinol Metab 2025:jpem-2024-0511. [PMID: 39995240 DOI: 10.1515/jpem-2024-0511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/31/2025] [Indexed: 02/26/2025]
Abstract
OBJECTIVES This study aimed to identify clinical, laboratory, and radiological features that could serve as red flags for diagnosing inherited metabolic disorders (IMDs) with hepatic involvement in childhood. METHODS We retrospectively reviewed the medical records of 1,237 children from a pediatric metabolism department, with suspected or diagnosed IMDs. Patients with hepatic involvement were divided into two groups: Group 1 (diagnosed with IMDs) and Group 2 (undiagnosed). Demographic, clinical, laboratory, and radiological data were compared between the groups. RESULTS Hepatic involvement was observed in 415 patients (33.5 %), with 206 (49.2 %) diagnosed with IMDs. Group 1 had higher rates of consanguineous marriage and affected siblings. Complex molecule disorders (20.4 %), mitochondrial (16.0 %), and lipid metabolism disorders (16.0 %) were the most common IMDs. Dysmorphic findings were more frequent in Group 1 (28.2 vs. 16.3 %, p=0.004), while diarrhea was less common (4.4 vs. 12.0 %, p=0.005). Ammonia and lactate levels were higher in Group 1 (p<0.001 and p=0.032, respectively). Hepatomegaly was more frequent in Group 1 (53.3 vs. 22.6 %, p<0.001). Pathological abdominal ultrasonography was the only significant multivariate predictor (OR: 89.377, p=0.026). Overall survival was 87.7 %, with no difference between groups. CONCLUSIONS Consanguineous marriage, affected siblings, dysmorphic findings, absence of diarrhea, and pathological abdominal USG are key predictors of IMDs in hepatic involvement cases.
Collapse
Affiliation(s)
- Samira Bayramova
- Ankara University Faculty of Medicine, Department of Pediatrics, Ankara, Türkiye
| | - Merve Koç Yekedüz
- Ankara University Faculty of Medicine, Department of Pediatric Metabolism, Ankara, Türkiye
- Harvard Medical School, Boston Children's Hospital, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, MA, USA
| | - Engin Köse
- Ankara University Faculty of Medicine, Department of Pediatric Metabolism, Ankara, Türkiye
- Ankara University Rare Disease Application and Research Center, Ankara, Türkiye
| | - Fatma Tuba Eminoğlu
- Ankara University Faculty of Medicine, Department of Pediatric Metabolism, Ankara, Türkiye
- Ankara University Rare Disease Application and Research Center, Ankara, Türkiye
| |
Collapse
|
2
|
Ruchi R, Raman GM, Kumar V, Bahal R. Evolution of antisense oligonucleotides: navigating nucleic acid chemistry and delivery challenges. Expert Opin Drug Discov 2025; 20:63-80. [PMID: 39653607 PMCID: PMC11823135 DOI: 10.1080/17460441.2024.2440095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
INTRODUCTION Antisense oligonucleotide (ASO) was established as a viable therapeutic option for genetic disorders. ASOs can target RNAs implicated in various diseases, including upregulated mRNA and pre-mRNA undergoing abnormal alternative splicing events. Therapeutic applications of ASOs have been proven with the Food and Drug Administration approval of several drugs in recent years. Earlier enzymatic stability and delivery remains a big challenge for ASOs. Introducing new chemical modifications and new formulations resolving the issues related to the nuclease stability and delivery of the ASOs. Excitingly, ASOs-based bioconjugates that target the hepatocyte have gained much attraction. Efforts are ongoing to increase the therapeutic application of the ASOs to the extrahepatic tissue as well. AREA COVERED We have briefly discussed the mechanism of ASOs, the development of new chemistries, and delivery strategies for ASO-based drug discovery and development. The discussion focuses more on the already approved ASOs and those in the clinical development stage. EXPERT OPINION To expand the clinical application of ASOs, continuous effort is required to develop precise delivery strategies for targeting extrahepatic tissue to minimize the off-target effects.
Collapse
Affiliation(s)
- Ruchi Ruchi
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Govind Mukesh Raman
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
- Farmington High School, Farmington, CT, USA
| | - Vikas Kumar
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
3
|
Amin Nordin FD, Omar A, Kamarudin B, Simpson T, Abdul Jalil J, Pung YF. Whole exome sequencing in energy deficiency inborn errors of metabolism: A systematic review. Mol Genet Metab Rep 2024; 40:101094. [PMID: 40206842 PMCID: PMC11980698 DOI: 10.1016/j.ymgmr.2024.101094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/03/2024] [Accepted: 05/21/2024] [Indexed: 04/11/2025] Open
Abstract
Broad biochemical complexity and frequent overlapping clinical symptoms of inborn errors of metabolism (IEM), especially in energy-deficient patients, make accurate diagnosis difficult. In recent years, whole exome sequencing (WES), a comprehensive protein coding genetic test, has been used to diagnose patients at the molecular level. This study aims to evaluate the potential of WES in diagnosing energy-deficient IEM patients with limited biochemical findings and to identify common symptoms patterns in reported cases. Articles were identified using a combination of search terms in online databases (Science Direct, PubMed Central and Wiley). English-language case reports citing WES in the diagnosis of energy-deficient IEM patients were reviewed. This systematic review was conducted and reported using the 'Preferred Reporting Items for Systematic Reviews and Meta-Analyses' checklist. The quality and risk of bias were assessed using Joanna Briggs Institute critical appraisal tool. A total of 37 studies comprising of 54 case reports were included in this review. The median age of the patients was 0.4 years, with 55.6% being male and 44.4% being female. A total of 33 mutant genes were reported and they related to either metabolism or mitochondrial function. WES was able to identify mutations in 53 of 54 cases reported. The diagnosis of energy-deficient IEM patients is crucial, particularly given the challenging range of diverse clinical symptoms they present. The high accuracy of the WES technique appears to improve the diagnostic process. Further research defining more detailed guidelines is needed to engage with this rare set of genetic diseases.
Collapse
Affiliation(s)
- Fatimah Diana Amin Nordin
- Inborn Errors of Metabolism & Genetics Unit, Nutrition, Metabolism & Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Malaysia
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Affandi Omar
- Inborn Errors of Metabolism & Genetics Unit, Nutrition, Metabolism & Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Malaysia
| | - Balqis Kamarudin
- Inborn Errors of Metabolism & Genetics Unit, Nutrition, Metabolism & Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Malaysia
| | - Timothy Simpson
- School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Julaina Abdul Jalil
- Inborn Errors of Metabolism & Genetics Unit, Nutrition, Metabolism & Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Malaysia
| | - Yuh Fen Pung
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| |
Collapse
|
4
|
Choudhury S, Narayanan B, Moret M, Hatzimanikatis V, Miskovic L. Generative machine learning produces kinetic models that accurately characterize intracellular metabolic states. Nat Catal 2024; 7:1086-1098. [PMID: 39463726 PMCID: PMC11499278 DOI: 10.1038/s41929-024-01220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/06/2024] [Indexed: 10/29/2024]
Abstract
Generating large omics datasets has become routine for gaining insights into cellular processes, yet deciphering these datasets to determine metabolic states remains challenging. Kinetic models can help integrate omics data by explicitly linking metabolite concentrations, metabolic fluxes and enzyme levels. Nevertheless, determining the kinetic parameters that underlie cellular physiology poses notable obstacles to the widespread use of these mathematical representations of metabolism. Here we present RENAISSANCE, a generative machine learning framework for efficiently parameterizing large-scale kinetic models with dynamic properties matching experimental observations. Through seamless integration of diverse omics data and other relevant information, including extracellular medium composition, physicochemical data and expertise of domain specialists, RENAISSANCE accurately characterizes intracellular metabolic states in Escherichia coli. It also estimates missing kinetic parameters and reconciles them with sparse experimental data, substantially reducing parameter uncertainty and improving accuracy. This framework will be valuable for researchers studying metabolic variations involving changes in metabolite and enzyme levels and enzyme activity in health and biotechnology.
Collapse
Affiliation(s)
- Subham Choudhury
- Laboratory of Computational Systems Biology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bharath Narayanan
- Laboratory of Computational Systems Biology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Present Address: Department of Oncology, University of Cambridge, Cambridge, UK
| | - Michael Moret
- Laboratory of Computational Systems Biology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Present Address: Department of Genetics, Harvard Medical School, Boston, MA USA
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ljubisa Miskovic
- Laboratory of Computational Systems Biology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Chen S, Heendeniya SN, Le BT, Rahimizadeh K, Rabiee N, Zahra QUA, Veedu RN. Splice-Modulating Antisense Oligonucleotides as Therapeutics for Inherited Metabolic Diseases. BioDrugs 2024; 38:177-203. [PMID: 38252341 PMCID: PMC10912209 DOI: 10.1007/s40259-024-00644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
The last decade (2013-2023) has seen unprecedented successes in the clinical translation of therapeutic antisense oligonucleotides (ASOs). Eight such molecules have been granted marketing approval by the United States Food and Drug Administration (US FDA) during the decade, after the first ASO drug, fomivirsen, was approved much earlier, in 1998. Splice-modulating ASOs have also been developed for the therapy of inborn errors of metabolism (IEMs), due to their ability to redirect aberrant splicing caused by mutations, thus recovering the expression of normal transcripts, and correcting the deficiency of functional proteins. The feasibility of treating IEM patients with splice-switching ASOs has been supported by FDA permission (2018) of the first "N-of-1" study of milasen, an investigational ASO drug for Batten disease. Although for IEM, owing to the rarity of individual disease and/or pathogenic mutation, only a low number of patients may be treated by ASOs that specifically suppress the aberrant splicing pattern of mutant precursor mRNA (pre-mRNA), splice-switching ASOs represent superior individualized molecular therapeutics for IEM. In this work, we first summarize the ASO technology with respect to its mechanisms of action, chemical modifications of nucleotides, and rational design of modified oligonucleotides; following that, we precisely provide a review of the current understanding of developing splice-modulating ASO-based therapeutics for IEM. In the concluding section, we suggest potential ways to improve and/or optimize the development of ASOs targeting IEM.
Collapse
Affiliation(s)
- Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Saumya Nishanga Heendeniya
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Bao T Le
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
- ProGenis Pharmaceuticals Pty Ltd, Bentley, WA, 6102, Australia
| | - Kamal Rahimizadeh
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Qurat Ul Ain Zahra
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia.
- ProGenis Pharmaceuticals Pty Ltd, Bentley, WA, 6102, Australia.
| |
Collapse
|
6
|
Tucci F, Consiglieri G, Cossutta M, Bernardo ME. Current and Future Perspective in Hematopoietic Stem Progenitor Cell-gene Therapy for Inborn Errors of Metabolism. Hemasphere 2023; 7:e953. [PMID: 37711990 PMCID: PMC10499111 DOI: 10.1097/hs9.0000000000000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023] Open
Affiliation(s)
- Francesca Tucci
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan, Italy
| | - Giulia Consiglieri
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan, Italy
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - Matilde Cossutta
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
- University of Rome Tor Vergata, Italy
| | - Maria Ester Bernardo
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan, Italy
- “Vita-Salute” San Raffaele University, Milan, Italy
| |
Collapse
|
7
|
Kwack DW, Kim DW. Risk factors of hyperammonemia in epilepsy patients with valproic acid therapy. Clin Neurol Neurosurg 2023; 233:107962. [PMID: 37717359 DOI: 10.1016/j.clineuro.2023.107962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/04/2023] [Accepted: 09/03/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Hyperammonemia can occur after acute overdose or chronic use of valproic acid (VPA). Although VPA-related hyperammonemic encephalopathy (VHE) is a rare complication of VPA therapy, early recognition of VHE and identifying its risk factors are important because VHE can lead to loss of consciousness and increased seizure frequency. PURPOSE The purpose of our study is to evaluate the risk factors of hyperammonemia in epilepsy patients during treatment with VPA therapy. METHODS We reviewed the medical records of 1084 adult patients with epilepsy and enrolled 116 patients with VPA therapy who had results of blood levels of ammonia over a 3-year period. Hyperammonemia was defined as a blood ammonia level exceeding 80 µg/dL. Correlations of blood levels of ammonia with dosages and blood levels of VPA were evaluated. We further performed univariate and multivariate linear regression analyses to identify risk factors for hyperammonemia in epilepsy patients treated with VPA therapy. RESULTS Blood levels of ammonia were well correlated with dosages of VPA (p = 0.036), but not with blood levels of VPA (p = 0.463). Hyperammonemia was more common in patients with higher VPA dosage and higher total drug loads of concurrent antiseizure medications (ASMs). Hyperammonemia was also associated with the use of topiramate and phenobarbital. In multivariate analysis, we identified total drug load of ASMs (p = 0.003) and use of topiramate (p = 0.007) as independent predictors of hyperammonemia. Four patients (4/116, 3.4 %) had clinical symptoms of VHE. Three of them had hyperammonemia while the other patient had normal blood level of ammonia with a high blood level of VPA. CONCLUSION Our study shows that higher total drug loads of concurrent ASMs and use of topiramate were independent risk factors of hyperammonemia in epilepsy patients with VPA therapy. Although the incidence of VHE was not high in our study, clinicians should be aware of this potential adverse effect of VPA therapy, especially in patients with polytherapy of ASMs including topiramate.
Collapse
Affiliation(s)
- Dong Won Kwack
- Department of Neurology, Konkuk University School of Medicine, Seoul, the Republic of Korea
| | - Dong Wook Kim
- Department of Neurology, Konkuk University School of Medicine, Seoul, the Republic of Korea.
| |
Collapse
|
8
|
Lim JY, Ali NM, Rajikan R, Amit N, Hamid HA, Leong HY, Mohamad M, Koh BQ, Musa A. Need analysis of a dietary application among caregivers of patients with disorders of amino acid metabolism (AAMDs): A mixed-method approach. Int J Med Inform 2023; 177:105120. [PMID: 37295139 DOI: 10.1016/j.ijmedinf.2023.105120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/28/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND A dietary application can assist the caregivers of AAMDs children in auto-calculating the protein intake, hence improving dietary compliance. However, existing dietary application for patients with AAMDs only focus on delivering the nutritional content of food and monitoring the dietary intake but were lacking in other educational components. OBJECTIVE To assess the uses, needs and preferences towards a dietary application among the caregivers of AAMDs patients. METHODS We conducted a mixed-method study comprising focus group discussion (FGD) and a quantitative questionnaire survey among caregivers of patients aged between 6-month-old to 18-year-old with AAMDs who are receiving active treatment, both medical and dietetic treatment in the genetic clinic, Hospital Kuala Lumpur (HKL). RESULTS A total of 76 and 20 caregivers participated in the survey and FGD respectively. All the caregivers (100%) possessed a smartphone and most of the caregivers (89.5%) had the experience of using smartphone or other technological devices to search for health or medical information. However, majority of the participants were not aware of the existence of any web-based or mobile application related to AAMDs (89.5%). While for the qualitative part, three themes emerged: (1) experience with current source of information; (2) needs for supporting self-management educational contents and needs for technological design application. Most of the caregivers used the nutritional booklet as sources of reference but some of them searched for web-based information. Features perceived by the caregivers included a digital food composition database, sharing diet recall with healthcare providers, self-monitoring diet intake as well as low protein recipes. Besides that, user-friendly and ease to use were also perceived as the important features by the caregivers. CONCLUSION The identified features and needs by the caregivers should be integrated into the design of the apps to promote acceptance and usage.
Collapse
Affiliation(s)
- Jing Ying Lim
- Dietetics Program & Centre of Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia; Dietetics Department, Faculty of Medicines and Health Sciences, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nazlena Mohamad Ali
- Institute of IR4.0 (IIR4.0), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.
| | - Roslee Rajikan
- Dietetics Program & Centre of Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Noh Amit
- Clinical Psychology and Behavioural Health Program & Center for Community Health Studies (ReaCH), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Haslina Abdul Hamid
- Dietetics Program & Center for Community Health Studies (ReaCH), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Huey Yin Leong
- Genetics Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Maslina Mohamad
- Dietetics & Food Service Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Bi Qi Koh
- Dietetics & Food Service Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Aini Musa
- Dietetics & Food Service Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Abstract
This article highlights the significance of inborn errors of metabolism and focuses specifically on phenylketonuria (PKU), a well-known inheritance disorder caused by the deficiency or absence of phenylalanine hydroxylase (PAH). This review discusses associated mutations in the PAH gene and their impact on phenylalanine metabolism. A total of 40 articles were analyzed between 2019 and 2023, covering diagnostic innovations, advancements in treatment and management strategies, and the long-term implications of PKU. This study emphasizes the importance of early diagnosis and highlights the ongoing need for advancements in screening methods and treatment approaches to optimize patient outcomes in PKU patients. This review provides valuable insights for healthcare professionals involved in the care of children with PKU and contributes to the enhancement of clinical practice in this field.
Collapse
|
10
|
Liew SH, Lim JY, Yahya HM, Rajikan R. Knowledge and perception of inborn errors of metabolism (IEMs) among healthcare students at a selected public university in Klang Valley, Malaysia. Intractable Rare Dis Res 2022; 11:125-132. [PMID: 36200028 PMCID: PMC9437999 DOI: 10.5582/irdr.2022.01062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/05/2022] Open
Abstract
Healthcare providers play an important role in improving the health of Inborn Error of Metabolism (IEM) patients. However, IEM knowledge level among local healthcare students has yet to be determined. Thus, the aim of this study is to assess the knowledge and perception of IEM among local healthcare students. An online self-administered questionnaire was distributed to 378 students across the Faculty of Health Science, Pharmacy and Dentistry from a selected public university in Lembah Klang, Malaysia. For knowledge, a score of 1 is assigned to each correct answer with a maximum total score of 14. Likert scale was used to determine their perception of IEM. The total mean score of IEM knowledge among healthcare students is 5.8. There was no significant difference of mean score of IEM knowledge among the students from the Faculty of Health Science (6.1 ± 2.7), Pharmacy (5.5 ± 2.6) and Dentistry (5.8 ± 2.8). However, the score of knowledge is observed to be significantly different by ethnicity, religion and family history of IEM (p < 0.05). Furthermore, students with experience of meeting an IEM patient and attending IEM classes scored higher than those with no experience (p < 0.05). Most of the healthcare students (89.5%) perceived their knowledge to be insufficient and very poor. Majority of the students from faculty of pharmacy (70.8%) agreed that the IEM course should be mandatory compared to health sciences and dentistry (p < 0.05). This study identified an overall inadequacy of knowledge of IEM among healthcare students. There is a pressing need to improve the IEM-related knowledge and awareness of Malaysian healthcare students. This can be accomplished by incorporating online classes that emphasizes the treatment and management of IEMs in the university curriculum.
Collapse
Affiliation(s)
- Shi Hui Liew
- Nutritional Science Program, Faculty of Health Science, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Jing Ying Lim
- Dietetics Program, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Centre of Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia
| | - Hanis Mastura Yahya
- Nutritional Science Program, Faculty of Health Science, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Centre of Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia
| | - Roslee Rajikan
- Nutritional Science Program, Faculty of Health Science, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Centre of Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia
- Address correspondence to:Roslee Rajikan, Dietetics Programme & Centre of Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia. E-mail:
| |
Collapse
|
11
|
Exploring the Barriers and Motivators to Dietary Adherence among Caregivers of Children with Disorders of Amino Acid Metabolism (AAMDs): A Qualitative Study. Nutrients 2022; 14:nu14122535. [PMID: 35745265 PMCID: PMC9228574 DOI: 10.3390/nu14122535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 11/20/2022] Open
Abstract
Dietary intervention is generally accepted as the mainstay of treatment for patients with disorders of amino acid metabolism (AAMDs). However, dietary adherence to a low-protein diet is always reported as a common challenge among these patients. This study explored the perception of barriers and motivators to dietary adherence among caregivers of AAMD patients in Malaysia. Twenty caregivers of children with AAMDs receiving ongoing treatment at the genetic clinic participated in an online focus group discussion from November to December 2021. Findings showed a total of five interrelated main themes identified from focus group discussion (FGD) exploring parents’ experiences related to the management of their child’s daily diet. The barriers to dietary adherence were burden of dietary treatment, diet and dietary behavior, parenting challenges, limited knowledge related to dietary treatment, and challenges in healthcare system delivery. Key factors facilitating good dietary adherence include good knowledge of dietary treatment, parental coping strategies, social coping, and dietary behavior. In conclusion, despite the existence of several barriers to the implementation of dietary treatment, caregivers managed to use a wide range of coping strategies to overcome some, if not all, of the challenges. The important next step is to develop, in conjunction with multidisciplinary healthcare professionals, feasible implementation strategies that could address these barriers and at the same time improve the quality of life of caregivers.
Collapse
|
12
|
Chiesa R, Bernardo ME. Haematopoietic stem cell gene therapy in inborn errors of metabolism. Br J Haematol 2022; 198:227-243. [PMID: 35535965 DOI: 10.1111/bjh.18179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 03/06/2022] [Accepted: 03/21/2022] [Indexed: 11/30/2022]
Abstract
Over the last 30 years, allogeneic haematopoietic stem cell transplantation (allo-HSCT) has been adopted as a therapeutic strategy for many inborn errors of metabolism (IEM), due to the ability of donor-derived cells to provide life-long enzyme delivery to deficient tissues and organs. However, (a) the clinical benefit of allo-HSCT is limited to a small number of IEM, (b) patients are left with a substantial residual disease burden and (c) allo-HSCT is still associated with significant short- and long-term toxicities and transplant-related mortality. Haematopoietic stem/progenitor cell gene therapy (HSPC-GT) was established in the 1990s for the treatment of selected monogenic primary immunodeficiencies and over the past few years, its use has been extended to a number of IEM. HSPC-GT is particularly attractive in neurodegenerative IEM, as gene corrected haematopoietic progenitors can deliver supra-physiological enzyme levels to difficult-to-reach areas, such as the brain and the skeleton, with potential increased clinical benefit. Moreover, HSPC-GT is associated with reduced morbidity and mortality compared to allo-HSCT, although this needs to be balanced against the potential risk of insertional mutagenesis. The number of clinical trials in the IEM field is rapidly increasing and some HSPC-GT products recently received market approval. This review describes the development of ex vivo HSPC-GT in a number of IEM, with a focus on recent results from GT clinical trials and risks versus benefits considerations, when compared to established therapeutic strategies, such as allo-HSCT.
Collapse
Affiliation(s)
- Robert Chiesa
- Bone Marrow Transplantation Department, Great Ormond Street Hospital for Sick Children NHS Foundation Trust, London, UK
| | - Maria Ester Bernardo
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,"Vita Salute" San Raffaele University, Milan, Italy
| |
Collapse
|
13
|
Ramoser G, Caferri F, Radlinger B, Brunner‐Krainz M, Herbst S, Huemer M, Hufgard‐Leitner M, Kircher SG, Konstantopoulou V, Löscher W, Möslinger D, Plecko B, Spenger J, Stulnig T, Sunder‐Plassmann G, Wortmann S, Scholl‐Bürgi S, Karall D. 100 years of inherited metabolic disorders in Austria-A national registry of minimal birth prevalence, diagnosis, and clinical outcome of inborn errors of metabolism in Austria between 1921 and 2021. J Inherit Metab Dis 2022; 45:144-156. [PMID: 34595757 PMCID: PMC9297958 DOI: 10.1002/jimd.12442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/29/2022]
Abstract
Inherited metabolic disorders (IMDs) are a heterogeneous group of rare disorders characterized by disruption of metabolic pathways. To date, data on incidence and prevalence of IMDs are limited. Taking advantage of a functioning network within the Austrian metabolic group, our registry research aimed to update the data of the "Registry for Inherited Metabolic Disorders" started between 1985 and 1995 with retrospectively retrieved data on patients with IMDs according to the Society for the Study of Inborn Errors of Metabolism International Classification of Diseases 11 (SSIEM ICD11) catalogue. Included in this retrospective register were 2631 patients with an IMD according to the SSIEM ICD11 Classification, who were treated in Austria. Thus, a prevalence of 1.8/10 000 for 2020 and a median minimal birth prevalence of 16.9/100 000 (range 0.7/100 000-113/100 000) were calculated for the period 1921 to February 2021. We detected a male predominance (m:f = 1.2:1) and a mean age of currently alive patients of 17.6 years (range 5.16 months-100 years). Most common diagnoses were phenylketonuria (17.7%), classical galactosaemia (6.6%), and biotinidase deficiency (4.2%). The most common diagnosis categories were disorders of amino acid and peptide metabolism (819/2631; 31.1%), disorders of energy metabolism (396/2631; 15.1%), and lysosomal disorders (395/2631; 15.0%). In addition to its epidemiological relevance, the "Registry for Inherited Metabolic Disorders" is an important tool for enhancing an exchange between care providers. Moreover, by pooling expertise it prospectively improves patient treatment, similar to pediatric oncology protocols. A substantial requirement for ful filling this goal is to regularly update the registry and provide nationwide coverage with inclusion of all medical specialties.
Collapse
Affiliation(s)
- Gabriele Ramoser
- Clinic for Pediatrics I, Inherited Metabolic DisordersMedical University of InnsbruckInnsbruckAustria
| | - Federica Caferri
- Clinic for Pediatrics IIIMedical University of InnsbruckInnsbruckAustria
| | - Bernhard Radlinger
- Clinic for Internal Medicine IMedical University of InnsbruckInnsbruckAustria
| | | | - Sybille Herbst
- Clinic for Pediatrics I, Inherited Metabolic DisordersMedical University of InnsbruckInnsbruckAustria
| | | | | | - Susanne G. Kircher
- Center of Pathobiochemistry and GeneticsMedical University of ViennaViennaAustria
| | | | - Wolfgang Löscher
- Department of NeurologyMedical University InnsbruckInnsbruckAustria
| | | | - Barbara Plecko
- Clinic for PediatricsUniversity Hospital GrazGrazAustria
| | - Johannes Spenger
- Clinic for Pediatrics, Inherited Metabolic DisordersMedical University SalzburgSalzburgAustria
| | - Thomas Stulnig
- Clinic for Internal Medicine IIIUniversity Hospital ViennaViennaAustria
| | - Gere Sunder‐Plassmann
- Department of Medicine III, Division of Nephrology and DialysisMedical University of ViennaViennaAustria
| | - Saskia Wortmann
- Clinic for Pediatrics, Inherited Metabolic DisordersMedical University SalzburgSalzburgAustria
| | - Sabine Scholl‐Bürgi
- Clinic for Pediatrics I, Inherited Metabolic DisordersMedical University of InnsbruckInnsbruckAustria
| | - Daniela Karall
- Clinic for Pediatrics I, Inherited Metabolic DisordersMedical University of InnsbruckInnsbruckAustria
| | | |
Collapse
|
14
|
Lim JY, Amit N, Ali NM, Leong HY, Mohamad M, Rajikan R. Effect of nutritional intervention on nutritional status among children with disorders of amino acid and nitrogen metabolism (AANMDs): A scoping review. Intractable Rare Dis Res 2021; 10:246-256. [PMID: 34877236 PMCID: PMC8630465 DOI: 10.5582/irdr.2021.01124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022] Open
Abstract
Disorders of amino acid and nitrogen metabolism (AANMDs) occur due to an enzyme deficiency in a normal biochemical pathway. Nutritional intervention is recognized as the mainstay of treatment for children diagnosed with AANMD. Hence, this scoping review aimed to identify the nutritional interventions available in managing AANMD disorders and their effects on nutritional status. A systematic search using PRISMA Extension for Scoping Reviews (PRISMA-ScR) method was conducted across 4 databases: PubMed, ScienceDirect (Elsevier), EBSCOhost and Cochrane Central Register of Controlled Trials (CENTRAL). Inclusion criteria for the study to be selected are: subjects aged less than 18-year-old, article published in English, utilized an experimental design and published within the past 20 years. A total of 22 articles were included in this review. The majority of the subjects are boys (55.6%) and employed a randomized controlled trial (RCT) study design (45.4%). Nutritional interventions were categorized into 4 categories which are: "protein substitute" (n = 5), "protein substitute with modified composition" (n = 6), "nutrient supplementation (n=8)", and "distribution and dosage of protein substitute (n = 3)". The most frequently assessed outcomes were biochemical parameters that gauge the effectiveness of metabolic control (68.2%). Overall, "protein substitute enriched with inhibitive amino acids", "long-chain polyunsaturated fatty acids supplementation", and "evenly distributed protein substitute" demonstrated beneficial effects towards the nutritional status, especially in terms of biochemical parameters. In summary, nutritional intervention plays a significant role in improving the nutritional status of AANMD patients. Further investigations of nutritional intervention among AANMD children using a meta-analysis approach are necessary for better comprehension of their impact in management of AANMD disorders.
Collapse
Affiliation(s)
- Jing Ying Lim
- Dietetics Program & Centre of Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Noh Amit
- Clinical Psychology and Behavioural Health Program & Center for Community Health Studies (ReaCH), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nazlena Mohamad Ali
- Institute of IR4.0 (IIR4.0), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Huey Yin Leong
- Genetics Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Maslina Mohamad
- Dietetics & Food Service Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Roslee Rajikan
- Dietetics Program & Centre of Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Delanne J, Bruel AL, Huet F, Moutton S, Nambot S, Grisval M, Houcinat N, Kuentz P, Sorlin A, Callier P, Jean-Marcais N, Mosca-Boidron AL, Mau-Them FT, Denommé-Pichon AS, Vitobello A, Lehalle D, El Chehadeh S, Francannet C, Lebrun M, Lambert L, Jacquemont ML, Gerard-Blanluet M, Alessandri JL, Willems M, Thevenon J, Chouchane M, Darmency V, Fatus-Fauconnier C, Gay S, Bournez M, Masurel A, Leguy V, Duffourd Y, Philippe C, Feillet F, Faivre L, Thauvin-Robinet C. The diagnostic rate of inherited metabolic disorders by exome sequencing in a cohort of 547 individuals with developmental disorders. Mol Genet Metab Rep 2021; 29:100812. [PMID: 34712575 PMCID: PMC8528787 DOI: 10.1016/j.ymgmr.2021.100812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 11/24/2022] Open
Abstract
Considering that some Inherited Metabolic Disorders (IMDs) can be diagnosed in patients with no distinctive clinical features of IMDs, we aimed to evaluate the power of exome sequencing (ES) to diagnose IMDs within a cohort of 547 patients with unspecific developmental disorders (DD). IMDs were diagnosed in 12% of individuals with causative diagnosis (177/547). There are clear benefits of using ES in DD to diagnose IMD, particularly in cases where biochemical studies are unavailable. Synopsis Exome sequencing and diagnostic rate of Inherited Metabolic Disorders in individuals with developmental disorders.
Collapse
Affiliation(s)
- Julian Delanne
- INSERM - University of Bourgogne Franche-Comté, UMR 1231 GAD Team, Genetics of Developmental Disorders, FHU TRANSLAD, CHU Dijon Bourgogne, France.,CHU Dijon, Centre de référence maladies rares Anomalies du Développement et Syndromes Malformatifs, Centre de Génétique, FHU TRANSLAD, CHU Dijon Bourgogne, France
| | - Ange-Line Bruel
- INSERM - University of Bourgogne Franche-Comté, UMR 1231 GAD Team, Genetics of Developmental Disorders, FHU TRANSLAD, CHU Dijon Bourgogne, France.,Unité Fonctionnelle d'Innovation diagnostique dans les maladies rares, Laboratoire de Génétique chromosomique moléculaire, CHU Dijon Bourgogne, France
| | - Frédéric Huet
- Centre de Compétence Maladies Héréditaires du Métabolisme, CHU Dijon Bourgogne, France
| | - Sébastien Moutton
- INSERM - University of Bourgogne Franche-Comté, UMR 1231 GAD Team, Genetics of Developmental Disorders, FHU TRANSLAD, CHU Dijon Bourgogne, France.,CHU Dijon, Centre de référence maladies rares Anomalies du Développement et Syndromes Malformatifs, Centre de Génétique, FHU TRANSLAD, CHU Dijon Bourgogne, France
| | - Sophie Nambot
- INSERM - University of Bourgogne Franche-Comté, UMR 1231 GAD Team, Genetics of Developmental Disorders, FHU TRANSLAD, CHU Dijon Bourgogne, France.,CHU Dijon, Centre de référence maladies rares Anomalies du Développement et Syndromes Malformatifs, Centre de Génétique, FHU TRANSLAD, CHU Dijon Bourgogne, France
| | - Margot Grisval
- Centre de Compétence Maladies Héréditaires du Métabolisme, CHU Dijon Bourgogne, France
| | - Nada Houcinat
- CHU Dijon, Centre de référence maladies rares Anomalies du Développement et Syndromes Malformatifs, Centre de Génétique, FHU TRANSLAD, CHU Dijon Bourgogne, France
| | - Paul Kuentz
- INSERM - University of Bourgogne Franche-Comté, UMR 1231 GAD Team, Genetics of Developmental Disorders, FHU TRANSLAD, CHU Dijon Bourgogne, France.,Unité Fonctionnelle d'Innovation diagnostique dans les maladies rares, Laboratoire de Génétique chromosomique moléculaire, CHU Dijon Bourgogne, France.,Biologie moléculaire, CHU Besançon, Besançon, France
| | - Arthur Sorlin
- INSERM - University of Bourgogne Franche-Comté, UMR 1231 GAD Team, Genetics of Developmental Disorders, FHU TRANSLAD, CHU Dijon Bourgogne, France.,CHU Dijon, Centre de référence maladies rares Anomalies du Développement et Syndromes Malformatifs, Centre de Génétique, FHU TRANSLAD, CHU Dijon Bourgogne, France.,Unité Fonctionnelle d'Innovation diagnostique dans les maladies rares, Laboratoire de Génétique chromosomique moléculaire, CHU Dijon Bourgogne, France
| | - Patrick Callier
- INSERM - University of Bourgogne Franche-Comté, UMR 1231 GAD Team, Genetics of Developmental Disorders, FHU TRANSLAD, CHU Dijon Bourgogne, France.,Laboratoire de cytogénétique et génétique moléculaire, CHU Dijon Bourgogne, France
| | - Nolwenn Jean-Marcais
- CHU Dijon, Centre de référence maladies rares Anomalies du Développement et Syndromes Malformatifs, Centre de Génétique, FHU TRANSLAD, CHU Dijon Bourgogne, France
| | | | - Frédéric Tran Mau-Them
- INSERM - University of Bourgogne Franche-Comté, UMR 1231 GAD Team, Genetics of Developmental Disorders, FHU TRANSLAD, CHU Dijon Bourgogne, France.,Unité Fonctionnelle d'Innovation diagnostique dans les maladies rares, Laboratoire de Génétique chromosomique moléculaire, CHU Dijon Bourgogne, France
| | - Anne-Sophie Denommé-Pichon
- INSERM - University of Bourgogne Franche-Comté, UMR 1231 GAD Team, Genetics of Developmental Disorders, FHU TRANSLAD, CHU Dijon Bourgogne, France.,Unité Fonctionnelle d'Innovation diagnostique dans les maladies rares, Laboratoire de Génétique chromosomique moléculaire, CHU Dijon Bourgogne, France
| | - Antonio Vitobello
- INSERM - University of Bourgogne Franche-Comté, UMR 1231 GAD Team, Genetics of Developmental Disorders, FHU TRANSLAD, CHU Dijon Bourgogne, France.,Unité Fonctionnelle d'Innovation diagnostique dans les maladies rares, Laboratoire de Génétique chromosomique moléculaire, CHU Dijon Bourgogne, France
| | - Daphné Lehalle
- CHU Dijon, Centre de référence maladies rares Anomalies du Développement et Syndromes Malformatifs, Centre de Génétique, FHU TRANSLAD, CHU Dijon Bourgogne, France
| | - Salima El Chehadeh
- CHU Dijon, Centre de référence maladies rares Anomalies du Développement et Syndromes Malformatifs, Centre de Génétique, FHU TRANSLAD, CHU Dijon Bourgogne, France
| | - Christine Francannet
- Service de Génétique Médicale, Centre de Référence Déficiences Intellectuelles de causes rares, CHU Clermont Ferrand, France
| | - Marine Lebrun
- Laboratoire de génétique, CHU de Saint-Etienne, Saint-Etienne, France
| | | | - Marie-Line Jacquemont
- Unité de Génétique Médicale, Pole Femme-Mère-Enfant, Groupe Hospitalier Sud Réunion, CHU de La Réunion, La Réunion, France
| | | | - Jean-Luc Alessandri
- Service de Réanimation Néonatale, Pole Femme-Mère-Enfant, CH Felix Guyon, CHU de La Réunion, Saint-Denis, La Réunion, France
| | - Marjolaine Willems
- Department of Medical Genetics, Reference Center for Rare Diseases, Developmental Disorders and Multiple Congenital Anomalies, Arnaud de Villeneuve Hospital, Montpellier, France
| | - Julien Thevenon
- INSERM - University of Bourgogne Franche-Comté, UMR 1231 GAD Team, Genetics of Developmental Disorders, FHU TRANSLAD, CHU Dijon Bourgogne, France.,CHU Dijon, Centre de référence maladies rares Anomalies du Développement et Syndromes Malformatifs, Centre de Génétique, FHU TRANSLAD, CHU Dijon Bourgogne, France.,Unité Fonctionnelle d'Innovation diagnostique dans les maladies rares, Laboratoire de Génétique chromosomique moléculaire, CHU Dijon Bourgogne, France
| | - Mondher Chouchane
- Centre de Compétence Maladies Héréditaires du Métabolisme, CHU Dijon Bourgogne, France
| | - Véronique Darmency
- Centre de Compétence Maladies Héréditaires du Métabolisme, CHU Dijon Bourgogne, France
| | | | - Sébastien Gay
- Service de Pédiatrie, CH William Morey, Chalon-Sur-Saône, France
| | - Marie Bournez
- Centre de Compétence Maladies Héréditaires du Métabolisme, CHU Dijon Bourgogne, France
| | - Alice Masurel
- CHU Dijon, Centre de référence maladies rares Anomalies du Développement et Syndromes Malformatifs, Centre de Génétique, FHU TRANSLAD, CHU Dijon Bourgogne, France
| | - Vanessa Leguy
- Centre de Compétence Maladies Héréditaires du Métabolisme, CHU Dijon Bourgogne, France
| | - Yannis Duffourd
- INSERM - University of Bourgogne Franche-Comté, UMR 1231 GAD Team, Genetics of Developmental Disorders, FHU TRANSLAD, CHU Dijon Bourgogne, France.,Unité Fonctionnelle d'Innovation diagnostique dans les maladies rares, Laboratoire de Génétique chromosomique moléculaire, CHU Dijon Bourgogne, France
| | - Christophe Philippe
- INSERM - University of Bourgogne Franche-Comté, UMR 1231 GAD Team, Genetics of Developmental Disorders, FHU TRANSLAD, CHU Dijon Bourgogne, France.,Unité Fonctionnelle d'Innovation diagnostique dans les maladies rares, Laboratoire de Génétique chromosomique moléculaire, CHU Dijon Bourgogne, France
| | - François Feillet
- Department of Medical Genetics, Reference Center for Rare Diseases, Developmental Disorders and Multiple Congenital Anomalies, Arnaud de Villeneuve Hospital, Montpellier, France
| | - Laurence Faivre
- INSERM - University of Bourgogne Franche-Comté, UMR 1231 GAD Team, Genetics of Developmental Disorders, FHU TRANSLAD, CHU Dijon Bourgogne, France.,CHU Dijon, Centre de référence maladies rares Anomalies du Développement et Syndromes Malformatifs, Centre de Génétique, FHU TRANSLAD, CHU Dijon Bourgogne, France.,Unité Fonctionnelle d'Innovation diagnostique dans les maladies rares, Laboratoire de Génétique chromosomique moléculaire, CHU Dijon Bourgogne, France
| | - Christel Thauvin-Robinet
- INSERM - University of Bourgogne Franche-Comté, UMR 1231 GAD Team, Genetics of Developmental Disorders, FHU TRANSLAD, CHU Dijon Bourgogne, France.,Unité Fonctionnelle d'Innovation diagnostique dans les maladies rares, Laboratoire de Génétique chromosomique moléculaire, CHU Dijon Bourgogne, France.,Centre de référence maladies rares Déficiences Intellectuelles de causes rares, Centre de Génétique, FHU TRANSLAD, CHU Dijon Bourgogne, France
| |
Collapse
|
16
|
Basu SS, Stopka SA, Abdelmoula WM, Randall EC, Gimenez-Cassina Lopez B, Regan MS, Calligaris D, Lu FF, Norton I, Mallory MA, Santagata S, Dillon DA, Golshan M, Agar NYR. Interim clinical trial analysis of intraoperative mass spectrometry for breast cancer surgery. NPJ Breast Cancer 2021; 7:116. [PMID: 34504095 PMCID: PMC8429658 DOI: 10.1038/s41523-021-00318-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/26/2021] [Indexed: 12/03/2022] Open
Abstract
Optimal resection of breast tumors requires removing cancer with a rim of normal tissue while preserving uninvolved regions of the breast. Surgical and pathological techniques that permit rapid molecular characterization of tissue could facilitate such resections. Mass spectrometry (MS) is increasingly used in the research setting to detect and classify tumors and has the potential to detect cancer at surgical margins. Here, we describe the ex vivo intraoperative clinical application of MS using a liquid micro-junction surface sample probe (LMJ-SSP) to assess breast cancer margins. In a midpoint analysis of a registered clinical trial, surgical specimens from 21 women with treatment naïve invasive breast cancer were prospectively collected and analyzed at the time of surgery with subsequent histopathological determination. Normal and tumor breast specimens from the lumpectomy resected by the surgeon were smeared onto glass slides for rapid analysis. Lipidomic profiles were acquired from these specimens using LMJ-SSP MS in negative ionization mode within the operating suite and post-surgery analysis of the data revealed five candidate ions separating tumor from healthy tissue in this limited dataset. More data is required before considering the ions as candidate markers. Here, we present an application of ambient MS within the operating room to analyze breast cancer tissue and surgical margins. Lessons learned from these initial promising studies are being used to further evaluate the five candidate biomarkers and to further refine and optimize intraoperative MS as a tool for surgical guidance in breast cancer.
Collapse
Affiliation(s)
- Sankha S Basu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sylwia A Stopka
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Walid M Abdelmoula
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth C Randall
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Michael S Regan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David Calligaris
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fake F Lu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Isaiah Norton
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Melissa A Mallory
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sandro Santagata
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Deborah A Dillon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mehra Golshan
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Yale Cancer Center, Department of Surgery, New Haven, CT, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Trinh TT, Blasco H, Maillot F, Bakhos D. Hearing loss in inherited metabolic disorders: A systematic review. Metabolism 2021; 122:154841. [PMID: 34333001 DOI: 10.1016/j.metabol.2021.154841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
Inherited metabolic disorders (IMDs) have been observed in individuals with hearing loss (HL), but IMDs are rarely the cause of syndromic HL. With early diagnosis, management of HL is more effective and cortical reorganization is possible with hearing aids or cochlear implants. This review describes relationships between IMDs and HL in terms of incidence, etiology of HL, pathophysiology, and treatment. Forty types of IMDs are described in the literature, mainly in case reports. Management and prognosis are noted where existing. We also describe IMDs with HL given age of occurrence of HL. Reviewing the main IMDs that are associated with HL may provide an additional clinical tool with which to better diagnose syndromic HL.
Collapse
Affiliation(s)
- T-T Trinh
- CHRU de Tours, service ORL et Chirurgie Cervico-Faciale, Tours, France.
| | - H Blasco
- Laboratoire de Biochimie et Biologie Moléculaire, Tours, France; Université François Rabelais, Tours, France; INSERM U1253, Tours, France
| | - F Maillot
- Université François Rabelais, Tours, France; INSERM U1253, Tours, France; CHU de Tours, service de Médecine Interne, Tours, France
| | - D Bakhos
- CHRU de Tours, service ORL et Chirurgie Cervico-Faciale, Tours, France; Université François Rabelais, Tours, France; INSERM U1253, Tours, France
| |
Collapse
|
18
|
Yang Q, Shi BH, Tian GL, Niu QQ, Tang J, Linghu DD, He HQ, Wu BQ, Yang JT, Xu L, Yu RQ. GC–MS urinary metabolomics analysis of inherited metabolic diseases and stable metabolic biomarker screening by a comprehensive chemometric method. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Skogvold H, Sandås EM, Østeby A, Løkken C, Rootwelt H, Rønning PO, Wilson SR, Elgstøen KBP. Bridging the Polar and Hydrophobic Metabolome in Single-Run Untargeted Liquid Chromatography-Mass Spectrometry Dried Blood Spot Metabolomics for Clinical Purposes. J Proteome Res 2021; 20:4010-4021. [PMID: 34296888 PMCID: PMC8397434 DOI: 10.1021/acs.jproteome.1c00326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Indexed: 12/31/2022]
Abstract
Dried blood spot (DBS) metabolite analysis is a central tool for the clinic, e.g., newborn screening. Instead of applying multiple analytical methods, a single liquid chromatography-mass spectrometry (LC-MS) method was developed for metabolites spanning from highly polar glucose to hydrophobic long-chain acylcarnitines. For liquid chromatography, a diphenyl column and a multi-linear solvent gradient operated at elevated flow rates allowed for an even-spread resolution of diverse metabolites. Injecting moderate volumes of DBS organic extracts directly, in contrast to evaporation and reconstitution, provided substantial increases in analyte recovery. Q Exactive MS settings were also tailored for sensitivity increases, and the method allowed for analyte retention time and peak area repeatabilities of 0.1-0.4 and 2-10%, respectively, for a wide polarity range of metabolites (log P -4.4 to 8.8). The method's performance was suited for both untargeted analysis and targeted approaches evaluated in clinically relevant experiments.
Collapse
Affiliation(s)
- Hanne
Bendiksen Skogvold
- National
Unit for Screening and Diagnosis of Congenital Pediatric Metabolic
Disorders, Department of Medical Biochemistry, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, Oslo 0372, Norway
- Department
of Mechanical, Electronic and Chemical Engineering, Faculty of Technology,
Art and Design, Oslo Metropolitan University, Pilestredet 35, Oslo 0166, Norway
| | - Elise Mørk Sandås
- National
Unit for Screening and Diagnosis of Congenital Pediatric Metabolic
Disorders, Department of Medical Biochemistry, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, Oslo 0372, Norway
| | - Anja Østeby
- National
Unit for Screening and Diagnosis of Congenital Pediatric Metabolic
Disorders, Department of Medical Biochemistry, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, Oslo 0372, Norway
| | - Camilla Løkken
- National
Unit for Screening and Diagnosis of Congenital Pediatric Metabolic
Disorders, Department of Medical Biochemistry, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, Oslo 0372, Norway
| | - Helge Rootwelt
- Department
of Medical Biochemistry, Oslo University
Hospital, Rikshospitalet, Sognsvannsveien 20, Oslo 0372, Norway
| | - Per Ola Rønning
- Department
of Mechanical, Electronic and Chemical Engineering, Faculty of Technology,
Art and Design, Oslo Metropolitan University, Pilestredet 35, Oslo 0166, Norway
| | - Steven Ray Wilson
- Department
of Chemistry, University of Oslo, Sem Sælands vei 26, Oslo 0371, Norway
- Hybrid
Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences,
Faculty of Medicine, University of Oslo, Domus Medica, Gaustad, Sognsvannsveien
9, Oslo 0372, Norway
| | - Katja Benedikte Prestø Elgstøen
- National
Unit for Screening and Diagnosis of Congenital Pediatric Metabolic
Disorders, Department of Medical Biochemistry, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, Oslo 0372, Norway
| |
Collapse
|
20
|
Elserafy N, Thompson S, Dalkeith T, Stormon M, Thomas G, Shun A, Sawyer J, Balasubramanian S, Bhattacharya K, Badawi N, Ellaway C. Liver transplantation in children with inborn errors of metabolism: 30 years experience in NSW, Australia. JIMD Rep 2021; 60:88-95. [PMID: 34258144 PMCID: PMC8260479 DOI: 10.1002/jmd2.12219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Inborn errors of metabolism (IEM) are a diverse group of genetic disorders that can result in significant morbidity and sometimes death. Metabolic management can be challenging and burdensome for families. Liver transplantation (LT) is increasingly being considered a treatment option for some IEMs. IEMs are now considered the second most common reason for pediatric LT. AIM To review the data of all children with an IEM who had LT at The Children's Hospital at Westmead (CHW), NSW, Australia between January 1986 and January 2019. METHODS Retrospective data collected from the medical records and genetic files included patient demographics, family history, parental consanguinity, method of diagnosis of IEM, hospital and intensive care unit admissions, age at LT, graft type, clinical outcomes and metabolic management pre and post-LT. RESULTS Twenty-four LT were performed for 21 patients. IEM diagnoses were MSUD (n = 4), UCD (n = 8), OA (n = 6), TYR type I (n = 2) and GSD Ia (n = 1). Three patients had repeat transplants due to complications. Median age at transplant was 6.21 years (MSUD), 0.87 years (UCD), 1.64 years (OA) and 2.2 years (TYR I). Two patients died peri-operatively early in the series, one died 3 months after successful LT due to septicemia. Eighteen LTs have been performed since 2008 in comparison to six LT prior to 2008. Dietary management was liberalized post LT for all patients. CONCLUSIONS Referral for LT for IEMs has increased over the last 33 years, with the most referrals in the last 10 years. Early LT has resulted in improved clinical outcomes and patient survival.
Collapse
Affiliation(s)
- Noha Elserafy
- Genetic Metabolic Disorders Service, The Children's Hospital at WestmeadSydney Children's Hospital NetworkSydneyNew South WalesAustralia
| | - Sue Thompson
- Genetic Metabolic Disorders Service, The Children's Hospital at WestmeadSydney Children's Hospital NetworkSydneyNew South WalesAustralia
- Paediatric divisonThe University of SydneySydneyNew South WalesAustralia
| | - Troy Dalkeith
- Genetic Metabolic Disorders Service, The Children's Hospital at WestmeadSydney Children's Hospital NetworkSydneyNew South WalesAustralia
- Paediatric divisonThe University of SydneySydneyNew South WalesAustralia
| | - Michael Stormon
- Paediatric divisonThe University of SydneySydneyNew South WalesAustralia
- Department of Gastroenterology, The Children's Hospital at WestmeadSydney Children's Hospital NetworkSydneyNew South WalesAustralia
| | - Gordon Thomas
- Paediatric divisonThe University of SydneySydneyNew South WalesAustralia
- Department of Paediatric Surgery, The Children's Hospital at WestmeadSydney Children's Hospital NetworkSydneyNew South WalesAustralia
| | - Albert Shun
- Paediatric divisonThe University of SydneySydneyNew South WalesAustralia
- Department of Paediatric Surgery, The Children's Hospital at WestmeadSydney Children's Hospital NetworkSydneyNew South WalesAustralia
| | - Janine Sawyer
- Department of Gastroenterology, The Children's Hospital at WestmeadSydney Children's Hospital NetworkSydneyNew South WalesAustralia
| | - Shanti Balasubramanian
- Genetic Metabolic Disorders Service, The Children's Hospital at WestmeadSydney Children's Hospital NetworkSydneyNew South WalesAustralia
- Paediatric divisonThe University of SydneySydneyNew South WalesAustralia
| | - Kaustuv Bhattacharya
- Genetic Metabolic Disorders Service, The Children's Hospital at WestmeadSydney Children's Hospital NetworkSydneyNew South WalesAustralia
- Paediatric divisonThe University of SydneySydneyNew South WalesAustralia
| | - Nadia Badawi
- Paediatric divisonThe University of SydneySydneyNew South WalesAustralia
- Grace Centre for Newborn Care, The Children's Hospital at WestmeadSydney Children's Hospital NetworkSydneyNew South WalesAustralia
| | - Carolyn Ellaway
- Genetic Metabolic Disorders Service, The Children's Hospital at WestmeadSydney Children's Hospital NetworkSydneyNew South WalesAustralia
- Paediatric divisonThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
21
|
Razzaghy-Azar M, Nourbakhsh M, Vafadar M, Nourbakhsh M, Talebi S, Sharifi-Zarchi A, Salehi Siavashani E, Garshasbi M. A novel metabolic disorder in the degradation pathway of endogenous methanol due to a mutation in the gene of alcohol dehydrogenase. Clin Biochem 2021; 90:66-72. [PMID: 33539811 DOI: 10.1016/j.clinbiochem.2021.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND A small amount of methanol is produced endogenously in the human body but it is efficiently metabolized by alcohol dehydrogenase (ADH) and other enzymes, and the products eliminated without harm. In this study, we present a new entity of inborn error of methanol metabolism due to a mutation in the ADH1C gene coding for the γ subunit that is part of several ADH isoenzymes. RESULTS This disorder was discovered in an 11.58-year-old boy. During one 9-month hospital admission, he had periods of 1-4 days during which he was comatose, and between these periods he was sometimes verbose and euphoric, and had ataxia, dysarthria. Following hemodialysis treatments, he became conscious and appeared healthy. Organ evaluations and his laboratory tests were normal. Toxicological evaluation of his blood showed a high methanol level [12.2 mg/dL (3.8 mmol/L), normal range up to 3.5 mg/dL (1.09 mmol/L) while the formaldehyde level was undetectable. The finding of liver function tests that were within normal limits, coupled with a normal eye examination and size of the liver, elevated blood methanol levels and an undetectable formaldehyde level, suggested ADH insufficiency. Adding zinc to the drug regimen 15 mg/daily dramatically reduced the patient's methanol level and alleviated the abnormal symptoms. When zinc supplementation was discontinued, the patient relapsed into a coma and hemodialysis was once again required. A homozygous mutation in ADH1C gene located at exon 3 was found, and both parents were heterozygous for this mutation. CONCLUSION Accumulation of methanol due to mutation in ADH1C gene may result in drunkenness and ataxia, and leads to coma. This condition can be successfully treated with zinc supplementation as the cofactor of ADH.
Collapse
Affiliation(s)
- Maryam Razzaghy-Azar
- Hazrat Aliasghar Children's Hospital, Iran University of Medical Sciences, Tehran, Iran; Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Nourbakhsh
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Vafadar
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Nourbakhsh
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Talebi
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Sharifi-Zarchi
- Computer Engineering Department, Sharif University of Technology, Tehran, Iran
| | | | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
22
|
Cheng Y, Schlosser P, Hertel J, Sekula P, Oefner PJ, Spiekerkoetter U, Mielke J, Freitag DF, Schmidts M, Kronenberg F, Eckardt KU, Thiele I, Li Y, Köttgen A. Rare genetic variants affecting urine metabolite levels link population variation to inborn errors of metabolism. Nat Commun 2021; 12:964. [PMID: 33574263 PMCID: PMC7878905 DOI: 10.1038/s41467-020-20877-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolite levels in urine may provide insights into genetic mechanisms shaping their related pathways. We therefore investigate the cumulative contribution of rare, exonic genetic variants on urine levels of 1487 metabolites and 53,714 metabolite ratios among 4864 GCKD study participants. Here we report the detection of 128 significant associations involving 30 unique genes, 16 of which are known to underlie inborn errors of metabolism. The 30 genes are strongly enriched for shared expression in liver and kidney (odds ratio = 65, p-FDR = 3e-7), with hepatocytes and proximal tubule cells as driving cell types. Use of UK Biobank whole-exome sequencing data links genes to diseases connected to the identified metabolites. In silico constraint-based modeling of gene knockouts in a virtual whole-body, organ-resolved metabolic human correctly predicts the observed direction of metabolite changes, highlighting the potential of linking population genetics to modeling. Our study implicates candidate variants and genes for inborn errors of metabolism.
Collapse
Affiliation(s)
- Yurong Cheng
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Pascal Schlosser
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Johannes Hertel
- School of Medicine, National University of Ireland, Galway, University Road, Galway, Ireland
- University of Greifswald, University Medicine Greifswald, Department of Psychiatry and Psychotherapy, Greifswald, Germany
| | - Peggy Sekula
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Ute Spiekerkoetter
- Department of General Pediatrics and Adolescent Medicine, Medical Center and Faculty of Medicine - University of Freiburg, Freiburg, Germany
| | - Johanna Mielke
- Bayer AG, Division Pharmaceuticals, Open Innovation & Digital Technologies, Wuppertal, Germany
| | - Daniel F Freitag
- Bayer AG, Division Pharmaceuticals, Open Innovation & Digital Technologies, Wuppertal, Germany
| | - Miriam Schmidts
- Department of General Pediatrics and Adolescent Medicine, Medical Center and Faculty of Medicine - University of Freiburg, Freiburg, Germany
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, University of Erlangen-Nürnberg, Erlangen, Germany
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ines Thiele
- School of Medicine, National University of Ireland, Galway, University Road, Galway, Ireland
- Division of Microbiology, National University of Ireland, Galway, University Road, Galway, Ireland
- APC Microbiome Ireland, Galway, Ireland
| | - Yong Li
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
| |
Collapse
|
23
|
Yilmaz BS, Gurung S, Perocheau D, Counsell J, Baruteau J. Gene therapy for inherited metabolic diseases. JOURNAL OF MOTHER AND CHILD 2020; 24:53-64. [PMID: 33554501 PMCID: PMC8518100 DOI: 10.34763/jmotherandchild.20202402si.2004.000009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the last two decades, gene therapy has been successfully translated to many rare diseases. The number of clinical trials is rapidly expanding and some gene therapy products have now received market authorisation in the western world. Inherited metabolic diseases (IMD) are orphan diseases frequently associated with a severe debilitating phenotype with limited therapeutic perspective. Gene therapy is progressively becoming a disease-changing therapeutic option for these patients. In this review, we aim to summarise the development of this emerging field detailing the main gene therapy strategies, routes of administration, viral and non-viral vectors and gene editing tools. We discuss the respective advantages and pitfalls of these gene therapy strategies and review their application in IMD, providing examples of clinical trials with lentiviral or adeno-associated viral gene therapy vectors in rare diseases. The rapid development of the field and implementation of gene therapy as a realistic therapeutic option for various IMD in a short term also require a good knowledge and understanding of these technologies from physicians to counsel the patients at best.
Collapse
Affiliation(s)
- Berna Seker Yilmaz
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Paediatric Metabolic Medicine, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Sonam Gurung
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Dany Perocheau
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - John Counsell
- Developmental Neurosciences Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
- National Institute of Health Research, Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Julien Baruteau
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Metabolic Medicine Department, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
- National Institute of Health Research, Great Ormond Street Hospital Biomedical Research Centre, London, UK
| |
Collapse
|
24
|
Verduci E, Carbone MT, Borghi E, Ottaviano E, Burlina A, Biasucci G. Nutrition, Microbiota and Role of Gut-Brain Axis in Subjects with Phenylketonuria (PKU): A Review. Nutrients 2020; 12:3319. [PMID: 33138040 PMCID: PMC7692600 DOI: 10.3390/nu12113319] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
The composition and functioning of the gut microbiota, the complex population of microorganisms residing in the intestine, is strongly affected by endogenous and exogenous factors, among which diet is key. Important perturbations of the microbiota have been observed to contribute to disease risk, as in the case of neurological disorders, inflammatory bowel disease, obesity, diabetes, cardiovascular disease, among others. Although mechanisms are not fully clarified, nutrients interacting with the microbiota are thought to affect host metabolism, immune response or disrupt the protective functions of the intestinal barrier. Similarly, key intermediaries, whose presence may be strongly influenced by dietary habits, sustain the communication along the gut-brain-axis, influencing brain functions in the same way as the brain influences gut activity. Due to the role of diet in the modulation of the microbiota, its composition is of high interest in inherited errors of metabolism (IEMs) and may reveal an appealing therapeutic target. In IEMs, for example in phenylketonuria (PKU), since part of the therapeutic intervention is based on chronic or life-long tailored dietetic regimens, important variations of the microbial diversity or relative abundance have been observed. A holistic approach, including a healthy composition of the microbiota, is recommended to modulate host metabolism and affected neurological functions.
Collapse
Affiliation(s)
- Elvira Verduci
- Department of Paediatrics, Vittore Buzzi Children’s Hospital-University of Milan, Via Lodovico Castelvetro, 32, 20154 Milan, Italy
- Department of Health Science, University of Milan, via di Rudinì 8, 20142 Milan, Italy; (E.B.); (E.O.)
| | - Maria Teresa Carbone
- UOS Metabolic and Rare Diseases, AORN Santobono, Via Mario Fiore 6, 80122 Naples, Italy;
| | - Elisa Borghi
- Department of Health Science, University of Milan, via di Rudinì 8, 20142 Milan, Italy; (E.B.); (E.O.)
| | - Emerenziana Ottaviano
- Department of Health Science, University of Milan, via di Rudinì 8, 20142 Milan, Italy; (E.B.); (E.O.)
| | - Alberto Burlina
- Division of Inborn Metabolic Diseases, Department of Diagnostic Services, University Hospital of Padua, Via Orus 2B, 35129 Padua, Italy;
| | - Giacomo Biasucci
- Department of Paediatrics & Neonatology, Guglielmo da Saliceto Hospital, Via Taverna Giuseppe, 49, 29121 Piacenza, Italy;
| |
Collapse
|
25
|
Masnada S, Parazzini C, Bini P, Barbarini M, Alberti L, Valente M, Chiapparini L, De Silvestri A, Doneda C, Iascone M, Saielli LA, Cereda C, Veggiotti P, Corbetta C, Tonduti D. Phenotypic spectrum of short-chain enoyl-Coa hydratase-1 (ECHS1) deficiency. Eur J Paediatr Neurol 2020; 28:151-158. [PMID: 32800686 DOI: 10.1016/j.ejpn.2020.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/18/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION ECHS1 encodes for short-chain enoyl-CoA hydratase, a key component in b-oxidation. This enzyme is also involved in the isoleucine and valine catabolic pathways. The literature contains reports of scattered cases of ECHS1 mutation, which show a wide clinical spectrum of presentation. Despite that the clinical spectrum of the disease has not been defined so far due to the absence of previous systematic reviews and descriptions of large series of patients. METHODS We performed a systematic literature review of so far reported ECHS1 mutated patients and we reported two additional cases. We pointed out clinical and neuroradiological features of all patients. RESULTS 45 patients were included in the analysis. Based on clinical and neuroradiological feature we were able to distinguish four main phenotypes of ECHS1deficiency: a severe neonatal presentation with a rapid and fatal course and significant white matter abnormalities; a severe infantile variant with slower neurological deterioration, developmental delay, pyramidal and extrapyramidal signs, optic atrophy, feeding difficulties, and degeneration of the deep gray nuclei; a slowly progressive infantile form, qualitatively similar to the previous phenotype, but less severe with mainly basal ganglia involvement; and a final phenotype, present in only few cases, characterized by paroxysmal exercise-induced dystonic attacks, normal neurological examination between these episodes, and isolated pallidal degeneration on MRI. INTERPRETATION ECHS1 mutations cause metabolic encephalopathy with a wide range of clinical presentations that can be grouped into four main phenotypes, each with a distinct profile in terms of severity on clinical presentation, disease course and MRI involvement.
Collapse
Affiliation(s)
- Silvia Masnada
- Pediatric Neurology Unit, V. Buzzi Children's Hospital, Milan, Italy.
| | - Cecilia Parazzini
- Department of Pediatric Radiology and Neuroradiology, V. Buzzi Children's Hospital, Milan, Italy
| | - Paolo Bini
- Neonatal Intensive Care Unit, General Hospital "Azienda Ospedaliera Sant'Anna", Como, Italy
| | - Mario Barbarini
- Neonatal Intensive Care Unit, General Hospital "Azienda Ospedaliera Sant'Anna", Como, Italy
| | - Luisella Alberti
- Newborn Screening Laboratory, V. Buzzi Children's Hospital, Milan, Italy
| | | | - Luisa Chiapparini
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Annalisa De Silvestri
- Clinical Epidemiology and Biometry Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Chiara Doneda
- Department of Pediatric Radiology and Neuroradiology, V. Buzzi Children's Hospital, Milan, Italy
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | | | - Cristina Cereda
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Pierangelo Veggiotti
- Pediatric Neurology Unit, V. Buzzi Children's Hospital, Milan, Italy; Department of Biomedical and Clinical Sciences, L. Sacco, University of Milan, Italy
| | - Carlo Corbetta
- Newborn Screening Laboratory, V. Buzzi Children's Hospital, Milan, Italy
| | - Davide Tonduti
- Pediatric Neurology Unit, V. Buzzi Children's Hospital, Milan, Italy.
| |
Collapse
|
26
|
Moro CA, Hanna-Rose W. Animal Model Contributions to Congenital Metabolic Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:225-244. [PMID: 32304075 PMCID: PMC8404832 DOI: 10.1007/978-981-15-2389-2_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genetic model systems allow researchers to probe and decipher aspects of human disease, and animal models of disease are frequently specifically engineered and have been identified serendipitously as well. Animal models are useful for probing the etiology and pathophysiology of disease and are critical for effective discovery and development of novel therapeutics for rare diseases. Here we review the impact of animal model organism research in three examples of congenital metabolic disorders to highlight distinct advantages of model system research. First, we discuss phenylketonuria research where a wide variety of research fields and models came together to make impressive progress and where a nearly ideal mouse model has been central to therapeutic advancements. Second, we review advancements in Lesch-Nyhan syndrome research to illustrate the role of models that do not perfectly recapitulate human disease as well as the need for multiple models of the same disease to fully investigate human disease aspects. Finally, we highlight research on the GM2 gangliosidoses Tay-Sachs and Sandhoff disease to illustrate the important role of both engineered traditional laboratory animal models and serendipitously identified atypical models in congenital metabolic disorder research. We close with perspectives for the future for animal model research in congenital metabolic disorders.
Collapse
Affiliation(s)
- Corinna A Moro
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Wendy Hanna-Rose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
27
|
Khalaf SM, El-Tellawy MM, Refat NH, El-Aal AMA. Detection of some metabolic disorders in suspected neonates admitted at Assiut University Children Hospital. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2019. [DOI: 10.1186/s43042-019-0030-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Inborn errors of metabolism are genetically inherited diseases which can lead to accumulation of toxic metabolites in the body. Inborn errors of metabolism have a high morbidity and mortality in neonates. Many inborn errors of metabolism are amenable to treatment with early diagnoses. Till now, more than 500 metabolic disorders have been detected. Although individual metabolic disorders are rare, the incidence of overall metabolic disorders is high.
Results
It was found that 70/200 cases (35 %) had confirmed inborn errors of metabolism, and another 8 cases (4%) suspected to have inborn errors of metabolism; 15/200 (7.5%) cases had mild elevation of phenylalanine level, while 107/200 (53.5%) had another diagnosis rather than metabolic disorders. Urea cycle defect was diagnosed in 20/70 (28.5%), maple syrup urine disease in 18/70 (25.7%), organic acidemia in 15/70 (21.4%), and non-ketotic hyperglycinemia in 1/70 (1.4 %) case. Also, 15/70 (21.4 %) cases had fatty acid oxidation defect. Lastly, one female case (1.4 %) was diagnosed to have disorder of pyrimidine deficiency.
Conclusion
Diagnosis of inborn errors of metabolism was confirmed in 35% of neonates, and 4% was suspected to have metabolic disorders. These results showed that inherited metabolic disorders are not rare. The development of a nationwide screening program for metabolic disorders is mandatory for early detection of these potentially treatable disorders.
Collapse
|
28
|
Ismail IT, Showalter MR, Fiehn O. Inborn Errors of Metabolism in the Era of Untargeted Metabolomics and Lipidomics. Metabolites 2019; 9:metabo9100242. [PMID: 31640247 PMCID: PMC6835511 DOI: 10.3390/metabo9100242] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/30/2022] Open
Abstract
Inborn errors of metabolism (IEMs) are a group of inherited diseases with variable incidences. IEMs are caused by disrupting enzyme activities in specific metabolic pathways by genetic mutations, either directly or indirectly by cofactor deficiencies, causing altered levels of compounds associated with these pathways. While IEMs may present with multiple overlapping symptoms and metabolites, early and accurate diagnosis of IEMs is critical for the long-term health of affected subjects. The prevalence of IEMs differs between countries, likely because different IEM classifications and IEM screening methods are used. Currently, newborn screening programs exclusively use targeted metabolic assays that focus on limited panels of compounds for selected IEM diseases. Such targeted approaches face the problem of false negative and false positive diagnoses that could be overcome if metabolic screening adopted analyses of a broader range of analytes. Hence, we here review the prospects of using untargeted metabolomics for IEM screening. Untargeted metabolomics and lipidomics do not rely on predefined target lists and can detect as many metabolites as possible in a sample, allowing to screen for many metabolic pathways simultaneously. Examples are given for nontargeted analyses of IEMs, and prospects and limitations of different metabolomics methods are discussed. We conclude that dedicated studies are needed to compare accuracy and robustness of targeted and untargeted methods with respect to widening the scope of IEM diagnostics.
Collapse
Affiliation(s)
- Israa T Ismail
- National Liver Institute, Menoufia University, Shebeen El Kom 55955, Egypt.
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA.
| | - Megan R Showalter
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA.
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
29
|
Phipps WS, Jones PM, Patel K. Amino and organic acid analysis: Essential tools in the diagnosis of inborn errors of metabolism. Adv Clin Chem 2019; 92:59-103. [PMID: 31472756 DOI: 10.1016/bs.acc.2019.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inborn errors of metabolism (IEMs) are a large class of genetic disorders that result from defects in enzymes involved in energy production and metabolism of nutrients. For every metabolic pathway, there are defects that can occur and potentially result in an IEM. While some defects can go undetected in one's lifetime, some have moderate to severe clinical consequences. In the latter case, the biochemical defect leads to accumulation of metabolites and byproducts that are toxic or interfere with normal biological function. Disorders of amino acid metabolism, organic acid metabolism and the urea cycle comprise a large portion of IEMs. Two essential tools required for the diagnosis of these categories of disorders are amino acid and organic acid profiling. Most all clinical laboratories offering metabolic testing perform amino acid analysis, while organic acid profiling is restricted to more specialized pediatric hospitals and reference laboratories. In this chapter, we will provide an overview of various methodologies employed for amino acid and organic acid profiling as well as specific examples to demonstrate how these techniques are applied in clinical laboratories for the diagnosis of IEMs.
Collapse
Affiliation(s)
- William S Phipps
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Patti M Jones
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Khushbu Patel
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
30
|
Abstract
In caring for critically ill children, recognition and management often begins in the pediatric emergency department. A seamless transition in care is needed to ensure appropriate care to the sickest of children. This review covers the management of critically ill children in the pediatric emergency department beyond the initial stabilization for conditions such as acute respiratory failure and pediatric acute respiratory distress syndrome, traumatic brain injury, status epilepticus, congenital heart disease, and metabolic emergencies.
Collapse
|
31
|
Limphaibool N, Iwanowski P, Holstad MJV, Perkowska K. Parkinsonism in Inherited Metabolic Disorders: Key Considerations and Major Features. Front Neurol 2018; 9:857. [PMID: 30369906 PMCID: PMC6194353 DOI: 10.3389/fneur.2018.00857] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022] Open
Abstract
Parkinson's Disease (PD) is a common neurodegenerative disorder manifesting as reduced facilitation of voluntary movements. Extensive research over recent decades has expanded our insights into the pathogenesis of the disease, where PD is indicated to result from multifactorial etiological factors involving environmental contributions in genetically predisposed individuals. There has been considerable interest in the association between neurological manifestations in PD and in inherited metabolic disorders (IMDs), which are genetic disorders characterized by a deficient activity in the pathways of intermediary metabolism leading to multiple-system manifestations. In addition to the parallel in various clinical features, there is increasing evidence for the notion that genetic mutations underlying IMDs may increase the risk of PD development. This review highlights the recent advances in parkinsonism in patients with IMDs, with the primary objective to improve the understanding of the overlapping pathogenic pathways and clinical presentations in both disorders. We discuss the genetic convergence and disruptions in biochemical mechanisms which may point to clues surrounding pathogenesis-targeted treatment and other promising therapeutic strategies in the future.
Collapse
Affiliation(s)
| | - Piotr Iwanowski
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Katarzyna Perkowska
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
32
|
Colonetti K, Roesch LF, Schwartz IVD. The microbiome and inborn errors of metabolism: Why we should look carefully at their interplay? Genet Mol Biol 2018; 41:515-532. [PMID: 30235399 PMCID: PMC6136378 DOI: 10.1590/1678-4685-gmb-2017-0235] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/19/2018] [Indexed: 12/26/2022] Open
Abstract
Research into the influence of the microbiome on the human body has been shedding new light on diseases long known to be multifactorial, such as obesity, mood disorders, autism, and inflammatory bowel disease. Although inborn errors of metabolism (IEMs) are monogenic diseases, genotype alone is not enough to explain the wide phenotypic variability observed in patients with these conditions. Genetics and diet exert a strong influence on the microbiome, and diet is used (alone or as an adjuvant) in the treatment of many IEMs. This review will describe how the effects of the microbiome on the host can interfere with IEM phenotypes through interactions with organs such as the liver and brain, two of the structures most commonly affected by IEMs. The relationships between treatment strategies for some IEMs and the microbiome will also be addressed. Studies on the microbiome and its influence in individuals with IEMs are still incipient, but are of the utmost importance to elucidating the phenotypic variety observed in these conditions.
Collapse
Affiliation(s)
- Karina Colonetti
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratory of Basic Research and Advanced Investigations in Neurosciences (BRAIN), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Luiz Fernando Roesch
- Interdisciplinary Research Center on Biotechnology-CIP-Biotec, Universidade Federal do Pampa, Bagé, RS, Brazil
| | - Ida Vanessa Doederlein Schwartz
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratory of Basic Research and Advanced Investigations in Neurosciences (BRAIN), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
33
|
Al Dhahouri N, Langhans CD, Al Hammadi Z, Okun JG, Hoffmann GF, Al-Jasmi F, Al-Dirbashi OY. Quantification of methylcitrate in dried urine spots by liquid chromatography tandem mass spectrometry for the diagnosis of propionic and methylmalonic acidemias. Clin Chim Acta 2018; 487:41-45. [PMID: 30217751 DOI: 10.1016/j.cca.2018.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/30/2018] [Accepted: 09/10/2018] [Indexed: 01/09/2023]
Abstract
Accumulation of methylcitrate is a biochemical hallmark of inborn errors of propionate metabolism, a group of disorders that include propionic acidemia, methylmalonic aciduria and cobalamin defects. In clinical laboratories, this analyte is measured without quantification by gas chromatography mass spectrometry as part of urine organic acids. Here we describe a simple, sensitive and specific method to quantify methylcitrate in dried urine spots by liquid chromatography tandem mass spectrometry. Methylcitrate is extracted and derivatized with 4-[2-(N,N-dimethylamino)ethylaminosulfonyl]-7-(2-aminoethylamino)-2,1,3-benzoxadiazole in a single step. A derivatization mixture was added to 3.2 mm disc of dried urine spots, incubated at 65 °C for 45 min and 4 μl of the reaction mixture were analyzed. Separation was achieved on C18 column with methylcitrate eluting at 3.8 min. Intraday and interday imprecision (n = 17) were ≤20.9%. The method was applied on dried urine spots from established patients and controls. In controls (n = 135), methylcitrate reference interval of 0.4-3.4 mmol/mol creatinine. In patients, methylcitrate ranged between 8.3 and 591 mmol/mol creatinine. Quantification of methylcitrate provides important diagnostic clues for propionic acidemia, methylmalonic aciduria and cobalamin disorders. The potential utilization of methylcitrate as monitoring biomarker of patients under treatment and whether it correlates with the clinical status has yet to be established.
Collapse
Affiliation(s)
- Nahid Al Dhahouri
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Claus-Dieter Langhans
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Jürgen G Okun
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Fatma Al-Jasmi
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates; Department of Pediatrics, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Osama Y Al-Dirbashi
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates; Research Institute, Children's Hospital of Eastern Ontario, Ottawa, ON K1H 5B2, Canada; Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
34
|
PCR in the Analysis of Clinical Samples: Prenatal and Postnatal Diagnosis of Inborn Errors of Metabolism. Methods Mol Biol 2017. [PMID: 28540711 DOI: 10.1007/978-1-4939-7060-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Inborn errors of metabolism (IEMs) are individually rare but collectively common. As more and more genes are cloned and specific disease-causing mutations are identified, the diagnosis of IEMs is becoming increasingly confirmed by mutation analysis. Diagnosis is important not only for treatment and prognosis but also for genetic counselling and prenatal diagnosis in subsequent pregnancies. A wide range of molecular methods is available for the identification of mutations and other DNA variants, most of which are based on the Polymerase Chain Reaction (PCR). In this chapter, we focus on PCR-based methods for the detection of point mutations or small deletions/insertions as these are the most frequent causes of IEMs.
Collapse
|
35
|
Ali YF, El-Morshedy S, Elsayed RM, El-Sherbini AM, El-Sayed SA, Abdelrahman NIA, Imam AA. Metabolic screening and its impact in children with nonsyndromic intellectual disability. Neuropsychiatr Dis Treat 2017; 13:1065-1070. [PMID: 28458548 PMCID: PMC5403001 DOI: 10.2147/ndt.s130196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE The objective of this study was to analyze the value of routine metabolic screening tests in children with an intellectual disability (ID) and its impact on improving their outcome and quality of life through appropriate intervention and treatment. PATIENTS AND METHODS This cross-sectional study was conducted in the Pediatric Neurology Clinic, Al Khafji Joint Operations Hospital, Kingdom of Saudi Arabia. A total of 150 children with nonsyndromic ID (66% males) in the age range of 5-17 years were compared with 50 apparently healthy age- and sex-matched controls. All studied groups were subjected to detailed history taking, family pedigree, thorough clinical examination, anthropometric measurements, routine laboratory investigations and urine metabolic screening tests (ferric chloride test and toluidine blue spot test and gas chromatography-mass spectrometry). Electroencephalography, IQ, psychiatric assessment and chromosomal study were done for the patient group only. RESULTS Positive consanguineous marriage, older maternal or paternal age and family history of mental disabilities in other siblings were considered as risk factors for the development of mental disabilities. History of admission to neonatal intensive care unit was significantly higher among the patient group than among the controls (P<0.05). Metabolic screening tests showed that up to 35% of patients were positive for ferric chloride test, 9% of patients were positive for gas chromatography-mass spectrometry, and only 7 out of 150 (4.7%) patients were toluidine blue test positive. CONCLUSION Metabolic testing should be considered in the workup of individuals with nonsyndromic ID, which will need further specific investigations to confirm the diagnosis and determine the possible treatable cases.
Collapse
Affiliation(s)
- Yasser F Ali
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig
| | - Salah El-Morshedy
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig
| | - Riad M Elsayed
- Pediatric Neurology Unit, Department of Pediatrics, Mansoura University, Mansoura
| | - Amr M El-Sherbini
- Department of Psychiatry, Faculty of Medicine, El-Minia University, El-Minia
| | | | | | | |
Collapse
|
36
|
Gülbakan B, Özgül RK, Yüzbaşıoğlu A, Kohl M, Deigner HP, Özgüç M. Discovery of biomarkers in rare diseases: innovative approaches by predictive and personalized medicine. EPMA J 2016; 7:24. [PMID: 27980697 PMCID: PMC5143439 DOI: 10.1186/s13167-016-0074-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/21/2016] [Indexed: 12/11/2022]
Abstract
There are more than 8000 rare diseases (RDs) that affect >5 % of the world’s population. Many of the RDs have no effective treatment and lack of knowledge creates delayed diagnosis making management difficult. The emerging concept of the personalized medicine allows for early screening, diagnosis, and individualized treatment of human diseases. In this context, the discovery of biomarkers in RDs will be of prime importance to enable timely prevention and effective treatment. Since 80 % of RDs are of genetic origin, identification of new genes and causative mutations become valuable biomarkers. Furthermore, dynamic markers such as expressed genes, metabolites, and proteins are also very important to follow prognosis and response the therapy. Recent advances in omics technologies and their use in combination can define pathophysiological pathways that can be drug targets. Biomarker discovery and their use in diagnosis in RDs is a major pillar in RD research.
Collapse
Affiliation(s)
- Basri Gülbakan
- Pediatric Metabolism Unit, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Rıza Köksal Özgül
- Pediatric Metabolism Unit, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Ayşe Yüzbaşıoğlu
- Department of Medical Biology & Biobank for Rare Disease, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Matthias Kohl
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Villingen-Schwenningen, Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Villingen-Schwenningen, Germany ; Fraunhofer Institute IZI, EXIM Department, Rostock, Germany
| | - Meral Özgüç
- Department of Medical Biology & Biobank for Rare Disease, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
37
|
Abstract
Although mass spectrometry has been used clinically for decades, the advent of immunoassay technology moved the clinical laboratory to more labor saving automated platforms requiring little if any sample preparation. It became clear, however, that immunoassays lacked sufficient sensitivity and specificity necessary for measurement of certain analytes or for measurement of analytes in specific patient populations. This limitation prompted clinical laboratories to revisit mass spectrometry which could additionally be used to develop assays for which there was no commercial source. In this chapter, the clinical applications of mass spectrometry in therapeutic drug monitoring, toxicology, and steroid hormone analysis will be reviewed. Technologic advances and new clinical applications will also be discussed.
Collapse
Affiliation(s)
- D French
- University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|